尺规作图 含五种基本作图32页PPT
合集下载
《尺规作图》课件PPT课件
在机械装配过程中,装配图纸是指导工人如何组装机械的重要依据。使用尺规作图可以绘制出详细的装配图纸, 包括各个零件的尺寸、位置和连接方式等。
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
中考数学基础复习第22课尺规作图课件
2
解得,x=5或-3(舍弃),∴BE=5.
变式2.(202X·长沙)人教版初中数学教科书八年级上册第48页告知我们一种 作已知角的平分线的方法: 已知:∠AOB. 求作:∠AOB的平分线. 作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N; (2)分别以点M,N为圆心,大于 1 MN的长为半径画弧,两弧在∠AOB的内部相交
4.(202X·北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB. 求作:线段BP,使得点P在直线CD上,且∠ABP= ∠BAC. 作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP 就是所求作线段. (1)使用直尺和圆规,依作法补全图形.(保留作图痕迹)
2
∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值
为
(C)
A.无法确定
B. 1
2
C.1
D.2
5.(202X·河北)如图1,已知∠ABC,用尺规作它的角平分线.
如图2,步骤如下,
第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;
第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;
【解析】(1)则四边形ABCD就是所求作的四边形.
(2)∵AB∥CD,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴ AB . AP
【考点3】尺规作图拓展应用
例3.(202X·苏州)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画 弧,分别交OM,ON于点A,B,再分别以点A,B为圆心,大于 1 AB长为半径画弧,两
2
弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于
解得,x=5或-3(舍弃),∴BE=5.
变式2.(202X·长沙)人教版初中数学教科书八年级上册第48页告知我们一种 作已知角的平分线的方法: 已知:∠AOB. 求作:∠AOB的平分线. 作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N; (2)分别以点M,N为圆心,大于 1 MN的长为半径画弧,两弧在∠AOB的内部相交
4.(202X·北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB. 求作:线段BP,使得点P在直线CD上,且∠ABP= ∠BAC. 作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP 就是所求作线段. (1)使用直尺和圆规,依作法补全图形.(保留作图痕迹)
2
∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值
为
(C)
A.无法确定
B. 1
2
C.1
D.2
5.(202X·河北)如图1,已知∠ABC,用尺规作它的角平分线.
如图2,步骤如下,
第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;
第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;
【解析】(1)则四边形ABCD就是所求作的四边形.
(2)∵AB∥CD,∴∠ABP=∠CDP,∠BAP=∠DCP,∴△ABP∽△CDP,∴ AB . AP
【考点3】尺规作图拓展应用
例3.(202X·苏州)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画 弧,分别交OM,ON于点A,B,再分别以点A,B为圆心,大于 1 AB长为半径画弧,两
2
弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于
五种基本的尺规作图
建筑学
在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。
在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。
2016年中考《尺规作图》复习PPT课件
m
-
38
如图,已知锐角和线段c,用直尺和圆规
作Rt△ABC,使∠A =,斜边AC=c。
(保留作图痕迹,不写作法。)
-
39
要在公路旁建一所小学,使A村、B 村到小学的距离之和最小,请作出 小学的位置。(将军饮马问题)
-
40
(1)作一条线段等于已知线段 (2)作一个角等于已知角
-
41
(3)作一个角的平分线 (4)作已知线段的中垂线
2015年中考复习 题型三 第17题尺规作图
-
1
基本作图
在几何里,把限定用直尺和圆规来画
图,称为尺规作图.最基本,最常用的 尺规作图,通常称基本作图.
其中,直尺是没有刻度的; 一些复杂的尺规作图都是由基本作图组成的.以前学
过的”作一条线段等于已知线段”,就是一种基本作 图. 下面再介绍几种基本作图:
-
2
五种基本作图:
1、作一条线段等于已知线段 2、作一个角等于已知角 3、作已知角的平分线 4、作已知线段的垂直平分线 5、过一点作已知直线的垂线
-
3
一、作一条线段等于已知线段
已知:线段AB.
求作:线段A’ B’,使A’ B’=AB.
A
B
作法与示范:
作
法
示
范
(1)作射线A’C’ ;
(2) 以点A’为圆心,
A
P
O
Q
-
B
33
能力挑战:
如图:分别过点P作直线AB,CD的垂线,垂足分别是M,N.
A
B
C
P
A P
D
C
B
D
-
34
能力挑战:
如图:点P在∠AOB的内部,点M在∠AOB的外部,点Q 在射线OB上,按以下要求作图:
-
38
如图,已知锐角和线段c,用直尺和圆规
作Rt△ABC,使∠A =,斜边AC=c。
(保留作图痕迹,不写作法。)
-
39
要在公路旁建一所小学,使A村、B 村到小学的距离之和最小,请作出 小学的位置。(将军饮马问题)
-
40
(1)作一条线段等于已知线段 (2)作一个角等于已知角
-
41
(3)作一个角的平分线 (4)作已知线段的中垂线
2015年中考复习 题型三 第17题尺规作图
-
1
基本作图
在几何里,把限定用直尺和圆规来画
图,称为尺规作图.最基本,最常用的 尺规作图,通常称基本作图.
其中,直尺是没有刻度的; 一些复杂的尺规作图都是由基本作图组成的.以前学
过的”作一条线段等于已知线段”,就是一种基本作 图. 下面再介绍几种基本作图:
-
2
五种基本作图:
1、作一条线段等于已知线段 2、作一个角等于已知角 3、作已知角的平分线 4、作已知线段的垂直平分线 5、过一点作已知直线的垂线
-
3
一、作一条线段等于已知线段
已知:线段AB.
求作:线段A’ B’,使A’ B’=AB.
A
B
作法与示范:
作
法
示
范
(1)作射线A’C’ ;
(2) 以点A’为圆心,
A
P
O
Q
-
B
33
能力挑战:
如图:分别过点P作直线AB,CD的垂线,垂足分别是M,N.
A
B
C
P
A P
D
C
B
D
-
34
能力挑战:
如图:点P在∠AOB的内部,点M在∠AOB的外部,点Q 在射线OB上,按以下要求作图:
尺规作图 课件ppt(共27张PPT)学案
B D
B' D'
O
A
C
图1
O'
C' A'
图2
新知讲解
例2 已知线段AB,用直尺和圆规作线段AB的垂直平分线.
分析 要作线段AB的垂直平分线,只需找出线段AB的垂直平分线 上的两个点,这由线段垂直平分线上的点的性质不难找出.
A
B
新知讲解
1.分别以点A和B为圆心,以大于 1 AB的长为半径作弧,两弧相交于
据传为了显示谁的逻辑思维能力更强,古希腊人限制了几何作图的工 具,结果一些普通的画图题让数学家苦苦思索了两千多年.尺规作图 特有的魅力,使无数人沉湎其中。
新知导入
我们已经学习过用直尺和圆规作一条线段等于已知线段及作一个 角的平分线.
本节我们将继续学习用直尺和圆规作一个角等于已知角、作一条 线段的垂直平分线等基本尺规作图,以及用基本尺规作图作三角形。
板书设计
课题:1.6 尺规作图
一、尺规作图定义
二、作一个角等于已知角
三、作垂直平分线
教师板演区
学生展示区
作业布置
课本 P39页练习题
课堂练习
3.如图,下列四种基本尺规作图分别表示:①作一个角等于已知角;
②作一个角的平分线;③作条线段的垂直平分线;④过直线外一点
P作已知直线的垂线.对应选项中作法错误的是( C )
A.①
B.② C.③ D.④
课堂练习
4.下列尺规作图,能判断AD是△ABC边上的高的是( B )
拓展提高
5.如图,已知线段a,c,∠α. 求作△ABC,使BC=a,AB=c,∠ABC=∠α.
新知讲解
【做一做】利用尺规,作一个角等于已知角. 已知:∠AOB(如图). 求作:∠A′O′B′,使∠A′O′B′=∠AOB.
第28讲 尺规作图(可编辑)ppt课件
研真题·优易 栏目索引
;
试真题·练易
试真题·练易 栏目索引
命题点 尺规作图
1.(2021·佛山顺德)如图,一条公路的转弯处是一段圆弧( A︵B). ︵
(1)用直尺和圆规作出 AB所在圆的圆心O;(要求保管作图痕迹,不写作法)
︵
︵
(2)假设AB 的中点C到弦AB的间隔为20 m,AB=80 m,求AB 所在圆的半径.
;
研真题·优易 栏目索引
命题亮点 此题调查尺规作图——根本作图,线段的垂直平分线的性质,菱形的性质等知 识,解题的关键是灵敏运用所学知识处理问题,属于常考题型. 解题思绪 (1)分别以A、B为圆心,大于1 AB长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF=∠ABD-∠A2BF计算即可. 开放解答
︵
即 AB所在圆的半径是50 m.
;
2.(2021·江阴)尺规作图题:如图,△ABC中,∠C=90°. (1)用圆规和直尺作出∠CAB的平分线AD交BC于D; (2)在(1)的根底上作出点D到AB的垂线段DE; (3)按以上作法,DE=CD吗?
试真题·练易 栏目索引
;
解析 (1)如下图:
试真题·练易 栏目索引
;
夯基础·学易 栏目索引
(3)⑥作知线段的垂直平分线; (4)⑦作知角的平分线; (5)⑧过一点作知直线的垂线. 3.尺规作图题的步骤: (1)知:当作图是文字言语表达时,要学会根据文字言语用数学言语写出题 目中的条件; (2)求作:能根据标题写出要求作出的图形及此图形应满足的条件; (3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,普通 要保管作图痕迹,对于较复杂的作图,可先⑨画出草图,使它同所要作的图⑩ 大致一样,然后借助 草图寻觅 作法.;
1.1尺规作图PPT课件(华师大版)
a
求作:求作一线段,使它长
b
度等于2a+b-c
c
已知:线段a,b,c.
a
求作:△ABC,使得三边b来自为线段a、b、c。c
作法:
(1)画一条线段AB,使得AB=c。
(2)以点A为圆心,以线段b的长为半径画弧;再以点B为 圆心,以线段a的长为半径画弧;两弧交于点C。
(3)连结AC,BC。
∴ △ABC即为所求。
交前面的弧于点D’ ,
(5) 过点D’作射线O’B’。
示
范
DB
O
CA
B’ D’
O’ C’
A’
∴∠A’O’B’就是所求的角。
思考: 为什么说∠A’O’B’= ∠AOB?
证明: 在△ODC和△O’D’C’中:
DB
OD=O’D’(相同半径) OC=O’C’(相同半径) O DC=D’C’(相同半径) ∴ △ODC≌△O’D’C’(SSS)
请拿出你的课本、彩色笔和练习 本等用品,还有你的激情和坐姿。
学而不思则罔 思而不探则空
第13章 尺规作图
13.4.1 作一条线段等于已知线段 13.4.1 作一个角等于已知角
华东师范大学出版社
在几何里,把限定用没有刻度的直尺和圆规来画图,称 为尺规作图。
最基本、最常用的尺规作图,通常称基本作图。
已知:线段AB。 求作:线段A’B’,使A’B’=AB
作法与示范:
作法
(1) 作射线A’C’ ; (2) 以点A’为圆心,
以AB的长为半径 画弧, 交射线A’C’于点B’,
∴ A’B’就是所求作的线段。 A’
A
B
示范
B’
C’
已知线段AB和CD,如下图,求作一线段,使 它的长度等于AB+CD。
第32讲 尺规作图
解:(1)如图所示.
(2)直线 AC 与⊙O 相切. 过 O 点作 OD⊥AC 于点 D, ∵CO 平分∠ACB,∠ABC=90°,即 OB⊥BC, ∴OB=OD,即 OD 是⊙O 的半径. ∴⊙O 与直线 AC 相切.
【方法指导】 尺规作图题目的常用解题方法: (1)首先分析题设要用哪种尺规作图.如: ①作平行线的实质是作等角; ②作三角形中线的实质是作线段的垂直平分线; ③作三角形的外接圆的实质是作线段的垂直平分线; ④作三角形内切圆的实质是作角平分线、过一点作已知线段的垂线; ⑤作一个三角形全等于已知三角形的实质是作一个角等于已知角,及 该角两边等于已知角的两边等.
适当长为半径画弧,分别交 AB,AC 于点 D,E,再分别以点 D,E 为圆心,
大于21DE 的长为半径画弧,两弧交于点 F,作射线 AF 交边 BC 于点 G.若
BG=1,AC=4,则△ ACG 的面积是(C )
A.1
B.23
C.2
5 D.2
(2)(2019·菏泽)如图,四边形 ABCD 是矩形. ①用尺规作线段 AC 的垂直平分线,交 AB 于点 E,交 CD 于点 F(不写 作法,保留作图痕迹); ②若 BC=4,∠BAC=30°,求 BE 的长. 【自主解答】 解:①如图所示.
(2)对于已知作法进行有关结论的判断或计算问题,要能通过作图步骤 判断是哪种基本作图,作出的线段、角有什么关系,以及要知道作出图形 的性质,进而做出判断或计算,如根据作图步骤知作角平分线则可得到角 相等.
重难点选讲
重难点 尺规作图及其相关计算与证明
(1)(2019·包头)如图,在 Rt△ ABC 中,∠B=90°,以点 A 为圆心,
(2)已知两边及其夹角作三角形 (已知) (已知两边及其夹角作三角形)
【中考数学考点复习】第一节 尺规作图 课件(23张PPT)
段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
中考复习专题:尺规作图课件(共38张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(共38 张PPT)
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
优秀ppt公开课ppt免费课件下载免费 课件20 20年 中考复 习专题 :尺规 作图课 件(成:过不在同一直线上的三点作圆;作三角形的外接圆、内 切圆;作圆的内接正方形和正六边形.
4.在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法.
考情分析:尺规作图是中考的高频考点,但是很少单独考查,具有鲜明的特点:
一是利用尺规作图作三角形、作已知角的平分线、作已知线段的垂直平分线以及过 一点作已知直线的垂线等,同时给出作图语言让学生补全图形,并结合图形条件进 行推理和计算;二是利用尺规作图结合图形变化进行图案设计,均为解答题.考查 的难度、操作与开放的力度或会增加,建议复习时要特别关注作图要求的训练落 实.
1.分别以点A,B为圆心,以 大大于于12AABB的的长长 为 半径,两弧交于M,N两点;2.作直线MN,则 直直线线MMNN 即为线段AB的垂直平分线
过一点作已
知直线的垂 线(已知点P 和直线l)
点P在直线l上
大于 1AB 的长 1.以点P为圆心,以适当长2 为半径 作弧,分别交 直线l于A,B两点;2.分别以点A,B为圆心,以 大于适当长A为B半的径长 为半径作弧,交于M,N两点; 3.过点M,N作直线,则直线MN即为所求垂线
人教版九年级数学
中考复习专题
尺规作图
课标解读:1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个
角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的 垂线.
尺规作图ppt课件
结论:点E就是所求作的点.
常考四种题型之 4.求作特殊多边形 例4:小明想利用一块三角形纸片裁剪一个菱形,要求一个顶 点为A,另外三个顶点分别在三角形的三边上,请你在原图上 利用尺规作图把这个菱形作出来.
结论:菱形AEDF就是所求作的菱形.
练习1:2014年中考题 一块直角三角形的木板余料,要在上面裁处一块正方形木板。 要求:正方形的一个顶点在C处,有两条边在木板的直角边上且 面积最大。
图示
适用情形 ①在已知角的内 部作到角两边距 离相等的点;② 作一个角的折痕 ,使得折叠后角 两边可重叠;③ 作三角形内切圆 圆心
类型
步骤
作线段的 垂直平分 线(已知线 段AB)
①分别以点A、B为圆心, 大于1 AB长为半径,在AB
2 两侧作弧,分别交于点M、 N; ②过点M、N作直线交AB于 点O,直线MN即为所求垂
初三数学专题复习之
尺规作图
课前准备:学案、圆规、直尺、笔
5个基本作图:
1.作一条线段等于已知线段 2.作一个角等于已知角 3.作角的平分线 4.作线段的垂直平分线 5.过一点作已知直线的垂线
类型
步骤
作一条线段 ①作射线OP;
等于已知线 ②以点O为圆心,线段a的长为
段(已知线段 半径作弧,交射线OP于A,OA
常考四种题型之一 求作一个圆
例1:2016年中考题 已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的 内部,CO=a,且⊙O与∠ACB的两边作的圆.
练习: 有一张三角形的纸片,在这张纸片上剪下一个半圆,使它 的圆心在BC上,且与AB,AC都相切。 请你在图中做出这个半圆。
作弧,交O′A于点M; 已知角(已知
④以点M为圆心,PQ长为半径 ∠α)
常考四种题型之 4.求作特殊多边形 例4:小明想利用一块三角形纸片裁剪一个菱形,要求一个顶 点为A,另外三个顶点分别在三角形的三边上,请你在原图上 利用尺规作图把这个菱形作出来.
结论:菱形AEDF就是所求作的菱形.
练习1:2014年中考题 一块直角三角形的木板余料,要在上面裁处一块正方形木板。 要求:正方形的一个顶点在C处,有两条边在木板的直角边上且 面积最大。
图示
适用情形 ①在已知角的内 部作到角两边距 离相等的点;② 作一个角的折痕 ,使得折叠后角 两边可重叠;③ 作三角形内切圆 圆心
类型
步骤
作线段的 垂直平分 线(已知线 段AB)
①分别以点A、B为圆心, 大于1 AB长为半径,在AB
2 两侧作弧,分别交于点M、 N; ②过点M、N作直线交AB于 点O,直线MN即为所求垂
初三数学专题复习之
尺规作图
课前准备:学案、圆规、直尺、笔
5个基本作图:
1.作一条线段等于已知线段 2.作一个角等于已知角 3.作角的平分线 4.作线段的垂直平分线 5.过一点作已知直线的垂线
类型
步骤
作一条线段 ①作射线OP;
等于已知线 ②以点O为圆心,线段a的长为
段(已知线段 半径作弧,交射线OP于A,OA
常考四种题型之一 求作一个圆
例1:2016年中考题 已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的 内部,CO=a,且⊙O与∠ACB的两边作的圆.
练习: 有一张三角形的纸片,在这张纸片上剪下一个半圆,使它 的圆心在BC上,且与AB,AC都相切。 请你在图中做出这个半圆。
作弧,交O′A于点M; 已知角(已知
④以点M为圆心,PQ长为半径 ∠α)
2020年中考复习专题:尺规作图课件(共38张PPT)【优秀课件】
作弧,交弧PQ于点M,N;
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是D( )
A.∠COM=∠COD B.若OM=MN,则∠AOB=20°
C.MN∥CD
D.MN=3CD
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
∴∠BCO=∠BOC. ∴∠OBA=∠BOC+∠BCO=2∠BOC.
∴∠BOC=30°. ∴∠COA=∠AOB+∠BOC=90°. ∴OP⊥MN.
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
(4)请仿照小颖的方法,再设计一种不同的方法探究OP与MN是否
解:如解图 1,射线 OE 即为所求.
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
解图 1
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
(3)请说明小颖的探究方法的合理性. 解:∵△AOB 为等边三角形, ∴∠BOA=∠BAO=∠OBA=60°. ∵BC=BO,
③连接OE交CD于点M.
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
小颖的方法:如图3,在ON上任取一点A,以OA为边在∠PON内部作等边
△AOB,延长AB交OP于点C.若BC=BO,则∠AOC=90°,即OP⊥MN.
(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是D( )
A.∠COM=∠COD B.若OM=MN,则∠AOB=20°
C.MN∥CD
D.MN=3CD
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
∴∠BCO=∠BOC. ∴∠OBA=∠BOC+∠BCO=2∠BOC.
∴∠BOC=30°. ∴∠COA=∠AOB+∠BOC=90°. ∴OP⊥MN.
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
(4)请仿照小颖的方法,再设计一种不同的方法探究OP与MN是否
解:如解图 1,射线 OE 即为所求.
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
解图 1
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
(3)请说明小颖的探究方法的合理性. 解:∵△AOB 为等边三角形, ∴∠BOA=∠BAO=∠OBA=60°. ∵BC=BO,
③连接OE交CD于点M.
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
2020年中考复习专题:尺规作图课件( 共38张 PPT)【 优秀课 件】
下列结论中错误的是( C )
A.∠CEO=∠DEO
C.∠OCD=∠ECD
B.CM=MD D.S 四边形 OCED=12CD·OE
小颖的方法:如图3,在ON上任取一点A,以OA为边在∠PON内部作等边
△AOB,延长AB交OP于点C.若BC=BO,则∠AOC=90°,即OP⊥MN.