化工原理课程设计精馏板式塔的设计

合集下载

化工原理_课程设计_精馏塔_(筛板式)

化工原理_课程设计_精馏塔_(筛板式)

化工原理课程设计任务书设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。

2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。

5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1——2.0)R min。

设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。

2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。

指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。

2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。

5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1—2.0)R。

min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。

2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。

1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。

设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。

酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。

物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。

本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。

此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。

塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。

筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属不易分离物系,最小回流比较小,采用其1.5倍。

设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。

塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。

(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。

化工原理板式塔设计

化工原理板式塔设计

化⼯原理板式塔设计⽬录第⼀章板式精馏塔的设计1.1概述 (1)1.2板式精馏塔的设计原则与步骤 (1)1.3理论塔板数的确定 (3)1.4塔板效率和实际塔板数 (7)1.5板式精馏塔的结构设计 (8)1.6 板式精馏塔⾼度及其辅助设备 (27)1.7 板式精馏塔的计算机设计 (31)第⼆章板式精馏塔设计举例2.1苯-甲苯板式精馏塔设计 (33)2.2⼄醇—⽔板式精馏塔设计 (47)2.3 甲醇—⽔板式精馏塔设计 (66)第三章塔设备的机械计算3.1 塔体及裙座的强度计算 (86)3.2 塔盘板及其⽀撑梁的强度、挠度计算 (104)3.3 塔盘技术条件 (105)3.4 塔盘⽀撑件的尺⼨公差 (109)附录 (111)第⼀章板式精馏塔的设计1.1概述蒸馏是利⽤液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的⽅法。

蒸馏操作在化⼯、⽯油化⼯、轻⼯等⼯业⽣产中中占有重要的地位。

为此,掌握⽓液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是⾮常重要的。

蒸馏过程按操作⽅式可分为间歇蒸馏和连续蒸馏。

间歇蒸馏是⼀种不稳态操作,主要应⽤于批量⽣产或某些有特殊要求的场合;连续蒸馏为稳态的连续过程,是化⼯⽣产常⽤的⽅法。

蒸馏过程按蒸馏⽅式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。

简单蒸馏是⼀种单级蒸馏操作,常以间歇⽅式进⾏。

平衡蒸馏⼜称闪蒸,也是⼀种单级蒸馏操作,常以连续⽅式进⾏。

简单蒸馏和平衡蒸馏⼀般⽤于较易分离的体系或分离要求不⾼的体系。

对于较难分离的体系可采⽤精馏,⽤普通精馏不能分离体系则可采⽤特殊精馏。

特殊精馏是在物系中加⼊第三组分,改变被分离组分的活度系数,增⼤组分间的相对挥发度,达到有效分离的⽬的。

特殊精馏有萃取精馏、恒沸精馏和盐溶精馏等。

精馏过程按操作压强可分为常压精馏、加压精馏和减压精馏。

⼀般说来,当总压强增⼤时,平衡时⽓相浓度与液相浓度接近,对分离不利,但对在常压下为⽓态的混合物,可采⽤加压精馏;沸点⾼⼜是热敏性的混合液,可采⽤减压精馏。

化工原理课程设计精馏塔设计9724

化工原理课程设计精馏塔设计9724

塔顶塔底的温度,进而求取全塔的平均温度,从而可以根据全
塔平均温度求取全塔平均相对挥发度。
式中: R ---回流
R m in —最小回流比
—全塔平均相对挥发度
3.理 论 板 数 和 实 际 板 数 的 确 定
(1)逐板法计算理论板数,交替使用操作线方程和相平衡关系。
精馏段操作线方程: yn1
L LD
3. 附属设备设计和选用 (1)加料泵选型,加料管规格选型
加料泵以每天工作3小时计(每班打1小时)。 大致估计一下加料管路上的管件和阀门。 (2)高位槽、贮槽容量和位置 高位槽以一次加满再加一定裕量来确定其容积。 贮槽容积按加满一次可生产10天计算确定。 (3)换热器选型 对原料预热器,塔底再沸器,塔顶产品冷却器等进行选型。 (4)塔顶冷凝器设计选型 根据换热量,回流管内流速,冷凝器高度,对塔顶冷凝器进 行选型设计。
0.735
lW hn
hOW
5 2
hOW
hn
5 2
LS —塔内液体流量, m3 S hn —齿深, m;可取为 0.015m
(3).堰高 hW
堰高与板上液层高度及堰上液层高度的关系:
hW hL hOW
2024/7/16
5、降液管的设计
(1)、降液管的宽度Wd 与截面积 Af
可根据堰长与塔径比值 lW ,查图求取。 D
塔径
流体 流 量 m3/h
Mm
U 形流型 单流型 双流型 阶梯流型
600
5 以下
5~25
900
7 以下
7~50
1000 1200
7 以下 9 以下
45 以下 9~70
1400
9 以下
70 以下

化工原理板式塔课程设计

化工原理板式塔课程设计

化工原理板式塔课程设计一、课程目标知识目标:1. 理解化工原理中板式塔的基本概念、分类和结构;2. 掌握板式塔的流体力学特性和传质单元操作原理;3. 学会运用板式塔的物料和能量平衡方程,分析实际工艺过程中的塔内流动和传质现象;4. 了解板式塔在化工生产中的应用和常见问题。

技能目标:1. 能够运用板式塔的设计方法,进行塔板数、塔径和塔高的初步计算;2. 掌握板式塔内流体流动和传质的模拟与优化方法;3. 能够运用相关软件(如Aspen Plus)对板式塔进行模拟和性能分析;4. 培养解决实际工程问题,如塔内液泛、漏液、堵塞等问题的能力。

情感态度价值观目标:1. 培养学生对化工原理学科的兴趣,激发学习热情;2. 培养学生的团队协作意识,学会与他人共同解决问题;3. 增强学生的环保意识,认识到化工生产过程中节能减排的重要性;4. 培养学生的创新精神和实践能力,为将来从事化工领域工作打下基础。

本课程针对高年级化工原理相关专业学生,结合课程性质、学生特点和教学要求,明确以上课程目标。

通过本课程的学习,学生能够掌握板式塔的基本理论、设计方法和应用技能,为实际工程问题的解决和未来职业发展奠定基础。

同时,注重培养学生的团队协作、创新精神和环保意识,提高学生的综合素养。

后续教学设计和评估将围绕以上具体学习成果展开。

二、教学内容1. 板式塔基本概念与结构- 板式塔的定义、分类及特点;- 常见塔板类型及其结构。

2. 板式塔流体力学特性- 单板塔的流体流动现象;- 塔内液相和气相流动的压降计算;- 液泛和漏液的判断及防止措施。

3. 传质单元操作原理- 传质的基本理论;- 传质单元数的计算;- 影响传质效率的因素。

4. 板式塔物料和能量平衡- 板式塔内物料和能量的平衡方程;- 塔内流动和传质的模拟与优化;- 实际工艺过程中的案例分析。

5. 板式塔设计方法- 塔板数、塔径和塔高的初步计算;- 塔内流体流动与传质的模拟;- 设计软件(如Aspen Plus)的应用。

化工原理课程设计精馏塔

化工原理课程设计精馏塔

化工原理课程设计任务书1.设计题目:分离乙醇—正丙醇二元物系旳浮阀式精馏塔2.原始数据及条件:进料:乙醇含量45%(质量分数,下同),其他为正丙醇分离规定:塔顶乙醇含量 93%;塔底乙醇含量 0.01%生产能力:年处理乙醇-正丙醇混合液 25000 吨,年动工 7200 小时操作条件:间接蒸汽加热;塔顶压强 1.03atm(绝压);泡点进料; R=53.设计任务:⑴完毕该精馏塔旳各工艺设计,包括设备设计及辅助设备选型。

⑵画出带控制点旳工艺流程图、塔板版面布置图、精馏塔设计条件图。

⑶写出该精馏塔旳设计阐明书,包括设计成果汇总和设计评价。

概述本次设计针对二元物系旳精馏问题进行分析、计算、核算、绘图,是较完整旳精馏设计过程。

精馏设计包括设计方案旳选用,重要设备旳工艺设计计算、辅助设备旳选型、工艺流程图旳制作、重要设备旳工艺条件图等内容。

通过对精馏塔旳核算,以保证精馏过程旳顺利进行并使效率尽量旳提高。

本次设计成果为:理论板数为 20 块,塔效率为 42.2%,精馏段实际板数为 40块,提馏段实际板数为 5 块,实际板数 45 块。

进料位置为第 17 块板,在板式塔重要工艺尺寸旳设计计算中得出塔径为 0.8 米,设置了四个人孔,塔高 22.19 米,通过浮阀板旳流体力学验算,证明各指标数据均符合原则。

关键词:二元精馏、浮阀精馏塔、物料衡算、流体力学验算。

目录第一章绪论 (5)第二章塔板旳工艺设计 (7)一、精馏塔全塔物料衡算 (7)二、乙醇和水旳物性参数计算 (7)1.温度 (7)2.密度 (8)三、理论塔板旳计算 (11)四、塔径旳初步计算 (12)五、溢流装置 (14)六、塔板分布、浮阀数目与排列 (15)第三章塔板旳流体力学计算 (16)一、气相通过浮阀塔板旳压降 (16)二、淹塔 (17)三、物沫夹带 (18)四、塔板负荷性能图 (19)1.物沫夹带线 (19)2.液泛线 (19)3.液相负荷上限 (20)4.漏液线 (20)5.液相负荷下限 (20)第四章塔附件旳设计 (21)一、接管 (21)二、筒体与封头 (23)三、除沫器 (23)四、裙座 (24)五、人孔 (24)第五章塔总体高度旳设计 (24)一、塔旳顶部空间高度 (24)二、塔总体高度 (24)第六章附属设备旳计算 (24)8.1热量衡算 (24)8.1.10℃旳塔顶气体上升旳焓Qv (24)258.1.2回流液旳焓QR..................................................................8.1.3塔顶馏出液旳焓Q D (25)8.1.4冷凝器消耗旳焓Q C (25)8.1.5进料口旳焓Q F (25)8.1.6塔釜残液旳焓Q W (26)8.1.7再沸器Q B (26)8.2冷凝器旳设计 (26)8.3冷凝器旳核算 (27)8.4泵旳选择 (27)浮阀塔工艺设计计算成果列表 (28)重要符号阐明 (29)参照文献 (31)第一章绪论精馏旳基本原理是根据各液体在混合液中旳挥发度不一样,采用多次部分汽化和多次部分冷凝旳原理来实现持续旳高纯度分离。

《化工原理课程设计》板式精馏塔设计报告

《化工原理课程设计》板式精馏塔设计报告

《化工原理课程设计》报告4万吨/年甲醇~水板式精馏塔设计目录一、概述 (4)1.1 设计依据·································错误!未定义书签。

1.2 技术来源·································错误!未定义书签。

1.3 设计任务及要求 (5)二:计算过程 (7)1. 塔型选择 (7)2. 操作条件的确定 (8)2.1 操作压力 (8)2.2 进料状态 (8)2.3 加热方式 (8)2.4 热能利用 (8)3. 有关的工艺计算 (9)3.1 最小回流比及操作回流比的确定·········错误!未定义书签。

3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算错误!未定义书签。

3.3 全凝器冷凝介质的消耗量 (17)3.4 热能利用·····························错误!未定义书签。

化工原理设计--苯—甲苯分离过程板式精馏塔设计

化工原理设计--苯—甲苯分离过程板式精馏塔设计

2008级化工原理课程设计化工原理课程设计设计题目:常压、连续精馏分离苯—甲苯混合体系目 录一、化工原理课程设计任务书 ................................................................................................... 1 二、设计计算 . (2)(一)确定设计方案的原则 ........................................................................................................... 2 (二)操作条件的确定 ................................................................................................................... 3 (三).设计方案的选定及基础数据的搜集 ............................................................... 4 (四) 精馏塔的物料衡算 ........................................................................................... 8 (五) 塔板数的确定 (8)(一)理论板层数N T 的求取 ............................................................................... 8 (1)最小回流比的求取; ....................................................................................... 8 (2)求精馏塔的气、液相负荷 ........................................................................... 9 (3)求操作线方程 ............................................................................................... 9 (二)实际板层数的求取 .. (10)(六) 精馏塔的工艺条件及有关物性数据的计算 (10)(1)操作压力计算 ............................................................................................. 10 (2)操作温度计算 ............................................................................................. 11 (3)平均摩尔质量计算 ..................................................................................... 11 (4)平均密度计算 (11)(七) 气液负荷计算 ................................................................................................. 13 (八) 精馏塔的塔体工艺尺寸计算 . (13)(1) 塔径的计算 ................................................................................................... 13 (2)塔高的计算 . (14)(九) 塔板主要工艺尺寸的计算 (14)(1) 溢流装置计算 ............................................................................................... 14 (2)塔板布置 .. (15)(十) 筛板的流体力学验算 (16)(1) 气体通过筛板压强相当的液柱高度σh h h h l c p ++= (16)(2) 液面落差 (17)(3) 液沫夹带 (17)(5) 液泛 (17)塔板负荷性能图 (18)(1)漏液线 (18)(2) 液沫夹带线 (18)(3)液相负荷下限线 (19)(4)液相负荷上限线 (19)(5) 液泛线 (19)设计结果一览(表9) (21)三、个人心得体会及改进意见 (22)四、参考文献 (22)附录(符号说明) (23)2008级化工原理课程设计一、化工原理课程设计任务书板式精馏塔设计任务书(一)设计题目:设计分离苯―甲苯连续精馏筛板塔(二)设计任务及操作条件1、设计任务:原料处理量: f= 5300kg/h进料组成: X F=0,55(轻组分苯的摩尔分率,下同)塔顶产品组成: X D=0.91分离要求:回收率η=0.95全塔效率: 58%2、操作条件:平均操作压力:101.3 kPa回流比: R=1.8Rmin单板压降: <=0.7kPa工时:年开工时数7200小时泡点进料:q=1 Xq=Xe=X F(三)设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程。

化工原理课程设计《板式塔课程设计》

化工原理课程设计《板式塔课程设计》

三、设计内容:
三、设计内容: 1、确定设计方案 ( 精馏装置流程设计与论证 )。 2、板式塔的工艺计算: (1). 确定塔顶,塔底产品的质量与流量; (2). 确定塔顶,塔底控制温度; (3). 求算最小回流比,确定操作回流比; (பைடு நூலகம்). 求算理论板层数 N ,确定加料位置; (5). 确定实际板层数,实际加料板位置; (6). 全塔热平衡,计算塔顶冷凝,冷却器热负荷及冷却水消耗量;塔底再沸器热负荷及加热蒸汽消耗量;
计算а、μ(以定性温度下、进料组成计算)
ET=0.49(аμ)-0.245
关联图
校验
将工艺计算结果列表
接管尺寸
冷却剂用量
加热剂用量
(3)冷却剂、加热剂用量
(2)各接口尺寸
注意u的选择:根据第1章流体流动选择合适的流速
进料管:泵加料 u= 1-3m/s;高位槽进料u= 0.5-1m/s
回流液管:泵回流 u= 1.5-3m/s;重力回流u= 0.5-1m/s
绘图
物料流程图: 塔板结构图: 塔体工艺图:
只标设备名称,物料组成、流量。
总高、管口位置、板间距、管口方位、管口表、技术特性表。
塔板分块、孔的排列、降液管的尺寸;
5、设计说明书内容
1.设计任务书 2.目录 3.符号表 4.精馏方案的选择 5.工艺计算 6.精馏塔的工艺尺寸设计 7.参考文献 8.结束语:评价、感受
正文
每项单独一页
每项单独一页
设计任务书 一、设计题目:年产 A 吨乙醇板式精馏塔工艺设计。 二、已知条件: 1.原料组成:含 B %(质量)的粗乙醇溶液,其余为水。 2.产品要求:含量≥ 93.5 %(质量)的乙醇。 3.塔底残液要求:含乙醇≤0.1%(质量)。 4.加热剂:经压力调节后为0.2MPa(表压)的饱和水蒸气。 5.冷却剂:30℃的循环冷却水。 6、进料状况:

化工原理课程设计 (2)(2013)

化工原理课程设计 (2)(2013)
2013-6-24
6、塔板负荷性能图;
7、辅助设备计算与选型(泵、再沸器及冷 凝器) 8、筛板塔的工艺设计计算结果总表 ; 9、筛板塔接管尺寸一览表 10、设计讨论 11、参考文献 12、附属图纸(理论板图解图、塔板负荷 性能图、塔板结构示意图及工艺流程图)
2013-6-24
四、精馏塔工艺设计
计算前先查出物性数据。
2013-6-24
4、塔板工艺尺寸计算
安定区
开孔区
受 液 区
降 液 管
溢流堰
2013-6-24
2013-6-24
2013-6-24
(1)溢流装置的设计
2013-6-24
液相负荷、塔径与液流型式的关系
液体流量L,m3/h 塔径D,mm U形流 单溢流 双溢流
1000 1400 2000 3000 4000 5000
7以下 9以下 11以下 11以下 11以下 11以下
45以下 70以下 90以下 110以下 110以下 110以下
90~160 110~200 110~230 110~250
2013-6-24
1) 出口堰(溢流堰)
(0.6 ~ 0.8) D
堰长
,单溢流
lW
(0.5 ~ 0.6) D
,双溢流
塔径标准化以后,应重新验算液沫夹带量,必要时在此先进 行塔径的调整,然后再决定塔板结构的参数,并进行其它各 项计算。
2013-6-24
塔有效高度:
H HD ( N p 2 S ) HT S H HF HB
' T
式中 HD——塔顶空间,m;
HB——塔底空间,m;
HT——塔板间距,m; HT’——开有人孔的塔板间距,m; HF——进料段高度,m; Np——实际塔板数; S——人孔数目(不包括塔顶空间和塔底空间的人孔)。

化工原理课程设计—板式精馏塔的设计

化工原理课程设计—板式精馏塔的设计

板式精馏塔的设计1.1 概述塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。

根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。

板式塔内设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。

填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。

工业上对塔设备的主要要求是:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。

此外,还要求不易堵塞、耐腐蚀等。

板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。

工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。

(一)泡罩塔泡罩塔是最早使用的板式塔,是Celler于1813年提出的,其主要构件是泡罩、升气管及降液管。

泡罩的种类很多,国内应用较多的是圆形泡罩。

泡罩塔的主要优点是:因升气管高出液层,不易发生漏液现象,操作弹性较大,液气比范围大,适用多种介质,操作稳定可靠,塔板不易堵塞,适于处理各种物料;但其结构复杂,造价高、安装维修不便,板上液层厚,气体流径曲折,塔板压降大,因雾沫夹带现象较严重,限制了起诉的提高。

现虽已为其他新型塔板代替,但鉴于其某些优点,仍有沿用。

(a b)图1 泡罩塔(二)浮阀塔浮阀塔广泛用于精馏、吸收和解吸等过程。

其主要特点是在塔板的开孔上装有可浮动的浮阀,气流从浮阀周边以稳定的速度水平地进入塔板上液层进行两相接触。

浮阀可根据气体流量的大小而上下浮动,自行调节。

浮阀有盘式、条式等多种,国内多用盘式浮阀,此型又分为F-1型(V-1型)、V-4型、十字架型、和A型,其中F-1型浮阀结构较简单、节省材料,制造方便,性能良好,故在化工及炼油生产中普遍应用,已列入部颁标准(JB-1118-81)。

苯-甲苯化工原理课程设计精馏设计答辩

苯-甲苯化工原理课程设计精馏设计答辩

精馏段 490.00 110.225 87.17 0.291 82.49 80.63 805.86 2.968 20.57
提馏段 478.39 120.025 100.71 0.263 88.73 86.93 790.22 3.359 19.29
塔板负荷性能图
气相体积流量Vs(m3/s)
气相体积流量Vs(m3/s)
降液管稳定系数
液相负荷上限
溢流管
液相负荷下限
堰长液沫夹带量 堰高 溢流堰的气宽相负度荷上限
气相负荷下限
管底部与受液盘的间距
操作弹性
板上清液层高度
代号 WS
WC
Pm tm
dO
Vs T
Ls N
Aa
N
HT Z u0
D hP Uτ
单位 mm
mm
kPa ℃ mm m3/s mm
m3/s 个
m2
块 mm mm m/s m Pa m/s s
m3/s
mm
mm
0.00534
单溢流型
0.000530
0.65000.0111 38.1 1201.197
0.355
21
3.368
50
提馏段65
45
120.025 100.715 0.607132.5
0.0037355627
0.4825
14 45104.51% 58580.6723 1.04078.39 0.77382.85
塔板数计算(图解法)
泡点进料
精馏段操作线方程为: 提馏段操作线方程为:
1.00
0.90
0.80
0.70
0.60
Y 0.50
0.40
0.30

化工原理课程设计说明书--板式精馏塔设计

化工原理课程设计说明书--板式精馏塔设计

前言化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。

生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。

精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。

精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。

实现原料混合物中各组成分离该过程是同时进行传质传热的过程。

本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。

板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。

与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%-—50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。

化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。

在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。

在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。

节省能源,综合利用余热。

经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。

另一方面影响到所需传热面积的大小.即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题.本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。

【精馏塔设计任务书】一设计题目精馏塔及其主要附属设备设计二工艺条件生产能力:10吨每小时(料液)年工作日:自定原料组成:34%的二硫化碳和66%的四氯化碳(摩尔分率,下同)产品组成:馏出液 97%的二硫化碳,釜液5%的二硫化碳操作压力:塔顶压强为常压进料温度:58℃进料状况:自定加热方式:直接蒸汽加热回流比:自选三设计内容1 确定精馏装置流程;2 工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

化工原理课程设计苯甲苯板式精馏塔

化工原理课程设计苯甲苯板式精馏塔

化工原理课程设计——苯-甲苯连续精馏筛板塔的设计学院:生命科学学院专业年级:姓名:指导老师:目录一、序言 (2)二、设计任务 (2)三、设计条件 (2)四、设计方案 (2)五、工艺计算 (3)1、设计方案的选定及基础数据的搜集 (5)2、精馏塔的物料衡算 (6)3、精馏塔的工艺条件及有关物性数据的计算 (10)4、精馏塔的塔体工艺尺寸计算 (15)5、塔板主要工艺尺寸的计算 (16)6、筛板的流体力学验算 (19)7、塔板负荷性能图 (22)六、设计结果一览表 (27)七、参考书目 (28)八、心得体会 (28)九、附录 (29)一、序言化工原理课程设计是综合运用化工原理课程和有关先修课程物理化学,化工制图等所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用;通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等;精馏是分离液体混合物含可液化的气体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用;精馏过程在能量剂驱动下有时加质量剂,使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离;根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离;本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离;二、设计任务1原料液中苯含量:质量分率=75%质量,其余为甲苯;2塔顶产品中苯含量不得低于98%质量;3残液中苯含量不得高于%质量;4生产能力:90000 t/y苯产品,年开工310天;三、设计条件1精馏塔顶压强:表压2进料热状态:自选3回流比:自选;4单板压降压:≯四、设计方案1设计方案的确定及流程说明2塔的工艺计算3塔和塔板主要工艺尺寸的设计4塔高、塔径以及塔板结构尺寸的确定;塔板的流体力学验算;5编制设计结果概要或设计一览表6辅助设备选型与计算7绘制塔设备结构图五、工艺计算1、设计方案的选定及基础数据的搜集本设计任务为分离苯一甲苯混合物;由于对物料没有特殊的要求,可以在常压下操作;对于二元混合物的分离,应采用连续精馏流程;设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内;塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐;该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的倍;塔底设置再沸器采用间接蒸汽加热,塔底产品经冷却后送至储罐;其中由于蒸馏过程的原理是多次进行部分汽化和冷凝,热效率比较低,但塔顶冷凝器放出的热量很多,但其能量品位较低,不能直接用于塔釜的热源,在本次设计中设计把其热量作为低温热源产生低压蒸汽作为原料预热器的热源之一,充分利用了能量;塔板的类型为筛板塔精馏,筛板塔塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列;筛板塔也是传质过程常用的塔设备,它的主要优点有:1结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右;2处理能力大,比同塔径的泡罩塔可增加10~15%;3塔板效率高,比泡罩塔高15%左右;4压降较低,每板压力比泡罩塔约低30%左右;筛板塔的缺点是:1塔板安装的水平度要求较高,否则气液接触不匀;2操作弹性较小约2~3;3小孔筛板容易堵塞;下图是板式塔的简略图:82、精馏塔的物料衡算1 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量甲苯的摩尔质量 kmol kg M B /13.92=780.013.92/25.011.78/75.011.78/75.0x F =+= 2原料液及塔顶、塔底产品的平均摩尔质量)/(kg 0.2813.192)780.01(11.78780.0kmol M F =⨯-+⨯=3物料衡算原料处理量)/(1049.12431020.81900000002h kmol F ⨯=⨯⨯= 总物料衡算 21094.1W D ⨯=+苯物料衡算 W D F 099.0983.0780.0+=联立解得式中 F------原料液流量 D------塔顶产品量 W------塔底产品量 塔板数的确定1理论板层数NT 的求取苯一甲苯属理想物系,可采逐板计算求理论板层数;①求最小回流比及操作回流比; 采用恩特伍德方程求最小回流比; 解得,最小回流比73.0=m R 取操作回流比为②求精馏塔的气、液相负荷 )/(89.15511931.1h kmol RD L =⨯==)/(89.27411931.2)1()1('h kmol F q D R V =⨯=--+= 泡点进料:q=1③求操作线方程 精馏段操作线方程为 提馏段操作线方程为 2逐板法求理论板又根据min (1)1[]11d D F fx x R x x α-=-α-- 可解得 α=相平衡方程 2.4751(1)1 1.475x xy x xαα==+-+解得 x x y 47.1147.2+=变形得y y x 47.147.2-=用精馏段操作线和相平衡方程进行逐板计算1D y x = = , 1111111(1) 2.475(1)y y x y y y y ==+α-+-=970.0426.0567.012=+=x y ,959.047.147.22=-=y yx953.0426.0567.023=+=x y ,891.047.147.233=-=y yx931.0426.0567.034=+=x y ,845.047.147.244=-=y yx905.0426.0567.045=+=x y ,795.047.147.255=-=y yx 877.0426.0567.056=+=x y ,742.047.147.266=-=y yx因为,故精馏段理论板 n=5,用提留段操作线和相平衡方程继续逐板计算811.0426.0567.067=+=x y ,635.047.147.277=-=y yx693.0426.0567.078=+=x y ,478.047.147.288=-=y yx519.0426.0567.089=+=x y ,304.047.147.299=-=y yx326.0426.0567.0910=+=x y ,164.047.147.21010=-=y yx 171.0426.0567.01011=+=x y ,077.047.147.21111=-=y yx因为,所以提留段理论板 n=5不包括塔釜 3全塔效率的计算查温度组成图得到,塔顶温度TD=℃,塔釜温度TW=105℃,全塔平均温度Tm =℃; 分别查得苯、甲苯在平均温度下的粘度)(272.0s mPa A ⋅=μ,)(279.0s mPa B ⋅=μ 平均粘度由公式,得 全塔效率E T 4求实际板数 精馏段实际板层数 提馏段实际板层数 进料板在第11块板;3、精馏塔的工艺条件及有关物性数据的计算1操作压力计算 塔顶操作压力P =4+ kPa每层塔板压降 △P = kPa 进料板压力F P =+×10= kPa塔底操作压力w P = kPa精馏段平均压力 P m1 =+/2= kPa 提馏段平均压力P m2 =+/2 = kPa 2操作温度计算依据操作压力,由泡点方程通过试差法计算出泡点温度,其中苯、甲苯的饱和蒸气压由 安托尼方程计算,计算过程略;计算结果如下: 塔顶温度0.980t =D ℃ 进料板温度F t =℃塔底温度w t =℃精馏段平均温度m t = .+/2 = ℃提馏段平均温度m t =+/2 =℃ 3平均摩尔质量计算 塔顶平均摩尔质量计算由x D=y 1=,代入相平衡方程得x 1= 进料板平均摩尔质量计算由上面理论板的算法,得F y =, F x =)/(73.8113.92)742.01(11.78742.0m ,kmol kg M F L =⨯-+⨯=塔底平均摩尔质量计算由xw=,由相平衡方程,得yw=)/(05.9113.92)077.01(11.78077.0m ,kmol kg M W L =⨯-+⨯=精馏段平均摩尔质量提馏段平均摩尔质量 (4)平均密度计算(5)①气相平均密度计算 由理想气体状态方程计算,精馏段的平均气相密度即)/(90.2)15.27324.83(314.809.798.1083m kg RT PV m M Vm =+⨯⨯==ρ提馏段的平均气相密度 ②液相平均密度计算 液相平均密度依下式计算,即塔顶液相平均密度的计算 由t D =℃,查手册得)/(1.809);/(0.81433m kg m kg B A ==ρρ 塔顶液相的质量分率98.0=a a 求得)(得3m ,m,/kg 9.813;1.80902.00.81498.01m D L D L =+=ρρ进料板液相平均密度的计算 由t F =℃,查手册得)/(36.804);/(6.80833m kg m kg B A ==ρρ进料板液相的质量分率 71.013.92)742.01(11.78742.011.78742.0=⨯-+⨯⨯=A α塔底液相平均密度的计算 由t w =℃,查手册得)/(3.785);/(4.78633m kg m kg B A ==ρρ 塔底液相的质量分率066.013.92)077.01(11.78077.011.78077.0=⨯-+⨯⨯=A a)(得3m ,m,/kg 9.784;3.785934.04.786066.01m W L W L =+=ρρ精馏段液相平均密度为6.81024.8079.813=+=Lm ρ提馏段液相平均密度为)(3/kg 15.79629.7844.807m Lm =+=ρ5 液体平均表面张力计算液相平均表面张力依下式计算,即塔顶液相平均表面张力的计算由 t D =℃,查手册得 )/(59.21);/(25.21m mN m mN B A ==σσ 进料板液相平均表面张力的计算由t F=℃,查手册得 )/(72.2008.21258.060.20742.0)/(08.21);/(60.21,m mN m mN m mN Fm L B A =⨯+⨯===σσσ塔底液相平均表面张力的计算 由 t W =℃,查手册得)/(50.2118.19923.026.18077.0)/(18.19);/(26.18,m mN m mN m mN Wm L B A =⨯+⨯===σσσ精馏段液相平均表面张力为)/(99.20272.2026.21m mN Lm =+=σ提馏段液相平均表面张力为)/(11.21272.2050.21m mN Lm =+=σ6 液体平均粘度计算液相平均粘度依下式计算,即 μLm=Σxi μi塔顶液相平均粘度的计算由 t D=℃,查手册得 )(311.0309.0017.0305.0983.0)(309.0);(305.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ进料板液相平均粘度的计算由t F=℃,查手册得 )(294.0297.0258.0292.0742.0)(297.0);(292.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ塔底液相平均粘度的计算由tw =℃,查手册得 )(258.0259.0923.0244.0077.0)(259.0);(244.0,s mPa s mPa s mPa DmL B A ⋅=⨯+⨯=⋅=⋅=μμμ精馏段液相平均粘度为)(303.02294.0311.0,s mPa m L ⋅=+=μ提馏段液相平均粘度为7气液负荷计算 精馏段: 提馏段:4 精馏塔的塔体工艺尺寸计算1 塔径的计算塔板间距H T 的选定很重要,它与塔高、塔径、物系性质、分离效率、塔的操作弹性,以及塔的安装、检修等都有关;可参照下表所示经验关系选取;表7 板间距与塔径关系塔径D T ,m ~ ~ ~ ~ ~ 板间距H T ,mm 200~300 250~350 300~450 350~600 400~600对精馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=, 故0.400.060.34T L H h m -=-=;查史密斯关联图 得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C校正物系表面张力为)/m (99.20m N 时2020.980.0720.07132020C C σ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭可取安全系数为,则安全系数—,故按标准,塔径圆整为,则空塔气速s; 对提馏段:初选板间距0.40T H m =,取板上液层高度m h L 06.0=,故0.400.060.34T L H h m -=-=;11220.0075783.40.0901.372.90S Lm S vm L V ρρ⎛⎫⎛⎫⎛⎫=⨯= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭查2:165P 图3—8得C 20=;依式2.02020⎪⎭⎫⎝⎛=σC C =校正物系表面张力为19.58/mN m 时 按标准,塔径圆整为,则空塔气速s;将精馏段和提溜段相比较可以知道二者的塔径不一致,根据塔径的选择规定,对于相差不大的二塔径取二者中较大的,因此在设计塔的时候塔径取;5、塔板主要工艺尺寸的计算(1) 溢流装置计算 精馏段因塔径D =,可选用单溢流弓形降液管,采用平行受液盘;对精馏段各项计算如下: a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×= b 出口堰高W h :OW L W h h h -= 故)(044.0016.006.0h m w =-=c 降液管的宽度d W 与降液管的面积f A :由66.0/=D l w 查2:170P 图3—13得124.0/=D W d ,0722.0/=T f A A故0.1240.124 1.60.198d W D m ==⨯=,2223.140.07220.0722 1.60.145244f A D m π=⨯=⨯⨯= 利用2:170P 式3—10计算液体在降液管中停留时间以检验降液管面积, 即0.14520.4015.700.0037f T sA H s L τ⨯===大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ=依2:171P 式3—11:'0.00370.0351.060.09s o w o L h m l μ===⨯⨯符合00.006w h h =- e 受液盘采用平行形受液盘,不设进堰口,深度为60mm 同理可以算出提溜段相关数据如下:a 溢流堰长w l :单溢流去l W =~D,取堰长w l 为=×=b 出口堰高W h :OW L W h h h -=由/0.8W l D = 2.5/23.34h W L l m =查知E=,依式232.841000h ow w L h E l ⎛⎫=⎪⎝⎭可得232.840.0261000h OW W L h E m l ⎛⎫== ⎪⎝⎭故0.060.0260.034w h m =-=c 降液管的宽度d W 与降液管的面积f A : 由60.0/=D l W查图得, 052.0,100.0==T f dA A D w 故计算液体在降液管中停留时间以检验降液管面积, 即11.6f T sA H s L τ==大于5s,符合要求d 降液管底隙高度o h :取液体通过降液管底隙的流速'0.08/o m s μ=s '0.032so w oL h m l μ==⨯m 符合00.006w h h =- 2 塔板布置精馏段①塔板的分块因D ≥800mm,故塔板采用分块式;塔极分为4块;对精馏段: a)取边缘区宽度 安定区宽度b ⎥⎦⎤⎢⎣⎡+-=-R x R x R x A a 1222sin 1802π计算开空区面积 )(96.004.012m w D R c =-=-=,)(73.0)07.02.0(1)(2m w w Dx s d =--=+-=解得,c 筛孔数n 与开孔率ϕ:取筛空的孔径0d 为mm 5,正三角形排列,一般碳的板厚为mm 3,取0.3/0=d t ,故孔中心距t 0.1550.3=⨯=5×5= 筛孔数则每层板上的开孔面积0A 为 气体通过筛孔的气速为6、筛板的流体力学验算塔板的流体力学计算,目的在于验算预选的塔板参数是否能维持塔的正常操作,以便决定对有关塔板参数进行必要的调整,最后还要作出塔板负荷性能图; 1 气体通过筛板压强相当的液柱高度计算 精馏段:a)干板压降相当的液柱高度c h :依67.13/5/0==σd ,查干筛孔的流量系数图得,C 0=由式 b 气体穿过板上液层压降相当的液柱高度l h :()()s m fT s A A V a /70.014.3052.0108.2===⨯--μ,19.190.27.0=⨯==v a a e u F由o ε与a F 关联图查得板上液层充气系数o ε=,依式()()0396.0016.0044.066.000=+⨯=+==ow w L l h h h h εεc 克服液体表面张力压降相当的液柱高度σh : 依式00211.01099.2043-40=⨯⨯==∂gd e l h σ, 故0744.00327.00396.000211.0=++=p h则单板压强:()()p p g e h p l p p 7000.5918.965.8100744.0≤=⨯⨯==∆(2) 液面落差(3) 对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 雾沫夹带()()水液水液kg kg kg kg e fT a h H u v /1.0/1032.732.306.05.24.07.01099.20107.52.3107.5366≤⨯=⨯==-⨯-⨯⨯-⨯---σ故在设计负荷下不会发生过量雾沫夹带;4 漏液由式()()σμh h e e c L v l oow -+=13.00056.0/4.4筛板的稳定性系数5.171.157.624.110>===OW U U K ,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ依式d l p d h h h H ++=, 而32201052.1036.02.10043.0153.0153.0-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛•⨯=h L L h W S d取5.0=φ,则()()785.017.14.05.0=+⨯=+Φw T h H故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为精馏段塔径及各项工艺尺寸是适合的; 同精馏段公式计算,提溜段各参数计算如下:1 气体通过筛板压强相当的液柱高度计算 a)干板压降相当的液柱高度:b 气体穿过板上液层压降相当的液柱高度:679.0163.014.302.2=-=-'='f T S aA A V u , 22.121.3679.0=⨯=''=V aa u F ρ由o ε与a F 关联图查得板上液层充气系数o ε=,依式039.006.065.01=⨯='h c 克服液体表面张力压降相当的液柱高度:()m gd h L 00216.01058.94.7961011.2144330=⨯⨯⨯⨯⨯=='--ρσσ, 故)(0758.000216.0039.00346.0m h p =++='则单板压降:)(7.0591.08.94.7960758.0kPa p <=⨯⨯='∆ 2液面落差对于筛板塔,液面落差很小,且本例的塔径和液流量均不大,故可忽略液面落差的影响;3 液沫夹带故在设计负荷下不会发生过量雾沫夹带; 4 漏液查得:84.00=c ()()5.69.26.8100021.006.013.00056.084.4.4/13.00056.04.40=÷⨯-⨯+⨯⨯=-+='o h hL c u vL owρρσ筛板的稳定性系数5.171.157.624.11>===ow o u u K ,故在设计负荷下不会产生过量漏液;5 液泛为防止降液管液泛的发生,应使降液管中清液层高度()w T d h H H +≤φ依式d l p d h h h H ++=, 而32201052.1036.02.10043.0153.0153.0-⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛•⨯=h L L h W S d取5.0=φ,则()()785.017.14.05.0=+⨯=+Φw T h H故()w T d h H H +<φ在设计负荷下不会发生液泛;根据以上塔板的各项液体力学验算,可认为提馏段塔径及各项工艺尺寸是适合的;7、塔板负荷性能图精馏段: 1 雾沫夹带线雾沫夹带量2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Tav hH u e σ取气)液kg kg e v /(1.0=,前面求得m mN m /99.20,=精σ,代入2.36107.5⎪⎪⎭⎫⎝⎛-⨯=-f Tav hH u e σ,整理得:s s L V 3205.2911.5-=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-19;表8由上表数据即可作出雾沫夹带线; 2 液泛线 由E=,l W =得:已算出)(1011.23m h -⨯=σ,3322311011.2405.0029.010555.7--⨯+++⨯=++=ssc p L V h h h h σm H T 4.0=,m h w 044.0=,5.0=Φ代入()dow w p w T h h h h h H +++=+Φ,整理得:2432210085.1878.134443.19s ssL L V ⨯--=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-20; 表10由上表数据即可作出液泛线2; 3 液相负荷上限线以θ=4s 作为液体在降液管中停留时间的下限,)/(0163.04163.04.03m ax ,s m A H L fT s =⨯==τ据此可作出与气体流量无关的垂直液相负荷上限线m 3/s; 4 漏液线由32614.0044.0sow w L L h h h +=+=和0min ,A V u s ow =,代入()VLL ow h h C U ρρσ-+=13.00056.04.40得:整理得:32min ,314.22574.2684.0ss LV +⨯=在操作范围内,任取几个Ls 值,依上式计算出Vs 值,计算结果列于表3-21; 表11由上表数据即可作出液泛线4; 5 液相负荷下限线对于平直堰,取堰上液层高度h OW =作为最小液体负荷标准;E=sm L s /10167.334min ,-⨯=据此可作出与气体流量无关的垂直液相负荷下限线5;sm A H L fT s /013.05163.04.03max ,=⨯==τ根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;图1 精馏段筛板负荷性能图在负荷性能图上,作出操作点P,连接OP,即作出操作线;由图可看出,该筛板的操作上限为液泛控制,下限为漏液控制; 同精馏段,得出提馏段的各曲线为:(1) 雾沫夹带线2.36107.5e ⎪⎪⎭⎫⎝⎛+⨯=-f TaLv hH u σ整理得:3207.1352.5ss L V -=(2) 液泛线()dow w p w T h h h h h H +++=+Φ已知E= lw=,同理精馏段得: 由此可作出精馏段液泛线2;3 漏液线 32628.00325.0h sow w L l h h +=+= 整理得:3225.2090.1688.0V min ,s s l += 据此可作出漏液线3; 4 液相负荷上限线以θ=5s 作为液体在降液管中停留时间的下限,)/(013.05163.04.0L 3max ,s m A H fT s =⨯==τ据此可作出与气体流量元关的垂直液相负荷上限线; 5 液相负荷下限线以h ow =5s 作为液体在降液管中停留时间的下限,32min ,2.1360006.1100084.2⎪⎪⎭⎫ ⎝⎛⨯⨯⨯=s ow L h 整理得:)/(1073.934min ,s m L s -⨯=由此可作出液相负荷下限线5; 根据以上各线方程,可作出筛板塔的负荷性能图,如图所示;六、设计结果一览表七、设计心得体会本次课程设计通过给定的生产操作工艺条件自行设计一套苯-甲苯物系的分离的塔板式连续精馏塔设备;通过近两周的团队努力,反经过复杂的计算和优化,我们三人组终于设计出一套较为完善的塔板式连续精馏塔设备;其各项操作性能指标均能符合工艺生产技术要求,而且操作弹性大,生产能力强,达到了预期的目的;通过这次课程设计我经历并学到了很多知识,熟悉了大量课程内容,懂得了许多做事方法,可谓是我从中受益匪浅,我想这也许就是这门课程的最初本意;从接到课题并完成分组的那一刻起我们就立志要尽最大努力把它做全做好;首先,我们去图书馆借阅了大量有关书籍,并从设计书上了解熟悉了设计的流程和方法;通过查阅资料我们从对设计一无所知变得初晓门路,而进一步的学习和讨论使我们使我们具备了完成设计的知识和方法,这使我们对设计有了极大的信心,我们确定了设计方案和具体流程及设计时间表,然后就进入了正是的设计工作当中;八、参考文献1 张浩勤,陆美娟.化工原理第二版上下册. 北京:化学工业出版社,2006.2 路秀林,王者相. 化工设备设计全书塔设备M. 北京:化学工业出版社,2004.3 姚玉英.天津大学出版社上下册,2003.4 王志魁. 化工原理第四版M. 北京:化学工业出版社,2010.5 王为国. 化工原理课程设计M. 北京:化学工业出版社,2010.6 马沛生. 化工数据. 北京:中国石化出版社,2003.。

化工原理课程设计(doc 42页)

化工原理课程设计(doc 42页)

化工原理课程设计——苯-氯苯板式精馏塔的工艺设计工艺计算书目录苯-氯苯分离过程板式精馏塔设计任务 (3)一.设计题目 (3)二.操作条件 (3)三.塔板类型 (3)四.工作日 (3)五.厂址 (4)六.设计内容 (4)七.设计基础数据 (4)设计方案 (5)一.设计方案的思考 (5)二.设计方案的特点 (5)三.工艺流程 (5)苯-氯苯板式精馏塔的工艺计算书 (6)一.设计方案的确定及工艺流程的说明 (6)二.全塔的物料衡算 (6)三.塔板数的确定 (7)四.塔的精馏段操作工艺条件及相关物性数据的计算 (10)五.精馏段的汽液负荷计算 (13)六.塔和塔板主要工艺结构尺寸的计算 (13)七.塔板负荷性能图 (19)八.附属设备的的计算及选型 (23)筛板塔设计计算结果 (36)设计评述 (38)一.设计原则确定 (38)二.操作条件的确定 (39)设计感想 (41)苯-氯苯板式精馏塔的工艺设计苯-氯苯分离过程板式精馏塔设计任务一.设计题目设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯5t/h,塔顶馏出液中含氯苯不高于2%。

原料液中含氯苯为35%(以上均为质量分数)。

二.操作条件1.塔顶压强 4kPa(表压);2.进料热状况自选;3.回流比自选;4.塔底加热蒸汽压力 506KPa(表压);5.单板压降不大于0.7kPa;三.塔板类型筛板或浮阀塔板(F1型)。

四.工作日每年300天,每天24小时连续运行。

五.厂址厂址为安阳地区。

六.设计内容1.精馏塔的物料衡算;2.塔板数的确定;3.精馏塔的工艺条件及有关物性数据的计算;4.精馏塔的塔体工艺尺寸计算;5.塔板主要工艺尺寸的计算;6.塔板的流体力学验算;7.塔板负荷性能图;8.精馏塔接管尺寸计算;9.筛塔板的工艺设计计算结果总表对设计过程的评述和有关问题的讨论。

七.设计基础数据苯-氯苯纯组分的饱和蒸气压数据其他物性数据可查有关手册。

设计方案一.设计方案的思考通体由不锈钢制造,塔节规格Φ25~100mm、高度0.5~1.5m,每段塔节可设置1~2个进料口/测温口,亦可结合客户具体要求进行设计制造各种非标产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④ 降液管的宽度Wd和截面积Af: 可根据堰长lw与塔径D的比值,由图中查取Wd/D和Af/AT的值,。求得的降液 管的宽度和截面积,应按照下式进行验算液体在降液管内的停留时间,并
确保停留时间大于或等于3~5s,这样使得溢流中的泡沫有足够的时间在降
液管中分离。
(27)
⑤ 降液管底隙高度hb:
(28)
• 采用合适的回流比; • 蒸馏系统的合理设置,如采用中间再沸器和中间 冷凝器的流程,可以提高精馏塔的热力学效率。
3.板式精馏塔的工艺计算
釜。 (1) (2)
得出:
3.1物料衡算及操作线方程
• 常规塔:一处进料和塔顶、塔底各有一个产品,塔釜间接蒸汽加热的精馏
(3)
(4)
式中:F、D、W——分别为原料液、馏出液和釜残液流量,kmol/h;
2.2进料状态的选择
• • • • • • •
进料状态以进料热状态参数q表示,有五种进料状态; q>1.0时,为低于泡点温度的冷液进料; q=1.0时,为泡点下饱和液体; q=0时,为露点下的饱和蒸气; 1>q>0时,为介于泡点和露点间的气液混合物; q<0时,为高于露点的过热蒸气进料。 为使塔的操作稳定,免受季节气温影响,精、提馏段采 用相同塔径以便于制造,则采用饱和液体(泡点)进料, 但需增设原料预热器。
• 4、塔的负荷性能图(放在说明书的流体力学验算后、用 标准坐标纸绘制)
2.设计方案的确定
2.1操作压力
精馏操作可以在常压、减压和加压下进行。
除热敏性物料外,凡通过常压精馏即可实现分离要 求,并能用江河水或循环水将馏出物冷凝下来的 系统,都采用常压精馏;
对热敏性物料或混合物沸点过高的系统,宜采用减 压精馏; 常压下成气态的物料必须采用加压精馏。
5.2.3 溢流装置的设计
溢流装置的设计参数包括溢流堰长lw、堰高hw、弓形降 液管截面积Af、降液管底隙高度hb、堰上液层高度how。
① 堰长lw:依据溢流型式及液体负荷决定 单溢流型:lw一般取为(0.6~0.8)D; 双溢流型:两侧堰长lw取(0.5~0.7)D,D为塔径
② 堰上液层高度how: 对于平直堰,设计时how一般应大于0.006m。 可按下式计算:
5.2.2降液管
降液管是塔板间液体流动的通道,也是溢流液中夹带的气体得以分离的场合。 从形状上看,降液管可以分为弓形降液管和圆形降液管。
(a)圆形降液管;(b)内弓形降液管,均适用于直径较小的塔板; (c)弓形降液管,它由部分塔壁和一块平板围成,能充分利用塔内空间,提供较大 的降液面积及两相分离空间,普遍应用于直径较大、负荷较大的塔板; (d)倾斜式弓形降液管,它即增大了分离空间又不过多的占用塔板间距,适用于大 直径大负荷的塔板。下面介绍单流型具有弓形降液管塔板的溢流装置的设计。
(25)
Ls-液体体积流量,m3/h; E-液流收缩系数,一般情况取1。 当平堰上液层高度how< 6mm或液流强度Ls/lw < 3m3/(m h)时,需改为齿形流,此时how的计算 公式可参看手册。
③ 溢流堰高hw:
(26) 对于常压或加压塔,一般取hw=50~80mm;
对于减压塔或要求塔板阻力很小时,hw为25mm左右; 当液体量很大时,hw可适当取大。
利用体系的汽-液相平衡方程(A),精馏段操作线方程(A)和提 馏段操作线方程(C),自塔顶开始,向下逐板计算,可以求得各层 塔板上的汽、液相组成,计算结果较精确。
当计算至xn与xF相等或接近时,第n层为加料板。同理,于加料板以下, 改用方程(A)与方程(C)进行交叉计算,直至xN等于或略小于xw为 止,则再沸器相当于第NT块塔板,此塔的总理论板数为NT-1,提馏段 板数为(NT-n)块。
hb不宜小于0.02~0.025m,以免引起堵塞。当选定hb后,即可求得液体流经底隙 的流速μ0,其值不大于0.3~0.5m/s。
(29)
⑥ 受液盘及进口堰
受液盘有凹形和平形两种形式。 对于直径较小的塔或处理易聚合的物系时,塔板不易有死角存在,多采用平形受液盘。 对于直径大于800mm以上的塔板或有侧线抽出时,也可以采用凹形受液盘。 当大直径的塔采用平形受液盘时,一般需在塔板上设置进口堰。
板式塔大致可以分为两类: 1、降液管的塔板,如泡罩、浮阀、筛板等等; 2、无降液管塔板,如穿流式筛板,穿流式波纹板。 工业上应用较多的是有降液管的浮阀、筛板和泡罩塔板等。
泡罩塔主要优点是操作弹性大,液气比范围大,适用于多种介质,操作稳定 可靠;但其结构复杂,造价高,安装维修不便,气相压降较大。 浮阀塔是现今应用最广的一种板型,其主要优点是生产能力大,操作弹性较 大,分离效果较高,塔板结构较泡罩塔简单。制造费是泡罩塔板的60~80%, 是筛板塔的120~130%。目前国内多用F1型(重阀)浮阀塔。 筛板塔主要优点是结构简单,制造维修方便,造价低,相同条件下生产能力 高于浮阀塔,塔板效率接近浮阀塔。缺点是稳定操作范围窄,小孔径筛板易 堵塞,不适宜处理粘性大、脏的和带固体粒子的料液。
4.3.4 塔底空间高度HB
为了保证塔底产品抽出稳定,使塔底液体不致流空,一般可取塔底产品的 停留时间为10~15min,因此可按残液量和塔径进行计算,也可取经验值, 常取1.3~3m。
4.3.5 塔体总有效高度H
(24)
S—人孔的数目(不包括塔顶空间和塔底空间的人孔))
5.塔板类型及主要参数
5.1塔板类型的选择
1.1 化工原理课程设计的目的
• 学生需要培养的能力: • 1、查阅资料,选用公式和搜集数据的能力; • 2、综合分析设计任务要求,确定化工工艺流 程,进行设备选型; • 3、迅速准确进行工程计算的能力; • 4、用简洁的文字,清晰的图表来表达自己设 计思想的能力。
1.2 化工原理课程设计的内容
4.塔体主要尺寸的设计
4.1塔板间距(HT)
需要考虑以下几个因素: 1、雾沫夹带:板间距小,则雾沫夹带量大,板间距增加则 雾沫夹带量可以减小,当板间距增大到一定程度,雾沫夹 带量的改变很小,过大的板间距就没有必要了。 2、物料的起泡性:易起泡的物系,板间距较大,反之则小。 3、操作弹性:当有较大的操作弹性时,选较大的板间距。 4、与塔径的大小有关。不同的塔径范围的塔板间距建议采 用下表的数据。
4.3 其它塔体的主要尺寸
4.3.1塔顶高度HD
塔顶空间高度作用是安装塔板和人孔的需要,也使气体中的液滴自由沉降,塔顶空间
高度一般取1.0~1.5m。
4.3.3进料段高度 HF
进料如果是液相,则HF应稍大于一般的板间距,并满足安装人孔的 需要。如果是两相进料,则HF需要取得大一些,以利于进料两相分 离。一般可取: HF=(1.0~1.2)m。
3.3 理论板数的确定
3.3.1 作图法
由(xD,xD)点开始,在精馏段操作线与平衡线间做梯级,当跨过 第m块理论板后液相浓度首次出现xm<xq,则取第m块理论板为加料 板可使总的理论板数最小。梯级的总个数即为理论塔板数。 作图法的缺点:当平衡线和操作线较靠近时,作图法画梯级的误差 较大。
3.3.2 逐板计算法
(12)
(13)
(3)对于理想溶液或在相对挥发度可取为常数时,可以用 解析法计算Rmin; 进料为饱和液体时:
(14)
进料为饱和蒸气时:
(15)
a全塔—全塔平均相对挥发度,α全塔变化不大时,可取塔顶和塔底的α几何平均值。
3.2.2 适宜的回流比 分别取不同的系数,求出对应的塔板数,然后画出R-N图, 由图可知最合适的回流比。
3.3.3 简捷法求理论板数
a. 在全回流下求出所需理论板数Nmin,对于接近理想体系的混合物,可以采用芬斯克 方程计算;
(16)
b.使用吉利兰图,根据 在内的理论板数N;
,由曲线查出
,即可求出不包括再沸器
C.确定进料板位置,利用公式(16),以xF代xw,α精馏代替α全塔,求得精馏段 的最小理论板数Nmin(精),按照步骤b法求得精馏段的理论板数N精,则加料板
4.2塔径D的计算
适宜的空塔气速:
(22)
对于直径较小或板间距小的塔,以及起泡严重的物系,系数取 低限,反之则取高限。 初步估算的塔径为:
(23)
目前,塔的直径已标准化,所求得的塔径必须圆整到标准值。 塔径在1米以下者,标准化先按100mm增值变化;塔径在1米 以上者,按200mm增值变化,即1000mm,1200mm,1400 mm….。 圆整后的直径,再按实际塔径按(23)式求出实际空塔气速, 验算其是否在最大允许空塔气速的0.6~0.8范围内,做为后面 有关计算中的空塔气速值。
(20)
(21)
C20—为液相表面张力σ为0.02N/m时的负荷因数,可由Smith气相负荷 因数关联图查出。需要先知道液滴沉降高度(HT-hL),液气流动
参数 有关。
hL——为板上清液高度,由于塔径和降液管的尺寸未定,hL可以取估计值: 对于常压及加压塔: hL=60~ 80mm 对于减压塔: hL=20~ 30mm
另外,考虑安装检修的需要,在塔体人孔处的板间距不 应小于600mm;对只需开手孔的小型塔,开手孔处的板间距 可取为450mm以下。
4.2塔径D的计算
以不发生气速,求得塔径。 最大允许空塔气速: 其中C为气相负荷因数:
式中σ —为表面张力,N/m;
1.2.2图纸的主要内容:
• 1、工艺流程简图 • 2、一张塔设备工艺条件图,用A1纸画,标准机械制图方 法制图,包括塔和关键部位图、技术特性表、接管表 (塔 径在1.5m米以上须开人孔,0.8mm以下,只开手孔)。 • 技术特性表:注明操作压强、温度、工作介质、容器类别 等。 • 用标准标注方法 • 3、Y-X相图,N-R图用标准坐标纸绘制
5.2 塔板有关参数的计算
5.2.1板上液流型式的确定
常用的塔板流动型式有下面几种: (1)单流型:这是最普遍和最常用的,液体的流径较长,板面利用好; 塔板结构简单,直径小于2.2m以下的塔普遍采用此型; (2)双流型:用于大塔径及液相负荷较大的场合; (3)回流型:又称U型流型,用于液气比较小的场合; (4)其他流型:当塔径及液流量都特大式,双流型无法满足,可以用四 流型或阶梯型。
相关文档
最新文档