光电技术第4章(1)

合集下载

光电测试技术-第4章 激光干涉测试技术

光电测试技术-第4章 激光干涉测试技术
2014-11-16
K
LM
2
6Hale Waihona Puke §4-1 激光干涉测试技术基础
r S S0
θ
1.2 影响干涉条纹对比度的因素 ②光源大小与空间相干性 -f 干涉图样的照度,在很大程度上取决于光源的尺寸,而光 在干涉测量中,采取尽量减小光源尺 源的尺寸大小又会对各类干涉图样对比度有不同的影响 图 4-2 等厚干涉仪中的扩展光源 : 寸的措施,固然可以提高条纹的对比 由平行平板产生的等倾干涉,无论多么宽的光源尺寸,其干涉图 a) b) c) 度,但干涉场的亮度也随之减弱。 样都有很好的对比度。
7
2014-11-16
§4-1 激光干涉测试技术基础
1.2 影响干涉条纹对比度的因素 ③相干光束光强不等和杂散光的影响 设两支相干光的光强为I2=nI1,则有 可见,没有必要追求两支 图4-4 对比度K与两支干涉光强比n的关系 2 n 相干光束的光强严格相等。 K n 尤其在其中一支光束光强 1 很小的情况下,人为降低 非期望的杂散光进入干涉场,会严重影响条纹对比度。 另一支光束的光强,甚至 设混入两支干涉光路中杂散光的强度均为 I ' mI 1 ,则 是有害的。因为这会导致 (1 n m 2 n ) I1 I max (1 n m 2 n ) I1 I min 不适当地降低干涉图样的 照度,从而提升了人眼的 于是 2 n K 对比度灵敏阈值,不利于 1 n m 目视观测。
概述
§4-1 激光干涉测试技术基础
1.1 干涉原理与干涉条件 1.干涉原理 光干涉的基础是光波的叠加原理。由波动光学知道,两 束相干光波在空间某点相遇而产生的干涉条纹光强分布 为: 两光束到达 I I I 2 I I cos 1 2 1 2 位相 某点的光程 差 差 2π L 满足 L m 的光程差相同的点形成的亮线叫亮纹。

第4章-光电对抗技术概要知识分享

第4章-光电对抗技术概要知识分享

第4章-光电对抗技术概要第4章光电对抗技术收集于网络,如有侵权请联系管理员删除49收集于网络,如有侵权请联系管理员删除➢ ➢ ➢ 一切温度高于绝对零度的物体都有红外辐射,这就是为目标和景物的探测、识别奠定了客观基础。

红外系统一般以“被动方式”接受目标的信号,故隐蔽性很好,更易于保密,也不易被干扰。

红外探测是基于目标与背景之间的温差和发射率差,传统的伪装方式不可能掩盖由这种差异所形 成的目标红外辐射特性,从而使红外系统具有比 可见光系统优越的多的识伪能力。

目标离开后,其特有的红外辐射会在原地滞留相当长的时间而不会立即消失,借助于此,红外系 统变更均由其独特的“追忆记录”功能。

50➢收集于网络,如有侵权请联系管理员删除 ➢ ➢ 相对于雷达而言,红外系统体积小、重量轻、功耗低、容易制成灵巧装备,且不怕电磁干扰,特 别适合于“发射后不管”的精确制导武器。

红外技术的缺点:✪ 大气层内的探测能力不如微波雷达,且只能利用在 三个大气窗口内的目标辐射信息;✪ 红外材料品种太少;✪ 探测器工艺复杂,成本高昂,其尺寸小,大大限制了红外系统的战术技术性能;✪ 现役红外装备大多需制冷手段,影响其应用。

51收集于网络,如有侵权请联系管理员删除 ➢ ➢ 主动红外夜视仪用近红外光束照射目标,将目标反射的近红外辐射转换为可见光图像,实现有效 地“夜视”,故它工作在近红外区。

大气向后散射的影响✪ 当照明光束穿过大气时会被散射,会有部分散射光沿逆向进入观察系统,即向后散射。

✪ 它在像平面上造成附加背景,降低图像的对比度。

在能见度较差时,情况更加严重,甚至成为约束此 类系统性能的基本因素52精品文档收集于网络,如有侵权请联系管理员删除4.1.3 热像仪 ➢ ➢ 热成像技术把目标与场景个部分的温度分布、发 射率差异转换成相应的电信号,再转换为可见光 图像热像仪的温度分辨力较高,可达0.1-0.01℃,使 观察者容易发现目标的蛛丝马迹它工作于中、远红外波段,使之具有更好的穿透 雨、雪、雾和常规烟幕的能力,具有很好的洞察 掩体和识破伪装的本领它不怕强光干扰,且昼夜可用,使之更适用于复 杂的战场环境它在常规大气中受散射的影响小,故通常有更远 的工作距离 53➢ ➢ ➢精品文档 收集于网络,如有侵权请联系管理员删除4.1.4 搜索侦察与预警系统➢ 红外搜索侦察系统按设定的规律不断扫描待查地 域、海域或空间,持续收集红外辐射,基此发现 目标,进而标示目标位置并发出一定的信号。

光电检测技术课后部分答案

光电检测技术课后部分答案

第一章1.举例说明你知道的检测系统的工作原理激光检测一激光光源的应用用一定波长的红外激光照射第五版人民币上的荧光字,会使荧光字产生一定波长的激光,通过对此激光的检测可辨别钞票的真假。

山于仿制困难,故用于辨伪很准确。

2.简述光电检测系统的组成和特点组成:(1)光学变换:时域变换-------调制振幅,频率,相位,脉宽空域变换-------光学扫描光学参量调制:光强,波长,相位,偏振形成能被光电探测器接收,便于后续电学处理的光学信息。

(2)光电变换,变换电路,前置放大将信息变为能够驱动电路处理系统的电信息(电信号的放大和处理)(3)电路处理放大,滤波,调制,解调,A/D,D/A,微机与接口,控制。

第二章1.试归纳总结原子自发辐射,受激吸收,受激辐射三个过程的基本特征。

自发辐射:处于激发态的原子在激发态能级只能一段很短的时间,就自发地跃迁到较低能级中去,同时辐射出光子。

受激辐射:在外来光的作用下,原子从激发态能级跃迁到低能级,并发射一个与外来光完全相同的光子。

受激吸收:处于低能级的原子,在外来光的作用下,吸收光子的能量向高能级跃迁。

2.场致发光(电致发光)有哪几种形式,各有什么特点结型电致发光(注入式发光):在p-n结结构上面加上正向偏压(即p区接电源正极,n区接电源负极)时,引起电子由n区流入(在物理上称为“注入”)p区,空穴由p区流入n区,发生了电子和空穴复合而产生发光。

粉末电致发光:这是在电场作用下,晶体内部电子与空穴受激复合产生的发光现象。

两电极夹有发光材料薄膜电致发光:薄膜电致发光和粉末电致发光相似,也是在两电极间夹有发光材料,但材料是一层根薄的膜,它和电极直接接触,不混和介质。

3.为什么发光二极管的PN结要加正向电压才能发光加正向偏压时,外加电压削弱内建电场,使空间电荷区变窄,载流子的扩散运动加强,构成少数载流子的注入,产生电子和空穴的复合,从而释放能量,并产生电致发光现象。

4.发光二极管的外量子效率与射出的光子数,电子空穴对数,半导体材料的折射率有关。

第4章__光电测距

第4章__光电测距

气象改正 :
气象改正数随温度和气压的变化而变化,因此气象元素( 气象改正数随温度和气压的变化而变化,因此气象元素(温度 和气压)最好是取测线上的平均值来计算。 和气压)最好是取测线上的平均值来计算。
波道弯曲改正 :
由于波道弯曲引起的弧长化为弦长的波道几何改正。 由于波道弯曲引起的弧长化为弦长的波道几何改正。 由于实际大气折射系数仅用测线两端的中值, 由于实际大气折射系数仅用测线两端的中值,而没有采用严格沿 波道上的积分平均值,因此产生了所谓折射系数的代表性改正。 波道上的积分平均值,因此产生了所谓折射系数的代表性改正。
按反射目标分: 按反射目标分:
漫反射目标 合作目标 有源反射器
按精度指标分: 按精度指标分:I级
II级 II级 10mm
III级 III级 20mm
mD
5mm
相位式光电测距仪的基本公式
D= c ( N + ∆Φ / 2π ) = L( N + ∆N ) 2f
∆N 式中: = ∆Φ / 2π ——测尺长度; N ——整周数; L = c / 2 f = λ / 2 ——不足一周的尾数
固定误差的影响 :
测相误差,仪器加常数误差和对中误差都属于固定误差。 测相误差,仪器加常数误差和对中误差都属于固定误差。在精 密的短程测距时,这类误差将处于突出的地位。 密的短程测距时,这类误差将处于突出的地位。 对中误差 在控制测量中,一般要求对中误差在3mm以下 以下, 在控制测量中,一般要求对中误差在3mm以下,要求归心误差 在5mm左右。但在精密短程测距时,由于精度要求高,必须采用强 mm左右。但在精密短程测距时, 由于精度要求高, 左右 制归心方法,最大限度地削弱此项误差影响。 制归心方法,最大限度地削弱此项误差影响。 仪器加常数误差 经常对加常数进行及时检测, 经常对加常数进行及时检测,予以发现并改用新的加常数来避 免这种影响。 免这种影响。 测相误差 包括测相设备本身的误差 ,幅相误差 ,照准误差 ,信噪比 引起的误差, 引起的误差,周期误差 。

光电传感器应用技术第4章 第2节

光电传感器应用技术第4章 第2节

如图4-22(a)所示的“CIEl931-RGB系统标准色度观 察 者三刺激值曲线σrgb”。从曲线中看到、、光谱三刺激值有 一部分为负值,计算很不方便,又难以理解。因此1931年
CIE
新的国际通用色度系统,称为“CIEl931-XYZ系 统”。它是在CIE1931-RGB系统的基础上改用三个假想 的原色x、y、z所建立的一个新的色度系统。
1.双色硅色敏器件的工作原理
双色硅色敏光传感器的结构和等效电路如图4-19所示。 它是在同一硅片上制作两个深浅不同PN结的光电二极管 PD1和PD2组成的。
浅PN结的PD1 的光谱响应峰值 在蓝光范围,深 结PD2的光谱响应 峰值在红光范围。
双结光电二极管只能通过测量单色光的光谱辐射功率与黑体
辐射相接近的光源色温来确定颜色。用双结光电二极管测量颜色 时,通常测量两个光电二极管的短路电流比(ISC2/ ISC1)与入射波 长的关系(如图4-21所示),从关系曲线中不难看出,每一种波长 的光都对应于一个短路电流比值,根据短路电流比值判别入射光 的波长,达到识别颜色的目的。
x y
(Ix' Iy ) (Ix Iy')
Ix Ix' Iy Iy' (Ix' Iy') (Ix Iy )
Ix Ix' Iy Iy'
斑在边缘的测量误差被大大地减少。
4.3 光生伏特器件的偏置电路
• 4.3.1 反向偏置电路
图4-40所示为光生伏特器件的反向偏置电路。其中图(a)为反 向偏置电路的原理电路图,图(b)为反向偏置电路图。光生伏特 器件在反向偏置状态,PN结势垒区加宽,有利于光生载流子的漂移 运动,使光生伏特器件的线性范围和光电变换的动态范围加宽。

光电探测技术与应用第4章课后习题与答案

光电探测技术与应用第4章课后习题与答案

得 I 1 I sc1
U oc1 U oc
而 ID
e I
qUoc KT
KT1 I1 KT I In I 1 1 q I 又 T1 T q I D D
1 28 10 3 e
55010 3 0.026
18.244 10 12 A 18.244 10 9 mA
1
则 I D 相对于 I 非常小,
U oc1 U oc
I 1 I D KT ln q I I D
KT I 1 56 0.026 ln ln 0.018V 18mV q I 28
解:由题意,当 T=300K, E e U oc 550mV , I SC 28mA ,则由
U oc
100mW / cm 2 时,
q kT I 以及 I sc I (1 e d ) e , ln 1 hv q ID
E e1 200 I sc 28 56mA Ee 100
光电探测技术与应用 主编:郝晓剑 李仰军
国防工业出版社
第4章 半导体结型光电器件
1 写出硅光电二极管的全电流方程,说明各项的物理意义。
答:硅光电二极管的全电流方程为
I
q
hc
(1 e
d
) e , I D (e
qU kT
1)
式中, 为光电材料的光电转换效率, 为材料对光的吸收系数。 光电流为
2
而 ID
I eqBiblioteka oc kT 1 e6 10 3
1.61019 550103 1.3810 23300

光电技术与应用作业指导书

光电技术与应用作业指导书

光电技术与应用作业指导书第1章光电技术概述 (3)1.1 光电技术基本概念 (3)1.2 光电技术发展历程与趋势 (3)1.3 光电技术的主要应用领域 (3)第2章光的传播与变换 (4)2.1 光的波动性描述 (4)2.2 光的传播方程 (4)2.3 光的变换技术 (4)第3章光电探测器 (5)3.1 光电探测器原理 (5)3.2 常见光电探测器 (5)3.3 光电探测器的功能评价 (5)第4章光电发射器件 (6)4.1 光电发射原理 (6)4.2 常见光电发射器件 (6)4.2.1 光电管 (6)4.2.2 光电倍增管 (6)4.2.3 太阳能电池 (7)4.3 光电发射器件的应用 (7)4.3.1 光通信 (7)4.3.2 光电检测 (7)4.3.3 太阳能利用 (7)4.3.4 其他应用 (7)第5章光电显示技术 (7)5.1 光电显示原理 (7)5.1.1 发光原理 (7)5.1.2 液晶显示原理 (8)5.2 常见光电显示器件 (8)5.2.1 LED显示屏 (8)5.2.2 液晶显示屏(LCD) (8)5.2.3 有机发光二极管显示屏(OLED) (8)5.2.4 等离子显示屏(PDP) (8)5.3 光电显示技术的发展趋势 (8)第6章光通信技术 (9)6.1 光通信原理 (9)6.1.1 光通信概述 (9)6.1.2 光的传播特性 (9)6.1.3 光的调制与解调 (9)6.2 光纤通信系统 (9)6.2.1 光纤概述 (9)6.2.2 光纤的种类与特性 (9)6.3 光通信网络技术 (10)6.3.1 波分复用技术 (10)6.3.2 光开关与光交换技术 (10)6.3.3 光网络的结构与拓扑 (10)6.3.4 光通信网络的管理与控制 (10)第7章光电测量技术 (10)7.1 光电测量原理 (10)7.2 常见光电测量方法 (10)7.2.1 光电效应法 (10)7.2.2 光谱分析法 (11)7.2.3 干涉法 (11)7.3 光电测量系统的功能评价 (11)7.3.1 灵敏度 (11)7.3.2 精确度 (11)7.3.3 稳定度 (11)7.3.4 响应速度 (11)7.3.5 抗干扰能力 (12)第8章光电成像技术 (12)8.1 光电成像原理 (12)8.1.1 光电器件的感光原理 (12)8.1.2 光电转换原理 (12)8.1.3 信号输出原理 (12)8.2 光电成像器件 (12)8.2.1 光电传感器 (13)8.2.2 成像器件 (13)8.2.3 光电探测器 (13)8.3 光电成像系统的应用 (13)8.3.1 工业检测 (13)8.3.2 医疗影像 (13)8.3.3 安全监控 (13)8.3.4 航天遥感 (13)8.3.5 通信与显示 (13)8.3.6 其他应用 (14)第9章光电传感器技术 (14)9.1 光电传感器原理 (14)9.2 常见光电传感器 (14)9.3 光电传感器在自动化领域的应用 (14)第10章光电技术的创新与发展 (15)10.1 光电技术新兴领域 (15)10.1.1 光量子计算 (15)10.1.2 光电传感器 (15)10.1.3 光通信技术 (15)10.1.4 光电显示技术 (16)10.2.1 集成化和微型化 (16)10.2.2 绿色环保 (16)10.2.3 跨学科融合 (16)10.3 光电技术在我国的应用前景与挑战 (16)10.3.1 应用前景 (16)10.3.2 挑战 (16)第1章光电技术概述1.1 光电技术基本概念光电技术是指将光与电相结合,通过对光的产生、传输、调制、检测和转换等过程的研究与应用,实现信息获取、处理和传输的技术。

第四章 光电信息技术应用

第四章 光电信息技术应用

2D=λ(N+Δn)
或 D=λ(N+Δn)/2=Ls(N+Δn) 式中:N——零或正整数,为波长λ或相位2π的倍数;
Δn—是个小数, Δn=Δλ/λ=Δφ/2π;
Ls——称它为测尺长度,Ls =λ/2 当距离D大于测尺长度Ls时,仅用一把“光尺”是 无法测定距离的。但当距离D小于测尺长度L,即N等 于零时,式上变为
2. 差动法
利用被测量与某一标准量相比较,所得差或比反映 被测量的大小。

待测
光电

对象
传感器

标准
光电

对象
传感器
差/比
读出 待测量
3.补偿法
用光或电的方法补偿由被测量变化而引起的光通 量变化,补偿器的可动元件联接读数装置指示出补偿 量值,补偿值的大小反映了被测量变化的大小。
待测 对象
参考 对象
§4.1.1 光电检测基本方法
根据光源、光学系统和光电信息转换器件三者位置 关系可将光电检测系统分为:
1、 直射型 2、 反射型 3、 辐射型
根据检测原理可将光电检测的基本方法分为
1、直接作用法 2、差动法 3、补偿法 4、脉冲法
1. 直接作用法
特点: ▪ 结构简单 ▪ 精度差 ▪ 抗干扰能力差
第四章 光电信息技术应用
光电检测与控制 光纤通信 光纤传感器 其它应用
§4.1 光电检测
▪ 光电转换器件:是指把光能(可见光或不可见光)的 变化转换为电量(电阻、电流、电压等)变化的器件。 ▪ 光电传感器:用一个或几个光电器件把欲测的物理量 (长度、宽度、直径、压力、转矩、温度、溶液浓度等) 转换成电量的装置。 ▪ 光电检测与控制系统:是指包含光电传感器的测控系 统。

(完整版)第四章光电信号检测电路

(完整版)第四章光电信号检测电路

4.2 光电信号输入电路的静态计算
静态计算法是对缓慢变化的光信号采用直流电路 检测时使用的设计方法,由于光电检测器件的非线 性伏安特性,所采用的方法包括非线性电路的图解 法和分段线性化的解析法。
按照伏安特性的基本性质可分为三种类型:恒流 源型、光伏型和可变电阻。
4.2.1 恒流源型器件光电信号输入电路
0 Q
UQ
图解法 分析:
U
O
U
光伏型器件负载电阻和光通量的影响分析:
伏安特性 非线性
光通量较小时 近似线性关系 光通量较大时 逐渐饱和状态
电阻越大越明显
RL 0
RM
RL↑
负载电阻的选取影响输出信号
UM
短路电流或线性电流放大(区域I) 空载电压输出(区域IV) 线性电压输出(区域 II)
短路电流或线性电流放大区域 I
1、负载电阻很小,接近于0,电 路工作状态接近于短路工作状态, 可实现电流变换。后续电流放大 级可从光电池中吸取最大的输出 电流。此时输出电流为:
I
I I p Is eIRL UT 1 RL 0
I p Isc S
和 I S
RL 0
i
R1 I
II
RM
Isc2 2 I sc1 1
O
所以 R
S Gp Gd 2
R2S
即有:I
R 2U b S
R RL 2

U L
RLI L
R 2U b S
R RL 2
RL
练习思考
R IL
10K
UL
Ub
已知负载10k,偏置电压100V,光电导灵敏度为 S=0.5×10-6S/lm,暗电导为0,假设静态工作点光通量 为100lm时,光敏电阻阻值为20k,试求光通量在50lm 到150lm的范围内变化时电路负载上输出电流和输出电

光电检测技术课后部分答案

光电检测技术课后部分答案

第一章1.举例说明你知道的检测系统的工作原理激光检测一激光光源的应用用一定波长的红外激光照射第五版人民币上的荧光字,会使荧光字产生一定波长的激光,通过对此激光的检测可辨别钞票的真假。

山于仿制困难,故用于辨伪很准确。

2.简述光电检测系统的组成和特点组成:(1)光学变换:时域变换-------调制振幅,频率,相位,脉宽空域变换-------光学扫描光学参量调制:光强,波长,相位,偏振形成能被光电探测器接收,便于后续电学处理的光学信息。

(2)光电变换,变换电路,前置放大将信息变为能够驱动电路处理系统的电信息(电信号的放大和处理)(3)电路处理放大,滤波,调制,解调,A/D,D/A,微机与接口,控制。

第二章1.试归纳总结原子自发辐射,受激吸收,受激辐射三个过程的基本特征。

自发辐射:处于激发态的原子在激发态能级只能一段很短的时间,就自发地跃迁到较低能级中去,同时辐射出光子。

受激辐射:在外来光的作用下,原子从激发态能级跃迁到低能级,并发射一个与外来光完全相同的光子。

受激吸收:处于低能级的原子,在外来光的作用下,吸收光子的能量向高能级跃迁。

2.场致发光(电致发光)有哪几种形式,各有什么特点结型电致发光(注入式发光):在p-n结结构上面加上正向偏压(即p区接电源正极,n区接电源负极)时,引起电子由n区流入(在物理上称为“注入”)p区,空穴由p区流入n区,发生了电子和空穴复合而产生发光。

粉末电致发光:这是在电场作用下,晶体内部电子与空穴受激复合产生的发光现象。

两电极夹有发光材料薄膜电致发光:薄膜电致发光和粉末电致发光相似,也是在两电极间夹有发光材料,但材料是一层根薄的膜,它和电极直接接触,不混和介质。

3.为什么发光二极管的PN结要加正向电压才能发光加正向偏压时,外加电压削弱内建电场,使空间电荷区变窄,载流子的扩散运动加强,构成少数载流子的注入,产生电子和空穴的复合,从而释放能量,并产生电致发光现象。

4.发光二极管的外量子效率与射出的光子数,电子空穴对数,半导体材料的折射率有关。

科学出版社 江文杰编著《光电技术》习题答案

科学出版社 江文杰编著《光电技术》习题答案
同一照度下,加负载后,负载电阻与光电池内电阻串联,内电阻上总会分去一部分电压, 所以负载上的输出电压总是会小于开路电压。
4-7 说明 PIN 管、雪崩光电二极管的工作原理和各自特点。PIN 管的频率特性为什么比普通 光电二极管好? 答:(一)PIN 光电二极管
工作原理:PIN 光电二极管是一种快速光电二极管,PIN 光电二极管在掺杂浓度很高的 P 型半导体和 N 型半导体之间夹着一层较厚的高阻本征半导体 I,其基本原理与光电二极管 相同。但由于其结构特点,PIN 光电二极管具有其独特的特性。如下图所示。
=
SΦ m
R1 RL
=
SΦ m
Rb Rb + RL
=
0.6 × 5 × 125 125 + 125
= 1.5μA
交流输出电压 UL 的有效值
UL = ILmRL / 2 = 1.5μA ×125kΩ/ 2 = 132.6mV
(3)上限截止频率
f HC
=
1 2πR1C1
=
1 2 × 3.14 × 125 ×103 × 6 ×10−12
科学出版社《光电技术》第 1 版习题与思考题及参考解答
第 4 章 光伏探测器
4-1 (1)证明:光电二极管输出的光电流 Ip = eηΦ0 / (hν ) ,式中:Ф0 为入射辐射功率,e
为电子电量,η为量子效率,hv 为入射光子能量;(2)通常光电二极管的内增益 M=1,不会 出现 M>1。试从光伏效应的机理上加以解释。
压,负载电阻 50Ω 自身的噪声电压):
U
2 in
=
2eiΔf

R2
+
4kT Δf

R
=

光电技术习题及总复习

光电技术习题及总复习
(1).这支气体激光束的光通量,发光强度,光亮度,光出射度.
(2).该激光束投射在10m远的白色漫反射屏上,漫反射屏的 反射比为0.85,求屏上的光亮度
本题1问的关键: 辐射通量和光通量的转换关系要清楚;立体角
概念要清楚;立体角与平面角的关系?
1)光通量
v CVe 683 0.175 2103 0.239lm
第三和第四代像增强器?
28.光源的光谱功率分为哪几种情况?画出每种情况对应的
分布图?
29.光电测量系统中的噪声可分为三类,简述这三类噪声? 等效噪声功率的表达式(两个)?
30.光和物质相互作用的三个过程是什么?产生激光的三个必要 条件是什么?激光器的类型和激光的特性是什么?
31.硅光电池最大的开路电压是多少?为什么它随温度升高
5.变像管是一种能把各种( )辐射图像转换成为( )图 像的真空光电成像器件。
第十六页,编辑于星期六:十六点 三十四分。
6. 电荷耦合器(CCD)电荷转移的沟道主要有两大类,一 类是( ), 另一类是( )。 7. 光电子技术是( )和( )相结合而形成的一门技术
8. 光源的颜色,包括两方面含义( )和( )。
而降低?
I0 4.22 1014 e0.1539t
32.什么是光纤的V归一 化2频a率参n1数2 ?n判22 断单2模a与n非1 单2模光纤的条件?
33.什么是“胖0”电荷?什么是“胖0”工作模式?“胖0”电荷的数 量是多少?引入“胖0”电荷的优缺点?
第二十页,编辑于星期六:十六点 三十四分。
34.光电探测器的特性参数有?为什么光敏电阻随光照增
πr102
r10=θR=10-3×10=10-2
该白色漫反射屏是不透明的, 其上的光斑是一个漫反射 源, 因漫反射光源的视亮度与θ无关,各方向都相同,因此该漫反 射源以π的立体角出射光通量0.85Фv ,故视亮度

第四章 光电成像器件

第四章   光电成像器件
固体化摄像器件 很高的空间分辨率 很高的光电灵敏度和大的动态范围 光敏元间距位臵精确,可获得很高的 定位和测量精度 信号与微机接口容易
电荷耦合器件(CCD)
CCD类型: 表面沟道CCD(SCCD):电荷包存储在半导体与 绝缘体之间的界面,并沿界面传输; 体沟道CCD(BCCD):电荷包存储在离半导体表 面一定深度的体内,并在半导体体内沿一定方向传 输——用离子注入方法改变转移沟道的结构,从而 使势能极小值脱离界面而进入衬底内部,形成体内 的转移沟道,避免了表面态的影响,使得该种器件 的转移效率高达99.999%以上,工作频率可高达 100MHz,且能做成大规模器件。 下面以表面沟道CCD为例介绍CCD基本原理

电荷耦合器件(Charge Coupled Device,即CCD) 互补金属氧化物半导体图像传感器(即CMOS) 电荷注入器件(Charge Injection Device,即CID)
4.3 电荷耦合器件
CCD(Charge Coupled Devices)
CCD图像传感器主要特点:
双列两相线阵CCD结构
光敏区:光敏二极管阵列,每个光敏元是一个像素。
转移栅:MOS电容构成,蔽光;控制光生电荷向移位寄存器转移。
移位寄存器:MOS电容构成,蔽光;控制光生电荷扫描移向输出端。
输出端:将光生电荷包转换为视频信号输出。
在Al电极上加驱动信号,MOS阵列使光生电荷包 自扫描输出。
输出端:输出栅OG;
进一步说明:
栅电极G
氧化层
P型半导体
耗尽区 浅势阱
反型层 深势阱
uG=0
uG<uth(MOS晶体管的开启电压)
uG>uth
电荷耦合器件工作在瞬态和深度耗尽状态

光电传感技术第四章-光生伏特器件

光电传感技术第四章-光生伏特器件

1.硅光敏二极管
1)硅光敏二极管的工作原理-基本结构 光敏二极管(photo diode)可分为以P型硅为衬底的2DU型 与以N型硅为衬底的2CU型两种结构形式。
在高阻轻掺杂的P型硅片上通过扩散或注入的方式生成很 浅的N型层。在N型层的上面氧化生成极薄的SiO2保护膜,保 护光敏面并增加器件对光的吸收。
雪崩光敏二极管的工作偏压必须适当。过小时,增 益太小;过大时,噪声大,且电压过高可能使管子被击 穿烧毁。由于击穿电压会随温度漂移,必须根据环境温 度变化相应调整工作电压。
3. 雪崩光敏二极管
3)噪声
由于雪崩光敏二极管中载流子的碰撞电离是不规则的,碰撞后的运 动方向更是随机的,所以它的噪声比一般光敏二极管要大些。在无倍增 的情况下,其噪声电流主要为散粒噪声。当雪崩倍增M倍后,雪崩光敏二 极管的噪声电流的均方根值可近似由下式计算。
2 q ηλ (Φs + Φb ) 2 4 KT∆f I n2 = ∆f + 2qI d ∆f + hc RL
1.硅光敏二极管
光敏二极管正向电阻约10k Ω左右。在无光照情况下, 反向电阻为∞ ;有光照时,反向电阻随光照强度增加而 减小,阻值可达到几k Ω或1k Ω以下。在光照下,其电压 电流与光照强度成比例,电压可达0.2-0.4V。短路电流可 达数十至数百μA。
2.PIN型光敏二极管
为了提高PN结硅光敏二极管的时间响应,消除在PN结 外光生载流子的扩散运动时间,常采用在P区与N区之间生成I 型层,构成PIN结构光敏二极管。 PIN光敏二极管在反 向电压作用下,耗尽区 扩展到整个半导体,光 生载流子只产生漂移电 流,因此, 它的时间响 应只取决于τdr 与τRC ,在 10-9s左右。
2)工作原理 在强电场作用下,当通过耗 尽区的每个载流子平均能产生一 对电子—空穴时,就发生雪崩击 穿现象。当M→∞时,PN结上所 加的反向偏压就是雪崩击穿电压 UBR。 从伏-安特性曲线可以看出, 在雪崩击穿点附近电流随偏压变 化的曲线较陡,当反向偏压有较 小变化时,光电流将有较大变化。

光电成像原理与技术第四章课后题答案

光电成像原理与技术第四章课后题答案

光电成像原理与技术第四章课后题答案在光电成像中,传感器的工作原理和光学成像基本相同,只是在特定条件下,传感器产生的光信号有不同的传播方向。

在光电成像中,传感器的信号由光电探测器接收。

通过光电探测器和光电传感器接收到的光信号经过光电探测器和光电传感器所构成的二维网络,然后通过二维网络传输到成像单元中储存信号。

光学成像采用像素(pixels)二维连续成像技术。

像素是指根据光子传播方向和位置,可以直接地将成像过程分为两个部分:光路部分和成像单元(pixels)。

光路部分包括光路光源与反射光(如可见光)相互作用的过程;成像单元是由二个或更多块光路组合而成,用来接收和显示从可见光到近红外所发生的各种波长(包括可见光、红外线和紫外线)传输过来的光信号。

每一个部分都由光源、反射镜和探测器三部分组成。

1.选择正确的光源光源有直接光源和间接光源两种。

直接光源指通过灯管发光的光源,如荧光灯、卤素灯等。

直接光源的亮度一般为400~1000 lm/m2。

间接光源是指利用光的辐射原理来发出光源所需各种光学元件、结构或器件时所采用的光。

例如发光二极管(LED)、激光二极管(Light-Emitting Cables)、红外 CCD灯等。

间接光源既可以直接用在光源上直接显示图像,也可以用在非直接光源上显示图像。

需要注意的是,间接光源与直接光源在工作原理上有许多不同之处。

一方面,间接光源通过光管发光但亮度不高,而直接光源通过光管不发光(如 CCD灯)且亮度可调。

另一方面,直视光源产生成像图像时还会产生一些影响图像亮度的非视场角(如 CCD灯),这会影响图像中感光元件发出的光密度。

2.光源为光电探测器提供良好的照明和热输出光源是光电探测器的直接光源,其作用是通过将光通过光路而将反射光吸收,并通过反射光产生可见光信号。

可见光光子在波长为200~400 nm范围内的波长范围内传播时有一定的散射系数。

所以需要为探测器提供良好的照明,以保证探测器的正常工作。

光电技术 (王庆有 著) 电子工业出版社 课后答案

光电技术 (王庆有 著) 电子工业出版社 课后答案

光电技术第一章参考答案1辐射度量与光度量的根本区别是什么?为什么量子流速率的计算公式中不能出现光度量?答:为了定量分析光与物质相互作用所产生的光电效应,分析光电敏感器件的光电特性,以及用光电敏感器件进行光谱、光度的定量计算,常需要对光辐射给出相应的计量参数和量纲。

辐射度量与光度量是光辐射的两种不同的度量方法。

根本区别在于:前者是物理(或客观)的计量方法,称为辐射度量学计量方法或辐射度参数,它适用于整个电磁辐射谱区,对辐射量进行物理的计量;后者是生理(或主观)的计量方法,是以人眼所能看见的光对大脑的刺激程度来对光进行计算,称为光度参数。

因为光度参数只适用于0.38~0.78um 的可见光谱区域,是对光强度的主观评价,超过这个谱区,光度参数没有任何意义。

而量子流是在整个电磁辐射,所以量子流速率的计算公式中不能出现光度量。

光源在给定波长λ处,将λ~λ+d λ范围内发射的辐射通量d Φe ,除以该波长λ的光子能量h ν,就得到光源在λ处每秒发射的光子数,称为光谱量子流速率。

2 试写出 e φ、e M 、e I 、e L 等辐射度量参数之间的关系式,说明它们与辐射源的关系。

答:辐(射)能:以辐射形式发射、传播或接收的能量称为辐(射)能,用符号表示,其计量单位为焦耳(J )。

e Q e Q 辐(射)通量e φ:在单位时间内,以辐射形式发射、传播或接收的辐(射)能称为辐(射)通量,以符号e φ表示,其计量单位是瓦(W ),即e φ =dt dQ e 。

辐(射)出(射)度:对面积为A 的有限面光源,表面某点处的面元向半球面空间内发射的辐通量d e M e φ与之,该面元面积d 比,定义为辐(射)出(射)度e M 即M A e =dAd eφ。

其计量单位是瓦每平方米[W/m 2]。

辐(射)强度:对点光源在给定方向的立体角元e I Ωd 内发射的辐射通量e d φ,与该方向立体角元Ωd 之比,定义为点光源在该方向的辐(射)强度,即e I e I =Ωd de φ,辐射强度的计量单位是瓦特每球面度(W/sr )。

第四章 光电检测的方法及一般

第四章 光电检测的方法及一般

用聚焦法测量位移的突 出优点是检测精度不受 待测表面反射率的倾向, 因此可用于多种反射率 不同的材料的检测,如 玻璃、金属、硅、纸张 或PVC等材料。该系统 在较大的范围内都具有 很高的精度,聚焦探测 器可以在0~ 600m 的范围内分辨出几个纳 米
五、光栅及莫尔条纹法
1. 计量光栅的结构及测量原理 计量光栅一般分为 透射型光栅和反射型光栅两种,按其工作原理又 可以分为黑白光栅和相位光栅。用于长度及位移 测量的光栅一般为透射型黑白光栅。 光栅测量系统一般由光源、主光栅、指示光栅、 光学系统及光电探测器组成,如图4-36所示。主 光栅为一长方形光学玻璃,上面刻有明暗相间的 线对,明线(即透光线)宽度a与暗线(即遮光 线)宽度b之比通常为1∶1,两者之和成为光栅 的栅距。栅距通常可以为1/10~1/100mm。
U / D 信号控制计数器正向计数。在T3期间,LED又 信号及
熄灭,由
EN
信号控制计数器停止计数,此时,计数器输出的数字信号 即反映了扣除背景光及暗电流影响后的信号光的强度。在 T4期间,由 LD 信号对计数器清零,以便为进入下一个检测周期作好准备。
该电路不仅省去了采样保持,A/D转换等环节,直接可 与计算机接口,并且由于前置部分输出为频率信号,并 加上了光电耦合,因此可以实现远地传输,抗干扰能力 强。
A B A B
即可确定待测体的距离或位移。这样检测的特点是可以 消除待测体反射率变化的影响,减小待测表面倾斜所带 来的误差。若选择A、B两组光源的性能一致,则还可以 消除诸如环境温度变化等引起的光源强度变化的影响。 ⑶平面倾斜度的测量 如图4-31c所示,在探测器的两侧 对称放置A、B两个光源。点亮光源A时,得到探测器的 输出为 U ,点亮光源B时,得到探测器的输出为 U ,根据这两者的比值 U / U
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

充气型光电管的工作原理 光照生电子在电场的作用下运动,途中与惰性气 体原子碰撞而电离,电离又产生新的电子,它与 光电子一起都被阳极收集,形成数倍于真空型光 电管的光电流 。
4.2.2 光电倍增管组成及工作原理
光电倍增管(Photomultiplier Tube (PMT) 是一种真空 光电发射器件。 光入射窗 光电阴极 电子光学系统 倍增极 阳极
4.2.3 光电倍增管的结构
1. PMT的入射窗结构 2. 倍增极结构
1)倍增极材料 锑化铯(CsSb)材料具有很好的二次电子发射功 能,它可以在较低的电压下产生较高的发射系数,电压 高于400V时的二次发射系数δ 值可高达10倍。 氧化的银镁合金材料也具有二次电子发射功能,它 与锑化铯相比二次电子发射能力稍差些,但它可以工作 在较强电流和较高的温度(150℃)。

I a Sa G I k Sk
4.3.3 暗电流
光电倍增管在无辐射作用下的阳极输出电流称为暗电
流,记为ID。光电倍增管的暗电流值在正常应用的情况下
是很小的,一般为~nA,是所有光电探测器件中暗电流最 低的器件。
影响暗电流的主要因素: 1. 欧姆漏电
欧姆漏电主要指光电倍增管的电极之间玻璃漏电、 管座漏电和灰尘漏电等。欧姆漏电通常比较稳定,对噪 声的贡献小。在低电压工作时,欧姆漏电成为暗电流的 主要部分。
铜-铍合金(铍的含量为2%)材料也具有二次电子发射 功能,不过它的发射系数δ比银镁合金更低些。
新发展起来的负电子亲和势材料GaP[Cs],具有更高 的二次电子发射功能,在电压为1000V时,倍增系数可大 于50或高达200。
(2) 倍增极结构
光电倍增管按倍增极结构可分为聚焦型与非聚焦型 两种。非聚焦型光电倍增管有百叶窗型(图4-4(a)) 与盒栅式(图4-4(b))两种结构;聚焦型有瓦片静电 聚焦型(图4-4(c))和圆形鼠笼式(图4-4(d))两种 结构。
2. 热发射
由于光电阴极材料的光电发射阈值较低,容易产生热 电子发射,即使在室温下也会有一定的热电子发射,并被 电子倍增系统倍增。
I d t AT 5 / 4e
qEth KT
降低光电倍增管的温度是减小热发射暗电流的有效方法。
3. 残余气体放电
光电倍增管中高速运动的电子会使管中的残余气体电 离,产生正离子和光子,它们也将被倍增,形成暗电流。 这种效应在工作电压高时特别严重,使倍增管工作不稳定。
常规的光电阴极属于正电子亲和势(PEA)类型, 即表面的真空能级位于导带之上。如果给半导体 的表面作特殊处理,使表面区域能带弯曲,真空 能级降低到导带之下,从而使有效的电子亲和势 为负值,经过特殊处理的阴极称作负电子亲和势 光电阴极(NEA)。
1963年Simon根据半导体物理的研究提出了负电子亲和势 的理论,1965年J.J.Scheer和ar首先研制出了GaAsCs负 电子亲和势阴极。
工作原理:
1.光子透过入射窗口入射在光电阴极上; 2.光电阴极上的电子受光子激发,离开表面发射到真空中;
3.光电子通过电场加速和电子光学系统聚焦入射到第一倍 增级上,倍增级将发射出比入射电子数目更多的二次电子。 入射电子经N级倍增极倍增后,光电子就放大N次; 4.经过倍增后的二次电子由阳极收集,形成阳极光电流。
Ik S v 780 Φv,λ d v Ik
380
量纲为mA/lm
2.量子效率 定义在单色辐射作用于光电阴极时,光电阴极 发射单位时间发射出去的光电子数Ne,λ ,与入射的光 子数之比为光电阴极的量子效率η λ (或称量子产
额)。即
N e, λ N p, λ

量子效率和光谱灵敏度是一个物理量的两种 表示方法。它们之间的关系为
特点:
1.高吸收,低反射性质; 2.高量子效率,50%~60%; 3.光谱响应可以达到1um以上; 4.冷电子发射光谱能量分布较集中,接近高斯分布 5.光谱响应平坦; 6.暗电流小; 7.在可见、红外区,能获得高响应度; 8.工艺复杂,售价昂贵。
4.2
真空光电管与光电倍增管的工作原理
(phototube)
Photomultipliers acquire light through a glass or quartz window that covers a photosensitive surface, called a photocathode, which then releases electrons that are multiplied by electrodes known as metal channel dynodes. At the end of the dynode chain is an anode or collection electrode. Over a very large range, the current flowing from the anode to ground is directly proportional to the photoelectron flux generated by the photocathode.
EA2 Ec2
E0 对于P型Si的发射阈值是
EA1
Ev2 Ec1
Eg2
Eg1
Ev1
Cs2O
Ed1=EA1+Eg1,电子进入导带后需 要克服亲和势EA1才能逸出表面 由于表面存在n型薄层,使耗尽 区的电位下降,表面电位降低 Ed。光电子在表面受到耗尽区 电场的作用。
EAe
Si EC1 Si-CsO2光电阴极:在p型Si基 上涂一层金属Cs,经过特殊处 理而形成n型Cs2O。 Ef 在交界区形成耗尽层,耗尽区 的电位下降Ed,造成能带弯曲。
0.2(U DD )
0.7
对于氧化的银镁合金(AgMgO)材料有经验公式
δ=0.025UDD
对于锑化铯倍增极材料
G (0.2) U
N
0.7N DD
对银镁合金材料
G (0.025) U
N
N DD
光电倍增管在电源电压确定后,电流放大倍数可以 从定义出发,通过测量阳极电流Ia与阴极电流Ik确定。
定义:在某波长范围内的积分辐射作用于光电阴极时, 光电阴极输出电流Ik与入射辐射通量φe之比为光电阴极 的积分灵敏度Se。
Ik Se Φe,λ d e Ik
0
量纲为mA/W或A/W。
在可见光波长范围内的“白光”作用于光电阴极时, 光电阴极电流Ik与入射光通量φv之比为光电阴极的 白光灵敏度Sv。
V

4.3.2
电流放大倍数(增益)
电流放大倍数表征了光电倍增管的内增益特性,
它不但与倍增极材料的二次电子发射系数δ 有关,而且
与光电倍增管的级数N有关。理想光电倍增管的增益G与 电子发射系数δ 的关系为
G
N
当考虑到光电阴极发射出的电子被第1倍增极所收集,
其收集系数为η 1,且每个倍增极都存在收集系数ηi,因
4.1.2 光电阴极材料 1、银氧铯(Ag-O-Cs)光电阴极
350nm,800nm
2、单碱锑化物光电阴极 金属锑与碱金属锂、钠、钾、铷、铯中的一种 化合,能形成具有稳定光电发射的发射体。最常 用的是锑化铯,其阴极灵敏度最高,广泛用于紫 外和可见光区的光电探测器中。 3、多碱锑化物光电阴极
当锑和几种碱金属形成化合物时,具有更高的响应率
4. 场致发射 光电倍增管的工作电压高时还会引起管内电极尖端 或棱角的场强太高产生的场致发射暗电流。显然降低工 作电压场致发射暗电流也将下降。 5. 玻璃壳放电和玻璃荧光 当光电倍增管负高压使用时,金属屏蔽层与玻璃壳之 间的电场很强,尤其是金属屏蔽层与处于负高压的阴极电 场最强。在强电场下玻璃壳可能产生放电现象或出现玻璃 荧光,放电和荧光都要引起暗电流,而且还将严重破坏信 号。因此,在阴极为负高压应用时屏蔽壳与玻璃管壁之间 的距离至少为10~20mm。
Se, λ hc 1240Se, λ Ik / q λ Φe, λ / h q
3. 光谱响应
光电发射阴极的光谱响应特性用光谱响应特性曲线
描述。光电发射阴极的光谱灵敏度或量子效率与入射辐
射波长的关系曲线称为光谱响应。
4. 暗电流
光电发射阴极中少数处于较高能级的电子在室温下 获得了热能产生热电子发射,形成暗电流。光电发射阴 极的暗电流与材料的光电发射阈值有关。一般光电发射 阴极的暗电流极低,其强度相当于10-16~10-18Acm-2的电 流密度。
一、真空光电管工作原理
1、结构与工作原理 真空光电管由玻壳、光电 阴极和阳极三部分组成 。
真空光电管构造示意图
光电阴极即半导体光电发射材料,涂于玻壳内壁, 受光照时,可向外发射光电子。阳极是金属环或金 属网,置于光电阴极的对面,加正的高电压,用来 收集从阴极发射出来的电子。
特点:光电阴极面积大,灵敏度较高,一般积分灵 敏度可达20~200μA/lm;暗电流小,最低可达1014A;光电发射弛豫过程极短。 缺点:真空光电管一般体积都比较大、工作电压高 达百伏到数百伏、玻壳容易破碎等
Ev1
EA2
Ed E0
-
+ + +
从Si的导带底部漂移到表面Cs2O的导带底部。此时, 电子只需克服EA2就能逸出表面。对于P型Si的光电 子需克服的有效亲和势为 EAe=EA2-Ed
由于能级弯曲,使Ed>EA2,这样就形成了负电子亲 和势。 负电子亲和势阴极与正电子亲和势阴极的区别在于:
1)参与发射的电子是导带的热化电子,或称为“冷” 电子; 2)NEA阴极中导带的电子逸入真空不需作功。
A photomultiplier tube, useful for light detection of very weak signals, is a photoemissive device in which the absorption of a photon results in the emission of an electron. These detectors work by amplifying the electrons generated by a photocathode exposed to a photon flux.
相关文档
最新文档