直线的投影ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于一般位置直线, 只要有两组同名投影互 相平行,空间两直线就 平行。
AB与CD不平行。
对于特殊位置直线, 只有两组同名投影互相 平行,空间直线不一定 平行。
⒉ 两直线相交
交点是两直
V c
b k
a
d
C A
K
B D
X
O
a
d
ck
b
H
线的共有点
c k a
b d
a
d
ck
b
若空间两直线相交,则其同名投影必
相交,且交点的投影必符合空间一点的投
c′
O
a′ AC
d
a
c
c
b
两直不线相相交交!吗?
交为点什么不?符合一个
点的投影规律!
b′ d′
B D
d bH
V c′ a′
3(′4 ′)1● ′
●
2
●
′Ⅳ
●
b′ d′
Ⅰ
●
B
A C D ●Ⅲ●Ⅱ
a
●4
d
●●
c 3 1(2) b H
投影特性:
1′ b′
c
′
3(′4 ′)
●
● ●
2′
d′
a′
X
O
a
●4
d
影特性。
例1:过C点作水平线CD与AB相交。
c●
k
a
b d
a
d
k c●
b
先作正面投影
例2:判断直线AB、CD的相对位置。
c′ b′
相交吗? 不相交!
a′ d′
a
d
b c
为什么?
交点不符 合空间一个点 的投影特性。
判断方法? ⒈ 应用定比定理
⒉ 利用侧面投影
⒊ 两直线交叉
b′
c′
a′ X
a
V
d′
ab
A
a
ab
wenku.baidu.comz a
b
B
b
X
O
YW
a a
b
b
YH
投影特性: 1. ab 积聚 成一点
2. ab OX ; ab OZ
3. ab = ab =AB
(3)侧垂线— 垂直于侧面投影面的直线
a
b
a
b Z
ab
ab
A
B
X
O
YW
a
a
b
投影特性: 1. ab 积聚 成一点
2. ab OYH ; ab OZ 3. ab = ab =AB
1
1
1d c 1
判断两直线重影点的可见性
1 3(4) 2
4 3 1(2)
第二节 平面的投影
物体是由各种不同形状的表面围成的,点、 线、面是构成物体的基本几何元素。
• 平面的投影仍然是以点的投影为基础,只 要作出平面上的点的投影,即可求得平面 的投影。
2. ab=AB
3.反映、 角的真实大小
(2)正平线—只平行于正面投影面的直线
Z
b
b
b
a
B
a
a
a
A
b
X
O
YW
a
b
a
投影特性: 1. ab OX ; a b OZ 2. a b=AB 3. 反映、角的真实大小
b YH
(3)侧平线—只平行于侧面投影面的直线
a
Z
a
a
A
a
b
b
b
X
O
YW
a
a
b
B
b b
即A C: C B = a c : c b= ac : cb = ac : c b
例1:判断点C是否在线段AB上。
①
c
a
●
b
② a c●
在
不在
b
a
c
●
③ a
c ● b
a c●
b
ac
●
b
a
不在
●
c b
另一判断法?
应用定比定理
b
例2:已知点K在线段AB上,求点K正面投影。
解法一: (应用第三投影)
解法二: (应用定比定理)
b YH
投影面垂直线
a'
实长
b'
垂直某一个投影面的直线
a"
实长
b"
是铅什垂么线线? 为垂什直么H面?
积聚性
a(b)
P
V W
投影特性
H
在所垂直的投影面内的投影积聚成一点 另外二投影分别垂直于相应的投影轴且反映实长
二、一般位置直线
Z
b
a
b
B b
a
b
a
X
O
Y
b
b A
a
a
a
投影特性:1. a b、 ab、a b均小于实长 Y 2. a b、ab、a b均倾斜于投影轴 3.不反映 、 、 实角
YH
投影特性: 1. ab OZ ; ab OYH 2. ab =AB
3.反映 、 角的真实大小
投影面平行线 平行某一个投影面的直线
b'
实长
b"
//OZ轴
是正什平么线线? 平为行什V么面?
a'
a"
P
//OX轴
a
b
投影特性
V
W
H
在所平行的投影面内的投影反映实长及与另外 二投影面倾角
另外二投影分别平行于相应的投影轴
三个投影都倾斜于投影轴,其与投影轴的夹 角并不反映空间线段与三个投影面夹角的 大小。三个投影的长度均比空间线段短, 即都不反映空间线段的实长。
直线与点
直线上的点具有两个特性: 1.从属性 若点在直线上,则点的各个投影必在直线的各 同面投影上。 2.定比性 属于线段上的点分割线段之比等于其投影之比。
a
a
k ●
k ●
a
●
k ●
●
b
b
b
b
b
k●
k●
a
a
已知线段AB的投影图,试将AB分成2﹕1两段,求分点C的投 影c、c 。
c
c
[例题] 已知点C在线段AB上,求点C 的正面投影。
bc ca
c
c
两直线的相对位置
一、两直线平行 二、两直线相交 三、两直线交叉 四、判断两交叉直线重影点的可见性
两直线的相对位置
2.直线垂直于一个投影 面
(1)铅垂线 (2)正垂线 (3)侧垂线
二、一般位置直线
V
H V
H
V
W
W
H
// V 正平线
// H 水平线
W
直线//某一投影面
投影面平行线
// W 侧平线
(1) 水平线 — 只平行于水平投影面的直线
z
a b
a
b
a
b
A
a
X
O
YW
B
b
a
a
b
b YH
投影特性:1.ab OX ; ab OYW
第一节 直线的投影
直线对投影面的相对位置 一般位置线段的实长及它与投影面的夹角
属于直线上的点 两直线的相对位置
直线的投影
a b c(d)
直线的投影仍为直线,特殊情况下为一点。
直线对投影面的相对位置
一、特殊位置直线
1.直线平行于一个投 影面
(1)水平线 (2)正平线 (3)侧平线 3.从属于投影面的直线
● ●
c 3 1(2) b
★ 同名投影可能相交,但 “交点”不符合空间一个 点的投影规律。
★ “交点”是两直线上的一 对重影点的投影,用 其
可帮助判断两直线的空间位置。
判断交叉两直线重影点投影的可见性
1 (3)4 2
13 2
4
3 4
1(2)
判断两直线的相对位置
z
c
b
d
a
o
YW
YH
判断两直线的相对位置
空间两直线的相对位置分为: 平行、相交、交叉(异面)。
⒈ 两直线平行
V d
c a
A C
a
b B
D
c
b
d
H
d b
c a
X
O
a
c
b d
空间两直线平行,则其各同名投影必 相互平行,反之亦然。
例:判断图中两条直线是否平行。
① b
d
a c
ac
②
b c
d
a
d b c
b
da
b d
a c
c a
b d
AB与CD平行。
V
H V
H
V
W
W
H
V 正垂线
H 铅垂线
W
直线某一投影面
投影面垂直线
W 侧垂线
(1)铅垂线— 垂直于水平投影面的直线
a
Z
a
a
A
b
B a(b)
a
b
b
X
O
YW
b
a(b)
YH
投影特性:1. a b 积聚 成一点
2. a bOX ; a b OYW 3. a b = a b = AB
(2)正垂线— 垂直于正面投影面的直线
AB与CD不平行。
对于特殊位置直线, 只有两组同名投影互相 平行,空间直线不一定 平行。
⒉ 两直线相交
交点是两直
V c
b k
a
d
C A
K
B D
X
O
a
d
ck
b
H
线的共有点
c k a
b d
a
d
ck
b
若空间两直线相交,则其同名投影必
相交,且交点的投影必符合空间一点的投
c′
O
a′ AC
d
a
c
c
b
两直不线相相交交!吗?
交为点什么不?符合一个
点的投影规律!
b′ d′
B D
d bH
V c′ a′
3(′4 ′)1● ′
●
2
●
′Ⅳ
●
b′ d′
Ⅰ
●
B
A C D ●Ⅲ●Ⅱ
a
●4
d
●●
c 3 1(2) b H
投影特性:
1′ b′
c
′
3(′4 ′)
●
● ●
2′
d′
a′
X
O
a
●4
d
影特性。
例1:过C点作水平线CD与AB相交。
c●
k
a
b d
a
d
k c●
b
先作正面投影
例2:判断直线AB、CD的相对位置。
c′ b′
相交吗? 不相交!
a′ d′
a
d
b c
为什么?
交点不符 合空间一个点 的投影特性。
判断方法? ⒈ 应用定比定理
⒉ 利用侧面投影
⒊ 两直线交叉
b′
c′
a′ X
a
V
d′
ab
A
a
ab
wenku.baidu.comz a
b
B
b
X
O
YW
a a
b
b
YH
投影特性: 1. ab 积聚 成一点
2. ab OX ; ab OZ
3. ab = ab =AB
(3)侧垂线— 垂直于侧面投影面的直线
a
b
a
b Z
ab
ab
A
B
X
O
YW
a
a
b
投影特性: 1. ab 积聚 成一点
2. ab OYH ; ab OZ 3. ab = ab =AB
1
1
1d c 1
判断两直线重影点的可见性
1 3(4) 2
4 3 1(2)
第二节 平面的投影
物体是由各种不同形状的表面围成的,点、 线、面是构成物体的基本几何元素。
• 平面的投影仍然是以点的投影为基础,只 要作出平面上的点的投影,即可求得平面 的投影。
2. ab=AB
3.反映、 角的真实大小
(2)正平线—只平行于正面投影面的直线
Z
b
b
b
a
B
a
a
a
A
b
X
O
YW
a
b
a
投影特性: 1. ab OX ; a b OZ 2. a b=AB 3. 反映、角的真实大小
b YH
(3)侧平线—只平行于侧面投影面的直线
a
Z
a
a
A
a
b
b
b
X
O
YW
a
a
b
B
b b
即A C: C B = a c : c b= ac : cb = ac : c b
例1:判断点C是否在线段AB上。
①
c
a
●
b
② a c●
在
不在
b
a
c
●
③ a
c ● b
a c●
b
ac
●
b
a
不在
●
c b
另一判断法?
应用定比定理
b
例2:已知点K在线段AB上,求点K正面投影。
解法一: (应用第三投影)
解法二: (应用定比定理)
b YH
投影面垂直线
a'
实长
b'
垂直某一个投影面的直线
a"
实长
b"
是铅什垂么线线? 为垂什直么H面?
积聚性
a(b)
P
V W
投影特性
H
在所垂直的投影面内的投影积聚成一点 另外二投影分别垂直于相应的投影轴且反映实长
二、一般位置直线
Z
b
a
b
B b
a
b
a
X
O
Y
b
b A
a
a
a
投影特性:1. a b、 ab、a b均小于实长 Y 2. a b、ab、a b均倾斜于投影轴 3.不反映 、 、 实角
YH
投影特性: 1. ab OZ ; ab OYH 2. ab =AB
3.反映 、 角的真实大小
投影面平行线 平行某一个投影面的直线
b'
实长
b"
//OZ轴
是正什平么线线? 平为行什V么面?
a'
a"
P
//OX轴
a
b
投影特性
V
W
H
在所平行的投影面内的投影反映实长及与另外 二投影面倾角
另外二投影分别平行于相应的投影轴
三个投影都倾斜于投影轴,其与投影轴的夹 角并不反映空间线段与三个投影面夹角的 大小。三个投影的长度均比空间线段短, 即都不反映空间线段的实长。
直线与点
直线上的点具有两个特性: 1.从属性 若点在直线上,则点的各个投影必在直线的各 同面投影上。 2.定比性 属于线段上的点分割线段之比等于其投影之比。
a
a
k ●
k ●
a
●
k ●
●
b
b
b
b
b
k●
k●
a
a
已知线段AB的投影图,试将AB分成2﹕1两段,求分点C的投 影c、c 。
c
c
[例题] 已知点C在线段AB上,求点C 的正面投影。
bc ca
c
c
两直线的相对位置
一、两直线平行 二、两直线相交 三、两直线交叉 四、判断两交叉直线重影点的可见性
两直线的相对位置
2.直线垂直于一个投影 面
(1)铅垂线 (2)正垂线 (3)侧垂线
二、一般位置直线
V
H V
H
V
W
W
H
// V 正平线
// H 水平线
W
直线//某一投影面
投影面平行线
// W 侧平线
(1) 水平线 — 只平行于水平投影面的直线
z
a b
a
b
a
b
A
a
X
O
YW
B
b
a
a
b
b YH
投影特性:1.ab OX ; ab OYW
第一节 直线的投影
直线对投影面的相对位置 一般位置线段的实长及它与投影面的夹角
属于直线上的点 两直线的相对位置
直线的投影
a b c(d)
直线的投影仍为直线,特殊情况下为一点。
直线对投影面的相对位置
一、特殊位置直线
1.直线平行于一个投 影面
(1)水平线 (2)正平线 (3)侧平线 3.从属于投影面的直线
● ●
c 3 1(2) b
★ 同名投影可能相交,但 “交点”不符合空间一个 点的投影规律。
★ “交点”是两直线上的一 对重影点的投影,用 其
可帮助判断两直线的空间位置。
判断交叉两直线重影点投影的可见性
1 (3)4 2
13 2
4
3 4
1(2)
判断两直线的相对位置
z
c
b
d
a
o
YW
YH
判断两直线的相对位置
空间两直线的相对位置分为: 平行、相交、交叉(异面)。
⒈ 两直线平行
V d
c a
A C
a
b B
D
c
b
d
H
d b
c a
X
O
a
c
b d
空间两直线平行,则其各同名投影必 相互平行,反之亦然。
例:判断图中两条直线是否平行。
① b
d
a c
ac
②
b c
d
a
d b c
b
da
b d
a c
c a
b d
AB与CD平行。
V
H V
H
V
W
W
H
V 正垂线
H 铅垂线
W
直线某一投影面
投影面垂直线
W 侧垂线
(1)铅垂线— 垂直于水平投影面的直线
a
Z
a
a
A
b
B a(b)
a
b
b
X
O
YW
b
a(b)
YH
投影特性:1. a b 积聚 成一点
2. a bOX ; a b OYW 3. a b = a b = AB
(2)正垂线— 垂直于正面投影面的直线