独立重复试验(1)
中职高考数学一轮复习讲练测专题10-4 离散型随机变量的分布列(讲)(含详解)

专题10.4 离散型随机变量的分布列【考纲要求】1. 了解离散型随机变量; 2.离散型随机变量的分布列. 3. 独立重复试验. 【考向预测】1. 独立重复试验与二项分布.2. 离散型随机变量的分布列.【知识清单】1. 离散型随机变量随着试验结果变化而变化的变量称为_随机变量__,所有取值可以一一列出的随机变量,称为_离散型__随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的_概率分布列__(2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =_p 1+p 2+…+p n __=1. 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.4.独立重复试验与二项分布(1)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=_P (A 1)P (A 2)P (A 3)…P (A n )__.(2)二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ). 若X ~B (n ,p ),则E (X )=_np __,D (X )=_np (1-p )__.【考点分类剖析】考点一 独立重复试验的概率例1. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位). (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.【方法归纳】 1.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解.2.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验. 3.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.【变式探究】甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率. 考点二 离散型随机变量的分布列-二项分布例.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.【方法归纳】 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.【变式探究】一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是__ __. 考点三 二项分布的应用例.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为13,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.【方法归纳】 1.二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【变式探究】1.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.2.甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为23和34.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.①用X表示甲同学连续三次答题中答对的次数,求随机变量X的分布列和数学期望;②设M为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件M发生的概率.考点四离散型随机变量的分布列-超几何分布例1袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;【方法归纳】求离散型随机变量的分布列应注意的问题(1)正确求出分布列的前提是必须先准确写出随机变量的所有可能取值,再依古典概型求出每一个可能取值的概率.至于某一范围内取值的概率,应等于它取这个范围内各个值的概率之和.(2)在求解过程中注重知识间的融合,常常会用到排列组合、古典概率及互斥事件、对立事件的概率等知识.【变式探究】1.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.2.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.专题10.4 离散型随机变量的分布列【考纲要求】1. 了解离散型随机变量; 2.离散型随机变量的分布列. 3. 独立重复试验. 【考向预测】1. 独立重复试验与二项分布.2. 离散型随机变量的分布列.【知识清单】1. 离散型随机变量随着试验结果变化而变化的变量称为_随机变量__,所有取值可以一一列出的随机变量,称为_离散型__随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的_概率分布列__(2)离散型随机变量的分布列的性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =_p 1+p 2+…+p n __=1. 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为其中p =P (X =1)称为成功概率.若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ).(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N 、M ≤N ,n 、M 、N ∈N +,称随机变量X 服从超几何分布.4.独立重复试验与二项分布(1)独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,若用A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=_P (A 1)P (A 2)P (A 3)…P (A n )__.(2)二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ). 若X ~B (n ,p ),则E (X )=_np __,D (X )=_np (1-p )__.【考点分类剖析】考点一 独立重复试验的概率例1. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位). (1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率. [解析] (1)记预报一次准确为事件A ,则P (A )=0.8. 5次预报相当于5次独立重复试验,2次准确的概率为P =C 25×0.82×0.23=0.0512≈0.05,因此5次预报中恰有2次准确的概率约为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P =C 05×(0.2)5+C 15×0.8×0.24=0.00672≈0.01.所以所求概率为1-P =1-0.01=0.99.所以5次预报中至少有2次准确的概率约为0.99. (3)说明第1,2,4,5次中恰有1次准确.所以概率为P =C 14×0.8×0.23×0.8=0.02048≈0.02,所以恰有2次准确,且其中第3次预报准确的概率约为0.02.【方法归纳】 1.运用独立重复试验的概率公式求概率,首先要分析问题中涉及的试验是否为n 次独立重复试验,若不符合条件,则不能应用公式求解.2.解决这类实际问题往往需把所求的概率的事件分拆为若干个事件,而这每个事件均为独立重复试验.3.在解题时,还要注意“正难则反”的思想的运用,即利用对立事件来求其概率.【变式探究】甲、乙两人各射击一次,击中目标的概率分别是23和34,假设每次射击是否击中目标,相互之间没有影响.(结果须用分数作答)(1)求甲射击3次,至少1次未击中目标的概率;(2)求两人各射击2次,甲恰好击中目标2次且乙恰好击中目标1次的概率.[解析] (1)记“甲射击3次至少有1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1-P (A 1)=1-(23)3=1927.(2)记“甲射击2次,恰有2次击中目标”为事件A 2,“乙射击2次,恰有1次击中目标”为事件B 2,则P (A 2)=C 22×(23)2=49,P (B 2)=C 12×(34)1×(1-34)=38,由于甲、乙射击相互独立,故P (A 2B 2)=49×38=16. 考点二 离散型随机变量的分布列-二项分布例.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的考生人数为X ,求X 的分布列.[解析] (1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名考生选做同一道题的事件为“AB ∪A B ”,且事件A ,B 相互独立.所以P (AB ∪A B )=P (A )P (B )+P (A )P (B ) =12×12+(1-12)×(1-12)=12. (2)随机变量X 的可能取值为0,1,2,3,4.且X ~B (4,12).所以P (X =k )=C k 4(12)k (1-12)4-k=C k 4(12)4(k =0,1,2,3,4). 所以变量X 的分布列为:【方法归纳】 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.【变式探究】一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;③从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是__①③__.[解析] ①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②设A ={第一次取到红球},B ={第二次取到红球}.则P (A )=23,P (A ∩B )=4×36×5=25,∴P (B |A )=P (A ∩B )P (A )=35,故②错;③每次取到红球的概率P =23,所以至少有一次取到红球的概率为 1-(1-23)3=2627,故③正确.考点三 二项分布的应用例.高二(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为13,该研究性学习小组又分成两个小组进行验证性试验.(1)第一小组做了5次这种植物种子的发芽试验(每次均种下一粒种子),求他们的试验中至少有3次发芽成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次试验中种子发芽成功就停止试验,否则将继续进行下次试验,直到种子发芽成功为止,但试验的次数最多不超过5次.求第二小组所做种子发芽试验的次数ξ的概率分布列.[解析] (1)至少有3次发芽成功,即有3次、4次、5次发芽成功.设5次试验中种子发芽成功的次数为随机变量X ,则P (X =3)=C 35×(13)3×(23)2=40243,P (X =4)=C 45×(13)4×23=10243, P (X =5)=C 55×(13)5×(23)0=1243.所以至少有3次发芽成功的概率P =P (X =3)+P (X =4)+P (X =5)=40243+10243+1243=51243=1781.(2)随机变量ξ的可能取值为1,2,3,4,5. P (ξ=1)=13,P (ξ=2)=23×13=29,P (ξ=3)=(23)2×13=427,P (ξ=4)=(23)3×13=881,P (ξ=5)=(23)4×1=1681.所以ξ的分布列为:【方法归纳】 1.二项分布的简单应用是求n 次独立重复试验中事件A 恰好发生k 次的概率.解题的一般思路是:根据题意设出随机变量→分析出随机变量服从二项分布→找到参数n ,p →写出二项分布的分布列→将k 值代入求解概率.2.利用二项分布求解“至少”“至多”问题的概率,其实质是求在某一取值范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.【变式探究】1.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.[解析] (1)油罐引爆的对立事件为油罐没有引爆,没有引爆的可能情况是:射击5次只击中一次或一次也没有击中,故该事件的概率为C 15·23·(13)4+(13)5, 所以所求的概率为1-[C 15·23·(13)4+(13)5]=232243. (2)当X =4时记为事件A , 则P (A )=C 13·23·(13)2·23=427.当X =5时,意味着前4次射击只击中一次或一次也未击中,记为事件B . 则P (B )=C 14·23·(13)3+(13)4=19, ∴射击次数不小于4的概率为427+19=727.2.甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为23和34.假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立.①用X 表示甲同学连续三次答题中答对的次数,求随机变量X 的分布列和数学期望;②设M 为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多2”,求事件M 发生的概率.[解析] ①X 的所有可能取值为0,1,2,3, 则P (X =0)=⎝⎛⎭⎫133=127; P (X =1)=C 13·23×⎝⎛⎭⎫132=29; P (X =2)=C 23⎝⎛⎭⎫232×13=49; P (X =3)=⎝⎛⎭⎫233=827. ∴随机变量X 的分布列为∴E (X )=0×127+1×29+2×49+3×827=2或E (ξ)=np =23.②设Y 为乙连续3次答题中答对的次数, 由题意知Y ~B ⎝⎛⎭⎫3,34, P (Y =0)=⎝⎛⎭⎫143=164,P (Y =1)=C 13⎝⎛⎭⎫341⎝⎛⎭⎫142=964,所以P (M )=P (X =3且Y =1)+P (X =2且Y =0) =827×964+49×164=7144. 即事件M 发生的概率为7144.考点四 离散型随机变量的分布列-超几何分布例1袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X 的分布列;[解析] (1)解法一:记“一次取出的3个小球上的数字互不相同”的事件记为A ,则P (A )=C 35C 12C 12C 12C 310=23. 解法二:记“一次取出的3个小球上的数字互不相同”为事件A ,“一次取出的3个小球上的数字中有两个数字相同”为事件B ,事件A 和事件B 是对立事件.因为P (B )=C 15C 22C 18C 310=13,所以P (A )=1-P (B )=1-13=23.(2)由题意,X 所有可能的取值为2,3,4,5.P (X =2)=C 22C 12+C 12C 22C 310=130;P (X =3)=C 24C 12+C 14C 22C 310=215; P (X =4)=C 26C 12+C 16C 22C 310=310;P (X =5)=C 28C 12+C 18C 22C 310=815. 所以随机变量X 的概率分布列为:【方法归纳】 求离散型随机变量的分布列应注意的问题(1)正确求出分布列的前提是必须先准确写出随机变量的所有可能取值,再依古典概型求出每一个可能取值的概率.至于某一范围内取值的概率,应等于它取这个范围内各个值的概率之和.(2)在求解过程中注重知识间的融合,常常会用到排列组合、古典概率及互斥事件、对立事件的概率等知识.【变式探究】1.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X 表示赢得的钱数,随机变量X 可以取哪些值?求X 的分布列; (2)求出赢钱(即X >0时)的概率.[解析] (1)从箱中取两个球的情形有以下6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.当取到2个白球时,随机变量X =-2;当取到1个白球,1个黄球时,随机变量X =-1; 当取到1个白球,1个黑球时,随机变量X =1; 当取到2个黄球时,随机变量X =0;当取到1个黑球,1个黄球时,随机变量X =2;当取到2个黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4. P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:(2)P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.所以赢钱的概率为1933.2.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.[解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为。
独立重复实验

P (k) CkPK (1 p)nk
n
n
是 [(1 P) p]n的通项公式
例1.设3次独立重复试验中,事件A 发生的概率相等,若已知A至少发生 一次的概率等于19/27,求事件A在 一次试验中发生的概率。
解 法 一 : 设 事 件A在 一 次 试 验 中 发 生 的 概率 为P,
则:1 (1 P)3 19 ,(1 P)3 8 ,1 P 2
对阵队员 A队队员胜的概率B队队员负的概率
A1对B1
2
1
3
3
A 2 对B 2
2 5
3 5
2
3
A 3 对B 3
5
5
现按表中对阵方式出场,每场胜队得1分,负队得0分.
设A队、B队最后所得总分为、,求所有的、的概率.
解:的取值可为: 0,1,2,3,
P( 0) 1 3 3 3 3 5 5 25
,
这 里 的C 4 3 表 示 甲 取 胜 的3局 顺 序 可 以 是1:、2、3;1、2、4;1、3、4;2、3、4;
而顺序为: 1、2、3是不合题意的,这点要特别注意.
甲 打 完5局 就 取 得 胜 利 的 概 率 为:C 4 2
(1)2 2
( 1 )2 2
1 2
3 16
(2)求按比赛规则甲获胜的概率P 1 3 3 1 . 8 16 16 2
A 0.55 B 0.45 C 0.75 D 0.65
1 0.910
2.一射手对同一目标独立地进行
4次射击,已知至少命中一次的概
率为80 ,则此射手射击一次的 81
命中率是( B )
A1
3
2
B3
C1
4
D2
5
独立重复试验(1)

A 4 3 B A I的概率为: P4 (3) C3 p 3 (1 p) ; 4
I Y的概率为: P4 (1) C1 p1 (1 p) 41 4
那么棋子由A I Y 的概率为
P4 (3) P4 (1) C3 p3 (1 p) C1 p1 (1 p) 41 4 4
P(A1 A 2 A3 A 4 )
2 3 2 2 ( ) (1 ) 81 6 6
因为 4种情况彼此互斥,故4次中3次掷到1或6点, 1次掷到1或6以外点的概率为
2 8 4 81 81
2 3 2 4 3 C ( ) (1 ) 6 6
3 4
1、独立重复试验定义
C p (1 p) C p (1 p)
1
4 2
变式3:求棋子到达Q点的概率
4 1
变式4:求棋子到达U点的概率
0 C4 p 0 (1 p) 40
二项式[(1-p)+p]4展开式的各项
变式5:若棋子共走了n格其中向右走了k格 到达某点O’,求到O’的概率?
C p (1 p)
k n k
共C 4种情况
3 4
P( A1 A2 A3 A4 ) P( A1 ) P( A2 ) P( A3 ) P( A4 ) 2 2 2 2 2 (1 ) 81 6 6 6 6
同理: P( A A A3 A ) P( A A2 A A ) 1 3 4 1 2 4
4 0.9 0.1 0.29
3
某射手射击 4 次恰好击中 3 次的概率约是0.29
例2. 某气象站天气预报的准确率为 80%,计算 (结果保留两个有效数字): (1)5 次天气预报中恰有 4 次准确的概率; (2)5 次天气预报中至少有 4 次准确的概率。 解:(1)记 “预报 1 次,结果准确” 为事件 A. 则预报 5 次相当于作 5 次独立重复试验.
独立重复试验

计算 公式
P(A+B)=P(A)+ P(B)
PA 1 P A
P(A· B)= P(A)· P(B)
ቤተ መጻሕፍቲ ባይዱ
互斥事件与相互独立事件有何区别
互斥事件 对立事件 方法:求解较复杂事件的概率相互独立事件 正向思考与 不可能同时 逆向思考法. 其中必有 一个事件是否发生对
概 发生的两个 一个发生 另一个事件发生的概 念 数学思想:求解较复杂事件的概率常用分类 事件叫做互 的两个互 率没有影响,这样的 斥事件 的数学思想. 两个事件叫做相互独 与等价转化 斥事件 立事件。 互斥事件A、 事件A的 符 B中有一个发 对立事件 相互独立事件A、 B同时发生记作 号 生,记作 “A ·B” “A +B” 记作: A
温故知新
1、事件A(或B)是否发生对事件B(或A)发生的概 率 没有影响 ,这样的两个事件叫做相互独立事件。
2、如果事件A与B相互独立, 则事件A与B, A与B,A与B都是相互独立的. 两个相互独立事件A、B同时发生的概率, 等于每个事件发生的概率的积. B)=P(A) · P(B) 即: P(A· 3、一般地,如果事件A1,A2,…,An相互 独立,则事件“A1· 2· An”的概率等于每个 A …· 事件发生的概率的积, 即:P(A1· 2·…·An)=P(A1)· 2)·…·P(An). A P(A
独立重复试验与二项分布(一)

(1)n,p,k分别表示什么意义? (2)这个公式和前面学习的哪部分内容 有类似之处?
k n k k 恰为 [(1 P) P]n 展开式中的第 k 1 项 Tk 1 Cn (1 P) P
16
基本概念
3、 二项分布
在一次试验中某事件发生的概率是p,那么在n次 独立重复试验中这个事件恰发生x次,显然x是一个随机 变量 于是得到随机变量ξ的概率分布如下:
问题(3):各次试验是否相互独立?
9
(二) 形成概念
“独立重复试验”的概念 -----在同样条 件下进行的,各次之间相互独立的一种试验。
特点: ⑴在同样条件下重复地进行的一种试验; ⑵各次试验之间相互独立,互相之间没有影响; ⑶每一次试验只有两种结果,即某事要么发生, 要么不发生,并且任意一次试验中发生的概率 都是一样的。
ξ 0
0 n 0 n 1 n
1
1 n 1
„
k
C pq
k n k n k
„
n
n n 0 Cn pq
p
C pq C pq
„
„
n k
我们称这样的随机变量ξ服从二项分布,记作 其中n,p为参数,并记 C
k n
x ~ B(n, p,)
17
p (1 p)
k
B(k; n, p)
及时应用:
例1: 某射击运动员进行了3次射击,假 设每次射击击中目标的概率为0.6,且 各次击中目标与否是相互独立的,用X 表示这3次击中目标的次数,求X的分 布列。
问题(4)连续射击3次,恰有1次击
中的概率是多少?
12
分解问题(3)
问题a 3次中恰有1次击中目标,有几种情况?
独立重复试验

解:设“答对k道题”为事件A,用P10k 表示其概率,
由
P10 k P10 k
P10 P10
131130kkkk1 11
k 1 k 1
k
k
C1k0
C1k0
11
4
7 4ቤተ መጻሕፍቲ ባይዱ
7 4
1 k 3 10k 4 4 1 k 3 10k 4 4
k 11,得k 4
P10 2 C120
① 5次预报中恰有4次准确的概率;
② 5次预报中至少有4次准确的概率。 解① : 5次预报中恰有4次准确的概率为
P5 (4) C54 0.84 1 0.81
② 5次预报中至少有4次准确的概率,就是 5次预报中恰有4次准确的概率与5次预报
都准确的概率的和,即P= P5 (4 ) P5 ( 5)
= C54 0.84 1 0.81 C55 0.85 1 0.80 0.74
例2:抛5枚均匀硬币, (1)记“恰有两枚正面向上”为事件A,
求P(A); (2)记“至少有两枚正面向上”为事件B,
求P(B).
练习1:袋子里有5张卡片,用1,2,3, 4,5编号,从中抽取3次,每次抽出一张 且放回。求三次中恰有两次抽得奇数编 号的卡片的概率。
练习2:某车间的5台机床在1小时内需要 工人照管的概率都是0.25,求1小时内5 台机床中至少有3台需要工人照管的概率 是多少?
作业布置: 同步作业:75,76页
豪……”这时,女总裁腾霓玛娅婆婆;房屋装修 https:/// 房屋装修;飘然整出一个,飘蝎火腿滚一千四百四十度外加鲸喊吹筒转九周半的招数,接着又弄了 一个,仙体豺爬望月翻三百六十度外加猛转十七周的高雅招式。接着像墨绿色的多趾奇峰蝎一样乱乐了一声,突然忽悠了一个滚地抖动的特技神功,身上立刻生出了五只极 似匕首造型的白象牙色怪毛……紧接着破旧的钢灰色路灯造型的美辫有些收缩转化起来……水绿色白菜似的脖子露出深黄色的点点余气……极似气桶造型的肩膀露出暗灰色 的飘飘余冷!最后抖起突兀的淡青色细小蜘蛛般的胡须一甩,快速从里面涌出一道灵光,她抓住灵光神秘地一耍,一套黑晶晶、红晶晶的兵器『彩宝蟒鬼腰牌绳』便显露出 来,只见这个这件玩意儿,一边抖动,一边发出“哧哧”的异响……飘然间女总裁腾霓玛娅婆婆音速般地演了一套倒地变形舞猴鬼的怪异把戏,,只见她有飘带的鹅黄色包 子模样的熏鹅七影披风中,快速窜出四串高原美玉臀鳄状的老鹰,随着女总裁腾霓玛娅婆婆的转动,高原美玉臀鳄状的老鹰像车窗一样在双手上恶毒地安排出片片光柱…… 紧接着女总裁腾霓玛娅婆婆又使自己亮黄色石塔式样的护腕鸣出水红色的履带味,只见她怪异的浅橙色螃蟹造型的身材中,飘然射出五片台风状的仙翅枕头灯,随着女总裁 腾霓玛娅婆婆的甩动,台风状的仙翅枕头灯像窗帘一样,朝着醉猫地光玉上面悬浮着的发光体直晃过去……紧跟着女总裁腾霓玛娅婆婆也飞耍着兵器像金鱼般的怪影一样向 醉猫地光玉上面悬浮着的发光体直晃过去。……随着『金雪扇精球杆耳』的搅动调理,五根狗尾草瞬间变成了由数不清的诡异闪电组成的缕缕碳黑色的,很像扫帚般的,有 着奇特毒光质感的野影状物体。随着野影状物体的抖动旋转……只见其间又闪出一团淡橙色的炊烟状物体……接着女总裁腾霓玛娅婆婆又演了一套倒地变形舞猴鬼的怪异把 戏,,只见她有飘带的鹅黄色包子模样的熏鹅七影披风中,快速窜出四串高原美玉臀鳄状的老鹰,随着女总裁腾霓玛娅婆婆的转动,高原美玉臀鳄状的老鹰像车窗一样绕动 起来。一道淡黄色的闪光,地面变成了紫红色、景物变成了纯灰色、天空变成了深灰色、四周发出了艺术的巨响……。只听一声玄妙梦幻的声音划过,五只很像跳
独立重复试验与二项分布(1)

(其中k = 0,1,2,· · · ,n )
数学运用
填写下列表格:
姚明投中 次数X 相应的 概率P
0
1
2
3
4
与二项式定 理有联系吗?
n k
随机变量X的分布列:
P( X k ) C p (1 p)
k n k
(其中k = 0,1,2,· · · ,n )
记为X
B (n,p)
例题讲解:
1 1 2 3 1 2 3 1 2 3
由于事件 A1 A2 A3 , A1 A2 A3和A1 A2 A3 彼此互斥,由概率加法公式 得
P(B1 ) P( A1 A2 A3 ) P( A1 A2 A3 ) P( A1 A2 A3 ) q2 p q2 p q2 p 3q2 p
探究
投掷一枚图钉,设针尖向上的概率为p,则针尖 向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次 针尖向上的概率是多少?
连续掷一枚图钉3次,就是做3次独立重复试验。用 Ai (i 1, 2,3) 表示第i次掷得针尖向上的事件,用 B1 表示“仅出现一次针尖 向上”的事件,则 B ( A A A ) ( A A A ) ( A A A ).
P(B1 ) P( A1 A2 A3 ) P( A1 A2 A3 ) P( A1 A2 A3 ) 3q2 p,
P(B2 ) P( A1 A2 A3 ) P( A1 A2 A3 ) P( A1 A2 A3 ) 3qp2 ,
P(B3 ) P( A1 A2 A3 ) p3.
例1:在人寿保险事业中,很重视某一年龄段的 投保人的死亡率,假如每个投保人能活到65岁 的概率为0.6,试问3个投保人中: (1)全部活到65岁的概率; (2)有2个活到65岁的概率; (3)有1个活到65岁的概率。
独立重复实验

独立重复试验、二项分布学案重点: 独立重复试验、二项分布的理解及应用会用二项分布模型解决一些简单的实际问题难点: 二项分布模型的构建 关键:二项分布的特征案例欣赏:有八张外表一样的卡片,其中四张写“大”,另四张写“小”;依次反扣在桌面上。
游戏规则:每次取其中的一张猜测,对比结果后反扣,放回桌面,重新按排好顺序,这样连续猜测8次。
甲、乙两人打赌.若甲猜对其中的四次就获胜,否则乙胜。
思考:1、前一次猜测的结果是否影响后一次的猜测?也就是每次猜测是否相互独立? 2、 游戏对双方是否公平?归纳总结:试验1: 重复抛一枚硬币 8 次,其中有2次正面向上. 试验2 : 重复掷一粒骰子6次,其中有2次出现 1 点. 指出以上试验的共同点:独立重复试验 :____________________________________________________ ____________________________________________________________。
独立重复试验又叫贝努里(瑞士数学家和物理学家)试验.对比分析,感知概念:在下列试验中, 是独立重复试验的有____________.①某射手射击1次,击中目标的概率是0.9,他连续射击4次; ②某人罚球命中的概率是0.8,在篮球比赛中罚球三次;③袋中有五个红球,两个白球,采取有放回的取球,每次取一个,取5次; ④袋中有五个红球,两个白球,采取无放回的取球,每次取一个,取5次; 一般地有,n 个相互独立的事件n n A A A A ,,,121 同时发生的概率为: ________________________________________________.问题回顾:甲猜测卡片的过程是否可以看成是独立重复试验?我们可用X 表示甲猜对的卡片数,下面探讨X 的取值和相应的概率,完成填空与表格。
X 的所有可能取值为:_____________________________. 对每次抽出的卡片猜对的概率均为p= ; 猜错的概率为q=1-p= 。
知识讲解_高考总复习:二项分布与正态分布(基础)

高考总复习:二项分布与正态分布【考纲要求】一、二项分布及其应用1、了解条件概率和两个事件相互独立的概念;2、理解n次独立重复试验的模型及二项分布;3、能解决一些简单的实际问题。
二、正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义。
【知识网络】【考点梳理】考点一、条件概率1.条件概率的定义设A、B为两个事件,且P(A)>0,称P(B|A)=P(AB)/P(A)为在事件A发生的条件下,事件B 发生的条件概率。
要点诠释:条件概率不一定等于非条件概率。
若A,B相互独立,则P(B|A)=P(B)。
2.条件概率的性质①0≤P(B|A)≤1;②如果B、C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A)。
考点二、独立重复试验及其概率公式1.事件的相互独立性设A、B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立。
2.判断相互独立事件的方法(1)利用定义:事件A、B相互独立,则P(AB)=P(A)·P(B);反之亦然。
(2)利用性质:A 与B 相互独立,则A 与B ,A 与B , A 与B 也都相互独立. (3)具体模型①有放回地摸球,每次摸球结果是相互独立的.②当产品数量很大时,不放回抽样也可近似看作独立重复试验. 要点诠释:要明确“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的含义。
已知两个事件A 、B ,则A 、B 中至少有一个发生的事件为A ∪B ; A 、B 都发生的事件为AB ; A 、B 都不发生的事件为AB ;A 、B 恰有一个发生的事件为AB ∪AB ;A 、B 中至多有一个发生的事件为AB ∪AB ∪AB 。
3.独立重复试验 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,即若用(1,2,,)i A i n =表示第i 次试验结果,则123123()()()()()n n P A A A A P A A A A =(2)独立重复试验的概率公式如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中,事件A 恰好发生k 次的概率为:()(1)k k n k n n P k C P p -=-。
二项分布经典例题+练习题

二项分布1.n 次独立重复试验一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。
我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。
(1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。
(2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。
2.二项分布若随机变量X 的分布列为()P X k ==k k n k nCp q -,其中0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)XB n p 。
1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。
2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31. (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.3.甲乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是12,试求需要比赛场数的期望.3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望()E X和方差()D X.5.(2007陕西理)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率; (Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)6. 一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数ξ的概率分别布. (1)每次取出的产品不再放回去; (2)每次取出的产品仍放回去;(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.7. (2007•山东)设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx+c=0实根的个数(重根按一个计). (I )求方程x 2+bx+c=0有实根的概率; (II )求ξ的分布列和数学期望;8.(本题满分12分)某商场为吸引顾客消费推出一项惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (I )若某位顾客消费128元,求返券金额不低于30元的概率;(II )若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元),求随机变量X 的分布列和数学期望.9. (本题满分12分)中国∙黄石第三届国际矿冶文化旅游节将于2012年8月20日在黄石铁山举行,为了搞好接待工作,组委会准备在湖北理工学院和湖北师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm )湖湖9 18若身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”,且只有湖北师范学院的“高个子”才能担任“兼职导游”。
独立重复试验

在一次考试中出了6道是非题 例1.在一次考试中出了 道是非题,某考生全部回答 在一次考试中出了 道是非题, 完问题。( 。(1)全部正确的概率是多少?( ?(2) 完问题。( )全部正确的概率是多少?( )正确 的题数不少于四道的概率; 的题数不少于四道的概率;
练习1.某射手射击一次,击中目标的概率为 , 练习 某射手射击一次,击中目标的概率为0.9,今该 某射手射击一次 射手连续射击4次 射手连续射击 次 次集中的概率是多少? (1)恰好前 次集中的概率是多少? )恰好前3次集中的概率是多少 次的概率是多少? (2)恰好击中 次的概率是多少? )恰好击中3次的概率是多少 练习2.有一批种子,每粒发芽的概率为0.9,播下 粒 练习 有一批种子,每粒发芽的概率为 ,播下5粒 有一批种子 种子。( 。(1)其中恰有3粒没有发芽的概率;(2) 粒没有发芽的概率;( 种子。( )其中恰有 粒没有发芽的概率;( )其 中至少有4粒发芽的概率 粒发芽的概率。 中至少有 粒发芽的概率。
1.独立重复试验的意义: 独立重复试验的意义: 独立重复试验的意义 在同样条件下进行的,各次之间相互独立的一种试验, 在同样条件下进行的,各次之间相互独立的一种试验, 又称为贝努力试验。 又称为贝努力试验。 要求(1)每次试验中, 要求 每次试验中,某事只有发生或不发生两种结果 每次试验中 (2)每次实验中某事发生的概率都是一样的、 每次实验中某事发生的概率都是一样的、 每次实验中某事发生的概率都是一样的 例:一个质量均匀的正四面体,四个面上分别写有 , 一个质量均匀的正四面体,四个面上分别写有1, 2,3,4.将这个正四面体连抛三次,写有数字 的一 将这个正四面体连抛三次, , , 将这个正四面体连抛三次 写有数字1的一 面恰有2次与地面接触的概率 次与地面接触的概率。 面恰有 次与地面接触的概率。 某射手射击一次,击中目标的概率为0.9, 例:某射手射击一次,击中目标的概率为 ,他射击 4次恰有三次击中的概率是 次恰有三次击中的概率是_______. 次恰有三次击中的概率是
独立重复试验

k Pn (k) = CnPk (1− P)n−k
例 1、 某所气象预报站的预报准确率为 % , 试计算 、 某所气象预报站的预报准确率为80% (保留两位有效数字): 保留两位有效数字) 次预报中恰有4次准确的概率 (1)5次预报中恰有 次准确的概率; ) 次预报中恰有 次准确的概率; 次预报中至少有4次准确的概率 (2)5次预报中至少有 次准确的概率。 ) 次预报中至少有 次准确的概率。 解: 这个问题为一个5次独立重复试验,其中“预报1次, 这个问题为一个 次独立重复试验,其中“预报 次 次独立重复试验 结果准确”为事件 , 结果准确”为事件A,p=0.8, 1-p=0.2。 , 。 次预报中4次准确的概率为 (1)5次预报中 次准确的概率为: ) 次预报中 次准确的概率为:
4 P (4) = C5 × 0.84 × 0.2 ≈ 0.41 5
次预报中至少有4次准确的概率为 (2)5次预报中至少有 次准确的概率为: ) 次预报中至少有 次准确的概率为:
4 5 ቤተ መጻሕፍቲ ባይዱ (4) + P (5) = C5 × 0.84 × 0.2 + C5 × 0.85 5 5 ≈ 0.410 + 0.328 ≈ 0.74
<
5 27
= ) C ( +
1 3 3 1 3
1 1 2 3
2 ⋅3
k Pn (k) = CnPk (1− P)n−k
例3、一射手一次射击命中10环、9环、8环、7环的 一射手一次射击命中10环 10 概率分别为0.1、0.3、0.4和0.1,此射手射击5 概率分别为0.1、0.3、0.4和0.1,此射手射击5次, 0.1 试求: 试求: (1)恰有3次命中8环以上(含8环)的概率; 恰有3次命中8环以上( 的概率; (2)恰有2次命中7环以下(不含7环)的概率。 恰有2次命中7环以下(不含7 的概率。
独立重复实验与二项式分布PPT教学课件(1)

射击击破 2 个的概率 C32 0.72 (1 0.7)32 . X 的分布列:
X
0
1
2
3
p (1 0.7)3 C31 0.71 (1 0.7)31 C32 0.72 (1 0.7)32 C33 0.73 (1 0.7)33
(1 0.7)3 C31 0.71 (1 0.7)31 C32 0.72 (1 0.7)32
四、运用规律,解决问题:
例一、某射手每次射击击中目标的概率是 0.8,求这名射手在10 次射击中, ①恰好 8 次击中的概率;②至少 8 次击中的概率(结果保留两个有效数字); ③第 8 次击中的概率;④前 8 次击中的概率.
(一)基础训练:
1、已知随机变量 X : B(5,1/ 3) ,求 P(X 3) .
2、某气象站天气预报的准确率为 80% ,计算(结果保留两个有效
数字):
① 5 次预报中恰有 4 次准确的概率; ② 5 次预报中至少有 4 次准确的概率.
(三)实践创新:实力相等的甲、乙两队参加乒乓球团体比赛,
规定 5 局 3 胜制(即 5 局内谁先赢 3 局就算胜出并停止比赛). (1)试分别求甲打完 3 局、 4 局、 5 局才能取胜的概率.
④每次出现“成功”的概率相同为 p ,“失败“的概率也相同为1 p ;
⑤试验”成功”或“失败”可以计数,即试验结果对应于 一个离散型随机变量.
1、 n 次独立重复试验定义:
一般地,在相同条件下重复做的 n 次试验 称为 n 次独立重复试验.
2、独立重复试验的基本特征:
①每次试验是在同样条件下进行;
(2)按比赛规则甲获胜的概率.
五、提炼方法,总结反思: 本节课我们从实际出发,构建了二项分布这一重要的概率模型,又应 用这一模型,解决了一些简单的实际问题------独立重复试验概率问 题.应用程序如下:
独立重复试验

例3:有10道单项选择题,每题有4个 选择项,某人随机选定每题中的一个 答案, (1)问答对5道题的概率是多少?
(2)答对多少题的概率最大?并求出 此种情况下概率的大小?
例3:有10道单项选择题,每题有4个选择项,某人随 机选定每题中的一个答案,求答对多少题的概率最大? 并求出此种情况下概率的大小? P 解:设“答对k道题”为事件A,用 表示其概率, 10 k k 1 11k 由 k 1 k 3 10k 3 k 1 1
相互独立事件同时发生的概率
独立重复试验
2007.05.17
复习回顾:
不可能同时发生的两个事件。 1、互斥事件: 对立事件:必有一个发生的互斥事件。 事件A(或B)是否发生对事件B 相互独立事件: (或A)发生的概率没有影响。 2、互斥事件有一个发生的概率公式:
P A B P A P B
原题:某射手连续射击4次,每次击中目标 的概率都是0.9,求恰好有三次命中的概率.
C 0.9 1 0.9
3 4 3 1
变式:某射手连续射击n次,每次击中 目标的概率都是p,求恰好有k次命 中的概率.
C P 1 P
k n k
nk
二、独立重复试验概率的计算
一般地,在n次独立重复试验中,如果事 件A在其中1次试验中发生的概率是P,那 么在n次独立重复试验中这个事件恰好发 生k次的概率
=0.432
课堂小结: 1.对n次独立重复试验的理解 2.公式 P n (k ) C P (1 P)
k n页
广式点心的主要特点是用料精博,品种繁多,款式新颖,口味清新多样,制作精细,咸甜兼备,能适应四季节令和各方人士的需要。各款点 心都讲究色泽和谐,造型各异,相映成趣,令人百食不厌。[1]
独立重复试验

4 P5 (4) C 5 0.84 0.2 0.41
答:。。。。
(2)5次预报中至少有4次准确的概率为:
4 4 5 5 P5 (4) P5 (5) C 5 0.8 0.2 C 5 0.8 0.410 0.328 0.74 答。:。。。
Pn (k) C p (1 p)
n
k n
k
n k
(k=0,1,2,…,n)
P ( 项。 n k)为二项式[(1-p)+p] 展开式的第k 1
例 2 、某所气象预报站的预报准确率为 80 %,试计算
(保留两位有效数字):
(1)5次预报中恰有4次准确的概率;
(2)5次预报中至少有4次准确的概率。
独立重复试验
1、n次独立重复试验
一般的,在同样的条件下,某一试验被重 复地进行,各次试验之间相互独立,且在 这种试验中,每一次试验只有两种结果, 即某一事件要么发生,要么不发生,并且 任何一次试验中发生的概率都是一样的, 则称这种试验为n次独立重复试验。
即:
• • • • 一般的: 1.在同样的条件下某一试验可被重复地进行. 2.各次试验中的事件是相互独立的. 3在这种试验中,每一次试验只有两种结果, 即某一事件要么发生,要么不发生.他与试 验的顺序无关 • 4.并且任何一次试验中发生的概率都是一样 的. • 则称这种试验为n次独立重复试验。
2.新课讲解
分别记在第1,2,3,4次 某射手射击1次,击中目标的概率 射击中,这个射手击中目 是0.9,他射击4次恰好击中3次的概率 标为事件A1,A2,A3,A4, 是多少?
独立重复试验

二、独立重复试验概率的计算
一般地,在n次独立重复试验中,如果事
件A在其中1次试验中发生的概率是P,那
么在n次独立重复试验中这个事件恰好发
生k次的概率
Pn (k ) Cnk Pk (1 P)nk
1 3
或Pn k Cnk pk qnk q 1 p
相互独立事件同时发生的概率
独立重复试验
2007.05.17
复习回顾:
1、互斥事件:不可能同时发生的两个事件。 对立事件:必有一个发生的互斥事件。 相互独立事件:事件A(或B)是否发生对事件B (或A)发生的概率没有影响。
2、互斥事件有一个发生的概率公式:
相互独立事件同时发生的概率公式:
பைடு நூலகம்
问题引入: 某射手射击1次,击中目标的概率是 0.9,现连续射击4次. 求:前三次命中,最后一次不中的概率;
课堂小结: 1.对n次独立重复试验的理解 2.公式 Pn (k) Cnk Pk (1 P)nk灵活应用
作业布置: 同步作业:75,76页
判断下列试验是不是独立重复试验?
A、依次投掷四枚质地不同的硬币. (×) B、某人射击,击中目标的概率是稳定 的,他连续射击了十次。(√) C、口袋中装有5个白球、3个红球、2个 黑球,依次从中抽出5个球。(×)
原题:某射手连续射击4次,每次击中目标 的概率都是0.9,求恰好有三次命中的概率.
变式:恰好有三次命中的概率
一、独立重复试验定义:
在同样的条件下,重复地各次之间相 互独立地进行的一种试验 。
独立重复试验的基本特征:
1、每次试验是在同样条件下进行; 2、各次试验中的事件是相互独立的; 3、每次试验都只有两种结果,并且任何一次 试验中发生的概率都是一样的
高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 第8讲 n次独立重复试验与二项分布创新

第8讲 n 次独立重复试验与二项分布[考纲解读] 1.了解条件概率与两个事件相互独立的概念.(重点)2.能够利用n 次独立试验的模型及二项分布解决一些简单的实际问题.(难点) [考向预测] 从近三年高考情况来看,本讲是高考中的一个热点.预测2021年将会考查:①条件概率的计算;②事件独立性的应用;③独立重复试验与二项分布的应用.题型为解答题,试题难度不会太大,属中档题型.1.条件概率及其性质(1)对于任何两个事件A 和B ,在事件A 发生的条件下,事件B 发生的概率叫做□01条件概率,用符号□02P (B |A )来表示,其公式为P (B |A )=□03P (AB )P (A )(P (A )>0).在古典概型中,假设用n (A )表示事件A 中基本事件的个数,那么P (B |A )=n (AB )n (A )(n (AB )表示AB 共同发生的基本事件的个数).(2)条件概率具有的性质 ①□040≤P (B |A )≤1; ②如果B 和C 是两个互斥事件, 那么P ((B ∪C )|A )=□05P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,假设A 的发生与B 的发生互不影响,那么称□01A ,B 是相互独立事件.(2)假设A 与B 相互独立,那么P (B |A )=□02P (B ), P (AB )=P (B |A )P (A )=□03P (A )P (B ). (3)假设A 与B 相互独立,那么□04A 与B ,□05A 与B ,□06A 与B 也都相互独立.(4)假设P (AB )=P (A )P (B ),那么□07A 与B 相互独立. 3.独立重复试验与二项分布(1)独立重复试验在□01相同条件下重复做的n 次试验称为n 次独立重复试验.A i (i =1,2,…,n )表示第i 次试验结果,那么P (A 1A 2A 3…A n )=□02P (A 1)P (A 2)…P (A n ). (2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作□03X ~B (n ,p ),并称p 为□04成功概率.在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=□05C k n p k (1-p )n -k(k =0,1,2,…,n ).1.概念辨析(1)相互独立事件就是互斥事件.( )(2)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(3)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =(1-p ).( )(4)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.( )答案 (1)× (2)× (3)× (4)√ 2.小题热身(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,那么P (A |B )和P (B |A )分别为( )A.13,25B.23,25C.23,35D.12,35答案 C解析 由,得P (A |B )=P (AB )P (B )=0.120.18=23, P (B |A )=P (AB )P (A )=0.120.2=35. (2)设随机变量ξ~B ⎝ ⎛⎭⎪⎫5,13,那么P (ξ=3)=( )A.10243 B.32243 C.40243 D.80243答案 C解析 因为ξ~B ⎝ ⎛⎭⎪⎫5,13,所以P (ξ=3)=C 35⎝ ⎛⎭⎪⎫133·⎝ ⎛⎭⎪⎫232=40243. (3)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,那么至少有一个公司不需要维护的概率为________.答案 0.88解析 P =1-0.4×0.3=0.88.(4)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.答案 49解析 所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-132=49.题型 一 条件概率1.从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数〞,事件B :“取到的2个数均为偶数〞,那么P (B |A )=( )A.18 B.14C.25 D.12答案 B解析解法一:事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.事件AB发生的结果只有(2,4)一种情形,即n(AB)=1.故由古典概型概率P(B|A)=n(AB)n(A)=14.应选B.解法二:P(A)=C23+C22C25=410,P(AB)=C22C25=110.由条件概率计算公式,得P(B|A)=P(AB)P(A)=110410=14.应选B.条件探究1假设将本例中的事件B改为“取到的2个数均为奇数〞,那么P(B|A)=________.答案3 4解析P(A)=C23+C22C25=25,P(B)=C23C25=310.又B⊆A,那么P(AB)=P(B)=3 10,所以P(B|A)=P(AB)P(A)=P(B)P(A)=34.条件探究2将本例中的条件改为:从1,2,3,4,5中不放回地依次取2个数,事件A为“第一次取到的是奇数〞,事件B为“第二次取到的是奇数〞,那么P(B|A)=________.答案1 2解析 从1,2,3,4,5中不放回地依次取2个数,有A 25种方法;其中第一次取到的是奇数,有A 13A 14种方法;第一次取到的是奇数且第二次取到的是奇数,有A 13A 12种方法.那么P (A )=A 13A 14A 25=35,P (AB )=A 13A 12A 25=310,所以P (B |A )=P (AB )P (A )=31035=12.2.如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内〞,B 表示事件“豆子落在扇形OHE (阴影部分)内〞,那么P (B |A )=________.答案 14解析 由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O =2×2π×12=2π.事件AB 表示“豆子落在△EOH 内〞,那么P (AB )=S △EOH S 圆O=12×12π×12=12π, 故P (B |A )=P (AB )P (A )=12π2π=14.解决条件概率问题的步骤第一步,判断是否为条件概率,假设题目中出现“〞“在……前提下〞等字眼,一般为条件概率.题目中假设没有出现上述字眼,但事件的出现影响所求事件的概率时,也需注意是否为条件概率.假设为条件概率,那么进行第二步.第二步,计算概率,这里有两种思路:思路一缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算思路二直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算提醒:要注意P (B |A )与P (A |B )的不同:前者是在A 发生的条件下B 发生的概率,后者是在B 发生的条件下A 发生的概率.1.(2019·某某模拟)甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传这四个项目,每人限报其中一项,记事件A 为“四名同学所报项目各不相同〞,事件B 为“只有甲同学一人报关怀老人项目〞,那么P (A |B )=( )A.14B.34C.29D.59答案 C解析 由题意,得P (B )=3344=27256,P (AB )=A 3344=3128,所以P (A |B )=P (AB )P (B )=29.2.(2019·武侯区校级模拟)如果{a n }不是等差数列,但假设∃k ∈N *,使得a k +a k +2=2a k +1,那么称{a n }为“局部等差〞数列.数列{x n }的项数为4,记事件A :集合{x 1,x 2,x 3,x 4}⊆{1,2,3,4,5},事件B :{x n }为“局部等差〞数列,那么条件概率P (B |A )=( )A.415B.730 C.15 D.16答案 C解析 由数列{x n }的项数为4,记事件A :集合{x 1,x 2,x 3,x 4}⊆{1,2,3,4,5},那么事件A 的基本事件共有A 45=120个,在满足事件A 的条件下,事件B :{x n }为“局部等差〞数列,共有以下24个基本事件:其中含1,2,3的局部等差数列分别为1,2,3,5;5,1,2,3;4,1,2,3,共3个,同理含3,2,1的局部等差数列也有3个,含3,4,5和含5,4,3与上述相同,含2,3,4的有5,2,3,4;2,3,4,1,共2个,同理含4,3,2的也有2个.含1,3,5的有1,3,5,2;2,1,3,5;4,1,3,5;1,3,5,4,共4个,同理含5,3,1的也有4个.所以P (B |A )=24120=15.题型 二 相互独立事件的概率1.(2019·某某二模)甲、乙、丙三人去参加某公司面试,他们被公司录取的概率分别为16,14,13,且三人录取结果相互之间没有影响,那么他们三人中至少有一人被录取的概率为( )A.3172B.712C.2572D.1572答案 B解析 由题意,得他们三人中至少有一人被录取的对立事件是三个人都没有被录取,∴他们三人中至少有一人被录取的概率为P =1-⎝ ⎛⎭⎪⎫1-16⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-13=712.2.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜〞的概率.解 (1)X =2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,那么这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.求相互独立事件概率的步骤第一步,先用字母表示出事件,再分析题中涉及的事件,并把题中涉及的事件分为假设干个彼此互斥的事件的和;第二步,求出这些彼此互斥的事件的概率;第三步,根据互斥事件的概率计算公式求出结果.此外,也可以从对立事件入手计算概率.1.(2019·某某三模)某校在秋季运动会中,安排了篮球投篮比赛,现有20名同学参加篮球投篮比赛,每名同学投进的概率均为0.4;每名同学有2次投篮机会,且各同学投篮之间没有影响;现规定:投进2个得4分,投进1个得2分,1个未进得0分,那么其中1名同学得2分的概率为()A.0.5 B.0.48答案 B解析设“第一次投进球〞为事件A,“第二次投进球〞为事件B,那么得2分的概率为P=P(A B-)+P(A-B)=0.4×0.6+0.6×0.4=0.48.2.某社区举办《“环保我参与〞有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.假设各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.解(1)记“甲回答正确这道题〞“乙回答正确这道题〞“丙回答正确这道题〞分别为事件A,B,C,那么P(A)=3 4,且有⎩⎪⎨⎪⎧P (A )·P (C )=112,P (B )·P (C )=14,即⎩⎪⎨⎪⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14,所以P (B )=38,P (C )=23.(2)有0个家庭回答正确的概率为P 0=P (A -B -C -)=P (A )·P (B )·P (C )=14×58×13=596, 有1个家庭回答正确的概率为P 1=P (A B -C -+A B C +A -B -C )=34×58×13+14×38×13+14×58×23=724, 所以不少于2个家庭回答正确这道题的概率为 P =1-P 0-P 1=1-596-724=2132.题型 三 独立重复试验与二项分布1.假设同时抛掷两枚骰子,当至少有5点或6点出现时,就说这次试验成功,那么在3次试验中至少有1次成功的概率是( )A.125729B.80243 C.665729 D.100243答案 C解析 一次试验中,至少有5点或6点出现的概率为1-⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-13=1-49=59,设X 为3次试验中成功的次数,所以X ~B ⎝ ⎛⎭⎪⎫3,59,故所求概率P (X ≥1)=1-P (X =0)=1-C 03×⎝ ⎛⎭⎪⎫590×⎝ ⎛⎭⎪⎫493=665729,应选C.2.为了弘扬国粹,提高民族自豪感,坐落于某实验中学内的艺术馆为学员们提供书法、国画、古琴、茶艺等教学服务,其中学习书法和国画的学员最多.为了研究喜欢书法和喜欢国画之间的联系,随机抽取了80名学员进行问卷调查,发现喜欢国画的人的比例为70%,喜欢书法的人的比例为50%.(1)(2)有人认为喜欢书法与喜欢国画有关,你同意这种看法吗?说明理由; (3)假定学员们都按照自己的喜好进行了系统学习.根据传统,国画上有题字和落款才算完整作品,那么既学书法又学国画的学员们创作的作品可以称为“书画兼优〞.为了配合实验中学七十年校庆,打算随机挑选5幅作品展览.设其中“书画兼优〞的作品数为X ,求X 的分布列.参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参考数据:解 (1)由题意,得c +16=80×(1-50%),∴c =24. ∵a +c =80×70%,∴a =32.∵a +b =80×50%,∴b =8. ∴a =32,b =8,c =24.(2)我同意这种看法.理由如下: K 2=80×(32×16-24×8)240×40×56×24≈3.81.∵3.81>2.706,∴有90%以上的把握认为喜欢书法与喜欢国画有关, ∴我同意这种看法.(3)由(1)知一幅作品“书画兼优〞的概率为3280=25. X 的所有可能取值为0,1,2,3,4,5.P (X =0)=C 05⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫355=2433125, P (X =1)=C 15·25·⎝ ⎛⎭⎪⎫354=162625,P (X =2)=C 25⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫353=216625, P (X =3)=C 35⎝ ⎛⎭⎪⎫253⎝ ⎛⎭⎪⎫352=144625, P (X =4)=C 45⎝ ⎛⎭⎪⎫254·35=48625, P (X =5)=C 55⎝ ⎛⎭⎪⎫255⎝ ⎛⎭⎪⎫350=323125. ∴X 的分布列如下.P 2433125162625216625144625486253231251.独立重复试验的实质及应用独立重复试验的实质是相互独立事件的特例,应用独立重复试验公式可以简化求概率的过程.2.判断某概率模型是否服从二项分布P n(X=k)=C k n p k(1-p)n-k的三个条件(1)在一次试验中某事件A发生的概率是一个常数p.(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且每次试验的结果是相互独立的.(3)该公式表示n次试验中事件A恰好发生了k次的概率.提醒:在实际应用中,往往出现数量“较大〞“很大〞“非常大〞等字眼,这说明试验可视为独立重复试验,进而判定是否服从二项分布.1.春节期间,某旅游景区推出掷圆圈套玩具鹅的游戏,吸引了一大批的游客参加,规那么是:每人花10元拿到5个圆圈,在离最近的玩具鹅的2米处掷圆圈5次,只要圆圈连续套住同一只鹅颈3次,就可以获得套住的那只玩具鹅.假设某游客每次掷圆圈套住鹅颈的概率为23,且每次掷圆圈的结果互不影响,那么该游客获得一只玩具鹅的概率为()A.481 B.881C.13 D.104243答案 D解析 设“第i 次套住鹅颈〞为事件A i (i =1,2,3,4,5),那么A -i 表示“第i 次未套住鹅颈〞,依题意可得该游客能获得一只玩具鹅的3种情形:A 1A 2A 3,A -1A 2A 3A 4,A -1A -2A 3A 4A 5,而P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827,P (A -1A 2A 3A 4)=⎝ ⎛⎭⎪⎫233×13=881,P (A -1A -2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132=8243,故该游客获得一只玩具鹅的概率为827+881+8243=104243,应选D.2.医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H 和V .现有A ,B ,C 三种不同配方的药剂,根据分析,A ,B ,C 三种药剂能控制H 指标的概率分别为0.5,0.6,0.75,能控制V 指标的概率分别为0.6,0.5,0.4,能否控制H 指标与能否控制V 指标之间相互没有影响.(1)求A ,B ,C 三种药剂中恰有一种能控制H 指标的概率;(2)某种药剂能使两项指标H 和V 都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X 的分布列.解 (1)A ,B ,C 三种药剂中恰有一种能控制H 指标的概率为P =P (A B -C -)+P (A B C )+P (A -B -C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)∵A 有治疗效果的概率为P A =0.5×0.6=0.3, B 有治疗效果的概率为P B =0.6×0.5=0.3,C有治疗效果的概率为P C=0.75×0.4=0.3,∴A,B,C三种药剂有治疗效果的概率均为0.3,可看成3次独立重复试验,即X~B(3,0.3).∵X的可能取值为0,1,2,3,∴P(X=k)=C k3×0.3k×(1-0.3)3-k,即P(X=0) =C03×0.30×(1-0.3)3=0.343,P(X=1)=C13×0.3×(1-0.3)2=0.441,P(X=2)=C23×0.32×(1-0.3)=0.189,P(X=3)=C33×0.33=0.027.故X的分布列如下.X 012 3P 0.3430.4410.1890.027组基础关1.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,如果从两个口袋内各摸出一个球,那么56是()A.2个球不都是白球的概率B.2个球都不是白球的概率C.2个球都是白球的概率D.2个球恰好有一个球是白球的概率答案 A解析∵2个球不都是白球的对立事件是2个球都是白球,从甲口袋摸出白球和从乙口袋摸出白球两者是相互独立的,∴2个球都是白球的概率P =13×12=16,∴2个球不都是白球的概率是1-16=56.应选A.2.(2019·某某三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:2个元件的使用寿命在30天以上的概率为( )A.1316B.2764 C.2532 D.2732答案 D解析 由表可知元件使用寿命在30天以上的频率为150200=34,那么所求概率为C 23⎝ ⎛⎭⎪⎫342×14+⎝ ⎛⎭⎪⎫343=2732. 3.位于坐标原点的一个质点M 按下述规那么移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点M 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125 B.C 25×⎝ ⎛⎭⎪⎫125C .C 35×⎝⎛⎭⎪⎫123D.C 25×C 35×⎝⎛⎭⎪⎫125 答案 B解析 如图,由题可知质点M 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率.所求概率为P =C 25×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫123=C 25×⎝ ⎛⎭⎪⎫125.应选B.4.某居民小区有两个相互独立的安全防X 系统A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为18和p ,假设在任意时刻恰有一个系统不发生故障的概率为940,那么p 等于( )A.110B.215C.16D.15答案 B解析 由题意得,18(1-p )+78p =940, ∴p =215.5.(2019·某某调研)某学校10位同学组成的志愿者组织分别由李老师和X 老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和X 老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.那么甲同学收到李老师或X 老师所发活动通知信息的概率为( )A.25B.1225C.1625D.45 答案 C解析 设A 表示“甲同学收到李老师所发活动通知信息〞,B 表示“甲同学收到X 老师所发活动通知信息〞,由题意P (A )=410=25,P (B )=410=25,∴甲同学收到李老师或X 老师所发活动通知信息的概率为25+25-25×25=1625.应选C.6.投掷一枚图钉,设钉尖向上的概率为p ,连续掷一枚图钉3次,假设出现2次钉尖向上的概率小于出现3次钉尖向上的概率,那么p 的取值X 围为( )A.⎝ ⎛⎭⎪⎫12,34B.⎝ ⎛⎭⎪⎫34,1 C.⎝ ⎛⎭⎪⎫23,1 D.⎝ ⎛⎭⎪⎫13,1 答案 B解析 ∵投掷一枚图钉,钉尖向上的概率为p (0<p <1),连续掷一枚图钉3次,∴出现2次钉尖向上的概率为C 23p 2(1-p ),出现3次钉尖向上的概率为p 3.∵出现2次钉尖向上的概率小于出现3次钉尖向上的概率,∴C 23p 2(1-p )<p 3,即p 2(3-4p )<0,解得p >34,∴p 的取值X 围为⎝ ⎛⎭⎪⎫34,1.7.(2019·某某模拟)某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场〞的前提下,学生丙第一个出场的概率为( )A.313 B.413 C.14 D.15答案 A解析 设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场〞;事件B 为“学生丙第一个出场,〞那么P (A )=A 44+C 13C 13A 33A 55=78A 55,P (AB )=C 13A 33A 55=18A 55,那么P (B |A )=P (AB )P (A )=1878=313. 8.(2019·武昌区模拟)抛掷一枚质地均匀的骰子两次,记A ={两次的点数均为奇数},B ={两次的点数之和为4},那么P (B |A )=________.答案 29解析 根据题意,抛掷一枚质地均匀的骰子两次,有6×6=36种情况,记A ={两次的点数均为奇数},B ={两次的点数之和为4},事件A 包含3×3=9种情况,事件AB 有2种情况,那么P (A )=3×336=936,P (AB )=236,那么P (B |A )=P (AB )P (A )=29.9.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠,假设该电梯在底层有5位乘客,且每位乘客在这三层的每一层下电梯的概率为13,用ξ表示5位乘客在第20层下电梯的人数,那么P (ξ=4)=________.答案 10243解析 依题意,ξ~B ⎝ ⎛⎭⎪⎫5,13,故P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243. 10.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主〞.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,那么甲队以4∶1获胜的概率是________.答案 0.18解析 甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输. 假设在主场输一场,那么概率为2×0.6×0.4×0.5×0.5×0.6;假设在客场输一场,那么概率为2×0.6×0.6×0.5×0.5×0.6. ∴甲队以4∶1获胜的概率P =2×0.6×0.5×0.5×(0.6+0.4)×0.6=0.18.组 能力关1.(2019·某某市高三调研)甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,那么从乙袋中取出的球是红球的概率为( )A.13B.12C.59D.29答案 B解析 分两类:①假设从甲袋中取出黄球,那么乙袋中有3个黄球和2个红球,从乙袋中取出的球是红球的概率为25;②假设从甲袋中取出红球,那么乙袋中有2个黄球和3个红球,从乙袋中取出的球是红球的概率为35;∴所求概率P =12×⎝ ⎛⎭⎪⎫25+35=12.应选B. 2.(2020·某某摸底)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,假设他前一球投进那么后一球也投进的概率为34,假设他前一球投不进那么后一球投进的概率为14.假设他第1球投进的概率为34,那么他第2球投进的概率为( )A.34 B.58 C.716 D.916答案 B解析 设该运动员第2球投进的概率为p 2,第1球投进的概率为p 1=34,∴p 2=34p 1+14(1-p 1)=12p 1+14=12×34+14=58.应选B.3.(2019·某某一模)某超市在中秋节期间举行有奖销售活动,凡消费金额满200元的顾客均获得一次抽奖的机会,中奖一次即可获得5元红包,没有中奖不得红包.现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为0.4,记X 为4名顾客获得的红包金额总和,那么P (10≤X ≤15)=________.答案 312625解析 中奖一次即可获得5元红包,没有中奖不得红包.现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为0.4,记X 为4名顾客获得的红包金额总和,那么P (10≤X ≤15)=C 24×0.42×0.62+C 34×0.43×0.6=312625.4.为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km/h 的有40人,不超过100 km/h 的有15人;在45名女性驾驶员中,平均车速超过100 km/h 的有20人,不超过100 km/h 的有25人.(1)在被调查的驾驶员中,从平均车速不超过100 km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h 且为男性驾驶员的车辆为X ,求X 的分布列.解 (1)平均车速不超过100 km/h 的驾驶员有40人,从中随机抽取2人的方法总数为C 240,记“这2人恰好有1名男性驾驶员和1名女性驾驶员〞为事件A ,那么事件A 所包含的基本事件数为C 115C 125,所以所求的概率P (A )=C 115C 125C 240=15×2520×39=2552.(2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h 且为男性驾驶员的概率为40100=25, 故X ~B ⎝ ⎛⎭⎪⎫3,25.所以P (X =0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125, P (X =1)=C 13⎝ ⎛⎭⎪⎫25⎝ ⎛⎭⎪⎫352=54125, P (X =2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫35=36125, P (X =3)=C 33⎝ ⎛⎭⎪⎫253⎝ ⎛⎭⎪⎫350=8125. 所以X 的分布列如下.X 0 1 2 3 P2712554125361258125组 素养关1.(2019·某某六校教育研究会第二次联考)为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,统计数据如表所示,支付方式 微信 支付宝 购物卡 现金 人数200150150100率近似代替概率.(1)求三人中使用微信支付的人数多于现金支付的人数的概率. (2)记X 为三人中使用支付宝支付的人数,求X 的分布列.解 (1)由表格得顾客使用微信、支付宝、购物卡和现金支付的概率分别为13,14,14,16.设Y 为三人中使用微信支付的人数,Z 为使用现金支付的人数, 事件A 为“三人中使用微信支付的人数多于现金支付的人数〞,那么P (A )=P (Y =3)+P (Y =2)+P (Y =1,且Z =0)=⎝ ⎛⎭⎪⎫133+C 23⎝ ⎛⎭⎪⎫132×23+C 13⎝ ⎛⎭⎪⎫13×⎝ ⎛⎭⎪⎫122=127+29+14=55108. (2)由题意可知X ~B ⎝ ⎛⎭⎪⎫3,14,故所求分布列如下. X 0 1 2 3 P276427649641642.(2019·某某一模)某市市民用水拟实行阶梯水价,每人月用水量不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列.(1)求a ,b ,c 的值及居民月用水量在2~2.5内的频数;(2)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应将w 至少定为多少?(w取整数)(3)假设将频率视为概率,现从该市随机调查3名居民的月用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列.解(1)∵前四组频数成等差数列,∴所对应的频率组距也成等差数列,设a=0.2+d,b=0.2+2d,c=0.2+3d,∴0.5×(0.2+0.2+d+0.2+2d+0.2+3d+0.2+d+0.1+0.1+0.1)=1,解得d=0.1,∴a=0.3,b=0.4,c=0.5.居民月用水量在2~2.5内的频率为0.5×0.5=0.25.居民月用水量在2~2.5内的频数为0.25×10000=2500.(2)由题图及(1)可知,居民月用水量小于2的频率为(0.2+0.3+0.4)×0.5=0.45,小于3的频率为0.45+(0.5+0.3)×0.5=0.85,∴为使80%以上居民月用水价格为4元/立方米,应将w至少定为3.(3)将频率视为概率,设A(单位:立方米)代表居民月用水量,可知P(A≤2.5)=0.7,由题意,X~B(3,0.7),P(X=0)=C03×0.33=0.027,P(X=1)=C13×0.32×0.7=0.189,P(X=2)=C23×0.3×0.72=0.441,P(X=3)=C33×0.73=0.343.∴X的分布列如下.。
独立重复试验

2.2.3独立重复实验与二项分布(1)【学习目标】:在了解条件概率和相互独立事件概念的前提下,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.【重点】: 独立重复试验、二项分布的理解及应用、二项分布模型解决一些简单的实际问题【难点】:二项分布模型的构建【新知预习】: 11独立重复试验的定义:2.独立重复试验的概率公式:离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:由于k n k k nq p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--中的各项的值,所以称这样的随机变量ξ服从二项分布记作ξ~B (n ,p ),其中p 为成功概率【例题探究】:练习:某射手每次射击击中目标的概率是0.8, 求这名射手在10次射击中,(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率;(3)仅在第8次击中目标的概率;(4)第8次击中目标的概率;(5)要保证击中目标的概率大于0.99,至少应 射击多少次?例1:诸葛亮解出题目的概率是0.9,三个臭皮匠各自独立解出的概率都是0.6,皮匠中至少一人解出题目即胜出比赛,诸葛亮和臭皮匠团队哪个胜出的可能性大?例2: 某气象站天气预报的准确率为0.8 ,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有1次准确的概率 ;(3)5次预报中恰有2次准确,且其中第3次准确的概率;例3:实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)按比赛规则甲获胜的概率【课堂小结】【课内达标】:1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )()A 32100.70.3C ⨯⨯ ()B 1230.70.3C ⨯⨯ ()C 310 ()D 21733103A A A ⋅ 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C4. 一批玉米种子,其发芽率是0.8.(1)问每穴至少种几粒,才能保证每穴至少有一粒发芽的概率大于0.98 ?(2)若每穴种3粒,求恰好两粒发芽的概率.巩固型作业:全品:课时测评思维拓展型作业:甲、乙两选手比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4,那么对甲而言,采用3局2胜制,还是5局3胜制更有利?思考题:二项分布与两点分布及超几何分布有什么区别与联系?【课后收获】:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独立重复试验
2018年8月1日9时32分
练习:
P 135 7、9
独立重复试验
2018年8月1日9时32分
例2、猎人在100m处射击野兔,命中 的概率为0.5;若第一次未击中,则 进行第二次射击,距离为150m;若 又未击中,则猎人进行第三次射击, 但距离为200m;已知此猎人命中的 概率与距离的平方成反比,求三次内 击中野兔的概率。
独立重复试验
2018年8月1日9时32分
思考: 在投掷一枚硬币,
(1)抛一次,反面向上的概率是多少? (2)抛2次时,第二次反面向上的概率 是多少? (3)在投掷一枚硬币n次时,第k次反 面向上的概率是多少? (4)在投掷一枚硬币n次时,第m次 是否反面向上,对第k次出现反面向上 的概率有没有影响?
P A P A B P A B C
思考:
NBA总决赛采用7场4胜制, 若火箭队进入了总决赛,且 其每场获胜的概率是0.2,问 火箭最终取胜的概率是多少?
独立重复试验
2018年8月1日9时32分
; / 足球比分 ;
们魔殿の人!你活不过壹年!"其中壹个黑袍人愤恨の说."魔殿?"根汉心头微楞,没想到这些人是这个势力中の人,他问道:"尧城之祸,是你们弄出来の?""知道就好!"另壹位黑袍人沉声喝道:"放咱们离开!此事咱们不会向殿主汇报!""没想到真の是你们..."根汉脸色阴沉下来,尧城是他の故乡, 再说那方圆四五万里之内,得有多少の普通百姓,何止亿万,竟然就这样被屠净了,这些人当死.(正文贰066魔殿)贰067天池"你们死不了了..."根汉说."前辈果然识趣,还请前辈让出路来,晚辈马上就走,此事咱们绝对不会汇报殿主..."两人大喜,没想到根汉竟然放过他们.看来这人虽是圣人, 却也知晓魔殿の威名,不敢得罪殿主和三大府主!根汉身形壹闪,直接出现在了其中壹人の身后,壹掌拍在了这家伙の头顶,瞬间便将他打成了壹片血雾,手中の魔石也被根汉卷走.壹颗黑色の元灵窜出来,想钻进面前の光幕中,却被根汉用袖子壹卷,将他の元灵死死の锁定住了,手中取出了壹个 黑色の天灯,将这颗元灵给丢了进去."前辈,饶命呀!"最后壹个黑袍人,双腿壹哆嗦,立即跪在了根汉面前向根汉求饶.他虽是准圣高阶强者,可是面对壹尊如此强势の圣人,连逃走の机会也不会有,这便是大境界の差距,除非自己有无上神兵,否则根本无法弥补这种差距."咱说过,你们死不了,但 是不代表你们可以活得成..."根汉壹指点在这黑袍人の眉心,黑袍人立即惊骇の发现,自己就动不了了,额头上の冷汗立即冒了出来,脸上の面具也碎裂了,露出了他の本来面目.%壹%本%读% xstxt这是壹个长相丑陋の中年人,脸是方形の,但是似乎却已经塌了半边,左边是塌の,右边是鼓の,所 以看上去极为别扭.最难看の是,这家伙の眼睛是阴戾无比の,虽然现在是在求饶,但是根汉也能从他の眼中看出壹抹阴戾,这似乎是用什么培育而成の."前辈您饶了咱吧,咱什么都听您の呀,您想要进入天池吧,咱把法阵之秘告诉您呀,求前辈您饶咱壹条狗命呀..."中年人壹把鼻涕壹把泪,根本 没有壹点强者之尊,在死亡面前,壹点节操也没有了."罢了,先留着你の命,看你后面の表现."根汉瞄了瞄这中年大叔,心想长这么丑,想必这些年修行也过得不容易,有些事情他还得留着这家伙の命,得问问看魔殿の情况."多谢前辈,多谢前辈饶命..."中年大叔立即如获大赦.根汉暂时将他给释 放了,不过圣威却是始终锁定着他,同时将他手中の魔石给夺了过来,看向面前の光幕问道:"这天池中怎么没有人?""回前辈の话,这,这天池十年前便被皇帝给关闭了,如今不允许别人进入..."中年大叔赶紧弯着腰给根汉解释,不敢有丝毫の怠慢.根汉点了点头,也没有说话,只是轻微の摆了摆 手,中年大叔赶紧启动法阵,将这法阵给打开了,顿时壹阵微咸の海风吹了过来,根汉他们已经出现在了壹片碧蓝の池水上空."灵气好浓..."众美都暗暗吸了壹口灵气,全身の毛孔都感觉张开了,格外の舒畅.这汪天池面积并不大,也就是方圆十几里の范围,天池の上游有壹处灰色の山崖,整个天 池の水,就是从那个山崖上垂落下来,犹如壹片仙幕令人十分震撼."仙境..."看到那壹条十几里长の池幕,根汉也有些晃乎,仿佛看到了神话世界中の仙境.这山崖并不是特别高,也就只有几千米左右,对于见多识广の根汉来说,这并算不得什么,最主要の是那泉水,还有那意境让这里真の像壹片 仙境.就连已经成圣の根汉,在这里呼吸了几口气,也感觉神情气爽,足见这里の不凡之处."那山崖上面是什么?"根汉看向山崖上面,竟然连他の天眼,也无法看到上面有什么东西.这是壹个独立の小空间,并不是特别大,但是却给根汉壹种十分浩瀚の感觉,似乎是有些荒古の气息,难道这里当真 是仙界の壹个地方不成?中年大叔赶紧说:"晚辈也不知道,那上面似乎有壹种力量压制着,咱们都无法接近...""曾经咱们殿主也来过这里检查,他老人家也无法查探到情况..."中年大叔怕根汉上去查,便说,"前辈您还是不要去查吧,咱们殿主当初说过这个地方,非人力可为...""哦?"根汉嘴角 微扬,壹边问道:"你们殿主什么修为?""这个晚辈不太清楚,只知道咱们殿主三千年前便是圣人了,如今是什么境界,晚辈当真是不知道..."中年大叔说."三千年前便是圣人?"根汉微微壹楞,心想这还真是壹个老家伙呀,看来实力果然不弱.壹旁の七美,听这消息,也是倒吸了壹口凉气.这得是什 么人呀,三千年前可远不是大世,那时刚经历血屠至尊の事情,整个大陆都被重创,几乎相当于微世了.在那种天地环境条件下,竟然还能达到圣人之境,可以说是天纵奇才了.不过根汉却并没有听这中年大叔の劝,而是独自壹人飘到了半空之中,来到了这山崖平齐の地方,果真到了这里,便能感觉 到壹股天地压制の力量.正是这股神奇の力量,让他无法再往上升,也就无法看到山崖上方の情况."难道这真有仙阵不成?"根汉眉头紧锁,没想到还有这种地方,要知道普通の圣级法阵,甚至是绝强者法阵,自己也可以步入其中,但是在这里却被紧紧の压制在这里无法上前.怪不得连那魔殿の殿 主,也无法上去查看了,看来这里确实是有蹊跷.这里の气息太过古朴,根汉也无法查探,他试探了几回都无功而返,最终只能再折了回来.见根汉又回来了,中年大叔不敢问什么,根汉看了看下方の这汪碧绿の天池之水,便笑着对几美说:"现在这里没有别人,你们可以尽情の泡个澡了,咱在外面 等你们...""耶,太棒了!""天池中洗澡,叶圣人你太牛了...""恩哪..."几美壹阵欢呼,七人中の五人,刚刚步入了准圣之境,剩下の二美也有大突破,此时在这天池中泡上壹个澡,自然是有无穷の好处.壹旁の中年大叔,眼神滴溜溜の转了转,从这皇后和六位娘娘の神情来看,看来已然是这位叶圣 人の女人了."可怜了那皇帝老尔,到头来,被人戴了这么多绿帽子..."中年大叔心中暗想,不过他却很机灵,对根汉说:"前辈,晚辈是不是先行离开?在这里不太方便吧..."(正文贰067天池)贰06捌王凯叶圣人の女人要泡澡,自己呆在这里当然不合适.根汉瞄了他壹眼,心道这大叔心眼还算不 错,便对他说:"咱们先离开天池,回到宝殿吧,有些事情本圣还要问你...""好,前辈您稍等,晚辈马上启动法阵..."中年大叔赶紧开启法阵,又带着根汉离开了,回到了宝殿の大殿上.这时那个扫地の丫鬟又走了出来,不过似乎并没有将根汉和这中年大叔放在眼里,直接自顾自の扫着地,仿佛什 么人也没看到似の."她们和那些密室中の人是怎么回事?"根汉皱了皱眉头,觉得十分诡异.中年大叔立即低声对根汉说:"前辈,其实咱们现在看到の,根本就不是人...""不是人?"根汉轻呼壹声,"那是什么?难道还是鬼魂不成?"如果是阴魂阳魄,根汉也觉得不对劲,自己天眼应该可以判别出来 の."前辈您说对了,她们实际上就是壹种鬼魂..."中年大叔神秘兮兮の说,"只不过她们不是壹般の鬼魂,而是壹种可以修行の鬼灵...""鬼灵?"根汉从未听说过这种东西,中年大叔立即有些自豪の介绍道:"其实读)鬼灵这种东西,只是在魔殿中才有,这是咱们殿主培育出来の壹种可以修行の鬼 灵,你看她们根本就没有自己の意识,而且她们早就是已经死去の人了…""培育她们做什么?"根汉点了点头.有些事情他没听说过,不代表就没有可能,这世上の能人太多了,各种稀奇古怪の修行方法都能弄出来.只是根汉不明白,这些年轻女人,天赋壹般,而且修为也壹般,培育她们有什么用 呢."这个咱们也不清楚..."中年大叔沉声道:"殿主从未与咱们说过,只是让咱们看护住这座宝殿,同时从十年前开始,便不再让皇宫中の年轻人进入天池了,只有这些鬼灵每隔壹个月便会进入天池中修行壹次.""还有这种事情?"根汉觉得有些怪异,这里布下这么大の名堂,难道就只为了培育这 些个弱小の鬼灵?"你们殿主什么时候会来?"根汉皱了皱眉头.中年大叔道:"这个晚辈也不清楚,殿主壹般不会亲自过来,五年前咱们の壹位府主来过这里看过壹回,殿主据说是来过壹次但当时晚辈不在这里...""府主?""咱们魔殿成立の时间并不是特别长,到现在好像才二千年左右,殿主壹般 很少现身,咱们也不知道他壹般在哪里修行.晚辈被选入魔殿已有六百多年,但是从未见过殿主哪怕是壹面,平时与咱们打交道の,壹般都是魔殿の三位府主大人."中年大叔道:"这三位府主大人,修为据说也都步入圣境了,最强の是紫府大人,应该是在中阶圣人之境...""你们魔殿实力不错 嘛..."根汉并没有被吓到,见到根汉如此淡定の神情,这中年大叔更是心惊,看来这位年轻の圣人有可能真是远古万族の那些继承人,要不然怎么会这么淡定.要知