基于STM32的红外测距系统设计

合集下载

基于stm32红外非接触体温仪毕业设计

基于stm32红外非接触体温仪毕业设计

基于STM32红外非接触体温仪毕业设计一、概述随着全球疫情的爆发,人们对于体温监测的需求日益增加。

在这样的大背景下,红外非接触体温仪成为了一种非常重要的工具。

而在这个毕业设计中,我们将结合STM32芯片,设计一款红外非接触体温仪,并将其加以实践。

二、设计思路1. 红外测温原理在设计红外非接触体温仪前,我们首先需要理解红外测温的原理。

红外测温利用红外线能量与物体表面产生的热量之间的关系,通过检测物体的表面温度来确定物体的温度。

我们将通过研究这些原理,来确定我们的测温方案。

2. STM32芯片的选择在选择芯片时,我们需要考虑到性能、功耗、成本等方面的因素。

经过调研和比较,我们最终选择了STM32作为我们的芯片。

因为它具有性能强劲、低功耗等特点,非常适合用于这样的应用场景。

3. 软件设计在软件设计方面,我们将使用C语言来编写嵌入式程序。

我们需要设计一个用户界面,用于显示测量得到的温度数据,并且需要设计相应的算法,用于对红外信号进行处理,最终得到准确的温度值。

4. 硬件设计在硬件设计方面,我们将搭建红外传感器、显示屏、按钮等硬件模块,并且需要设计相应的电路进行连接。

我们也需要考虑到电源管理、EMI等问题,以确保产品的安全可靠。

三、实施步骤1. 系统框图设计先前设计的理念已经明确,我们需要通过系统框图来具体的描述各个模块之间的关系以及通信方式。

2. 红外传感器选型及连接我们需要选择适合的红外传感器,并且设计相应的电路来进行连接。

在连接的过程中,我们需要注意信号的稳定性、传输速率等问题,以保证数据的准确性。

3. 软件开发从STM32的数据手册以及相应的参考设计中,我们可以获得一些基础的代码框架来开始我们的开发工作。

我们需要编写测温算法、UI设计、以及异常处理等功能。

4. 硬件搭建在硬件搭建阶段,我们需要进行电路的焊接、模块的搭建等工作。

在这个过程中,我们需要注意安全问题,并且需要进行相应的测试。

四、成果展示在毕业设计结束后,我们获得了一款基于STM32的红外非接触体温仪。

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。

STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。

本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。

二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。

同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。

三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。

我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。

在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。

这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。

我们还考虑到了系统的可扩展性。

通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。

我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。

本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。

31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。

超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。

STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。

基于STM32的智能家居红外控制系统研究与设计共3篇

基于STM32的智能家居红外控制系统研究与设计共3篇

基于STM32的智能家居红外控制系统研究与设计共3篇基于STM32的智能家居红外控制系统研究与设计1智能家居系统在当今社会已经得到了广泛的应用,而红外控制技术也是其中的重要一环。

本文将对基于STM32的智能家居红外控制系统进行研究与设计,主要包括系统设计方案、硬件设计、软件设计等方面的内容。

一、系统设计方案系统的整体设计方案如下:1、硬件系统设计(1)基于STM32微控制器的控制板设计。

(2)通过红外传感器采集红外信号。

(3)通过继电器实现对家居电器的远程遥控。

2、软件系统设计(1)通过编写C语言程序,实现红外信号采集、远程遥控等功能。

(2)通过TCP/IP协议实现智能家居控制,并实现移动端APP对智能家居的远程控制。

二、硬件设计基于STM32F407VG微控制器,我们设计了控制板。

控制板的主要功能是通过GPIO口采集红外信号,并实现对家居电器的远程控制。

同时,设计一组2路继电器可实现对两路不同设备的控制。

此外,我们在控制板中加入了W5500以太网模块,以实现智能家居系统的远程控制。

它支持TCP/IP协议,可将设备与云端进行通信。

三、软件设计在软件方面,我们采用Keil软件开发环境,通过编写C语言程序实现各项功能。

红外信号采集:通过GPIO口的中断方式方便地实现对红外信号的采集。

远程控制:通过电路板上的两个继电器实现对家庭电器的控制。

使用TCP/IP协议实现控制面板与PC、手机等设备的远程控制通信。

移动端APP设计:手机APP通过连接TCP/IP协议,实现对家居设备的遥控。

APP采用Android平台进行开发,具有简单、易操作、界面友好等特点。

四、系统实现效果对系统进行实际测试,能够实现对家庭电器的控制。

在APP上,用户可以实时查看设备状态,并可对设备进行控制。

本系统能实现智能家居的简易、实用、高效的控制,满足用户的基本需求。

综上所述,本文对基于STM32的智能家居红外控制系统进行了研究与设计,详细分析了硬件系统和软件系统的设计,通过实际测试验证了系统的实现效果,证明本系统能够实现对家庭电器的控制,而且使用方便,界面友好,具有很高的实用价值。

基于STM32单片机的智能红外测温小车设计与实现

基于STM32单片机的智能红外测温小车设计与实现

基于STM32单片机的智能红外测温小车设计与实现1. 引言智能红外测温技术在现代工业、医疗、农业等领域中得到广泛应用,而基于STM32单片机的智能红外测温小车的设计与实现,可以实现自动测量、远程操作等功能,提高测温效率和准确性。

本文将详细介绍该智能红外测温小车的设计与实现过程。

2. 系统架构智能红外测温小车由STM32单片机、红外测温传感器、电机驱动模块、Wi-Fi模块等组成。

STM32单片机充当中央处理器,接收并处理红外测温传感器采集的数据,通过驱动模块控制小车的运动,同时通过Wi-Fi模块实现与外界的通讯。

3. 硬件设计3.1 STM32单片机选择与连接选择STM32系列单片机作为中央处理器,根据需求选择适当的型号(如STM32F103C8T6),并将其与其他硬件模块(如传感器和驱动模块)进行连接,实现数据的输入和输出。

3.2 红外测温传感器选择合适的红外测温传感器模块,通过连接到STM32单片机的模拟输入引脚,实现对环境温度的采集和测量。

3.3 电机驱动模块选择适当的电机驱动模块,通过连接到STM32单片机的输出引脚,控制小车的运动,包括前进、后退、左转和右转等操作。

3.4 Wi-Fi通讯模块选择合适的Wi-Fi通讯模块,将其连接到STM32单片机的串口或SPI接口,通过无线网络与其他设备(如PC或手机)进行通讯,实现遥控和数据传输等功能。

4. 软件设计4.1 系统初始化在STM32单片机中,初始化各个硬件模块,包括红外测温传感器、电机驱动模块和Wi-Fi通讯模块,配置相应的引脚和参数,为后续操作做好准备。

4.2 红外测温数据采集通过STM32单片机读取红外测温传感器采集的模拟量数据,并进行相应的数值转换和校准,得到实际的温度数值。

4.3 运动控制通过STM32单片机控制电机驱动模块,实现小车的前进、后退、左转和右转等运动操作。

根据红外测温数据的变化,可以自动调整小车的运动方向,实现对温度异常区域的快速检测。

STM32 实验21 红外遥控实验

STM32 实验21 红外遥控实验

//初始化红外接收引脚的设置
//开启中断,并映射
void Remote_Init(void)
{
RCC->APB2ENR|=1<<2;
//PA 时钟使能
GPIOA->CRL&=0XFFFFFF0F;
GPIOA->CRL|=0X00000080; //PA1 输入
GPIOA->ODR|=1<<1;
//PA.1 上拉
接着是发送 4 个 8 位二进制码,第一二个是遥控识别码(REMOTE_ID),第一个为
正码(0),第二个为反码(255),接着两个数据是键值,第一个为正码
第二个为反码.发送完后 40ms,遥控再发送一个 9ms 低,2ms 高的脉冲,
表示按键的次数,出现一次则证明只按下了一次,如果出现多次,则可
以认为是持续按下该键.
POINT_COLOR=RED;//设置字体为红色 LCD_ShowString(60,50,"Mini STM32"); LCD_ShowString(60,70,"REMOTE TEST"); LCD_ShowString(60,90,"ATOM@ALIENTEK"); LCD_ShowString(60,110,"2010/6/17");
321
3.21.2 硬件设计
本实验采用中断解码(也可以采用输入捕获解码),本节实验功能简介:开机在 LCD 上显示 一些信息之后,即进入等待红外触发,如过接收到正确的红外信号,则解码,并在 LCD 上显示 键值和所代表的意义,以及按键次数等信息。同样我们也是用 LED0 来指示程序正在运行。
所要用到的硬件资源如下: 1)STM32F103RBT6。 2)DS0(外部 LED0)。 3)TFTLCD 液晶模块。 4)红外接收头。 5)红外遥控器。 前面三部分,在之前的实例已经介绍过了,遥控器属于外部器件,遥控接收头在板子上, 与MCU的连接原理图如下:

单片机STM32F103C8T6的红外遥控器解码系统设计

单片机STM32F103C8T6的红外遥控器解码系统设计

单片机STM32F103C8T6的红外遥控器解码系统设计一、本文概述本文旨在详细阐述基于STM32F103C8T6单片机的红外遥控器解码系统的设计和实现过程。

随着科技的不断进步和智能化设备的普及,红外遥控器作为一种常见的遥控设备,已经广泛应用于家电、安防、玩具等多个领域。

然而,红外遥控器发出的红外信号往往需要通过解码器才能被设备正确识别和执行,因此,设计一款高效、稳定、可靠的红外遥控器解码系统具有重要意义。

本文将首先介绍红外遥控器的基本原理和信号特点,然后详细阐述STM32F103C8T6单片机的性能特点和在红外遥控器解码系统中的应用优势。

接着,将详细介绍红外遥控器解码系统的硬件设计,包括红外接收头的选择、电路设计和PCB制作等。

在软件设计部分,将详细阐述如何通过STM32F103C8T6单片机的编程实现红外信号的接收、解码和处理,以及如何将解码后的数据通过串口或其他通信方式发送给主控制器。

本文还将对红外遥控器解码系统的性能进行测试和分析,包括信号接收距离、解码速度和稳定性等方面的测试。

将总结本文的主要工作和创新点,并对未来的研究方向进行展望。

通过本文的研究和实现,旨在为红外遥控器解码系统的设计提供一种新的思路和方法,同时也为相关领域的研究人员提供有益的参考和借鉴。

二、红外遥控器基础知识红外遥控器是一种常见的无线遥控设备,它利用红外光作为信息载体,通过发射和接收红外光信号实现对设备的远程控制。

这种遥控方式因其简单、低成本和无需视线连接等优点,在各类消费电子产品中得到了广泛应用,如电视机、空调、音响等。

红外遥控器的工作原理主要基于红外辐射和光电器件的检测。

遥控器内部通常包含一个或多个红外发射管,当按下按键时,发射管会发射出特定频率和编码的红外光信号。

接收端则配备有红外接收头,该接收头内部有一个光敏元件(如硅光敏三极管或光敏二极管),用于检测红外光信号并将其转换为电信号。

为了区分不同的按键操作,红外遥控器通常采用特定的编码方式对按键信号进行编码。

STM32单片机红外遥控

STM32单片机红外遥控

STM32单片机红外遥控红外遥控接口电路STM32单片机红外遥控程序源代码#include "sys.h"#define LED_RED PBout(12) //红色发光二极管控制管脚初始化PB12 #define LED_GREEN PBout(13) //绿色发光二极管控制管脚初始化PB13 #define LED_YELLOW PBout(14) //黄色发光二极管控制管脚初始化PB14 #define LED_BLUE PBout(15) //蓝色发光二极管控制管脚初始化PB15 #define BEEP PBout(5) //蜂鸣器端口定义PB5#define RDATA PAin(1) //红外数据输入脚//红外遥控识别码(ID),每款遥控器的该值基本都不一样,但也有一样的//我们选用的遥控器识别码为0#define REMOTE_ID 0static u8 fac_us=0; //us延时倍乘数static u16 fac_ms=0; //ms延时倍乘数void delay_init(u8 SYSCLK);void delay_ms(u16 nms);void delay_us(u32 nus);void Led_Init(void); //发光二极管控制管脚初始化void Red_Led_Light(void); //点亮红色发光二极管void Green_Led_Light(void); //点亮绿色发光二极管void Yellow_Led_Light(void); //点亮黄色发光二极管void Blue_Led_Light(void); //点亮蓝色发光二极管void Red_Led_Goout(void); //熄灭红色发光二极管void Green_Led_Goout(void); //熄灭绿色发光二极管void Yellow_Led_Goout(void); //熄灭黄色发光二极管void Blue_Led_Goout(void); //熄灭蓝色发光二极管void Beep_Init(void);void Beep_Tweet(void);void Beep_Silent(void);extern u8 Remote_Cnt; //按键次数,此次按下键的次数extern u8 Remote_Rdy; //红外接收到数据extern u32 Remote_Odr; //命令暂存处u32 Remote_Odr=0; //命令暂存处u8 Remote_Cnt=0; //按键次数,此次按下键的次数u8 Remote_Rdy=0; //红外接收到数据void Remote_Init(void); //红外传感器接收头引脚初始化u8 Remote_Process(void); //红外接收到数据处理u8 Pulse_Width_Check(void); //检查脉宽extern u8 USART_RX_BUF[64]; //接收缓冲,最大63个字节.末字节为换行符extern u8 USART_RX_STA; //接收状态标记//如果想串口中断接收,请不要注释以下宏定义//#define EN_USART1_RX //使能串口1接收void uart_init(u32 pclk2,u32 bound);/*************************************************************开发板上电后,用红外遥控器对着开发板上的红外接收头。

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言在现代电子技术的迅猛发展中,精确测量距离的设备扮演着重要的角色。

随着人类对于生活环境安全性的关注提升,对于各种设备的精度要求也在逐渐加强。

超声波测距技术以其非接触性、高精度、低成本等优点,在众多领域得到了广泛的应用。

本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计。

二、系统概述本系统以STM32单片机为核心控制器,结合超声波测距模块,实现对目标物体的精确测距。

系统主要由STM32单片机、超声波测距模块、电源模块、信号处理模块和显示模块等组成。

通过单片机对超声波模块的控制,实现对目标的精确测距,并通过显示模块实时显示测距结果。

三、硬件设计1. STM32单片机:作为系统的核心控制器,负责整个系统的控制与数据处理。

STM32系列单片机具有高性能、低功耗的特点,能够满足系统对于精确度和稳定性的要求。

2. 超声波测距模块:采用高精度的超声波测距传感器,实现对目标物体的距离测量。

通过超声波的发送与接收,实现对目标的距离计算。

3. 电源模块:为系统提供稳定的电源支持,确保系统的正常工作。

电源模块需考虑到功耗问题,以实现系统的长时间运行。

4. 信号处理模块:对超声波测距模块的信号进行滤波、放大等处理,以提高测距的准确性。

5. 显示模块:实时显示测距结果,方便用户观察与操作。

四、软件设计1. 主程序:负责整个系统的控制与数据处理。

主程序通过控制超声波测距模块的发送与接收,获取目标物体的距离信息,并通过显示模块实时显示。

2. 超声波测距模块控制程序:控制超声波的发送与接收,实现对目标物体的距离测量。

通过计算超声波的发送与接收时间差,计算出目标物体的距离。

3. 数据处理程序:对获取的测距数据进行处理,包括滤波、计算等操作,以提高测距的准确性。

4. 显示程序:将处理后的测距结果显示在显示模块上,方便用户观察与操作。

五、系统实现1. 通过STM32单片机的GPIO口控制超声波测距模块的发送与接收,实现超声波的发送与接收功能。

基于STM32的红外报警系统的设计实现部分介绍

基于STM32的红外报警系统的设计实现部分介绍

基于STM32的红外报警系统的设计实现部分介绍硬件设计3.1 STM32单片机控制模块设计中主控芯片采用STM32F103C8T6单片机作为主控制。

该型号单片机为LQFP44封装,内部资源足够用于本次设计。

STM32F103系列芯片最高工作频率可达72MHZ,在存储器的01等等待周期仿真时可达到1.25Mip/MHZ(Dhrystone2.1)。

内部128k字节的闪存程序存储器,也就是说代码量可以写到128k字节,本次设计足够,内部高达20K字节的SRAM。

STM32F103C8T6芯片工作电压在2.0V-3.6V,最佳工作电压在3.3V。

芯片具有上电/断电复位(POR/PDR)、可编程电压检测器。

芯片可以外接4~16MHZ外部晶体振荡器,且可分频最高可达72MHZ。

内部有经过出厂调校的40KHZRC 晶体振荡器,可以产生CPU时钟的PLL;带有校准功能的32khz的RTC振荡器。

具有低功耗模式,可在睡眠、停机和待机模式。

STM32F103系列具有2个12位模数转换器,1us转换时间,多达16个输入通道。

转换范围0-3.6V,转换通道还包含一个内部温度传感器,可以用来测量STM32内部温度。

其片上具有定时器、ADC、SPI、IIC、USART功能。

STM32F103C8T6具有37个I/O,所以的I/O都可以映射到16个外部中断;除了A/D引脚外,几乎所以的I/O都可以接受5V的信号。

该芯片的调试模式可用串行单片机调试(SWD)和JTAG 接口。

3个16位定时器,每个定时器有多达4个用于输入捕获/输出比较PWM或脉冲计数的通道和增量编码器输入。

1个16位带死区控制和紧急刹车,用于电机控制的PWM高级控制定时器;2个看门狗定时器(独立的和窗口型的)。

系统时间定时器:24位自减型计数器。

如下图3-4TM32F103C8T6 管脚图如图3.1所示。

图3.1 STM32F103C8T6管脚图3.2 电源电路电源模块需要考虑在输入和输出端增加滤波电路设计,滤除不必要的干扰,使整个电源电路更加稳定可靠。

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断发展,高精度测距技术被广泛应用于各个领域,如机器人导航、环境监测、智能家居等。

本文将介绍一种基于STM32单片机的高精度超声波测距系统的设计。

该系统采用先进的超声波测距原理,结合STM32单片机的强大处理能力,实现了高精度、快速响应的测距功能。

二、系统概述本系统主要由超声波发射模块、接收模块、STM32单片机以及相关电路组成。

通过STM32单片机控制超声波发射模块发射超声波,然后接收模块接收反射回来的超声波信号,根据超声波的传播时间和速度计算距离。

系统具有高精度、抗干扰能力强、测量范围广等特点。

三、硬件设计1. STM32单片机本系统采用STM32系列单片机作为主控制器,具有高性能、低功耗、丰富的外设接口等特点。

通过编程控制单片机的GPIO 口,实现超声波发射和接收的控制。

2. 超声波发射模块超声波发射模块采用40kHz的超声波传感器,具有体积小、功耗低、测距范围广等优点。

通过单片机控制发射模块的触发引脚,产生触发信号,使传感器发射超声波。

3. 超声波接收模块超声波接收模块同样采用40kHz的超声波传感器。

当传感器接收到反射回来的超声波信号时,会产生一个回响信号,该信号被接收模块的回响引脚捕获并传递给单片机。

4. 相关电路相关电路包括电源电路、滤波电路、电平转换电路等。

电源电路为系统提供稳定的电源;滤波电路用于去除干扰信号;电平转换电路用于匹配单片机与传感器之间的电平标准。

四、软件设计1. 主程序设计主程序采用C语言编写,通过STM32单片机的标准库函数实现各功能模块的初始化、参数设置以及控制逻辑。

主程序首先进行系统初始化,然后进入循环等待状态,等待触发信号的到来。

当接收到触发信号时,开始测距流程。

2. 测距流程设计测距流程主要包括发射超声波、等待回响信号、计算距离等步骤。

当接收到触发信号时,单片机控制超声波发射模块发射超声波;然后等待接收模块的回响信号。

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计基于STM32单片机的高精度超声波测距系统的设计1. 引言超声波测距技术是一种常用的非接触性测量技术,具有测量范围广、分辨率高等优点,广泛应用于工业自动化、无人驾驶、智能家居等领域。

本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足快速、准确、可靠的测距需求。

2. 系统设计2.1 硬件设计超声波测距系统主要由超声波发射器、接收器和信号处理模块组成。

其中,超声波发射器用于发射超声波信号,接收器用于接收反射回来的超声波信号,信号处理模块用于处理接收到的信号并计算出测距结果。

2.2 超声波发射器超声波发射器采用压电陶瓷传感器作为能量转换元件,通过驱动电路将驱动信号转化为超声波信号并发射出去。

为了实现高精度的测距,超声波发射器需要具备较高的频率响应和较窄的方向性。

2.3 超声波接收器超声波接收器采用同样的压电陶瓷传感器作为能量转换元件,利用其能够将接收到的超声波信号转化为电信号。

为了实现高灵敏度的接收,超声波接收器需要具备较高的响应灵敏度和较低的噪声。

2.4 信号处理模块信号处理模块采用STM32单片机作为核心处理器,通过多通道模数转换器(ADC)将接收到的电信号转化为数字信号。

然后,通过数字信号处理算法对信号进行滤波、增益控制和时域分析等操作。

最后,利用测量原理计算出测距结果,并将结果显示在液晶显示器上。

3. 系统工作原理3.1 发射信号超声波发射器以一定的频率发射超声波信号,信号经过传播并与目标物体相互作用后,被目标物体反射回来。

3.2 接收信号超声波接收器接收到反射回来的超声波信号,并将其转化为电信号。

信号经过放大、滤波等处理后,送入信号处理模块。

3.3 信号处理信号处理模块使用STM32单片机对接收到的信号进行处理。

首先,通过ADC转化为数字信号。

然后,进行信号滤波,去除噪声和回波干扰。

接着,采用增益控制技术,对信号进行放大或衰减,以适应不同距离的测量需求。

基于STM32的红外测温系统设计

基于STM32的红外测温系统设计

目录中文摘要............................................................ - 2 -英文摘要............................................................ - 2 -1 引言......................................................... - 3 -1.1 课题研究的背景及意义.............................................. - 3 -1.2 数字式测温和红外测温技术的发展现状................................ - 4 -1.3红外测温的特点.................................................... - 5 -2 系统的方案设计与论证 ............................................. - 5 -2.1 单片机选择与论证.................................................. - 5 -2.2 红外传感器选择与论证.............................................. - 6 -2.3 显示模块选择与论证................................................ - 6 -3 系统硬件的设计................................................... - 6 -3.1 STM32F103系列微控制器概述....................................... - 7 -3.2 MLX90614红外测温模块设计........................................ - 9 -3.3 DS18B20温度检测模块设计 ........................................ - 10 -3.4 LCD1602显示模块设计............................................ - 11 -3.5 按键控制模块设计................................................. - 12 -3.6复位电路设计..................................................... - 13 -3.7电源电路设计..................................................... - 13 -3.8报警电路设计..................................................... - 14 -3.9本章总结......................................................... - 15 -4 系统的软件设计.................................................. - 15 -4.1 主程序流程图的设计............................................... - 16 -4.2 部分程序流程图的设计............................................. - 17 -4.3 程序实现......................................................... - 20 -5 系统调试........................................................ - 27 -5.1 系统软件调试..................................................... - 27 -5.2 系统硬件调试..................................................... - 30 -6 总结............................................................ - 31 -谢辞................................................ 错误!未定义书签。

基于STM32单片机的非接触式红外测温系统设计

基于STM32单片机的非接触式红外测温系统设计

价值工程0引言随着新冠疫情的全球性发展,传统接触式测温的测量方法和测量速度都已无法满足需求[1,2]。

相比于接触式测温,非接触式红外测温耗时短、灵敏度高、测量范围宽,而且不会对被测物体造成影响,因此非接触式红外测温已成为测量体温的主流方式[3,4]。

但目前市面上主要应用的测温系统大多只显示温度,不能直观地显示具体的测量部位,因此本文设计一种能同时显示热像图和具体温度的测温系统。

本文设计的非接触式红外测温系统采用STM32F103MCU 作为主控芯片,采用AMG8833红外热成像模块作为传感器,实现非接触式快速测温,并能够实时显示热像图,当温度超过设定阈值时能够报警,该系统使用方便快捷,具有一定的实用性。

1总体方案设计本系统主要基于STM32F103ZET6单片机开发平台,获取AMG8833红外热成像传感器采集的信息,完成信息计算与处理并显示被测物体温度,系统的整体设计方案如图1所示。

本设计主要实现的功能如下:①在TFT-LCD 显示屏上显示动态热像图;②在热像图的右侧显示三个数据(图像中的最大温度、最小温度和中间位置温度);③当中间位置温度大于预设值(系统默认预设值为50℃,显示在热像图下方)时,LED 灯亮,蜂鸣器响,表示警报;④通过按下设置按钮,可增加或减少预设值,每次增加或减少1℃;⑤按下复位按钮,系统还原到初始状态。

2系统硬件设计非接触式红外测温系统的硬件设计分为6个子模块,分别是AMG8833红外热成像模块、TFT-LCD 液晶显示模块、复位模块、按键模块、LED 模块和蜂鸣器模块。

AMG8833红外热成像模块:该模块可测量产生8*8的热像矩阵,通过I2C 通讯将数据传至MCU 。

在设计时将IIC_SCL 引脚与STM32的GPIOB6引脚连接,SDA 引脚与GPIOB7引脚连接,达到I2C 通讯的目的。

TFT-LCD 液晶显示模块:该模块采用RGB565编码,接收MCU 通过热像矩阵计算出的RGB 颜色矩阵,并实时显示热像图,同时可显示图像中的最大温度、最小温度和中间位置温度。

基于STM32万能学习型红外遥控器设计

基于STM32万能学习型红外遥控器设计

【摘要】红外遥控技术在目前市场上众多应用领域得到了较为广泛的运用。

红外遥控技术现已广泛的应用于在家用智能化家电的领域和工业化控制方面。

本系统设计采用嵌入式主控芯片来设计万能学习型红外遥控器,采用ARM Cortex-M3内核的STM32系列的芯片为核心部分,结合红外发射、接收模块电路、信号调制电路,独立键盘构成本系统。

从红外的发射与接收两个方面详细地介绍了红外无线传输原理,红外信号的编码解析、信号调制、信号发射与接收、解调与解码的原理。

本系统实现对不同编码方式(PWM\PPM)的红外信号的捕捉,解码、再生原红外信号,载波并发送红外信号,实现自学习型红外遥控器。

本系统所需功能的实现应用到多种电子产品研发技术,其中主要包含C语言高级语言编程技术、单片机开发应用技术和电子线路板设计技术等相关电子应用技术。

综合多种设计方案考量及其各个方面的因素,最终决定采用高性能、低成本、低功耗的ARM Cortex-M3内核的嵌入式芯片为系统的核心STM32主控芯片来设计,真正实现能对各种红外遥控信号进行捕捉和再生,真正实现万能学习型红外遥控器。

【关键词】STM32;红外遥控;C语言;智能;红外解码;红外编码;Learning infrared remote controlScience and Technology Practising College Fujian Normal University Electronic Information Engineering 120352010037 Li Weixiong Tutor: Wu Yunping[Abstract]Infrared remote control technology on the market at present many application fields has been widely used.Infrared remote control technology has been widely applied in the field of intelligent household appliances and industrial control.This system design USES embedded master control chip to design the universal learning infrared remote control, USES the ARM architecture (M3 STM32 series chip as the core part of the kernel, combined with infrared emission and receiving module circuit, signal modulation circuit, keyboard constitute the system independently.From two aspects of the emission and receiving of infrared in detail introduces the principle of infrared wireless transmission, infrared signal code parsing, modulation, signal transmitting and receiving, signal demodulation and decoding principle.This system realize the different encoding (PWM \ parts per million (PPM) of infrared signal capture, decoding, regeneration of the infrared signal, the carrier and send the infrared signal, realize self learning infrared remote control.The realization of the function of this system needed to apply to a variety of electronic products research and development technology, which mainly contains the C language programming in a high-level language technology, single-chip computer application technology and electronic circuit board design techniques and related electronic application technology.Integrated a variety of design considerations and the various aspects of factors, finally decided to adopt high performance, low cost, low power consumption of the ARM architecture (M3 the kernel of the embedded chip for the system at the core of the STM32 master control chip to design, realize to capture and various kinds of infrared remote control signal regeneration, truly universal learning infrared remote control.[Key Words] STM32;Infrared remote control;c language;Infrared decoding;Infrared remote coding;目录1概述 (3)1.1设计背景 (3)1.2设计目的 (3)1.3设计要求 (3)1.3设计方案选型 (3)1.4.1方案一:采用单片机(A T89C51)设计学习型红外遥控器 (3)1.4.2方案二:用STM32F103C8嵌入式芯片其红外发射接收模块电路构成学习型红外遥控器41.4.3方案的比较和选择 (4)2系统硬件设计 (5)2.1系统的总体设计 (5)2.2 STM32F103C8芯片介绍 (5)2.3 主要元器件介绍 (7)2.3.2 红外一体化接收头VS1838B (7)2.4系统各模块介绍 (8)2.4.1电源电路 (8)2.4.2复位电路 (9)2.4.3时钟电路 (9)2.4.4下载电路 (10)2.4.5 独立键盘电路 (10)2.4.6 红外发射电路 (11)2.4.7 红外接收电路 (12)3软件部分设计 (12)3.1 Keil uVision4 集成开发环境介绍 (12)3.2软件总架构 (13)3.2.1系统主程序流程图 (13)3.2.2主程序程序代码 (14)3.2.3 红外接收模块流程图 (15)3.2.4红外接收模块程序代码 (16)3.2.5 红外发射模块流程图 (17)3.2.6红外发射模块程序代码 (17)4总结 (18)5致谢 (18)参考文献............................................................................................................................... 错误!未定义书签。

《2024年基于STM32智能小车的设计与实现》范文

《2024年基于STM32智能小车的设计与实现》范文

《基于STM32智能小车的设计与实现》篇一一、引言随着科技的不断进步,智能小车作为一种集成了计算机、传感器和执行器等技术的产品,已经在各个领域得到了广泛的应用。

本文旨在设计并实现一款基于STM32微控制器的智能小车,通过对小车的硬件设计和软件编程进行详细的阐述,以期为相关领域的科研和实践提供一定的参考。

二、硬件设计1. 微控制器选择本设计选用STM32F4系列微控制器,该系列具有高性能、低功耗等特点,能够满足智能小车在复杂环境下的实时控制需求。

2. 传感器模块传感器模块包括红外避障传感器、超声波测距传感器、光电编码器等。

这些传感器能够实时获取小车的环境信息,为小车的智能控制提供数据支持。

3. 电机驱动模块电机驱动模块采用H桥电路,通过PWM信号控制电机的转速和方向。

同时,为了保护电机和电路,还设置了过流、过压等保护措施。

4. 电源模块电源模块采用锂电池供电,通过DC-DC转换器为小车各部分提供稳定的电源。

同时,为了方便充电,还设置了USB接口。

三、软件实现1. 开发环境搭建本设计采用Keil uVision5作为开发环境,通过JTAG或SWD 接口进行程序的烧录和调试。

2. 程序设计程序设计包括主程序、传感器数据处理程序、电机控制程序等。

主程序负责协调各部分的工作,传感器数据处理程序负责获取并处理传感器的数据,电机控制程序则根据数据处理结果控制电机的转速和方向。

3. 算法实现本设计采用PID算法进行电机控制,通过调整PID参数,使小车在各种环境下的运动更加稳定。

此外,还实现了路径规划算法和避障算法,使小车能够根据环境信息自主规划路径和避障。

四、系统测试与实现效果1. 系统测试在完成硬件设计和软件编程后,对智能小车进行了系统测试。

测试内容包括小车的运动性能、传感器数据的准确性、电机控制的稳定性等。

测试结果表明,本设计的智能小车具有良好的性能和稳定性。

2. 实现效果在实际应用中,本设计的智能小车能够根据环境信息自主规划路径、避障和执行其他任务。

使用irmp库创建的基于stm32的红外遥控例程+源代码+文档说明

使用irmp库创建的基于stm32的红外遥控例程+源代码+文档说明

使用irmp库创建的基于stm32的红外遥控例程+源代码+文档说明全文共四篇示例,供读者参考第一篇示例:使用irmp库创建的基于stm32的红外遥控例程引言红外遥控技术在现代生活中得到了广泛应用,无论是电视遥控、空调遥控还是其它家用电器遥控,都离不开红外遥控技术。

而在嵌入式系统中,基于STM32开发的红外遥控系统也广泛应用于各种智能家居、智能家电中。

本文将介绍如何使用irmp库创建一个基于STM32的红外遥控例程,并提供源代码和文档说明。

一、什么是irmp库irmp库是一个用C语言编写的红外接收器解码库,可以用于解码不同品牌、型号的红外遥控器信号。

它支持多种不同的协议,包括NEC、SONY、RC-5等。

irmp库可以很方便地在STM32系列的单片机中使用,实现红外信号的接收和解码。

二、STM32开发环境搭建在使用irmp库创建红外遥控例程之前,首先需要搭建STM32开发环境。

可以选择Keil、IAR等集成开发环境进行开发。

在安装好开发环境后,需要配置好对应的STM32系列的芯片支持,包括芯片型号、引脚配置、时钟设置等。

然后创建一个新的工程,并导入irmp库的源代码。

三、irmp库的使用irmp库的使用主要分为两个部分:初始化红外接收器和处理接收到的红外码。

首先需要在初始化阶段对红外接收器进行配置,包括选择引脚、设置定时器等。

然后就可以启动红外接收器,开始接收红外信号。

在接收到红外信号后,irmp库会自动对信号进行解码,并将解码后的红外码存储在一个全局变量中。

在接收到红外码后,可以通过对不同的红外码进行判断,实现不同功能的控制。

四、红外遥控例程的实现下面以一个简单的LED控制为例,来演示如何使用irmp库创建一个基于STM32的红外遥控例程。

假设我们要用红外遥控器控制一个LED灯的开关。

1. 创建一个新的工程,并导入irmp库的源代码。

2. 配置红外接收器的引脚和定时器。

3. 在主函数中启动红外接收器,并进入一个无限循环。

《2024年基于STM32智能小车的设计与实现》范文

《2024年基于STM32智能小车的设计与实现》范文

《基于STM32智能小车的设计与实现》篇一一、引言随着科技的不断发展,智能小车作为一种集成了多种先进技术的产品,已经在各个领域得到了广泛的应用。

本文将详细介绍基于STM32的智能小车的设计与实现过程,包括硬件设计、软件编程以及功能实现等方面。

二、硬件设计1. 微控制器选择在智能小车的硬件设计中,微控制器是核心部分。

本设计选用STM32系列微控制器,其具有高性能、低功耗、丰富的接口等特点,为小车的稳定运行提供了保障。

2. 传感器模块传感器模块是实现智能小车功能的关键部分。

本设计采用了超声波测距传感器、红外避障传感器、GPS定位模块等,以满足小车在运行过程中的测距、避障和定位等需求。

3. 电机驱动模块电机驱动模块是控制小车运动的核心部分。

本设计采用H桥电路驱动直流电机,通过PWM信号控制电机的速度和方向。

同时,为了保护电机,还设计了过流、过压等保护电路。

4. 电源模块电源模块为整个智能小车提供稳定的电源。

本设计采用锂电池供电,通过DC-DC转换器将电压稳定在合适的范围,以满足各模块的供电需求。

三、软件编程1. 开发环境及工具软件编程部分主要采用Keil uVision开发环境,以及STM32CubeMX等工具进行编程和调试。

这些工具具有强大的代码生成和配置功能,可以大大提高开发效率。

2. 程序设计程序设计主要包括主程序、传感器数据处理程序、电机控制程序等部分。

主程序负责整个系统的初始化、协调各模块的工作;传感器数据处理程序负责采集和处理传感器数据,为小车的运行提供依据;电机控制程序则根据数据处理结果,控制电机的速度和方向,实现小车的运动控制。

四、功能实现1. 测距功能通过超声波测距传感器,智能小车可以实时检测前方障碍物的距离。

当距离小于设定阈值时,小车会自动减速或避障。

2. 避障功能红外避障传感器用于检测小车周围的障碍物。

当检测到障碍物时,小车会根据预设的避障算法,自动调整行驶方向,避开障碍物。

3. 定位功能GPS定位模块使智能小车具备定位功能。

基于STM32的无线红外测温系统设计

基于STM32的无线红外测温系统设计

基于STM32的无线红外测温系统设计吴海兄,丁哲文,陈伟明,杜,云舒,吴倩,蒋一凡,王标(桂林电子科技大学机电工程学院,广西桂林,541004 )摘要:论文基于疫情的需求,设计了一种简易、可靠、实用的红外测温系统,该系统以STM32单片机为核心微处理器,结 合高精度红外测温传感器、OLED 显示器、激光灯、蜂鸣器等外围设备进行设计,并且采用主、从一体的无线蓝牙穿透模块连接单片机和计算机,完成数据的无线传输,以便于记录和处理等。

该系统测量准确、速度快,适用于人员流量大且需要快速数据记录的温度测量场合,如学校、车站、医院等,以及可用于设备远程温度数据监控记录等。

关键词:STM32 ;红外测温;无线传输The design of wireless infrared temperature measuring systembased on STM32Wu Haixong, Ding Zhewen, Chen Weiming, Du Yunshu, Wu Qian, Jiang Yifan, Wang Biao(School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, GuilinGuangxi, 541004)Abstract :Paper based on the demand of the epidemic, design a simple, reliable, practical infrared temperature measurement system, the system with STM32 MCU as the core processor, combined with high precision, OLED displays, laser infrared measuring temperatore sensor, buzzer and other peripheral equipment design, and, from the integration of wireless bluetooth transmission module is used to connect single chip microcomputer and computer, the data wireless transmission, in order to record and process, etc. The system is accurate and fast, suitable for temperature measurement occasions with large personnel flow and need rapid data recording, such as schools, stations, hospitals, etc., and can be used for remote temperature data monitoring and recording of equipment.Keyword : STM32;infrared measuring temperature;wireless transmissiono 引言2020年爆发的新型冠状病毒疫情,主要由体温症状 (N 37. 3-C )来发现疑似型冠状病毒感染者,红外测温设备迅 速被应用到医院、车站、超市等各个公共场合,用于发现、排査可能感染者,这正是得益于红外测温非接触性、响应快的特点.与传统接触式测温相比,红外测温具有非接触性、响应 快、灵敏度高、范围广等优势,近些年来发展迅速,便携式红外测温仪已经广泛应用于各个领域,如医疗、工业、农业等。

基于STM32的红外测温仪的设计与实现

基于STM32的红外测温仪的设计与实现

基于STM32的红外测温仪的设计与实现红外测温仪是一种将红外技术与微电子技术相结合的新型温度测量仪器。

与传统接触式测温仪器相比,具有测温精度高、非接触、不影响被测对象温度场、响应速度快及稳定性好等一系列优点,在电力、石油、化工、医疗等领域得到广泛应用[1]。

热释电红外测温仪是利用热释电效应工作的一种新型红外测温仪。

与其他传统测温仪相比,具有不需制冷、能在室温下工作和光谱响应宽等优点,且其灵敏度高、响应速度快、抗干扰能力强[2]。

本文利用热释电探测器,结合32 bit ARM核处理器低功耗、高性能和低成本的优点,设计了一个以ARM微控制器STM32为核心的红外测温仪。

1 红外测温的原理一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量,其辐射能量的大小及其波长的分布与其表面温度有密切关系,由维恩位移定律可知,温度为Tc,的物体,对应于波长为λ1和λ2的单色辐射功率之比Z 由下式表示:2 总体构成由于本系统需要测量的是高温物体的表面温度,故采用比色测温方案,即利用同一被测物体在两个波长下的单色辐射亮度之比随温度变化这一特性作为其测温原理。

红外测温仪的结构组成如图1所示,主要由光学系统、红外探测器、信号处理和显示输出等部分组成。

光学系统完成光线的收集和视场大小的确定,红外探测器用来将聚焦在探测器上的红外能量转换成电信号,经放大、滤波等进行信号调理,然后送至微控制器进行模数转换及信号处理,最后再经温度补偿和标定后转换为被测目标的温度并用LCD显示出来。

2.1 微控制器STM32STM32系列基于为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。

并带有512 KB的高速Flash存储器,其内部集成了3个12 bit 的ADC,1个2通道12 bit DAC,有多达11个定时器,其中有两个16 bit带死区控制和紧急刹车,用于电机控制的PWM高级控制定时器。

利用此控制器可快速进行数字滤波、温度补偿等数据处理任务[3]。

(完整word版)基于STM32的红外测距系统设计

(完整word版)基于STM32的红外测距系统设计

基于STM32的红外测距系统设计摘要随着现代科学技术的发展,出现了很多新的领域,为了实现对物体近距离、高精度的无线测量,本论文对红外测距领域进行了研究。

本论文采用单片机作为处理器,编写A/D转换程序及LCD显示程序,红外传感器作为工作模块,完成一套高精度显示、实时测量的红外测距系统.本系统结构简单、体积小、测量精度高、成本低、方便使用。

本论文所介绍的是一种基于STM32单片机并运用日本夏普公司型号为GP2Y0A21的红外传感器所设计的红外测距系统。

首先,介绍红外线及红外传感器的分类及应用、STM32单片机的简介与功能;其次,阐述红外测距系统工作原理及基本结构并对单片机、红外传感器、LCD 液晶显示屏的工作电路做了介绍;再次,对系统进行了整体设计构想,先后对系统硬件及软件进行设计,并对整个系统的功能进行了调试。

最后对整个设计进行总结,说明红外测距系统实现的可行性。

关键词红外测距;单片机;A/D转换;LCDSTM32-based infrared ranging system designAbstractWith the development of modern science and technology,there are many new areas, in order to achieve the object close range, high—precision wireless measurement,this topic of infrared ranging is studied。

This topic using SCM as the processor, to write A/D converter and LCD display program,an infrared sensor as a working module,complete set of precision display,real-time measurement of infrared ranging system。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于STM32的红外测距系统设计摘要随着现代科学技术的发展,出现了很多新的领域,为了实现对物体近距离、高精度的无线测量,本论文对红外测距领域进行了研究。

本论文采用单片机作为处理器,编写A/D转换程序及LCD显示程序,红外传感器作为工作模块,完成一套高精度显示、实时测量的红外测距系统。

本系统结构简单、体积小、测量精度高、成本低、方便使用。

本论文所介绍的是一种基于STM32单片机并运用日本夏普公司型号为GP2Y0A21的红外传感器所设计的红外测距系统。

首先,介绍红外线及红外传感器的分类及应用、STM32单片机的简介与功能;其次,阐述红外测距系统工作原理及基本结构并对单片机、红外传感器、LCD液晶显示屏的工作电路做了介绍;再次,对系统进行了整体设计构想,先后对系统硬件及软件进行设计,并对整个系统的功能进行了调试。

最后对整个设计进行总结,说明红外测距系统实现的可行性。

关键词红外测距;单片机;A/D转换;LCDSTM32-based infrared ranging system designAbstractWith the development of modern science and technology, there are many new areas, in order to achieve the object close range, high-precision wireless measurement,this topic of infrared ranging is studied. This topic using SCM as the processor, to write A/D converter and LCD display program, an infrared sensor as a working module, complete set of precision display, real-time measurement of infrared ranging system. This system has the advantages of simple structure, small size and high accuracy, low cost and convenient use.This paper introduced is based STM32 microcontroller and use of Japan's Sharp Corporation model GP2Y0A21 infrared sensor designed infrared ranging system. Firstly, introduce the classification and application of infrared distance measurement,it also introduces the function of STM32 microcontroller. Then illustrate the work theory and basic structure of it and introduce the LCD screen and work circuit. Again, the system has carried on the overall design idea, successively on the system hardware and software design, and probes into the function of the whole system debugging. Finally, summarize the entire design to illustrate the feasibility of infrared distance measurement.Keywords Infrared range, SCM, A/D converter, LCD目录摘要 (I)Abstract (II)第1章绪论 (5)1.1 课题研究背景及意义 (5)1.2 本论文主要研究内容 (5)第2章红外测距系统硬件设计 (8)2.1 红外测距系统的工作原理 (8)2.1.1 时间差法测距原理 (8)2.1.2 反射能量法测距原理 (8)2.1.3 相位法测距原理 (8)2.1.4三角法测距原理 (9)2.2 红外测距系统的基本结构 (9)2.2.1 红外传感器模块 (11)2.2.2 单片机处理模块 (11)2.2.3 LCD显示模块 (18)2.3 本章小结 (19)第3章红外测距系统的软件设计及功能调试 (21)3.1 红外测距系统工作流程 (21)3.2 软件程序设计 (22)3.3 硬件功能调试 (22)3.4 软件功能调试 (23)3.5 测量数据绘图 (24)3.6 本章小结 (26)结论 (28)致谢 (30)参考文献 (31)附录A (33)附录B (40)附录C (43)第1章 绪论1.1 课题研究背景及意义随着科学技术的不断发展,在测距领域也先后出现了激光测距、微波雷达测距、超声波测距及红外线测距等方式。

激光测距是以激光为传输信号对目标物体进行精确的测量。

激光测距在工作开始瞬间向物体发射出一束很细的激光,并由接受端接收物体反射回来的激光束,同时计时器通过测定激光束从发射到接收的时间进而计算出从测量者到物体的距离。

该方法对使用环境要求较高,应用范围较少。

微波雷达测距是军事和工业上开发采用的技术,其技术要求严格和设备价格非常之高,在民用市场上几乎得不到应用。

超声波测距原理与激光测距原理相似,只不过是以声音为传输介质,但是此方法灵活性差、组件造价相对昂贵,在市场开拓空间并不大。

作为一种应用广泛、测量精度高的测量方式,红外测距利用红外线传播时不扩散、折射率小的特性,根据红外线从发射模块发出到被物体反射回来被接受模块接受所需要的时间,采用相应的测距公式来实现对物体距离的测量。

红外测距最早出现于上世纪60年代,是一种以红外线作为传输介质的测量方法。

红外测距的研究有着非比寻常的意义,其本身具有其他测距方式没有的特点,技术难度相对不大,系统构成成本较低、性能良好、使用方便、简单,对各行各业均有着不可或缺的贡献,因而其市场需求量更大,发展空间更广。

红外测距仪是指用调制的红外光进行精密的距离测量,测量范围一般为1-5公里,在100米以内的范围内则超声波测距更有优势,但是超声波测距无法检测到1米以内的区域距离,而红外测距可以精准的测出这一段距离,本论文研究的就是这一种情况的红外线测距。

1.2 本论文主要研究内容红外线别名红外光或者热辐射线,是一种波长比红色可见光(约-47.510⨯㎜)较长、比微波(约1㎜)较短的电磁波。

以波长长度为基准,红外线可分为三部分,即近红外线是波长为-3-30.7510 3.010⨯⨯:㎜之间;中红外线是波长为-3-23.010 4.010⨯⨯:㎜之间;远红外线是波长为-24.010 1.0⨯:㎜之间。

物质本身温度在不低于绝对零度(-273.15℃)的情况下均可以产生红外线。

它不能引起人的视觉反应,有显著的热效应(易被物体吸收而转化为内能)。

能产生反射、折射、干涉、衍射等光学现象。

不易被云雾等悬浮微粒散射而具有较强的穿透力。

凭借着诸多优点,红外线在军事、人造卫星以及工业、卫生、科研等工作领域方面的应用日益广泛,有着不可替代的作用及研究价值。

红外测距传感器是以红外线为传输介质的精确测量系统,主要应用于现代科学技术、国防军队建设、工业和农业等领域。

按照其功能可以分为五种类型:(1)辐射计,又称“发射计”,是一种用于电磁辐射和光谱测量的装芯片封装为LQFP封装;6代表工作温度范围为-40—85℃。

第2章 红外测距系统硬件设计2.1 红外测距系统的工作原理2.1.1 时间差法测距原理时间差法测距原理是将红外测距传感器的红外发射端发送信号与接收端接受信号的时间差t 写入单片机中,通过光传播距离公式来计算出传播距离L ,见公式(2-1)。

t L c =* (2-1)式中c 是光的传播速度为8310m /s ⨯ 。

2.1.2 反射能量法测距原理反射能量法是由发射控制电路控制发光元件发出信号(通常为红外线)射向目标物体,经物体反射后传回系统的接收端,通过光电转换器接收的光能量大小进而计算出目标物体的距离L ,见公式(2-2)。

3P L Kd ⎛⎫= ⎪⎝⎭(2-2) 式中P 为接收端接收到的能量,K 为常数,其大小由发射系统输出功率、转换效率决定,d 为被测目标漫反射率。

2.1.3 相位法测距原理相位测距法是利用无线电波段的频率,对红外激光束进行幅度调制并测定调制光往返一次所产生的相位延迟ϕ ,再根据调制光的波长,换算出此相位延迟所代表的距离D ,此方式测量精度非常之高,相对误差可以保持在百分之一以内,但要求被测目标必须能主动发出无线电波产生相应的相位值。

见公式(2-3)。

/2D c ϕω= (2-3)式中c 是光的传播速度为8310m /s ⨯,是调制信号的角频率。

2.1.4三角法测距原理三角法测距原理是由一个红外发射管和一个PSD(Position Sensing Device 位置敏感检测装置)以及相应的计算电路来实现的。

而夏普公司的图1 三角法测距原理红外测距传感器首先通过红外发射管发出红外线,遇到障碍物反射回来落在PSD上形成了一个等腰三角形。

而两个底角是固定的,由发射管来确定,且红外发射管到PSD的距离为已知,此时便可运用三角函数来推算出高,即我们要测量的距离。

本论文就是采用此原理来实现对物体距离的测量。

2.2红外测距系统的基本结构红外测距系统主要有红外传感器模块(包括红外发射端和红外接收端两部分)、单片机处理模块、LCD显示模块三大部分组成。

如图2所示。

图2 红外测距系统基本结构图3为红外测距系统整体硬件原理图,对应系统组成的三大部分,由图可知,系统工作核心为单片机,红外传感器及LCD液晶显示屏分别接收单片机发出的指令来实现各自的功能,最后结合各个部分的功能来实现整个红外测距系统的运作。

对于单片机、红外传感器、LCD液晶显示屏的工作原理及实现功能在下文会一一对其进行介绍。

2.2.1红外传感器模块本模块选用的是由日本夏普公司研发的型号为GP2Y0A21的红外传感器。

引脚图如图4所示。

此红外传感器一共有三个引脚,其中VCC(电源电压)为信号接入,接入电源电压为 4.5-5.5V,单片机5V工作电压即可;GND为接地引脚,连接地线即可;Vout为模拟电压输出引脚,此引脚输出的模拟电压值为0.4-2.4V,相对应的距离范围是80-10㎝。

相关文档
最新文档