高中化学奥林匹克竞赛辅导讲座:第3讲化学热力学基础
2024《化学热力学基础》PPT课件
《化学热力学基础》PPT课件目录CONTENCT •引言•热力学基本概念与定律•热化学与化学反应的热效应•熵与熵增原理•自由能与化学平衡•相平衡与相图•结论与展望01引言化学热力学的定义与重要性定义化学热力学是研究化学变化过程中热量和功的相互转化以及有关热力学函数的科学。
重要性化学热力学是化学、化工、材料、能源等领域的重要基础,对于理解化学反应的本质、优化化学反应条件、开发新能源等具有重要意义。
化学热力学的发展历史早期发展19世纪初,随着工业革命的发展,热力学理论开始形成,并逐步应用于化学领域。
经典热力学建立19世纪中叶,经典热力学理论建立,包括热力学第一定律、热力学第二定律等基本定律被提出。
现代热力学发展20世纪以来,随着量子力学、统计力学等理论的发展,化学热力学在微观层面上的研究取得了重要进展。
课程目标与学习内容课程目标掌握化学热力学的基本概念、基本原理和基本方法,能够运用热力学知识分析和解决实际问题。
学习内容包括热力学基本概念、热力学第一定律、热力学第二定律、化学平衡、相平衡、化学反应热力学等。
通过学习,学生将了解热力学在化学领域的应用,培养分析和解决化学问题的能力。
02热力学基本概念与定律80%80%100%系统与环境系统是指我们研究对象的那一部分物质或空间,具有明确的边界。
环境是指与系统发生相互作用的其他部分,是系统存在和发展的外部条件。
系统与环境之间通过物质和能量的交换而相互影响。
系统的定义环境的定义系统与环境的相互作用状态是系统中所有宏观物理性质的集合,用于描述系统的状况。
状态的概念状态函数的定义常见状态函数状态函数是描述系统状态的物理量,其值只取决于系统的始态和终态,与路径无关。
温度、压力、体积、内能等。
030201状态与状态函数热力学第一定律热力学第一定律的表述热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
热力学第一定律的数学表达式ΔU=Q+W,其中ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示外界对系统所做的功。
2023年高一竞赛辅导讲座热力学基础
热力学基础11.热力学有关知识热力学是专门研究能量互相转变过程中所遵照旳法则旳一门学科。
将热力学旳定律、原理、措施用来研究化学过程以及伴随这些化学过程而发生旳物理变化, 就形成了化学热力学。
重要处理旳问题:某物质或某混合物能否在一定条件下发生化学变化;假如发生化学变化, 伴伴随该反应将有多少能量变化;反应进行旳程度。
热力学第一定律: 自然界一切物质都具有能量, 能量有多种不一样旳形式, 可以从一种形式转化为另一种形式, 从一种物体传递给另一种物体, 在转化和传递中能量旳总数量不变。
某体系内部旳能量称为热力学能, 即内能, 用U表达。
体系旳热力学能旳变化等于以功和热旳形式传递旳热量: △U = Q + W。
热由环境流入体系, Q>0;环境对体系做功, W>0。
H(焓)= U + pV焓是一种状态函数, 其数值与体系中物质旳量成正比, 是体系各部分旳总和。
△H = QR, 表达封闭体系, 恒压和不作其他功旳条件下发生变化时, 吸取或放出旳热量等于体系焓旳变化。
2.化学反应中旳能量变化一般体现为热量旳变化, 用符号△H表达, △H<0, 规定为放热反应。
△H>0, 规定为吸热反应。
吸热反应: C(固)+ H2O(气)= H2(气)+CO(气)△H=131.5kJ/mol放热反应: C(固)+ O2(气)= CO2(气)△H= -393.5kJ/mol3. 热化学方程式表达化学反应与热效应关系旳方程式叫做热化学方程式。
⑴在化学方程式各物质旳化学式背面写明各物质旳汇集状态(气、液、固)。
⑵在方程式右边写出热量变化旳数值, △H = ?⑶方程式中计量数表达各物质旳物质旳量之比, 可认为分数, 计量数变化时, △H必须跟着变化。
⑷两个热化学方程式相加减时, △H同步相加减。
4.盖斯定律:不管化学过程是一步完毕或分为数步完毕, 这个过程中旳热效应相似, 即化学反应中旳焓变只决定于始态和终态, 而和变化途径无关。
高中化学奥林匹克竞赛辅导讲座(三)
高中化学奥林匹克竞赛辅导讲座(三)第7讲化学反应速率与化学平衡【竞赛要求】反应速率基本概念。
反应级数。
用实验数据推求反应级数。
一级反应积分式及有关计算(速率常数、半衰期、碳-14法推断年代等等)。
阿累尼乌斯方程及计算(活化能的概念与计算;速率常数的计算;温度对速率常数影响的计算等)。
活化能与反应热的关系。
反应机理一般概念。
推求速率方程。
催化剂对反应影响的本质。
标准自由能与标准平衡常数。
平衡常数与温度的关系。
平衡常数与转化率。
利用平衡常数的计算。
热力学分解温度(标态与非标态)。
克拉贝龙方程及其应用(不要求微积分)。
【知识梳理】一、化学反应速率(一)反应速率及其表示方法在化学反应中,某物质的浓度(物质的量浓度)随时间的变化率称反应速率。
反应速率只能为正值,且并非矢量。
1、平均速率用单位时间内,反应物浓度的减少或生成物浓度的增加来表示。
= (7-1)当△c为反应物浓度的变化时,取负号;△c为生成物浓度的变化时,取正号。
如:2 N2O5 4 NO2 O2反应前浓度/ mol·dm-3 2.10 0 0100s后浓度/ mol·dm-3 1.95 0.30 0.075浓度变化(△c)/ mol·dm-3 – 0.15 0.30 0.075变化所需时间 (△t)/s 100= –= –= 1.5×10-3 mol·dm-3·s-1= = = 3.0×10-3 mol·dm-3·s-1= = = 7.5×10-4mol·dm-3·s-1显然,以上计算所得的反应速率是在时间间隔为△t时的平均速率,他们只能描述在一定时间间隔内反应速率的大致情况。
2、瞬时速率若将观察的时间间隔△t缩短,它的极限是△t0,此时的速率即为某一时刻的真实速率——瞬时速率:对于下面的反应来说,a A b B = g G h H其反应速率可用下列任一表示方法表示:–,–,,注意:这几种速率表示法不全相等,但有下列关系:– · = –· = · = ·(7-3)瞬时速率可用实验作图法求得。
高中化学奥林匹克竞赛辅导讲座第3讲化学热力学基础
高中化学奥林匹克竞赛辅导讲座第3讲化学热力学根底【竞赛要求】热力学能(内能)、焓、热容、自由能和熵的概念。
生成焓、生成自由能、标准熵及有关计算。
自由能变更与反响的方向性。
吉布斯-亥姆霍兹方程极其应用。
范特霍夫标准熵及其应用。
热化学循环。
【学问梳理】一、根本概念1、体系和环境体系:我们探讨的对象,称为体系。
环境:体系以外的其它局部,称为环境。
例如:我们探讨杯子中的H2O,则H2O是体系,水面上的空气,杯子皆为环境。
当然,桌子、房屋、地球、太阳也皆为环境。
但我们着眼于和体系亲密相关的环境,即为空气和杯子等。
又如:若以N2和O2混合气体中的O2作为体系,则N2是环境,容器也是环境。
依据体系和环境之间的物质、能量的交换关系,将体系分为三类:(1)放开体系:既有物质交换,也有能量交换。
(2)封闭体系:无物质交换,有能量交换。
(3)孤立体系:既无物质交换,也无能量交换。
例如:一个放开瓶口,盛满热水的瓶子,水为体系,则是放开体系; 若加上一个盖子,则成为封闭体系; 若将瓶子换成杜瓦瓶(保温瓶),则变成孤立体系。
热力学上探讨得多的是封闭体系。
2、状态和状态函数状态:由一系列表征体系性质的物理量所确定下来的体系的一种存在形式,称为体系的状态。
状态函数:确定体系状态的物理量,是状态函数。
例:某志向气体体系n = 1 mol,p = 1.013×105 Pa,V = 22.4 dm3,T = 273 K这就是一种存在状态(我们称其处于一种标准状态)。
是由n,p,V,T所确定下来的体系的一种状态,因此n,p,V,T都是体系的状态函数。
状态肯定,则体系的状态函数肯定。
体系的一个或几个状态函数发生了变更,则体系的状态也要发生变更。
始态和终态:体系变更前的状态为始态;变更后的状态为终态。
状态函数的变更量:状态变更始态和终态一经确定,则状态函数的变更量是肯定的。
例如:温度的变更量用 △T 表示, 则 △T = T 终- T 始 同样理解 △n , △p , △V 等的意义。
江苏省泰兴中学二中化学竞赛培训讲义化学热力学基础
化学热力学根底【竞赛要求】热力学能〔内能〕、焓、热容、自由能和熵的概念。
生成焓、生成自由能、标准熵及有关计算。
自由能变化与反响的方向性。
吉布斯亥姆霍兹方程极其应用。
范特霍夫标准熵及其应用。
热化学循环。
【学问梳理】一、根本概念1、体系和环境体系:我们争论的对象,称为体系。
环境:体系以外的其它局部,称为环境。
例如:我们争论杯子中的H2O,那么H2O是体系,水面上的空气,杯子皆为环境。
当然,桌子、房屋、地球、太阳也皆为环境。
但我们着眼于和体系亲密相关的环境,即为空气和杯子等。
又如:假设以N2和O2混合气体中的O2作为体系,那么N2是环境,容器也是环境。
依据体系和环境之间的物质、能量的交换关系,将体系分为三类:〔1〕放开体系:既有物质交换,也有能量交换。
〔2〕封闭体系:无物质交换,有能量交换。
〔3〕孤立体系:既无物质交换,也无能量交换。
例如:一个放开瓶口,盛满热水的瓶子,水为体系,那么是放开体系; 假设加上一个盖子,那么成为封闭体系; 假设将瓶子换成杜瓦瓶〔保温瓶〕,那么变成孤立体系。
热力学上争论得多的是封闭体系。
2、状态和状态函数状态:由一系列表征体系性质的物理量所确定下来的体系的一种存在形式,称为体系的状态。
状态函数:确定体系状态的物理量,是状态函数。
例:某抱负气体体系n = 1 mol,p = 1.013×105 Pa,V = dm3,T = 273 K这就是一种存在状态〔我们称其处于一种标准状态〕。
是由n,p,V,T所确定下来的体系的一种状态,因而n,p,V,T都是体系的状态函数。
状态肯定,那么体系的状态函数肯定。
体系的一个或几个状态函数发生了变化,那么体系的状态也要发生变化。
始态和终态:体系变化前的状态为始态;变化后的状态为终态。
状态函数的转变量:状态变化始态和终态一经确定,那么状态函数的转变量是肯定的。
例如:温度的转变量用 △T 表示, 那么 △T = T 终- T 始 同样理解 △n , △p , △V 等的意义。
2021届高中化学竞赛理论辅导课件-物理化学(入门)统计热力学初步
引言
• 经典统计力学
以经典力学为基础处理粒子运动,建立了经典统计 力学,即Maxwell-Boltzmann统计。
• 量子统计力学
以量子力学为基础处理粒子运动,建立了两种量子统 计力学,分别适用于不同的量子体系,即Bose-Einstein 统计和Fermi-Dirac统计。 • 本章主要介绍Maxwell-Boltzmann统计,简称麦-玻统计 1. 麦-玻统计比较简单。 2. 现在的麦-玻统计已渗入不少量子力学的成果。 3. 在一定条件下,通过适当的近似,三种统计方法得出 几乎相同的统计结果。 4. 麦-玻统计基本上可以说明化学中所遇到的一般问题。
注意:这两种原理的标志是“分类”和“分步骤”,处 理问题时要善于区别。
2020年9月20日
§6-1 粒子体系统计分布的基本知识
2 排列公式
从n个不同元素中任取m (m≦ n)个进行排列,位置1有 n 种选择,位置2有 n-1 种选择……等等,它们之间是 分步骤的关系。
全排列 (m=n):
Pnn =n (n-1) (n-2) …… 3 ×2 ×1 = n! 选排列(m< n):
分布一
分布二
ε4 = 3ω
_________
__________
ε3
= 2ω
____O____
__________
ε2 =
ω
_________
___O__O__ ε1 = 0
__O_O_O_
___O__O__
分子是可别的:
仍然只有两种分布(宏观状态) ,但分布一有4种分布 样式(微观状态) ,分布二有6种分布样式(微观状 态) , = 10 。
2020年9月20日
2020-2021高中化学竞赛化学热力学初步课件共124张
反应进度
化学反应计量式:
aA bB yY zZ
0 aA bB yY zZ 0 BB
B
B —物质B的化学计量数
νA=-a, νB=-b, νY=y, νZ=z
反应进度:
nB nB (t) nB (0) 单位是mol
B
B
N2g 3H2g 2NH3g
t0时 nB/mol 3.0 10.0
故: U宇宙 = U体 + U环 = 80 + ( -80) = 0
任何形式的能都不能凭空产生、也不能凭空消失,宇 宙(环境 + 体系)的能量是恒定的。
例:理想气体等温膨胀过程
途径不同,完成同一过程时,体系的功不相等。
再看两种途径下的热量 Q: 由于是理想气体体系T = 0,所以,U = 0。 A 途径: U = Q – W, Q = U + W= 0 + 1200 = 1200 (J) B 途径:Q = U + W= 0 + 1600 = 1600 (J)
在恒温、恒压下, p V = ngRT H= U+ p V = U+ ngRT
3. 反应热的测量
(1) 弹式量热计
弹式量热计适用于气体以及有机化合物的燃烧 反应,是恒容反应热。
(2)杯式量热计
Qp = T(Cp + C) Cp:产物的热容,指产物升高 1K 所需要的热量。 C:量热计常数,整个量热计 升高 1K 所需要的热量。
U = 0
结果发现,膨胀完毕后,水浴的温 度没有变化。 T = 0,说明体系与 环境之间无热交换,Q = 0。又因 是向真空膨胀,P外 = 0,所以 W = P外·V = 0。
5-3. 热 化 学
把热力学第一定律具体应用于化学反应中,讨论 和计算化学反应的热量变化,这门学科称为热化学。
江苏省泰兴中学二中化学竞赛培训讲义:化学热力学基础
化学热力学基础【竞赛要求】热力学能(内能)、焓、热容、自由能和熵的概念.生成焓、生成自由能、标准熵及有关计算。
自由能变化与反应的方向性。
吉布斯-亥姆霍兹方程极其应用.范特霍夫标准熵及其应用。
热化学循环。
【知识梳理】一、基本概念1、体系和环境体系:我们研究的对象,称为体系。
环境:体系以外的其它部分,称为环境。
例如:我们研究杯子中的H2O,则H2O是体系,水面上的空气,杯子皆为环境。
当然,桌子、房屋、地球、太阳也皆为环境。
但我们着眼于和体系密切相关的环境,即为空气和杯子等.又如:若以N2和O2混合气体中的O2作为体系,则N2是环境,容器也是环境。
按照体系和环境之间的物质、能量的交换关系,将体系分为三类:(1)敞开体系:既有物质交换,也有能量交换.(2)封闭体系:无物质交换,有能量交换。
(3)孤立体系:既无物质交换,也无能量交换。
例如:一个敞开瓶口,盛满热水的瓶子,水为体系,则是敞开体系;若加上一个盖子,则成为封闭体系; 若将瓶子换成杜瓦瓶(保温瓶),则变成孤立体系。
热力学上研究得多的是封闭体系。
2、状态和状态函数状态:由一系列表征体系性质的物理量所确定下来的体系的一种存在形式,称为体系的状态。
状态函数:确定体系状态的物理量,是状态函数.例:某理想气体体系n = 1 mol,p = 1。
013×105 Pa,V = 22。
4 dm3,T = 273 K这就是一种存在状态(我们称其处于一种标准状态).是由n,p,V,T 所确定下来的体系的一种状态,因而n,p,V,T都是体系的状态函数。
状态一定,则体系的状态函数一定.体系的一个或几个状态函数发生了变化,则体系的状态也要发生变化。
始态和终态:体系变化前的状态为始态;变化后的状态为终态。
状态函数的改变量:状态变化始态和终态一经确定,则状态函数的改变量是一定的。
例如:温度的改变量用△T表示, 则△T = T终-T始同样理解△n,△p, △V等的意义。
高中化学竞赛:化学热力学讲义
(3)体积功 体系反抗外界压强发
生体积变化时产生的功。 W=F·L=p外·S·L
=p外V
=p外(V2-V1)
热力学规定: (1)体系吸热:Q>0; (2)体系放热:Q<0; (3)体系对环境做功: W<0; (4)环境对体系做功: W>0; (5)体积功: W=p×∆V;
例题:如右图所示,理想气体由
1、反应的方向
指定条件下,正反应可否自发进行。
2、反应的限度
正反应如果能进行,则反应进行的限度?
3、反应过程的能量转换
反应放热?反应吸热?
三、化学热力学解决的问题 4、反应机理
反应是如何进行的?
5、反应速率
反应进行的快慢? 化学热力学回答前3个问题,不能回答后 两个问题,后两个问题由化学动力学等回答。
3、过程和途径
(1)过程:体系状态发生变化的经过。
③恒容过程:始态、终态容积相等,并且 过程中始终保持这个容积。
3、过程和途径
(2)途径:体系状态变化过程中所采取的每 一种具体方式。每一种状态变化可以有不同 的途径。
二、热力学第一定律 1、热和功
(1)热:体系与环境间由于存在温差而传递的能量。 (2)功:体系与环境间除热之外以其它形式传递的 能量。热力学中分为体积功和非体积功。
环境是除划定为研究系统而外的整个物质 世界,因而它的温度和压力可认为恒定不变。 ①环境温度:298.15 K ②环境压力:标准大气层
p=760 mmHg=1 atm=1.01325×105 Pa 热力学标准压力p
2、状态和状态函数
(1)状态:体系的宏观性质的综合表现; (2)状态函数:描述和确定状态性质的物理量, 例如p,V,T等。
热力学第一定律
一、基本概念
2023年高中化学奥林匹克竞赛专题练习专题三化学热力学基础
专题三 化学热力学基础学号 姓名 得分1、25℃,KNO 3在水中的溶解度是6mol ·dm -3,若将1 mol 固体KNO 3置于水中,则KNO 3变成盐溶液过程的ΔG 的符号为_____________,ΔS 的符号为_____________。
2、已知下列反映 :H 2(g )= 2H (g ) △H = +Q 1 ;1/2O 2(g )= O (g ) △H = +Q 22H (g )+ O (g )= H 2O (g ) △H = -Q 3 ;H 2O (g )= H 2O (l ) △H = -Q 4 H 2(g )+ 1/2O 2(g )= H 2O (l ) △H = -Q 5试指出Q 1、Q 2、Q 3、Q 4、Q 5的关系 。
3、假设反映H 2 (g)−→− 2 H (g) 的内能变化ΔU 与键能ΔH H-H 相等,已知ΔH H-H 为433.2 kJ ·mol -1 ,则键焓ΔH 是 kJ ·mol -1 。
4、298 K 时,生成气态水的Δf G 0m = -228.6 kJ ·mol -1,Δr S 0m = -44.4 J ·mol -1·K -1, 则其Δf H 0m 为_________________________。
5、27℃时,将100g Zn 溶于过量稀硫酸中,反映若分别在开口烧杯和密封容器中进行,哪种情况放热较多?多余多少?6、已知下列反映的焓变为: H 2 (g) +21I 2(s) = HI (g) Δr H 0m = 25.9 kJ ·mol -1 21H 2 (g) = H (g)Δr H 0m = 218 kJ ·mol -1 21I 2(g) = I (g) Δr H 0m = 75.7 kJ ·mol -1 I 2 (s) = I 2 (g)Δr H 0m = 62.3 kJ ·mol -1计算反映 H (g) + I (g) = HI (g) 的焓变Δr H 0m 。
(10)2007高中化学奥林匹克竞赛辅导资料第十章化学热力学基础
2007年新化一中高中化学奥林匹克竞赛辅导资料第十章化学热力学基础【竞赛要求】热力学能(内能)、焓、热容、自由能和熵的概念。
生成焓、生成自由能、标准熵及有关计算。
自由能变化与反应的方向性。
吉布斯-亥姆霍兹方程极其应用。
范特霍夫标准熵及其应用。
热化学循环。
【知识梳理】一、基本概念1、体系和环境体系:我们研究的对象,称为体系。
环境:体系以外的其它部分,称为环境。
例如:我们研究杯子中的H2O,则H2O是体系,水面上的空气,杯子皆为环境。
当然,桌子、房屋、地球、太阳也皆为环境。
但我们着眼于和体系密切相关的环境,即为空气和杯子等。
又如:若以N2和O2混合气体中的O2作为体系,则N2是环境,容器也是环境。
按照体系和环境之间的物质、能量的交换关系,将体系分为三类:(1)敞开体系:既有物质交换,也有能量交换。
(2)封闭体系:无物质交换,有能量交换。
(3)孤立体系:既无物质交换,也无能量交换。
例如:一个敞开瓶口,盛满热水的瓶子,水为体系,则是敞开体系; 若加上一个盖子,则成为封闭体系; 若将瓶子换成杜瓦瓶(保温瓶),则变成孤立体系。
热力学上研究得多的是封闭体系。
2、状态和状态函数状态:由一系列表征体系性质的物理量所确定下来的体系的一种存在形式,称为体系的状态。
状态函数:确定体系状态的物理量,是状态函数。
例:某理想气体体系n = 1 mol,p = 1.013×105 Pa,V = 22.4 dm3,T = 273 K这就是一种存在状态(我们称其处于一种标准状态)。
是由n,p,V,T所确定下来的体系的一种状态,因而n,p,V,T都是体系的状态函数。
状态一定,则体系的状态函数一定。
体系的一个或几个状态函数发生了变化,则体系的状态也要发生变化。
始态和终态:体系变化前的状态为始态;变化后的状态为终态。
状态函数的改变量:状态变化始态和终态一经确定,则状态函数的改变量是一定的。
例如:温度的改变量用 △T 表示, 则 △T = T 终- T 始 同样理解 △n , △p , △V 等的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学化学奥林匹克竞赛辅导讲座第3讲化学热力学基础【竞赛要求】热力学能(内能)、焓、热容、自由能和熵的概念。
生成焓、生成自由能、标准熵及有关计算。
自由能变更与反应的方向性。
吉布斯-亥姆霍兹方程极其应用。
范特霍夫标准熵及其应用。
热化学循环。
【学问梳理】一、基本概念1、体系和环境体系:我们探讨的对象,称为体系。
环境:体系以外的其它部分,称为环境。
例如:我们探讨杯子中的H2O,则H2O是体系,水面上的空气,杯子皆为环境。
当然,桌子、房屋、地球、太阳也皆为环境。
但我们着眼于和体系亲密相关的环境,即为空气和杯子等。
又如:若以N2和O2混合气体中的O2作为体系,则N2是环境,容器也是环境。
依据体系和环境之间的物质、能量的交换关系,将体系分为三类:(1)放开体系:既有物质交换,也有能量交换。
(2)封闭体系:无物质交换,有能量交换。
(3)孤立体系:既无物质交换,也无能量交换。
例如:一个放开瓶口,盛满热水的瓶子,水为体系,则是放开体系; 若加上一个盖子,则成为封闭体系; 若将瓶子换成杜瓦瓶(保温瓶),则变成孤立体系。
热力学上探讨得多的是封闭体系。
2、状态和状态函数状态:由一系列表征体系性质的物理量所确定下来的体系的一种存在形式,称为体系的状态。
状态函数:确定体系状态的物理量,是状态函数。
例:某志向气体体系n = 1 mol,p = 1.013×105 Pa,V = 22.4 dm3,T = 273 K这就是一种存在状态(我们称其处于一种标准状态)。
是由n,p,V,T所确定下来的体系的一种状态,因而n,p,V,T都是体系的状态函数。
状态肯定,则体系的状态函数肯定。
体系的一个或几个状态函数发生了变更,则体系的状态也要发生变更。
始态和终态:体系变更前的状态为始态;变更后的状态为终态。
状态函数的变更量:状态变更始态和终态一经确定,则状态函数的变更量是肯定的。
例如:温度的变更量用△T表示,则△T = T终-T始同样理解△n,△p,△V等的意义。
3、过程和途径过程:体系的状态发生变更,从始态到终态,我们说经验了一个热力学过程。
简称过程。
若体系在恒温条件下发生了状态变更,我们说体系的变更为“恒温过程”,同样理解“恒压过程”、“恒容过程”。
若体系变更时和环境之间无热量交换,则称为之“绝热过程”。
途径:完成一个热力学过程, 可以实行不同的方式。
我们把每种详细的方式,称为一种途径。
过程着重于始态和终态;而途径着重于详细方式。
例如:某志向气体, 经验一个恒温过程:可以有很多不同的途径:状态函数变更量,取决于始终态,无论途径如何不同。
如上述过程的两种途径中: △p = p 终-p 始= 2×105 Pa -1×105 Pa = 1×105 Pa △V = V 终-V 始= 1dm 3-2dm 3 = -1dm 3 4、体积功化学反应过程中,常常发生体积变更。
体系抗拒外压变更体积,产生体积功。
设:在一截面积为 S 的圆柱形筒内发生化学反应,体系抗拒外压 p 膨胀,活塞从 I 位移动到 II 位。
这种 W = p ·△V 称为体积功,以 W 体表示。
若体积变更 △V = 0,则 W 体= 0我们探讨的体系与过程,若不加以特殊说明,可以认为只做体积功。
即:W = W 体5、热力学能(内能)体系内部全部能量之和,包括分子原子的动能,势能,核能,电子的动能……, 以及一些尚未探讨的能量,热力学上用符号 U 表示。
p =1×105 Pa V = 2 dm 3p =2×105 Pa V = 1 dm 3恒温过程0.5×105 Pa 4 dm 32×105 Pa 1 dm 31×105 Pa 2 dm 34×105 Pa 0.5 dm 3途径II途径I虽然体系的内能尚不能求得,但是体系的状态肯定时,内能是一个固定值,因此,U是体系的状态函数。
体系的状态发生变更,始终态肯定,则内能变更(△U)是肯定值,△U = U终-U始志向气体是最简洁的体系,可以认为志向气体的内能只是温度的函数,温度肯定,则U肯定。
即△T = 0,则△U = 0。
二、热力学第肯定律1、热力学第肯定律的表示某体系由状态I 变更到状态II,在这一过程中体系吸热Q,做功(体积功) W,体系的内能变更量用△U表示,则有:△U = Q–W(3-1)体系的内能变更量等于体系从环境汲取的热量减去体系对环境所做的功。
明显,热力学第肯定律的实质是能量守恒例如:某过程中,体系吸热100 J,对环境做功20 J,求体系的内能变更量和环境的内能变更量。
由第肯定律表达式:△U = Q -W = 100 J -20 J = 80 J 从环境考虑,吸热-100 J,做功-20 J,所以:△U环= (-100 J) -(-20 J) = -80 J 体系的内能增加了80 J,环境的内能削减了80 J。
2、功和热(1)功和热的符号规定Q是指体系汲取的热量。
体系吸热为正;放热为负。
W是指体系对环境所做的功。
体系对环境做功为正;环境对体系做功为负。
(2)功和热与途径有关体系由同一始态经不同途径变更到同一终态时,不同途径作的功和热量变更不同,所以功和热不是状态函数。
只提出过程的始终态,而不提出详细途径时,是不能计算功和热的。
3、志向气体向真空膨胀——志向气体的内能法国盖·吕萨克在1807年,英国焦耳在1834年做了此试验:连通器放在绝热水浴中,A 侧充溢气体,B 侧抽成真空。
试验时打开中间的活塞,使志向气体向真空膨胀。
结果发觉,膨胀完毕后,水浴的温度没有变更,△T = 0,说明体系与环境之间无热交换,Q = 0。
又因是向真空膨胀,p外= 0,所以W = p外·△V = 0。
依据热力学第肯定律:△U = Q-W = 0-0 = 0三、热化学1、化学反应的热效应当生成物的温度复原到反应物的温度时,化学反应中所汲取或放出的热量,称为化学反应热效应,简称反应热(无非体积功)。
(1)恒容反应热恒容反应中,△V = 0,故W = p·△V = 0则有:△r U = Q v- W = Q v即:△r U = Q v(3-2)Q v是恒容反应中体系的热量,从△r U = Q v可见,在恒容反应中体系所汲取的热量,全部用来变更体系的内能。
当△r U > 0 时,Q v> 0,是吸热反应△r U < 0 时,Q v< 0,是放热反应和状态函数的变更量△r U建立了联系。
则Qv(2)恒压反应热恒压反应中,△p = 0,则有:△r U = Q p-W = Q p-p·△V = Q p-△(pV)=△r U + △(pV)所以:QpQ p= △r U +△(pV)= (U2-U1) + (p2V2-p1V1)= (U2 + p2V2) -(U1 + p1V1)U,p,V都是状态函数,所以U + pV也是一个状态函数,令H = U + pV,则Q=△(U + pV) 即:p△r H = Q p(3-3)H称热焓,或焓,是一个新的状态函数。
关于焓H:H = U + pV,由于U 不行求,故焓H不行求;是一种和能量单位一样的物理量;量度性质,有加合性。
对于志向气体,H也只和T有关。
Q p= △r H说明,在恒压反应中,体系所汲取的热量Q p,全部用来变更体系的热焓。
△r H > 0 时,Q p> 0,是吸热反应△r H < 0 时,Q p< 0,是放热反应留意:△r U,Q v,△r H,Q p的单位均为焦耳J。
和Q v的关系(3)Qp同一反应的Q和Q v并不相等。
pQ v= △r U,Q p= △r U + p△V = △r H由于两个△r U近似相等(对于志向气体,两个△r U相等),所以:Q p = Q v + p △V对于无气体参与的液体、固体反应,由于 △V 很小,故 p △V 可以忽视,则近似有: Q p = Q v对于有气体参与反应,△V 不能忽视,p △V=△nRT ,所以:Q p = Q v +△nRT (3-4)即 △r H = △r U +△nRT对于1摩尔反应在标态下进行,则有:△r H 0m = △r U 0m +(12νν-)RT (3-5)式中2ν是方程式中气态产物化学式前计量数之和,1ν是方程式中气态反应物化学式前计量数之和。
2、热化学方程式(1)要写明反应的温度和压强。
若不注明,则表示为:298K ,1.013×105 Pa ,即常温常压。
(2)注明物质的存在状态。
固相:s ,液相:l ,气相:g ,水溶液:aq 。
有必要时,要注明固体的晶形,如:石墨,金刚石等。
(3)方程的系数可以是整数,也可以是分数。
因系数只代表化学计量数,不表示分子个数。
(4)注明反应的热效应。
如:①C (石墨) + O 2 (g) = CO 2 (g) △r H m = -393.5 kJ·mol -1 ②C (金刚石) + O2 (g) = CO 2 (g) △r H m = -395.4 kJ·mol -1 ③H 2 (g) + 1/2 O 2 (g) = H 2O (g) △r H m = -241.8 kJ·mol -1 ④H 2 (g) + 1/2 O 2 (g) = H 2O (l) △r H m = -285.8 kJ·mol -1 ⑤2H 2 (g) + O 2 (g) = 2H 2O (l) △r H m = -571.6 kJ·mol -1 ⑥H 2O (g) = H 2 (g) + 1/2 O 2 (g) △r H m = +241.8 kJ·mol -1 从①和②对比, 可以看出写出晶形的必要性。
③和④对比,可以看出写出状态的必要性。
④和⑤对比,可以看出计量数不同的热量变更。
③和⑥对比,可以看出互逆反应热效应的关系。
3、盖斯定律1836年,Hess 提出定律,指出:一个化学反应,不论是一步完成,是分数步完成,其热效应是相同的。
前面讲过,热量的汲取和放出,是和途径相关的。
Hess 定律成立的缘由,在于当时探讨的反应,基本上都是在恒压下进行的。
即反应体系压强和外压相等。
这时,Q p = △r H , H 是终态函数,故不受途径影响。
亦即,Hess 定律暗含的条件:每步均恒压。
Hess 定律的实际意义:有的反应虽然简洁,但其热效应难以测得。
例如:C + 1/2O 2 = CO ,是很简洁的反应,但是难于保证产物的纯度,所以,反应热很难干脆测定。
应用 Hess 定律,可以解决这一难题。
已知:C (石墨) + O 2 (g) = CO 2 (g) (1) △r H )1(m = -393.5 kJ·mol -1CO (g) + 1/2 O 2 (g) = CO 2 (g) (2) △r H )2(m = -238.0 kJ·mol -1 (1)式 -(2)式,得 C (石墨) + 1/2 O 2 (g) = CO 2 (g) △r H m = △r H )1(m -△r H )2(m= -393.5 kJ·mol -1 -(-238.0 kJ·mol -1)= -110.5 kJ·mol -1 4、生成热(1)定义:某温度下,由处于标准态的各种元素的指定单质,生成标准态的 1 mol 某物质时的热效应,叫做该物质的标准摩尔生成热。