小学数学奥数基础教程(四年级)

合集下载

小学四年级奥数教程第三讲(共8张PPT)

小学四年级奥数教程第三讲(共8张PPT)
少另一个因数的3倍那么多。这样我们只需把原来的
积与变化后的积的差数平均分成3份即找到其中的一 个乘数;再用两个乘数的积286,除以求出的一个 乘 数,即可求出另一个乘数。
第6页,共8页。
练习3:⑴两数相乘,假设一个乘数增加,另一个乘数不变, 积增加168,假设另一个乘数增加14,这个乘数不
变,积增加420。那么原来的积是多少?
分析:因为积=乘数×乘数〔10〕,那么积应是第一个乘数 的10倍,比第一个乘数多9倍,弄清这个关系是解
本 题的关键。
练习4:⑴一个乘数是6,另一个乘数比积小140,这个乘法
算式是多少?
⑵一个乘数是9,积比另一个乘数多720,另一个乘
数是多少?
⑶一道乘法算式中,一个乘数是9,把两个乘数 和
乘得的积相加得319,另一个乘数是多少?
第5页,共8页。
例3:两数之积是286,如果把其中一个乘数减去3,积
就等于220,原来这两个数分别是多少? 分析:假设两个乘数分别为a和b。根据题意得:
a×b=286……⑴ 〔a-3〕×b=220……⑵
利用乘法分配律将⑵化简得: a×b-3b=220……⑶ 比较⑴与⑶,其中一个因数减少了3,积就比原来减
第3页,共8页。
例1:在一个减法算式里,被减数、减数与差的和等于
240,而减数是差的2倍,差是多少?
分析:被减数、减数、差之和为240,因为被减数的2
倍正好是240,于是可以求出被减数:240÷2=120。 乘⑶数一是 道多乘少法?算式中再,一个把乘数差是9,看把两作个乘1数倍和 数,那么减数为2倍数,120相当于差的
是a×3b2=×248=6注1…2…8意。⑴:在有余数的除法中,余数一定比除数小。
分析:被减数、减数、差之和为240,因为被减数的2 再用两个乘数的积286,除以求出的一个乘 除数×商=被除数 ⑶一道乘法算式中,一个乘数是9,把两个乘数和 减法各局部之间的关系:被减数-差=减数 减数小28,被减数是多少? 算式是多少? 的10倍,比第一个乘数多9倍,弄清这个关系是解本 例4:一个乘数是10,积比另一个乘数多630,另一个 号,得到的结果是120,正确的商是多少? 数,即可求出另一个乘数。 加4得来的,那么这个数是36-4=32,所以正确的积 a×b-3b=220……⑶

小学四年级奥数全册精品讲义

小学四年级奥数全册精品讲义
6.如下图,一个三角形分成 36 个小三角形.把每个小三角形涂上红色或蓝色, 两个有公共边的小三角形要涂上不同的颜色,已知涂成红色的三角形比涂成蓝色 的三角形多,那么多_____个.
7.把一条长 15cm 的线段截为三段,使每条线段的长度是整数,用这三条线 段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等 时,我们称这两个三角形是相同的.)
如果 M 位上放置标有数码“3”的纸片,一共有_____种不同的放置方法.
M
4.如下图,在 2×2 方格中,画一条直线最多可穿过 3 个方格,在 3×3 方格中, 画一条直线最多可穿过 5 个方格.那么 10×10 方格中,画一条直线最多可穿过 _____个方格.
5. 有一批长度分别为 1,2,3,4,5,6,7,8,9,10 和 11 厘米的细木条,它们的 数量都足够多,从中适当选取 3 根木条作为三条边.可围成一个三角形,如果规定 底边是 11 厘米长,你能围成多少个不同的三角形?
第一讲 加乘原理
加法原理:完成一件工作共有 N 类方法。在第一类方法中有 m1种不同的方法,在第二 类方法中有 m2种不同的方法,……,在第 N 类方法中有 mn 种不同的方法,那么完成这件工 作共有 N=m1+m2+m3+…+mn 种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以 独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任 何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不 同的问题,分类的标准往往不同,需要积累一定的解题经验。
这两个基本原理是排列和组合的基础,教学时要先通过生活中浅显的实例,如购物问题、 行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

人教版四年级数学奥数 数数图形(课件)(共20张PPT)

【例题1】数一数下图中有多少个锐角。
【思路导航】 数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点, 因此,要求图中有多少个锐角,可根据公式1+2+3……(总射线数-1)求得: 1+2+3+4=10(个).
【例题2】 数一数下图中有多少个长方形?
【思路导航】 图中的AB边上有线段1+2+3=6条,把AB边上的每一条线段作为长,AD边பைடு நூலகம்的
第12讲 数数图形
小学奥数 四年级
同学们对于图形肯定不陌生,但数学中经常会出现这样的题目: (1)下图中共有几条线段? (2)下图中共有几个长方形?
要正确解答这类问题,就要做到数图形时不重复、不遗漏。这就需要 我们按照一定的顺序去数,并找出它的规律,巧妙地数出图形的个数。数 图形的方法一般有两种:按顺序数和分类数。今天就让我们用数学的方法 巧妙地数图形吧!
实践与应用
【练习5】 P94 数一数,下图中共有多少个长方形?
同学们,图形世界是不是非赏精彩呢?数学的魅力就在于千变万化的图形和数字。通过 这一进,我们对图形有了更深的认识,遇到数图形的问题也能有序、严密地思索,关于数 图形,我们来总结一些最基本的方法吧。
(1)数线段。假设端点有n个(n是整数),那么线段的总条数就是从比n小1的数开始, 一直加到1。
每一条线段作为宽,每一个长配一个宽,就组成一个长方形,所以,图中共有 6×3=18个长方形。 数长方形可以用下面的公式:长边上的线段×短边上的线段=长方形的个数
【例题3】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个 长度单位的正方形)
【思路导航】 边长是1个长度单位的正方形有3×2=6个,边长是2个长度单位的正方形有 2×1=2个。所以,图中正方形的总数为:6+2=8个。 经进一步分析可以发现,一般情况下,如果一个长方形的长被分成m等份, 宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.

人教版四年级上册数学小学奥数植树问题(课件)

人教版四年级上册数学小学奥数植树问题(课件)

【例题1】 城中小学在一条大路边从头至尾栽树28棵,每隔6米栽一棵。这 条路长多少米? 【思路导航】
题中已知栽树28棵,28棵树之间有28-1=27段,每隔6米为一段,所以这条 大路长6×27=162米
【例题2】在一个周长是240米的游泳池周围栽树,每隔5米栽一棵,一共要栽 多少棵树? 【思路导航】 这道题是封闭线路上的植树问题,植树的棵数和段数相等。240÷5=48(棵)
小结与提示 在熟练掌握植树棵数、株距和线路总长的关系后,我们可以根据其中两个量,快速答出第三个量。
实践与应用
【练习3】 P68 (1)同学们做早操,16个同学排成一排,每两人之间相隔1米,第一个
同学和最后一个同学间相隔多少米? (2)文峰公园打算新建一个圆形喷泉,12个鱼形喷水器均匀分散在喷泉
周围,向喷泉的正中央喷水,已知 每两个喷水器相隔15分米。喷泉建成后, 如果小明绕着喷泉走一圈,一共要走多少米?
(2)如果一端有,另一端没有,那么棵数=间隔数;(3)如果两端都没有,那么棵=间隔数-1。
实践与应用
【练习1】 P56 在一座长300米的大桥一旁悬挂彩灯,每两盏彩灯之间相隔5米.连两
头在内共要悬挂多少盏彩灯?
【例2】小朋友们一起做游戏,他们围成了一个长10米、宽8米的长方形,每两个 小朋友之间相隔2米。一共有多少个小朋友参与了游戏?
第9讲 植树问题
小学奥数 四年级
同学们,在日常生活中总会遇到以下问题:四(1)班的同学在一条100米 长的马路一边植树,每隔5米植一棵,两端都植,一共要植多少骤树?像这 类研究植树的棵数、株距与线路总长之间的数量关系的问题叫作植树问题。 植树问题一般可分为不封闭图形中的植树问题和封闭图形中的植树问题。
【我来解答】:(1)50÷10+1=6(棵)

四年级奥数基础教程第9讲数字谜

四年级奥数基础教程第9讲数字谜

四年级奥数基础教程第9讲数字谜(一)(共3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第9讲数字谜(一)我们在三年级已经学习过一些简单的数字谜问题。

这两讲除了复习巩固学过的知识外,还要学习一些新的内容。

例1 在下面算式等号左边合适的地方添上括号,使等式成立:5+7×8+12÷4-2=20。

分析:等式右边是20,而等式左边算式中的7×8所得的积比20大得多。

因此必须设法使这个积缩小一定的倍数,化大为小。

从整个算式来看,7×8是4的倍数,12也是4的倍数,5不能被4整除,因此可在7×8+12前后添上小括号,再除以4得17,5+17-2=20。

解:5+(7×8+12)÷4-2=20。

例2把1~9这九个数字填到下面的九个□里,组成三个等式(每个数字只能填一次):分析与解:如果从加法与减法两个算式入手,那么会出现许多种情形。

如果从乘法算式入手,那么只有下面两种可能:2×3=6或2×4=8,所以应当从乘法算式入手。

因为在加法算式□+□=□中,等号两边的数相等,所以加法算式中的三个□内的三个数的和是偶数;而减法算式□-□=可以变形为加法算式□=□+□,所以减法算式中的三个□内的三个数的和也是偶数。

于是可知,原题加减法算式中的六个数的和应该是偶数。

若乘法算式是2×4=8,则剩下的六个数1,3,5,6,7,9的和是奇数,不合题意;若乘法算式是2×3=6,则剩下的六个数1,4,5,7,8,9可分为两组:4+5=9,8-7=1(或8-1=7);1+7=8,9-5=4(或9-4=5)。

所以答案为与例3下面的算式是由1~9九个数字组成的,其中“7”已填好,请将其余各数填入□,使得等式成立:□□□÷□□=□-□=□-7。

分析与解:因为左端除法式子的商必大于等于2,所以右端被减数只能填9,由此知左端被除数的百位数只能填1,故中间减式有8-6,6-4,5-3和4-2四种可能。

小学数学四年级奥数第20讲速算与巧算(一)

小学数学四年级奥数第20讲速算与巧算(一)

小学数学四年级奥数第20讲速算与巧算(一)一、知识要点速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。

这一讲我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。

在巧算方法里,蕴含着一种重要的解决问题的策略。

转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。

乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。

二、精讲精练【例题1】计算9+99+999+9999练习1:计算(1)99999+9999+999+99+9 (2)9+98+996+9997(3)19999+2998+396+497 (4)198+297+396+495【例题2】计算489+487+483+485+484+486+488练习2:计算(1)50+52+53+54+51 (2)262+266+270+268+264(3)89+94+92+95+93+94+88+96+87 (4)381+378+382+383+379【例题3】计算下面各题。

(1)632-156-232 (2)128+186+72-86练习3:计算下面各题(1)1208-569-208 (2)283+69-183(3)132-85+68 (4)2318+625-1318+375【例题4】计算下面各题。

(1)248+(152-127)(2)324-(124-97)(3) 283+(358-183)练习4:计算下面各题(1)348+(252-166)(2)629+(320-129)(3)462-(262-129) (4) 662-(315-238)【例题5】计算下面各题。

小学数学奥数基础教材(四年级)

小学数学奥数基础教材(四年级)

小学数学奥数基础教程 (四年级 )本教程共30 讲乘法原理让我们先看下边几个问题。

例 1 马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。

问:小丑的帽子和鞋共有几种不一样搭配?解析与解:由以下图可以看出,帽子和鞋共有6 种搭配。

事实上,小丑戴帽穿鞋是分两步进行的。

第一步戴帽子,有 3 种方法;第二步穿鞋,有 2 种方法。

对第一步的每种方法,第二步都有两种方法,因此不一样的搭配共有3×2= 6(种)。

例 2 从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2 条路。

问:从甲地经乙、丙两地到丁地,共有多少种不一样的走法?解析与解:用 A 1,A2表示从甲地到乙地的 2 条路,用 B1,B2,B3表示从乙地到丙地的 3 条路,用 C1,C2表示从丙地到丁地的 2 条路(见下页图)。

共有下边 12 种走法:A1B1C1 A1B2C1 A1B3C1A1B1C2 A1B2C A1B3C2A2B1C1 A2B2C1 A2B3C1A2B1C2 A2B2C2 A2B3C2事实上,从甲到丁是分三步走的。

第一步甲到乙有 2 种方法,第二步乙到丙有 3 种方法,第 3 步丙到丁有 2 种方法。

对于第一步的每种方法,第二步都有 3 种方法,因此从甲到丙有 2× 3=6(种)方法;对从甲到丙的每种方法,第三步都有 2 种方法,因此不一样的走法共有2×3×2= 12(种)。

以上两例用到的数学思想就是数学上的乘法原理。

乘法原理:假如完成一件任务需要分红 n 个步骤进行,做第 1 步有 m1种方法,做第 2 步有 m2种方法做第 n 步有 m n种方法,那么依据这样的步骤完成这件任务共有N=m1×m2× × mn种不一样的方法。

从乘法原理可以看出:将完成一件任务分红几步做,是解决问题的重点,而这几步是完成这件任务缺一不行的。

小学数学奥数基础教程(打印版)

小学数学奥数基础教程(打印版)

小学数学奥数基础教程(打印版)小学数学奥数基础教程(打印版)----------------------------------------------------------数学奥数是培养小学生数学思维能力和解决问题能力的一种特殊教学方法。

本教程旨在为小学生提供扎实的数学基础知识和奥数解题技巧,让他们在数学方面取得更好的成绩并培养对数学的兴趣。

本教程以打印版的形式呈现,方便学生进行随时随地的学习。

一、数学基础知识----------------------------------------------------------第一章:数的基本概念1.1 自然数与整数1.2 分数与小数1.3 负数与绝对值第二章:算数运算2.1 加法与减法2.2 乘法与除法2.3 平方与平方根第三章:代数与方程3.1 代数式与多项式3.2 简单方程与解集3.3 一元一次方程第四章:图形与几何4.1 点、线、线段与射线4.2 角的概念与性质4.3 三角形与四边形第五章:空间与立体几何5.1 立体图形的组成5.2 直方体、正方体与长方体5.3 圆柱体、圆锥体与球体二、奥数解题技巧----------------------------------------------------------第六章:逻辑推理6.1 量的关系6.2 条件与结论6.3 逻辑推理题示例第七章:模型建立7.1 数量关系模型7.2 平衡方程模型7.3 几何变换模型第八章:数学推理8.1 数学归纳法8.2 反证法与逆否命题8.3 数列与数表推理三、实践练习题----------------------------------------------------------第九章:填空题第十章:选择题第十一章:解答题四、奥数竞赛模拟----------------------------------------------------------第十二章:奥数竞赛模拟试题五、总结与展望----------------------------------------------------------本教程涵盖了小学数学奥数所需的基础知识和解题技巧,并提供了丰富的练习题和竞赛模拟试题。

小学四年级奥数基础教程大全

小学四年级奥数基础教程大全

第一章:加减法1.1加法加法是数学中的基本运算之一、在小学四年级奥数中,加法是最基础的数学运算之一、在进行加法运算时,需要掌握竖式加法和横式加法的运算方法。

此外,还需掌握十进位的加法运算。

1.2减法减法是数学中的基本运算之一、在小学四年级奥数中,减法也是一项重要的数学运算。

减法的运算方法有竖式减法和横式减法两种。

同时,对于借位和退位也需要掌握。

第二章:乘除法2.1乘法乘法是数学中的基本运算之一、在小学四年级奥数中,乘法的运算方法主要有竖式乘法和横式乘法两种。

此外,还需掌握乘法的分配律和乘法的交换律等基本概念。

2.2除法除法是数学中的基本运算之一、在小学四年级奥数中,除法也是一项重要的数学运算。

除法的运算方法有竖式除法和横式除法两种。

此外,还需掌握整除和余数的概念。

第三章:整数3.1正整数和负整数在小学四年级奥数中,要了解正整数和负整数的概念和区别。

同时,还需掌握负整数的加法和减法运算方法。

3.2相反数和绝对值相反数是指两个数绝对值相等、符号相反的两个数。

绝对值是指一个数离原点的距离。

在小学四年级奥数中,需要了解相反数和绝对值的概念,并能够进行相反数和绝对值的计算。

第四章:分数4.1分数的基本概念在小学四年级奥数中,要了解分数的基本概念,包括分数的组成、分子和分母的含义等。

4.2分数的大小比较在小学四年级奥数中,要学会比较分数的大小,包括相同分母的分数和相同分子的分数的大小比较。

第五章:小数5.1小数的基本概念在小学四年级奥数中,要了解小数的基本概念,包括小数点的使用、小数的读法和写法等。

5.2小数的大小比较在小学四年级奥数中,要学会比较小数的大小,包括相同整数部分和相同小数部分的小数的大小比较。

第六章:面积和周长6.1面积的计算在小学四年级奥数中,要学会计算简单图形的面积,包括长方形、正方形和三角形等。

6.2周长的计算在小学四年级奥数中,要学会计算简单图形的周长,包括长方形、正方形和三角形等。

第七章:逻辑推理7.1逻辑判断在小学四年级奥数中,要学会进行简单的逻辑推理和判断,包括找出规律和填入合适的数字等。

人教版四年级下册数学奥数——追及问题课件(共20张PPT)

人教版四年级下册数学奥数——追及问题课件(共20张PPT)
我来解答:40-17×[6÷(17-14)]=40-17×2=6(千米) 答:当兵兵追上平平时,他们距乙地还有6千米。
小结与提示 这道题中,求出兵兵多长时间可以追上平平是解题的突破口。
实践与应用
【练习3】 P149 甲、乙两城相距120千米,客车和货车由甲城开往乙城,客车每小时行
44千米,货车每小时行52千米,当客车开出16千米后,货车才出发,当货车 追上客车时,它们距乙城还有多远?
【例题2】 甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙 在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。A、B两地间的 路长多少米?
【思路导航】
从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人 共行(30+50)×10=800米。这800米就是乙、丙相遇比甲多行的路程。乙每分 钟比甲多行40-30=10米,现在乙比甲多行800米,也就是行了80÷10=80分钟。 因此,AB两地间的路程为(50+40)×80=7200米。
我来解答: 600÷30=20(米/分) 160-20=140(米/分) 答:乙每分钟跑140米。
小结与提示 在追及问题中,可以根据追及距离和追及时间求出甲、乙两人的速度差。
实践与应用
【练习4】 P150 学校操场环形跑道周长为400米,小明每分钟跑120米,小强每分钟跑
200米,两人同时同地同向出发,经过多少分钟两人相遇?
第19讲 追及问题
小学奥数 四年级
追及问题也是行程问题中的一种,它研究两个物体的同向运动,出发地点不同(或者从 同一地点不同时间出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近, 最后快者追上慢者。在解答这类题时,关键要明确速度差的会义(即单位时间内快者追上慢者 的路程)。 追及问题的数量关系式:

小学数学奥数基础教程(四年级)--抽屉原理

小学数学奥数基础教程(四年级)--抽屉原理

小学数学奥数基础教程(四年级)抽屉原理这一讲我们讲抽屉原理的另一种情况。

先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。

道理很简单。

如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。

剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。

这个例子所体现的数学思想,就是下面的抽屉原理2。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的。

假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。

这与多于m×n件物品的假设相矛盾。

这说明一开始的假定不能成立。

所以至少有一个抽屉中物品的件数不少于m+1。

从最不利原则也可以说明抽屉原理2。

为了使抽屉中的物品不少于(m +1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m ×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。

这就说明了抽屉原理2。

不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。

即抽屉原理2是抽屉原理1的推广。

例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉。

今有玩具122件,122=3×40+2。

应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。

也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。

数学奥数基础教程(四年级)

数学奥数基础教程(四年级)

数学奥数基础教程(四年级)一、拓展提优试题1.三个连续自然数的乘积是120,它们的和是.2.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.3.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.4.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.5.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.6.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.7.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b 最大是,a﹣b最小是,a﹣b最大是.8.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S 的正方形有个.9.如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是.10.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?11.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?12.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.13.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.14.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.15.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.【参考答案】一、拓展提优试题1.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.2.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.3.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).4.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.5.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.6.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.7.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.8.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.9.【分析】由图意得:BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽,代数计算即可.解:14×2+12×2,=28+24,=52(厘米).答:阴影部分的周长是52厘米.故答案为:52厘米.【点评】解决本题的关键是找到BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽.10.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.11.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..12.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.13.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.14.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.15.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.。

小学四年级奥数第17讲 数数图形(含答案分析)

小学四年级奥数第17讲 数数图形(含答案分析)

第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。

4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。

练习1:数出下列图中有多少条线段。

(2)【例题2】数一数下图中有多少个锐角。

练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。

练习3::数一数下面图中各有多少个三角形。

【例题4】数一数下图中共有多少个三角形。

练习4::数一数下面各图中各有多少个三角形。

【例题5】数一数下图中有多少个长方形。

练习5::数一数下面各图中分别有多少个长方形。

【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形。

【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和。

小学四年级奥数讲义

小学四年级奥数讲义

小学四年级奥数讲义第一部分:数学基础知识1.1 自然数和整数- 自然数是指从1开始的正整数,用符号$N$表示。

- 整数是自然数和其相反数的集合,用符号$Z$表示。

1.2 加法和减法- 加法是将两个数合并在一起,得到它们的总数。

- 例如:$2 + 3 = 5$。

- 减法是从一个数中减去另一个数,得到它们的差。

- 例如:$5 - 2 = 3$。

1.3 乘法和除法- 乘法是将两个数相乘,得到它们的积。

- 例如:$2 × 3 = 6$。

- 除法是将一个数分割成若干等份,得到它们的商。

- 例如:$6 ÷ 3 = 2$。

第二部分:奥数技巧和练2.1 快速计算- 利用9的乘法法则,可以快速计算一个数乘以9的结果。

- 例如:$4 × 9 = 36$。

- 利用倍数关系,可以快速计算一个数的倍数。

- 例如:$3 × 4 = 12$。

2.2 算式变换- 利用算式的性质,可以将复杂的算式转化为简单的算式。

- 例如:$(3 + 4) × 5 = 7 × 5 = 35$。

- 利用分配律,可以将一个数拆分成两个数的和或差。

- 例如:$8 × 7 = (5 + 3) × 7 = 5 × 7 + 3 × 7 = 35 + 21 = 56$。

2.3 枚举法和猜想法- 枚举法是一种通过列举所有可能情况来解决问题的方法。

- 例如:求两个数的最大公约数,可以列举出所有可能的公约数,然后找出其中最大的一个。

- 猜想法是一种根据已有规律猜测答案的方法,然后通过严谨的推理来证明猜想是否正确。

- 例如:猜测一个数是偶数时,它一定能被2整除,然后通过证明偶数定义来证明猜想的正确性。

第三部分:练题1. 计算:$2 + 3 × 4 - 5 = ?$2. 计算:$7 - (4 × 2 + 1) = ?$3. 快速计算:$6 × 9 = ?$4. 快速计算:$5 × 7 = ?$5. 利用枚举法找出10以内的所有偶数。

小学四年级奥数教程-逻辑推理

小学四年级奥数教程-逻辑推理

小学四年级奥数教程-逻辑推理
3.李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门。现知道: (1)顾锋最年轻; (2)李波喜欢与体育老师、数学老师交谈; (3)体育老师和图画老师都比政治老师年龄大; (4)顾锋、音乐老师、语文老师经常一起去游泳; (5)刘英与语文老师是邻居。 问:各人分别教哪两门课程?
问:小亮、小红、小娟各在哪个学校读书和各自的爱好是什么?
练习提升
小学四年级奥数教程-逻辑推理
1
2
3
4
5
6
练习提升
小学四年级奥数教程-逻辑推理
小学四年级奥数教程-逻辑推理
7.学校新来了一位老师,五个学生分别听到如下的情况: (1)是一位姓王的中年女老师,教语文课; (2)是一位姓丁的中年男老师,教数学课; (3)是一位姓刘的青年男老师,教外语课; (4)是一位姓李的青年男老师,教数学课; (5)是一位姓王的老年男老师,教外语课。 他们每人听到的四项情况中各有一项正确。问:真实情况如何?
分析与解
因为甲、乙都说“丙住在天津”,我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。所以假设不成立,即“丙住在天津”是真话。 因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的。由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话。 所以,何伟住在南京。
01
02
小学四年级奥数教程-逻辑推理
小学四年级奥数教程-逻辑推理
在解答逻辑问题时,有时需要将列表法与假设法结合起来。一般是在使用列表法中,出现不可确定的几种选择时,结合假设法,分别假设检验,以确定正确的结果。

最新四年级奥数教程(完美修复版本)

最新四年级奥数教程(完美修复版本)

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

人教版四年级上册数学奥数 周期问题(课件)

人教版四年级上册数学奥数 周期问题(课件)

【例题5】我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪 12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年, 第三年就是虎年…。如果公元1年属鸡年,那么公元2001年属什么年?
【思路导航】 一共有12种动物,因此12为一个循环,为了便于思考,我们把“狗、猪、 鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡”看作一个循环,从公元2年到 公元2001年共经历了2000年(算头不算尾),2000÷12=166…8,从狗年开 始往后数8年,公元2001年是蛇年。
【例题2】 有一列数,按5、6、2、4、5、6、2、4…排列。 (1)第129个数是多少?(2)这129个数相加的和是多少?
【思路导航】 (1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行 排列,那么一个循环就是4个数,则129÷4=32…1,可知有32个“5、6、4、2” 还剩一个。所以第129个数是5。 (2)每组四个数之和是5+6+4+2=17,所以,这129个数相加的和是17×32+ 5=549。
我来解答:(1)(22-1)÷7=3(周)没有余数,所以该月22日仍为星期五。 (2)(31-1+14)÷7=6(周)…2(天)余数是2,2月14日就是星期日。
小结与提示 本题中,要注意天数的计算方法,既不能多算,也不能少算。一般在计算日期时,如果在一个 月内、我们可以直接用后面的日期减前面的日期;如果隔了月份,就再加上一月的天数。
宝剑锋从磨砺出, 梅花香自苦寒来!
感 谢 观 看!
【例题3】假设所有的自然数排列起来,如下所示39应该排在哪个字母下面? 88应该排在哪个字母下面? ABCD 12 34 56 78 9…
【思路导航】 从排列情况可以知道,这些自然数是按从小到大4个数一个循环,我们可以 根据这些数除以4所得的余数来分析。 39÷4=9…3 88÷4=22 所以,39应排在第10个循环的第三个字母C下面, 88应排在第22个循环的 第四个字母D下面。

小学四年级奥数教程-乘法原理

小学四年级奥数教程-乘法原理

综合练习题
• 总结词:综合运用知识、提升解题能力 • 求一个三位数与一个两位数的乘积 • 123×45 • 456×78 • 789×90 • 求一个三位数分别乘以两个两位数的积之和 • 123×25+456×37 • 456×48+789×59 • 789×68+123×79
05
答案与解析
基础练习题答案与解析
综合练习题答案与解析
总结词:综合运用
详细描述:综合练习题是在基础练习题和进阶练习题的基础上,将多个知识点和 难点融合在一起,这些题目的答案与解析,可以帮助学生综合运用乘法原理,提 高解题能力和思维水平,为更高难度的学习做好准备。
THANK YOU.
多位数乘法
总结词
分位数相乘,化繁为简
详细描述
将多位数拆分成若干个一位数和十位数等,分别与另一个数相乘,然后将结 果相加。例如,计算31 × 4时,可将其拆分为30 × 4+1 × 4=120+4=124。
乘法的结合律和分配律
总结词
灵活运用,提升计算能力
详细描述
结合律指的是将几个数相乘时,可以随意改变它们的 顺序,只要不改变它们的运算符号和个数。例如,(2 × 3) × 4=2 × (3 × 4)=6 × 4=24。分配律指的是将 一个数分别分配到若干个数的和或差中,可以分别进 行运算。例如,2 × (3+4)=2 × 3+2 × 4=6+8=14。
乘法原理的作用
简化计算
乘法原理可以用来简化计算,将多个乘积的运算转化为一个 简单的乘法运算。
优化算法
乘法原理还可以用来优化算法,将复杂的计算过程转化为简 单的乘法运算,提高计算效率。
乘法原理的分类

小学四年级奥数举一反三第1讲至第40讲全

小学四年级奥数举一反三第1讲至第40讲全

小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

【广州市】小学四年级奥数培训教材(精讲版)

【广州市】小学四年级奥数培训教材(精讲版)

第一讲简单推理例1:一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重量等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?1、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨的重量等于几根香蕉的重量?2、3包巧克力的重量等于两袋糖的重量,12袋牛肉干的重量等于3包巧克力的重量,一袋糖的重量等于几袋牛肉干的重量?3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,一只小猪的重量等于几只鸭的重量?例2:一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量,一头象的重量等于几头小猪的重量?1、一只西瓜的重量等于两个菠萝的重量,一个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量,一只西瓜的重量等于几个橘子的重量?2、一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一天吃草的重量相等。

已知一头牛每天吃青草18千克,一只兔子和一只羊一天一共吃青草多少千克?3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,两只鸭的重量等于6条鱼的重量,问两只小猪的重量等于几条鱼的重量?例3:根据下面两个算式,求○和□各代表多少?○+○+○=18○+□=101、根据下面两个算式,求○和□各代表多少?○+○+○+○=32□-○=202、根据下面两个算式,求○和□各代表多少?○+○+○=15○+○+□+□+□=403、根据下面两个算式,求○和□各代表多少?□-○=8例4:根据下面两个算式,求○和□各代表多少?△-○=2○+○+△+△+△=561、根据下面两个算式,求○和□各代表多少?□-○=8○+○+□+□=202、根据下面两个算式,求○和□各代表多少?△+△+△+○+○=78△+△+○+○+○=723、根据下面两个算式,求○和□各代表多少?△+△+△-□-□=12□+□+□-△-△=2第二讲应用题例1:某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多,每个塑料箱和纸箱各装多少件玩具?1、百货商店运来300双球鞋分别装在两个木箱和6个纸箱里。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学奥数基础教程(四年级)
本教程共30讲
加法原理(一)
例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。

一天中火车有4班,汽车有3班,轮船有2班。

问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?
分析与解:一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法。

例2旗杆上最多可以挂两面信号旗,现有红色、蓝色和黄色的信号旗各一面,如果用挂信号旗表示信号,最多能表示出多少种不同的信号?
分析与解:根据挂信号旗的面数可以将信号分为两类。

第一类是只挂一面信号旗,有红、黄、蓝3种;第二类是挂两面信号旗,有红黄、红蓝、黄蓝、黄红、蓝红、蓝黄6种。

所以一共可以表示出不同的信号
3+6=9(种)。

以上两例利用的数学思想就是加法原理。

加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……在第n类方法中有m n种不同方法,那么完成这件任务共有
N=m1+m2+…+m n
种不同的方法。

乘法原理和加法原理是两个重要而常用的计数法则,在应用时一定要注意它们的区别。

乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积;加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。

例3两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?
分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。

因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。

根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。

例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。

问:共有多少种不同的染色方法?
分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。

因为上一讲例4中,区域A与其它区域都相邻,所以区域A与其它区域的颜色都不相同。

本例中没有一个区域与其它所有区域都相邻,如果从区域A开始讨论,那么就要分区域A与区域E的颜色相同与不同两种情况。

当区域A与区域E颜色相同时,A有5种颜色可选;B有4种颜色可选;C有3种颜色可选;D也有3种颜色可选。

根据乘法原理,此时不同的染色方法有
5×4×3×3=180(种)。

当区域A与区域E颜色不同时,A有5种颜色可选;E有4种颜色可选;B有3种颜色可选;C有2种颜色可选;D有2种颜色可选。

根据乘法原理,此时不同的染色方法有
5×4×3×2×2=240(种)。

再根据加法原理,不同的染色方法共有
180+240=420(种)。

例5用1,2,3,4这四种数码组成五位数,数字可以重复,至少有连续三位是1的五位数有多少个?
分析与解:将至少有连续三位数是1的五位数分成三类:连续五位是1、恰有连续四位是1、恰有连续三位是1。

连续五位是1,只有11111一种;
中任一个,所以有3+3=6(种);
3×4+4×3+3×3=33(种)。

由加法原理,这样的五位数共有
1+6+33=40(种)。

在例5中,我们先将这种五位数分为三类,以后在某些类中又分了若干种情况,其中使用的都是加法原理。

例6右图中每个小方格的边长都是1。

一只小虫从直线AB上的O点出发,沿着横线与竖线爬行,可上可下,可左可右,但最后仍要回到AB上(不一定回到O点)。

如果小虫爬行的总长是3,那么小虫有多少条不同的爬行路线?
分析与解:如果小虫爬行的总长是2,那么小虫从AB上出发,回到AB 上,其不同路线有6条(见左下图);小虫从与AB相邻的直线上出发,回到AB上,其不同路线有4条(见右下图)。

实际上,小虫爬行的总长是3。

小虫爬行的第一步有四种情况:
向左,此时小虫还在AB上,由上面的分析,后两步有6条路线;
同理,向右也有6条路线;
向上,此时小虫在与AB相邻的直线上,由上面的分析,后两步有4条路线;
同理,向下也有4条路线。

根据加法原理,共有不同的爬行路线
6+6+4+4=20(条)
练习20
1.南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。

如果每天有20班火车、6班飞机、8班汽车和4班轮船,那么共有多少种不同的走法?
2.光明小学四、五、六年级共订300份报纸,每个年级至少订99份报纸。

问:共有多少种不同的订法?
3.将10颗相同的珠子分成三份,共有多少种不同的分法?
4.在所有的两位数中,两位数码之和是偶数的共有多少个?
5.用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。

问:共有多少种不同
的染色方法?
6.用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?
7.下图中每个小方格的边长都是1。

有一只小虫从O点出发,沿图中格线爬行,如果它爬行的总长度是3,那么它最终停在直线AB上的不同爬行路线有多少条?
答案与提示练习
1.38种。

2.10种。

提示:没有年级订99份时,只有三个年级各订100份一种订法;只有一个年级订99份时,另外两个年级分别订100份和101份,有6种订法;有两个年级订99份时,另外一个年级订102份,有3种订法。

3.8种。

4.45个。

提示:两个数码都是奇数的有5×5(个),两个数码都是偶数的有4×5(个)。

5.420种。

解:如右图所示,按A,B,C,D,E顺序染色。

若B,D颜色相同,则有
5×4×3×1×3=180(种);
若B,D颜色不同,则有
5×4×3×2×2=240(种)。

共有不同的染色方法180+240=420(种)。

6.21个。

提示:与例5类似,连续四位都是2的只有1种,恰有连续三位是2的有4种,恰有连续两位是2的有16种。

7.10条。

提示:第一步向下有5条,第一步向上有1条,第一步向左或向右各有2条。

相关文档
最新文档