高中数学知识点总结:简单随机抽样
高一数学简单随机抽样知识点
![高一数学简单随机抽样知识点](https://img.taocdn.com/s3/m/1838bffc4128915f804d2b160b4e767f5acf8010.png)
高一数学简单随机抽样知识点简单随机抽样是数学中常用的一种抽样方法,广泛应用于调查研究、统计分析等领域。
本文将介绍高一数学中与简单随机抽样相关的知识点。
一、简单随机抽样的定义简单随机抽样是指从总体中随机地选取n个样本,以便使每个样本被选中的概率相等。
二、简单随机抽样的步骤进行简单随机抽样有以下几个步骤:1. 确定总体:确定需要抽样的总体,例如某个班级的学生人数。
2. 确定样本容量:确定需要抽取的样本容量,例如抽取10个学生作为样本。
3. 编制抽样框架:根据总体的情况,编制一个包含所有个体的清单,例如一个班级学生名单。
4. 进行随机抽样:使用随机数表或者计算机随机函数,从抽样框架中随机地抽取n个样本。
5. 分析样本数据:对所抽取的样本进行统计分析,得出相应的结论。
三、简单随机抽样的性质1. 无偏性:简单随机抽样是无偏的,即样本均值等于总体均值,样本方差等于总体方差除以样本容量。
2. 一致性:随着样本容量的增加,样本统计量的稳定性增加,逼近总体统计量。
3. 每个样本独立:简单随机抽样保证了每个样本的独立性,互不影响。
四、简单随机抽样的应用简单随机抽样广泛应用于各个领域的调查和研究中,例如:1. 社会调查:通过简单随机抽样来获取一定数量的受访者,进行问卷调查、访谈等。
2. 统计分析:对某个总体进行统计分析时,可以通过简单随机抽样来获取样本数据,进行参数估计和假设检验。
3. 质量控制:在质量检验中,可以通过简单随机抽样来随机选取一些样品进行检测,以保证样品的代表性。
五、简单随机抽样的注意事项在进行简单随机抽样时,需要注意以下几点:1. 抽样误差:由于样本是从总体中抽取的一部分,所以样本统计量与总体参数之间存在抽样误差。
2. 样本容量:样本容量的大小直接影响抽样结果的精确度,一般来说,样本容量越大,结果越可靠。
3. 抽样方法选择:除了简单随机抽样,还有分层抽样、整群抽样等抽样方法,根据实际情况选择合适的抽样方法。
高一必修二数学知识点抽样
![高一必修二数学知识点抽样](https://img.taocdn.com/s3/m/967a935791c69ec3d5bbfd0a79563c1ec4dad748.png)
高一必修二数学知识点抽样抽样是统计学中的一项重要技术工具,它可以通过对部分个体进行观察和研究,来推断整体的特征和性质。
在高一必修二数学课程中,我们学习了许多与抽样相关的知识点,本文将对这些知识点进行梳理和总结。
一、抽样方法1. 简单随机抽样简单随机抽样是最常用的一种抽样方法,它是指从总体中随机地抽取若干个个体,使得每个个体被抽取的概率相等。
例如,我们要调查某班级学生的身高,可以使用简单随机抽样方法,先给每个学生编号,然后通过随机抽取编号的方式来选择样本。
2. 系统抽样系统抽样是在总体中按照一定的规则选择样本的方法。
例如,我们要调查某超市一天内的销售情况,可以选择每隔一定时间(如每小时)记录一次销售额,这样得到的样本就是按照系统抽样方法选择的。
3. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中分别进行抽样的方法。
例如,我们要调查某城市不同年龄段人口的健康情况,可以先将人口按年龄分层,然后从每个年龄段中分别进行抽样。
4. 整群抽样整群抽样是将总体划分为若干个互不重叠的群组,选择部分群组进行抽样的方法。
例如,我们要调查某地区的农田面积情况,可以将该地区的农田划分为不同的农场,然后从不同的农场中进行抽样。
二、样本容量与抽样误差样本容量是指进行抽样研究时所选择的样本的大小。
样本容量的大小直接影响到推断性统计的可靠性。
通常情况下,样本容量越大,推断结果越可靠。
确定样本容量时需要考虑抽样误差。
抽样误差是指使用样本估计总体参数时,由于样本的随机性而引起的估计误差。
抽样误差的大小与样本容量、总体的变异程度等因素有关。
在实际抽样研究中,我们需要根据抽样误差的允许范围来确定合适的样本容量。
三、抽样调查的应用抽样调查在各个领域都有广泛的应用,尤其在社会调查、市场调研、医学研究等方面起着重要的作用。
例如,通过抽样调查可以估计某种药物的副作用发生率、了解市场上某种产品的受欢迎程度、探究某个社会问题的普遍性等。
简单随机抽样-高中数学知识点讲解
![简单随机抽样-高中数学知识点讲解](https://img.taocdn.com/s3/m/0e94fb264693daef5ff73d16.png)
简单随机抽样1.简单随机抽样【知识点的认识】1.定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.特点:(1)有限性:总体个体数有限;(2)逐个性:每次只抽取一个个体;(3)不放回:抽取样本不放回,样本无重复个体;(4)等概率:每个个体被抽到的机会相等.(如果从个体数为N 的总体中抽取一个容量为n 的样本,则每个个体푛被抽取的概率等于푁)3.适用范围:总体中个数较少.4.注意:随机抽样不是随意或随便抽取,随意或随便抽取都会带有主观或客观的影响因素.【常用方法】1.抽签法(抓阄法)一般地,从个体总数为N 的总体中抽取一个容量为k 的样本,步骤为:(1)编号:将总体中所有个体编号(号码可以为 1﹣N);(2)制签:将编号写在形状、大小相同的号签上(可用小球、卡片、纸条等制作);(3)搅匀:将号签放在同一个箱子中进行均匀搅拌;(4)抽签:每次从箱中取出 1 个号签,连续抽取k 次;(5)取样:从总体中取出与抽到号签编号一致的个体.2.随机数表法.○随机数表:由 0﹣9 十个数字所组成,其中的每个数都是用随机方法产生的,这样的表称为随机数表.实现步骤:(1)编号:对总体中所有个体编号(每个号码位数一致);(2)选数:在随机数表中任选一个数作为开始;(3)取数:从选定的起始数沿任意方向取数(不在号码范围内的数、重复出现的数不取),直到取满为止;(4)取样:根据所得的号码从总体中抽取相应个体.【命题方向】以基本题(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考查学生学习基础知识、应用基础知识、解决实际问题的能力.(1)考查简单随机抽样的特点例:用简单随机抽样的方法从含有 100 个个体的总体中依次抽取一个容量为 5 的样本,则个体m 被抽到的概率为()1111A.100B.20C.99D.50分析:依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量为 5,可以看成是抽 5 次,从而可求得概率.1解答:一个总体含有 100 个个体,某个个体被抽到的概率为,100∴以简单随机抽样方式从该总体中抽取一个容量为 5 的样本,1则指定的某个个体被抽到的概率为100× 5 =1.20故选:B.点评:不论用哪种抽样方法,不论是“逐个地抽取”,还是“一次性地抽取”,总体中的每个个体被抽到的概率都是一样的,体现了抽样方法具有客观公平性.(2)判断抽样方法是否为简单随机抽样常见与分层抽样、系统抽样对比,注意掌握各种抽样方法的区分.例:下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每 100 万张为一个开奖组,通过随机抽取的方式确定号码的后四位为 2709 的2/ 4B.某车间包装一种产品,在自动包装的传送带上,每隔 30 分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取 2 人、14 人、4 人了解学校机构改革的意见D.用抽签法从 10 件产品中选取 3 件进行质量检验.分析:从所给的四个选项里观察因为抽取的个体间的间隔是固定的;得到A、B 不是简单随机抽样,因为总体的个体有明显的层次,C 不是简单随机抽样,D 是简单随机抽样.解答:A、B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体的个体有明显的层次;D 是简单随机抽样.故选D.点评:本题考查简单随机抽样,考查分层抽样,考查系统抽样,是一个涉及到所学的所有抽样的问题,注意发现各种抽样的特点,分析清楚抽样的区别.(3)考查简单随机抽样的抽样方法操作例:利用随机数表法对一个容量为 500 编号为 000,001,002,…,499 的产品进行抽样检验,抽取一个容量为 10 的样本,若选定从第 12 行第 5 列的数开始向右读数,(下面摘取了随机数表中的第 11 行至第 15 行),根据下图,读出的第 3 个数是()A.841B.114C.014D.146分析:从随机数表 12 行第 5 列数开始向右读,最先读到的 1 个的编号是 389,再向右三位数一读,将符合条件的选出,不符合的舍去,继续向右读取即可.解答:最先读到的 1 个的编号是 389,向右读下一个数是 775,775 它大于 499,故舍去,再下一个数是 841,舍去,再下一个数是 607,舍去,再下一个数是 449,再下一个数是 983.舍去,再下一个数是 114.读出的第 3 个数是 114.故选B.点评:本题主要考查了抽样方法,随机数表的使用,在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的,属于基础题.。
随机抽样知识点总结
![随机抽样知识点总结](https://img.taocdn.com/s3/m/8ec1cf4e17fc700abb68a98271fe910ef02dae19.png)
随机抽样知识点总结随机抽样是统计学中的重要概念,它是指从总体中随机选择一部分个体进行观察与研究的一种方法。
在实际应用中,随机抽样常常被用来代表总体,以便进行统计推断和决策分析。
下面我们来总结一下关于随机抽样的一些重要知识点。
一、随机抽样的定义随机抽样是指从总体中以一定的概率分布随机选择一个或多个个体作为样本的过程。
在进行随机抽样时,要确保每个个体有相等的机会被选入样本,从而保证样本的代表性和可靠性。
二、随机抽样的方法1. 简单随机抽样:从总体中以相等的概率随机选择样本的方法,保证每个个体被选入样本的概率相等。
2. 分层随机抽样:将总体按照某种特定的特征分成若干个层次,然后在每个层次中进行简单随机抽样。
3. 系统抽样:按照一定的规律从总体中选择个体作为样本,例如每隔k个个体选择一个个体作为样本。
4. 整群抽样:将总体分成若干个互不相交的群体(或群组),然后从中随机选择若干个群作为样本。
5. 多阶段抽样:将总体层次化,先进行群组抽样,再在抽样所得的群组内进行简单随机抽样。
三、随机抽样的特点1. 代表性:通过随机抽样,样本能够尽可能代表总体的特征和变异性,从而使得对总体的推断更加准确。
2. 可靠性:在一定的置信水平下,通过对样本数据的分析和推断,可以得出关于总体的可靠性结论。
3. 实用性:随机抽样是一种简单、有效的统计抽样方法,能够在相对较小的成本和时间内获得对总体的有效信息。
四、随机抽样的应用1. 民意调查:随机抽样被广泛应用于民意调查中,通过对选民的随机抽样,可以得出对全国范围内的选民意见的推断。
2. 商品抽检:在商品生产过程中,可以通过随机抽样对产品进行抽检,保证产品质量的可靠性和稳定性。
3. 医学实验:在医学研究中,可以通过随机抽样的方式选择研究对象,以保证研究结论的有效性和可靠性。
4. 企业调查:在市场调研、消费者满意度调查等方面,也常常运用随机抽样的方法进行样本选择,以获得对总体的准确推断。
高中数学高考统计知识点总结
![高中数学高考统计知识点总结](https://img.taocdn.com/s3/m/f63d718652d380eb62946dee.png)
第二章:统计 1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本, 每个个体被抽到的机会(概率)均为Nn。
2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。
⑵茎叶图:①茎叶图适用于数据较少的情况, 从中便于看出数据的分布, 以及中位数、众位数等。
②个位数为叶, 十位数为茎, 右侧数据按照从小到大书写, 相同的数据重复写。
3、总体特征数的估计:⑴平均数:nx x x x x n++++=Λ321; 取值为n x x x ,,,21Λ的频率分别为n p p p ,,,21Λ, 则其平均数为n n p x p x p x +++Λ2211; 注意:频率分布表计算平均数要取组中值。
⑵方差与标准差:一组样本数据n x x x ,,,21Λ方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小, 说明样本数据越稳定。
平均数反映数据总体水平;方差与标准差反映数据的稳定水平。
⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图, 判断线性相关关系 ③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i ni i x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑注意:线性回归直线经过定点),(y x 。
第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果, 用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点: ①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。
高中数学知识点:抽样方法
![高中数学知识点:抽样方法](https://img.taocdn.com/s3/m/36377d15b4daa58da0114a4b.png)
高中数学知识点:抽样方法
一、简单随机抽样
设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
2.随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
二、活用随机抽样
系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,
ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可
得第k组抽取号码应该为9+30*(k-1)
三、系统抽样
当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
四、分层抽样。
高二数学第一学期期末考随机抽样知识点整理
![高二数学第一学期期末考随机抽样知识点整理](https://img.taocdn.com/s3/m/ca4d454bbf23482fb4daa58da0116c175f0e1ef7.png)
高二数学第一学期期末考随机抽样知识点整理随机抽样1.简单随即抽样的含义一般地,设一个总体有N个个体,从中逐个不放回地抽取n个个体作为样本(nN),如果每次抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样.⑴每个个体每次被抽到的概率是;⑵每个个体被抽到的概率是;●根据你的理解,简单随机抽样有哪些主要特点?⑴总体的个体数有限;⑵样本的抽取是逐个进行的,每次只抽取一个个体;⑶抽取的样本不放回,样本中无重复个体;⑷每个个体被抽到的机会都相等,抽样具有公平性.2.简单随机抽样常用的方法:⑴抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
抽签法的操作步骤?第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.●抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大;误差相比其它抽样也比较大。
利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?第二步,在随机数表中任选一个数作为起始数.系统抽样:1.系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的'样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.●由系统抽样的定义可知系统抽样有以下特征:⑴当总体容量N较大时,采用系统抽样。
⑵将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,间隔一般为k=.号系统抽样的一般步骤如果用系统抽样从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,⑵应先从总体中随机剔除5个个体,再均衡分成60部分.一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,其操作步骤如何第四步,按照一定的规则抽取样本.分层抽样1.分层抽样的定义:若总体由差异明显的几部分组成,抽样时,先将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,再将各层取出的个体合在一起作为样本,这样的抽样叫做分层抽样.所以分层抽样又称类型抽样.●应用分层抽样应遵循以下要求及具体步骤:⑴分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。
高中数学概率统计知识点总结大全
![高中数学概率统计知识点总结大全](https://img.taocdn.com/s3/m/b18771f8a58da0116c1749ce.png)
概率统计一,统计初步1.简单随机抽样简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.2.系统抽样(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.(2)系统抽样的步骤:①编号.采用随机的方式将总体中的个体编号.②分段.先确定分段的间隔k.当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=N′n.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S +k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n 的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.3.分层抽样(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.(2)分层抽样的步骤①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.(3)分层抽样的优点分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.4.绘制频率分布直方图把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.5.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.6.平均数、中位数和众数(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.7.方差、标准差(1)设样本数据为x1,x2,…,x n样本平均数为x-,则s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]=1n[(x12+x22+…+x n2)-n x2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.8.两个变量的线性相关(1)散点图将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.(2)正相关、负相关如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.9.回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归直线方程的求法——最小二乘法.设具有线性相关关系的两个变量x、y的一组观察值为(x i,y i)(i=1,2,…,n),则回归直线方程y^=a^+b^x的系数为:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ b ^=∑i =1n x i y i -n x ·y ∑i =1n x i 2-n x 2=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2a^=y --b ^x 其中x -=1n ∑i =1n x i ,y -=1n ∑i =1n y i ,(x -,y -)称作样本点的中心. a ^,b ^表示由观察值用最小二乘法求得的a ,b 的估计值,叫回归系数.10.独立性检验(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.(2)两个分类变量X 与Y 的频数表,称作2×2列联表.二.随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 B 或A B +) B (或AB ) B 为不可能事件B φ= B 为不可能事件B 为必然事件与事件B 互为对立事件 B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A . 由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0.5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.(3)不可能事件的概率:()0p A =.(4)互斥事件的概率加法公式:①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-.三.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.四.几何概型1.(1)随机数的概念:随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.(2)随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数.2.几何概型(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.(3)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()p A =构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.3.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积。
数学抽样相关知识点总结
![数学抽样相关知识点总结](https://img.taocdn.com/s3/m/842338bbbb0d4a7302768e9951e79b8969026849.png)
数学抽样相关知识点总结1. 抽样方法在进行抽样时,我们需要选择适合的抽样方法。
常见的抽样方法包括:- 简单随机抽样:从总体中随机地选择样本,每个样本有相等的概率被选中。
- 分层抽样:将总体按照某种特征分成几个层,然后从每个层中分别抽取样本。
- 系统抽样:从总体中随机地选择一个起始点,然后以固定的间隔选择样本。
- 整群抽样:将总体分成若干群,然后随机选择几个群作为样本。
选择合适的抽样方法取决于总体的特点和研究目的,不同的抽样方法会影响到最后推断的精确性和可靠性。
2. 抽样误差抽样误差是指由于样本选择不足或者样本选择方法不当而引入的误差。
抽样误差的大小直接影响到我们对总体特征的推断。
通常情况下,抽样误差可以通过增加样本量或改进抽样方法来减小。
在进行统计推断时,我们需要注意到由于抽样误差引入的不确定性,因此对抽样误差进行合理的估计和控制是十分重要的。
3. 抽样分布抽样分布是指在不同的抽样中,统计量的取值分布。
常见的抽样分布包括正态分布、t-分布、F-分布等。
这些抽样分布在统计推断中有着重要的作用,可以帮助我们进行假设检验、置信区间估计等。
通过对不同的抽样分布的性质和特点的了解,我们可以更好地进行统计推断,并对不同的问题做出合理的判断。
4. 实际应用中的注意事项在实际应用中,抽样是统计研究中一个至关重要的步骤。
在进行抽样时,我们需要注意以下几个方面:- 样本的代表性:要确保选择的样本能够代表总体的特征,避免样本偏差。
- 样本的大小:要根据研究问题的复杂程度和样本特点选择合适的样本大小。
- 抽样方法的合理性:要根据总体的特点和研究目的选择合适的抽样方法,尽量减小抽样误差。
总之,抽样是统计学中一个重要的概念,它在统计推断和研究中都有着重要的应用。
通过合理地选择抽样方法、控制抽样误差、了解抽样分布等,我们可以更准确地对总体特征进行推断,并做出科学的决策。
高中数学必修二第九章知识点总结
![高中数学必修二第九章知识点总结](https://img.taocdn.com/s3/m/99872a41182e453610661ed9ad51f01dc3815752.png)
高中数学必修二第九章知识点总结一、随机抽样。
1. 简单随机抽样。
- 定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤ N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
- 常用方法。
- 抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
- 随机数法:利用随机数表、随机数生成器或统计软件来抽取样本。
2. 系统抽样。
- 定义:将总体分成均衡的若干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样。
- 步骤。
- 先将总体的N个个体编号。
- 确定分段间隔k = (N)/(n)(n是样本容量),对编号进行分段。
- 在第1段用简单随机抽样确定第一个个体编号l(l≤ k)。
- 按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l + k),再加k得到第3个个体编号(l+2k),以此类推,直到获取整个样本。
3. 分层抽样。
- 定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样。
- 适用情况:总体是由差异明显的几个部分组成时。
- 步骤。
- 根据已掌握的信息,将总体分成互不相交的层。
- 计算各层中个体数与总体数的比例,按各层个体数占总体数的比例确定各层应抽取的样本容量。
- 在每一层进行抽样(可以用简单随机抽样或系统抽样)。
二、用样本估计总体。
1. 频率分布表与频率分布直方图。
- 频率分布表。
- 计算极差(最大值与最小值的差)。
- 决定组距与组数(组距=(极差)/(组数),组数通常取5 - 12组比较合适)。
- 确定分点,将数据分组。
- 统计每组的频数,计算频率(频率=(频数)/(样本容量)),列出频率分布表。
(完整版)高中数学概率统计知识点总结
![(完整版)高中数学概率统计知识点总结](https://img.taocdn.com/s3/m/235e40c65a8102d277a22f28.png)
高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。
化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。
因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。
高中数学知识点:抽样方法
![高中数学知识点:抽样方法](https://img.taocdn.com/s3/m/1cc3bdaf5901020207409c8b.png)
高中数学知识点:抽样方法一、简单随机抽样设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
2.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
二、活用随机抽样系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d 为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可得第k组抽取号码应该为9+30*(k-1)三、系统抽样要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
高一必修二数学知识点总结5篇
![高一必修二数学知识点总结5篇](https://img.taocdn.com/s3/m/df1d5ce8185f312b3169a45177232f60ddcce711.png)
高一必修二数学知识点总结5篇高一必修二数学知识点总结1一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样简单抽样常用方法:(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n 次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率:相关高中数学知识点:系统抽样系统抽样的概念:当整体中存在大量个体时,将整体分成若干部分,然后按照一定的规则从每个部分中抽取一个个体,得到所需样本的方法称为系统抽样。
系统抽样的步骤:(1)采用随机方式将总体中的个体编号;(2)将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即=k不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满足是整数;(3)在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。
相关高中数学知识点:分层抽样分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。
高中数学知识点总结概率与统计的抽样方法
![高中数学知识点总结概率与统计的抽样方法](https://img.taocdn.com/s3/m/fa5fb49581eb6294dd88d0d233d4b14e85243ec5.png)
高中数学知识点总结概率与统计的抽样方法在概率与统计学中,抽样方法是一种收集数据并进行分析的重要手段。
通过抽样,我们可以从总体中选择一部分样本,以此来了解和推断整体的特征和规律。
本文将对高中数学中与概率与统计相关的抽样方法进行总结。
一、简单随机抽样(Simple Random Sampling)简单随机抽样是指从总体中以随机的方式抽取样本,使得各个样本具有相同的机会被抽到,且各个样本之间是相互独立的。
简单随机抽样通常采用以下几种方式实施:1. 纸箱抽样法:将总体中的每个个体写在纸片上,放入一个装有纸片的纸箱中,然后用手在纸箱中摇晃,最后从中抽取所需的样本。
2. 随机数表法:通过使用随机数表,将总体中的个体与表中的随机数对应,然后按照表中的数值顺序抽取样本。
简单随机抽样的特点是简单易行,并且能够较好地反映总体的特征。
但是在总体较大时,抽样工作会比较繁琐,且可能出现样本偏差的情况。
二、系统抽样(Systematic Sampling)系统抽样是按照一定的规则从总体中抽取样本,通常是从第一个个体开始,每隔一定的间隔抽取一个样本,直到达到所需样本数量为止。
系统抽样的具体步骤如下:1. 确定总体大小 N 和所需样本数量 n。
2. 计算步长 k = N/n。
3. 随机确定一个起始值 r,保证 r 小于 k。
4. 以步长为间隔,从第 r 个个体开始进行抽样。
系统抽样相对于简单随机抽样而言,其抽样过程相对简单且精确。
但是需要注意,若总体的顺序具有某种规律或周期性,可能会导致样本的偏差。
三、整群抽样(Cluster Sampling)整群抽样是将总体划分为若干个互不重叠的群组,然后从中随机选择一部分群组作为样本,进行数据收集和分析。
整群抽样的步骤如下:1. 将总体划分为若干个群组,确保群组之间的相似度较高,群组内的差异较小。
2. 使用随机抽样技术,从划分好的群组中随机选择一定数量的群组作为样本。
3. 对所选的群组进行全员调查,或者从每个群组中再进行其他抽样方法的抽样。
高中数学《统计》与《概率》知识点
![高中数学《统计》与《概率》知识点](https://img.taocdn.com/s3/m/2971b299cc7931b765ce1595.png)
第二章统计一、简单随机抽样1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
二、系统抽样1.系统抽样(也叫等距离抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体)/n(样本个数)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布有某种循环性规律,且这种循环和抽样距离重合。
2.系统抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
三、分层抽样1.分层抽样:先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
人教版高中数学必修三 第二章 统计第三章简单随机抽样-知识点
![人教版高中数学必修三 第二章 统计第三章简单随机抽样-知识点](https://img.taocdn.com/s3/m/401ff71cb52acfc789ebc9f0.png)
第三章 简单随机抽样第一节 简单随机抽样概述一、简单随机抽样的概念简单随机抽样也叫作纯随机抽样。
其概念可有两种等价的定义方法:定义之一:简单随机抽样就是从总体N 个抽样单元中,一次抽取n 个单元时,使全部可能的)(Nn A 种不同的样本被抽到的概率均相等,即都等于1/A 。
按简单随机抽样,抽到的样本称为简单随机样本。
按上述定义,在抽取简单随机样本之前,应将所有可能的互不相同的样本一一列举出来。
但当N 与n 都比较大时,要列出全部可能的样本是不现实的。
因此,按上述定义进行抽样是不太方便的。
定义之二:简单随机抽样是从总体的N 个抽样单元中,每次抽取一个单元时,使每一个单元都有相等的概率被抽中,连续抽n 次,以抽中的n 个单元组成简单随机样本。
由于定义二无需列举全部可能的样本,故比较便于组织实施。
但按这个定义进行抽样时,仍然需要掌握一个可以赖以实施抽样的抽样框。
二、简单随机抽样的具体实施方法常用的有抽签法和随机数法两种。
(一)抽签法抽签法是先对总体N 个抽样单元分别编上1到N 的号码,再制作与之相对应的N 个号签并充分摇匀后,从中随机地抽取n 个号签(可以是一次抽取n 个号签,也可以一次抽一个号签,连续抽n 次),与抽中号签号码相同的n 个单元即为抽中的单元,由其组成简单随机样本。
抽签法在技术上十分简单,但在实际应用中,对总体各单元编号并制作号签的工作量可能会很繁重,尤其是当总体容量比较大时,抽签法并不是很方便,而且也往往难以保证做到等概率。
因此,实际工作中常常使用随机数法。
(二)随机数法随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
由于计算机产生的随机数实际上是伪随机数,不是真正的随机数,特别是直接采用一般现成程序时,产生的随机数往往不能保证其随机性。
因此,一般使用随机数表,或用随机数骰子产生的随机数,特别在n 比较大时。
1、随机数表及其使用方法随机数表是由0到9的10个阿拉伯数字进行随机排列组成的表。
高二数学简单随机抽样统计知识点
![高二数学简单随机抽样统计知识点](https://img.taocdn.com/s3/m/7d9a8b08580102020740be1e650e52ea5518ced5.png)
高二数学简单随机抽样统计知识点
(1)总体和样本
①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.
④为了研究总体的有关*质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量.
(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能*相同(概率相等),样本的每个单位完全*,彼此间无一定的关联*和排斥*。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:
①抽签法
②随机数表法
③计算机模拟法
③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:
①总体变异情况;
②允许误差范围;
③概率保*程度。
(4)抽签法:
①给调查对象群体中的每一个对象编号;
②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点总结:简单随机抽样
简单随机抽样
1.总体和样本
在统计学中 , 把研究对象的全体叫做总体.
把每个研究对象叫做个体.
把总体中个体的总数叫做总体容量.
为了研究总体的有关性质,一般从总体中随机抽取一部分:,
,,
研究,我们称它为样本.其中个体的个数称为样本容量.
2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:
(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;
③概率保证程度。
4.抽签法:
(1)给调查对象群体中的每一个对象编号;
(2)准备抽签的工具,实施抽签
(3)对样本中的每一个个体进行测量或调查
例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:
例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
高中数学知识点总结第 1 页共1 页。