高一数学讲义 三角函数的图像和性质

合集下载

高一数学三角函数的图像和性质

高一数学三角函数的图像和性质

高一数学三角函数的图像性质1、正弦函数和余弦函数的图象:正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππππ的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。

2、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。

(2)值域:都是[]1,1-;①对sin y x =,当()22x k k Zππ=+∈时,y 取最大值1;当()322x k k Z ππ=+∈时,y 取最小值-1;②对cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。

3、周期性:①sin y x =,cos y x =的最小正周期都是2π;②()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=。

4、奇偶性、对称性与单调性:奇偶性与单调性:①正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2x k k Z ππ=+∈;②余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭,对称轴是直线()x k k Z π=∈;(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。

单调性: ①()sin 2,222y x k k k Z ππππ⎡⎤=-+∈⎢⎥⎣⎦在上单调递增,在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦单调递减; ②cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。

知识点:画出三角函数图像。

高中数学三角函数的图像与性质优秀课件

高中数学三角函数的图像与性质优秀课件

1
2 3
2
2
1 2
3 2
2
y cos x,x R
3 2
2
正、余弦函数的性质
y
2
sin
1 2
x
4
④周期性:形如y Asin x 或y Aco1sx 的
函数的周期T 2 .
2 1
3 2 5 3 7 4
2
2
2
2
y sin 2x 1
1
2 3 2
2 1
2
3 2
例1:已知函数y
Asin x A
0,
0,
2
,x
R
的部分图像,求函数解析式.
解:由图知A 2.
又 T 3 1 2,故T 8, 即 2 8, .
4
4
令 1 = 得= .
4
2
4
综上得,y
2sin
4
x
4
.
例2:函数f
x
Asin
x
0,
2
,x
R
的部分图像如图,则函数表达式为(
x
0
4
3
2
4
2x
0
3
2
2
2
y sin 2x
0
1
0
1
0
五点:0,0, 4 ,1, 2 ,0,
3
4
,1,,0.
1
3 2
2 1 2
2
五点作图法
例1:用“五点法”作y
2sin
1 2
x
4
,x
2
,7 2
的图像.
x
3
5
7
2
2

高一数学三角函数的图像和性质

高一数学三角函数的图像和性质
(3)用光滑的曲线连结(2)中五点.
1 y sin( x ) 1 的简图 作函数 2 3
解: 列表 描点作图
y
1 x 2 3
0

2

4 3
1
3 2
2
2-
x
1 y sin( x ) 1 2 3
1
2 3
3
7 3
0
10 3
1
1-
2
2o - 1 3
3
一、三角函数图像的作法 二、三角函数图像的性质 三、解三角不等式(数形结合) 四、f(x)= Asin(x+) 的性质 五、课后练习
几何法 五点法 图像变换法
一、三角函数图像的作法
1.几何法 y=sinx 作图步骤:
y
y
T 1 P
正弦线MP 余弦线OM
正切线AT
A 1
o
M
x
1P 1

/ p1
) 的图象; ①将 y=sinx 的图象向左平移 , 得 y =sin( x + 6 6 1 ②将所得图象上各点横坐标缩短到原来的 2 倍(纵坐标不 变), 得到 y=sin(2x+ ) 的图象; 6 1 ③将所得图象上各点纵坐标缩短到原来的 2 倍(横坐标不 变), 得到 y= 1 sin(2x+ ) 的图象; 2 6 5 1 ④将所得图象向上平移 4 个单位长度, 得到 y= 2 sin(2x+ 6 ) 5 + 4 的图象; 2x+ 3 sinxcosx+1 的图象. 综上得到 y= 1 cos 2 2

y 如1 :
sin( 2 x ) 3.P95T9 B 3

高一数学三角函数的图象与性质

高一数学三角函数的图象与性质
新课标人教版课件系列
《高中数学》
必修4
1.4《三角函数的图像 和性质》
学习目标:
(1)利用单位圆中的三角函数线作出 y sin x, x R 的图象,明确图象的形状;
π (2)根据关系cos x sin( x ),作出y cos x, x R 2
的图象; (3)用“五点法”作出正弦函数、余弦函数的简图,并利用 图象解决一些有关问题.
想一想?
1.sin ,cos 的几何意义
y
1
P
正弦线MP
o
M
1
x
余弦线OM
利用正弦线作函数
y sin x, x 0, 2 π 图象
y
作法: (1) 等分 (2) 作正弦线
/ p1
1P 1

6
(3) 平移 (4) 连线
π 3
π 2
o1
M -1 1
A
o
-1 -
π 6
2π 3
5π 6
(1) y
x
小结:本节主要学习了以下内容
(1)出利用单位圆中的三角函数线作 y sin x, x R 的图象,明确图象的形状;
π (2)根据关系cos x sin( x ) ,作出y cos x, x R 2
的图象; (3)用“五点法”作出正弦函数、余弦函数的简图,并利用 图象解决一些有关问题.
(1)y=sinx+1, x∈[0,2π] (2)y=-cosx , x∈[0,2π]
解:( ( 12 ) ) 列表
xx
sin x x cos sin x cos x1
0 0
描点作图
10 1 -1
01 02

高一数学讲义 第六章 三角函数

高一数学讲义 第六章 三角函数

高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。

7.3.2三角函数的正切函数的性质与图象(课件)高一数学(苏教版必修第一册)

7.3.2三角函数的正切函数的性质与图象(课件)高一数学(苏教版必修第一册)

的定义域为
x
x
k
2
6
,k
Z
.故选:D.
讲授新课
知识点二 正切函数的值域问题
【例
2】函数
y
2
tan
2
x
3
tan
x
1

x
π 4
,
π 4
的值域为______.
【答案】
6,
1 8
【解析】因为
x
4
,
4
,所以
tan
x 1,1

y
2
tan
2
x
3
tan
x
1
2
tan
x
3 4
2
1 8

则当
tan
的定义域为
x
|
x
k
2
,k
Z
.故选:A.
讲授新课
【变式
1-2】函数
f
x
2 tan
2
x
6
的定义域是(

A. x
x
6
B.
x
x
12
C. x
x
6
,k
Z
D.
x
x
k
2
6
,k
Z
【答案】D
【解析】由正切函数的定义域,令
2x
6
k
2
,k Z
,即 x
k
2
6
k
Z ,
所以函数
f
x
2 tan
2
x
6
A.充分不必要条件
B.必要不充分条件
C.充要条件

(完整word版)高中数学必修一三角函数图像性质总结(精华版)

(完整word版)高中数学必修一三角函数图像性质总结(精华版)

•正弦、余弦、正切函数图象和性质函数正弦函数y =sinx,x运R余弦函数y=cosx, x^R正切函数y = tanx, xHkr +上2有界性有界有界无界疋义域(^□0, +Xi)r 兀i2 x | x式k兀+—, Z ,I 2 J值域[-1,1]当X =3 +2kjl(k 乏Z)时,y max =〔2■JT当x =_二+2kir(k ^Z)时,2『min =-〔3,1]当X=2k H(k€Z)时,y max =1当x =兀+2k n(k€Z)时,『min = -1(^aC, ^C)周期性是周期函数,最小正周期T=2兀是周期函数,最小正周期T =2兀T =兀奇偶性奇函数,图象关于原点对称偶函数,图象关于y轴对称奇函数,图象关于原点对称单调性在[一生+2k兀,壬+2小],(k € z)2 2上是单调增函数在[壬+2kn,竺+2阪],(k乏Z)2 2上是单调减函数在[兀+2kir,2兀+2kn:], (k 乏Z)上是单调增函数在[2k%兀+2kn], (k^Z)上是单调减函数”H 兀在(_一+k兀,一+k兀),(k^ Z) 2 2上是单调增函数对称轴1Tx =k 兀+ = ,(k E Z)2x =kir, (k w Z)对称中心(也,0) (MZ)(k兀+ 匹,0) (k^Z)2k兀(三,0) (HZ)正弦函数、余弦函数、正切函数的图像三角函数的性质1定义域与值域 2、奇偶性(1) 基本函数的奇偶性 奇函数:y = sinx , y = tanx ;偶函数:y = cosx.(2),型三角函数的奇偶性(i) g ( x )=—二匚(x € R )g (x )为偶函数二T ■-匚「•匚O 虫血(曲+®)二虫sm (-蕊+©(XE R) n 迪欧刚片Q (応R) 8$少二 Oo®=fc?r+—优eZ)由此得同理,=虫迎(的物仃E 去)为奇函数sin = 0(p — k7l(k € Z).(丘).;':.■. - ■ J .:!■, ■ /.'■■■.'■.I宀'-■■ : - ■■- - /'为偶函数---::1 ;:—上:-■■- - -;1 为奇函数 (圧 2) 2 .3、周期性1)基本公式(i)基本三角函数的周期 y = sinx , y = cosx 的周期为:•'; ; y = tanx , y = cotx的周期为匚.(ii)「V 」型三角函数的周期2JTy= 4$in(眾x+卩)+kj=i4coK 驱+©+上开y 二虫 tan (临+仍 +匕丁 二 Acot(@z+g) + 上 的周期为|少| . (2) 认知y=ta nxyiy;y=cotx II 丿 /f f / y1 /I112■ z n -2oJ2! , n 212x-JI2o恥312-込:—1 r [ ii f I\tI 1 1 i2 2-1y=cosx(i) 讨型函数的周期开尸恤in(处+©卩屮cos(曲+创的周期为0| ;7T》=|血购(亦+ ©卜=|乂嗽(倾+釧的周期为0 .(ii) 一:“」的周期严|加1伽+©+斗尸血o$伽+©+貝的周期为青;71尸|伽血+ ©+丽二血0t伽+© +上|的周期为0 .均同它们不加绝对值时的周期相同,即对+ 的解析式施加绝对值后,该函数的周期不变•注意这一点与(i)的区别•(ii) 若函数为「川型两位函数之和,则探求周期适于“最小公倍数法”.(iii) 探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明(3)特殊情形研究7T(i) y = tanx —cotx的最小正周期为];(ii) '的最小正周期为];(iii) y = sin 4X + cos4x的最小正周期为 _ .由此领悟“最小公倍数法”的适用类型,以防施错对象.4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的一个周期;②写特解:在所选周期内写出函数的增区间(或减区间);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族.揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域•(2)R 型三角函数的单调区间此类三角函数单调区间的寻求“三部曲”为①换元、分解:令u—二,将所给函数分解为内、外两层:y二f (u), u… ;②套用公式:根据对复合函数单调性的认知,确定出f (u)的单调性,而后利用(1)中公式写出关于u的不等式;③还原、结论:将u=J「二代入②中u的不等式,解出x的取值范围,并用集合或区间形成结论•正弦、余弦、正切、余切函数的图象的性质:/y =s inx y =cosx y =ta nx y =cotxy = Asin®x+申)(A、⑷ > 0)定义域R R- 1 _x|x E R且x #冗岂兀k亡Z卩{x|x^R 且x^k jL k^z}R值域[_1,+1][_1,+1]R RL A, A】周期性2兀2兀312H看奇偶性奇函数偶函数奇函数奇函数当甲式0,非奇非偶当® =0,奇函数单调性n:[——+2kTi,2-+2^I]2上为增函数;TT[—+2kir,23兀丄—■ +2kn]2上为减函数( "Z )[(2k—1兀.2kn]上为增函数[2k 兀,(2k +1 対上为减函数("Z )+k ii,匹+k n〕1 2 2丿上为增函数("Z )(5, (k+1^ )上为减函数(k^Z ) 1[上■上兀 22kn:------- Q2( A)(A),12kn: +— n 一申2( A)(八丿_ 0 」二为增函数;2kn十匹一护(A),O2k兀+^3兀一半2 ( 八)(一八). ⑷一二为减函数注意:①y =-sinx与y =sinx的单调性正好相反;y =-cosx与y =cosx的单调性也同样相反一般地,若y =f(x)在[a,b]上递增(减),则y=-f(x)在[a,b]上递减(增)②y =sin x与y =COSX的周期是二.③y =sin(灼x+巧或y=cos®x+®)(⑷芒0 )的周期T =吾.y=tan x的周期为2兀(T=2L—T=2TT,如图,翻折无效)•2抄厂JT④y =sin(,x •「)的对称轴方程是- (k • Z ),对称中心(k二,0 ) ; y住x )的对称轴方程是x=k二(Z),对称中心(k-);y =a x :)的对称中心(—,0).k 2 ,02原点对称> y - _cos( _2x) - _cos2xy =cos2x⑤当tan : tan 1 =1, : - -k (k Z);ta n : tan 一- _1, : - 一- k (k Z).2 2⑥y =cosx与y =sin i x 2k二是同一函数,而y=(.x・)是偶函数,贝UI 2 丿1y =( x :T)二sin( x k - ) = cos( x).⑦函数yy=tanx为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f(「x)=f(x),奇函数:f(_x)--f(x))奇偶性的单调性:奇同偶反.例如:y=tanx是奇函数,y =tan(x --)是非奇非偶.(定义域不3关于原点对称)奇函数特有性质:若x的定义域,则f (x)一定有f(o)=o. (O^x的定义域,贝U无此性质)⑨y =sinx不是周期函数;y = sin x为周期函数(T ★);y .cosx是周期函数(如图);y = cos x为周期函数(T二二);y=cos2x』的周期为兀(如图),并非所有周期函数都有最小正周期, 2y、 /一:、X *例如:y =f (x) =5 =f (x k),k R.⑩ y =a cos* 亠bsin - - a2b2sin(x 亠门)cos =b有a2b2y .、形如y =Asin(「x •的函数:11、几个物理量:A—振幅;f二1—频率(周期的倒数);「X •「一相位;‘一初相;2、函数y = Asin()表达式的确定:A由最值确定;• •由周期确定;:由图象上的特殊点确定,如f(x)= Asgx +申"“妙>0宀的图象如图所示,则 f (x)(答:f (x)二2sin^ x3.函数y 二Asin(・x ) B (其中 A 0, ,0)最大值是A最小正周期T十|y= cos|x| 图象yy=| cos2x+1/21图象Q JT频率是f ,相位是,初相是:;其图象的对称轴是直线•■x W:=k (k・Z),凡2兀2是该图象与直线y=B 的交点都是该图象的对称中心 4、 研究函数y =Asin (「x •「)性质的方法:类比于研究y =sin x 的性质,只需将y = Asin ( • x J 中的 看成y =si n x 中的x ,但在求y = A si n (・・x •「)的单调区间时,要特别注意 A 和• ‘的 符号,通过诱导公式先将•’化正。

高一数学 三角函数的图像及性质

高一数学  三角函数的图像及性质

三角函数一、知识梳理1.正弦函数、余弦函数和正切函数的图象与性质:2.周期函数定义:对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期.结论:如果函数)()(k x f k x f -=+对于R x ∈任意的,那么函数()f x 的周期T=2k ;如果函数)()(x k f k x f -=+对于R x ∈任意的,那么函数()f x 的对称轴是k x k k x x =-++=2)()(3.图象的平移对函数y =A sin (ωx +ϕ)+k (A .>.0.,. ω.>.0.,. ϕ.≠0..,. k .≠0..).,其图象的基本变换有: (1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长. (3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移. (4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移二、方法归纳1.求三角函数的值域的常用方法:① 化为求代数函数的值域;② 化为求sin()y A x B ωϕ=++的值域; ③ 化为关于sin x (或cos x )的二次函数式;2.三角函数的周期问题一般将函数式化为()y Af x ωϕ=+(其中()f x 为三角函数,0ω>).3.函数sin()y A x ωϕ=+为奇函数k ϕπ⇔=()k ∈Z ; 函数sin()y A x ωϕ=+为偶函数2k πϕπ⇔=+()k ∈Z函数cos()y A x ωϕ=+为偶函数k ϕπ⇔=; 函数cos()y A x ωϕ=+为奇函数2k πϕπ⇔=+()k ∈Z4.函数sin()y A x ωϕ=+(0,0)A ω>>的单调增区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出,单调减区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出; 函数sin()y A x ωϕ=+(0,0)A ω<>的单调增区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出, 单调减区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出.5.对称性:(1)函数sin()y A x ωϕ=+对称轴可由2x k πωϕπ+=+()k ∈Z 解出;对称中心的横坐标是方程x k ωϕπ+=()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法) (2)函数()cos y A x ωϕ=+对称轴可由x k ωϕπ+=()k ∈Z 解出;对称中心的横坐标是方程2x k πωϕπ+=+()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法)(3)函数()tan y A x ωϕ=+对称中心的横坐标可由2kx ωϕπ+=()k ∈Z 解出, 对称中心的纵坐标为0,函数()tan y x ωϕ=+不具有轴对称性.三、课堂例题精讲例1.下列函数中,周期为2π的是( ) A.sin 2x y = B.sin 2y x =C.cos4x y = D.cos 4y x =答案:D例2.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A.关于点0π⎛⎫ ⎪3⎝⎭,对称B.关于直线x π=4对称 C.关于点0π⎛⎫ ⎪4⎝⎭,对称D.关于直线x π=3对称 答案:A.解析:由题意知2ω=,所以解析式为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,经验证可知它的一个对称中心为,03π⎛⎫⎪⎝⎭.例3.函数的最小正周期和最大值分别为( )A.π,1B.π2C.2π,1D.2π2答案:A.解析:x x x x x y 2cos 232sin 212cos 212cos 232sin =⋅-⋅+⋅+⋅=,∴T =π,y max =1 例4.函数[]()sin 3(π0)f x x x x =∈-,的单调递增区间是( )A.5ππ6⎡⎤--⎢⎥⎣⎦,B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,答案:D.解析:因为⎪⎭⎫ ⎝⎛π-=3sin 2)(x x f ,.0,6656,0),(65262),(22322符合题意由此可得得令得令⎥⎦⎤⎢⎣⎡π-π≤≤π-=∈π+π≤≤π-π∈π+π≤π-≤π-πx k k k x k k k x k Z Z例5.将⎪⎭⎫⎝⎛π+=63cos 2x y 的图象按向量a =⎪⎭⎫⎝⎛-π-2,4平移,则平移后所得图象的解析式为( ) A.243cos 2-⎪⎭⎫⎝⎛π+=x y B. 243cos 2+⎪⎭⎫ ⎝⎛π-=x y C. 2123cos 2-⎪⎭⎫ ⎝⎛π-=x y D. 2123cos 2+⎪⎭⎫⎝⎛π+=x y 答案:A.解析:看向量a =⎪⎭⎫⎝⎛-π-2,4的数据“符号”,指令图象左移和下移,按“同旁相减,异旁相加”的口诀,立可否定B 、C 、D.例6.函数sin y x =的一个单调增区间是( )A.ππ⎛⎫- ⎪44⎝⎭, B.3ππ⎛⎫ ⎪44⎝⎭, C.3π⎛⎫π ⎪2⎝⎭,D.32π⎛⎫π⎪2⎝⎭, 答案:C解析:法一:∵函数sin y x =的一个单调递增区间为⎥⎦⎤⎢⎣⎡π2,0, 又函数sin y x =是以π为周期的函数,∴函数sin y x =的单调递增区间为⎥⎦⎤⎢⎣⎡π+ππ2,k k (k ∈Z ).当k =1时,函数sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C. 法二:作出函数sin y x =的图象,由图易知sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C.法三:将每个选择支中区间的两个端点值代入函数表达式,A 、B 两个选择支的端点值相等,而选择支D 的左端点值大于右端点值, 所以根据单调递增的概念判断,可排除A 、B 、D ,故选C.例7.函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .答案: ω=3例8.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()2cos 21g x x ϕ=++的图象的对称轴完全相同.若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围是 . 答案:3[-,3]2解析:由题意知,2ω=,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,由三角函数图象知:()f x 的最小值为33sin (-)=-62π,最大值为3sin =32π, 所以()f x 的取值范围是3[-,3]2. 例9.定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图象与y=5tanx 的图象的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图象交于点P 2,则线段P 1P 2的长为 . 答案:23解析“线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx=5tanx ,解得sinx=23. 故线段P 1P 2的长为23.例10.设函数()f x =·a b ,其中向量(cos2)mx =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫⎪⎝⎭,. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.解析:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1 由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,. 例11. 已知函数()sin(),(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,其图象关于点M )0,43(π对称,且在区间[0,2π]上是单调函数,求ϕ和ω的值. 解析:由)(x f 是偶函数,得)()(x f x f =-,故sin()sin()x x ωϕωϕ-+=+,cos sin cos sin x x ϕωϕω-=对任意x 都成立, 且0,cos 0.ωϕ>∴=依题设0≤ϕ≤π,cos .2πϕ∴=由)(x f 的图象关于点M 对称,得)43()43(x f x f +-=-ππ取0)43(),43()43(0=∴-==πππf f f x 得 0)43cos(),43cos()243sin()43(=∴=+=x x x f ωωπωπ又0>ω,得......2,1,0,243=+=k k x ππω ...2,1,0),12(32=+=∴k k ω当0=k 时,)232sin()(,32πω+==x x f 在]2,0[π上是减函数.当1=k 时,)22sin()(,2πω+==x x f 在]2,0[π上是减函数. 当k ≥2时,)2sin()(,310πωω+==x x f 在]2,0[π上不是单调函数. 所以,综合得32=ω或2=ω.四、课后作业1.函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A.233ππ⎛⎫ ⎪⎝⎭,B.62ππ⎛⎫ ⎪⎝⎭,C.03π⎛⎫ ⎪⎝⎭,D.66ππ⎛⎫- ⎪⎝⎭,2.已知函数()f x =Acos (x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( ) A.23-B .23 C.32 D. 32-3. 设ω>0,函数f (x )=2sinωx 在]4,3[ππ-上为增函数,那么ω的取值范围是 .4.判断方程sinx=π100x实数解的个数.5.求函数y=2sin )4(x -π的单调区间.6.已知函数()f x =xx x 2cos 1cos 3cos 224+-,求它的定义域和值域,并判断奇偶性.100л7.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.8.设()f x = x x 2sin 3cos 62-, (1)求()f x 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求tan α54的值.9. 求下列函数的值域: (1)y=x x x cos 1sin 2sin -; (2)y=sinx+cosx+sinxcosx ; (3)y=2cos )3(x +π+2cosx.10.已知函数f (x )=-sin 2x+sinx+a ,(1)当f (x )=0有实数解时,求a 的取值范围; (2)若x ∈R ,有1≤f (x )≤417,求a 的取值范围.11.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (Ⅰ)求()f x 的最大值和最小值;(Ⅱ)若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.12.已知f (x )=2a sin 2x -22a sin x +a +b 的定义域是[0,2π],值域是[-5,1],求a 、b 的值.参考答案: 1.答案:A 2.答案:C 3.答案:203ω<≤ 4.答案:199 解析:方程sinx=π100x 的实数解的个数等于函数y=sinx 与y=π100x 的图象交点个数, ∵|sinx|≤1∴|π100x|≤1, |x|≤100л 当x≥0时,如下图,此时两线共有100个交点, 因y=sinx 与y=π100x都是奇函数,由对称性知当x≤0时,也有100个交点, 原点是重复计数的,所以只有199个交点. 5.解析:y=2sin )4(x -π可看作是由y=2sinu 与u=x -4π复合而成的.又∵u=x -4π为减函数,∴由2k π-2π≤u ≤2k π+2π(k ∈Z ),得-2k π-4π≤x ≤-2k π+43π (k ∈Z ). 即⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z )为y=2sin )4(x -π 的递减区间. 由2k π+2π≤u ≤2k π+23π (k ∈Z ), 得2k π+2π≤4π-x ≤2k π+23π(k ∈Z ), 解得-2k π-45π≤x ≤-2k π-4π (k ∈Z ),即⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z )为y=2sin )4(x -π的递增区间. 综上可知:y=2sin )4(x -π的递增区间为⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z ); 递减区间为⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z ). 6.解析:由题意知cos2x≠0,得2x≠k π+2π, 解得x≠42ππ+k (k ∈Z ). 所以()f x 的定义域为⎭⎬⎫⎩⎨⎧∈+≠∈Z R k k x x x ,42ππ且,. 又()f x =xx x 2cos 1cos 3cos 224+-=x x x 2cos )1)(cos 1cos 2(22--=cos 2x-1=-sin 2x.又定义域关于原点对称, ∴()f x 是偶函数. 显然-sin 2x ∈[-1,0],但∵x≠42ππ+k ,k ∈Z . ∴-sin 2x≠-21.所以原函数的值域为⎭⎬⎫⎩⎨⎧≤<--<≤-021211|y y y 或.7.解析:(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上增,在区间3π3π84⎡⎤⎢⎥⎣⎦,上减,又π08f ⎛⎫=⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为3π14f ⎛⎫=- ⎪⎝⎭.8.解析:(Ⅰ)1cos 2()622xf x x +=3cos 223x x =+12sin 232x x ⎫=-+⎪⎪⎭236x π⎛⎫=++ ⎪⎝⎭. 故()f x的最大值为3;最小正周期22T π==π.(Ⅱ)由()3f α=-2336απ⎛⎫++=- ⎪⎝⎭故cos 216απ⎛⎫+=- ⎪⎝⎭. 又由02απ<<得2666απππ<+<π+,故26απ+=π,解得512α=π.从而4tan tan 53απ==.9.解析:(1)y=x x x x cos 1sin cos sin 2-=xx x cos 1)cos 1(cos 22--=2cos 2x+2cosx=22)21(cos +x -21.于是当且仅当cosx=1时取得y max =4,但cosx≠1,∴y <4,且y min =-21,当且仅当cosx=-21时取得. 故函数值域为⎪⎭⎫⎢⎣⎡-4,21. (2)令t=sinx+cosx ,则有t 2=1+2sinxcosx ,即sinxcosx=212-t .有y=f (t )=t+212-t =1)1(212-+t .又t=sinx+cosx=2sin )4(π+x , ∴-2≤t≤2.故y=f (t )=1)1(212-+t (-2≤t≤2), 从而知:f (-1)≤y≤f (2), 即-1≤y≤2+21. 即函数的值域为⎥⎦⎤⎢⎣⎡+-212,1.(3)y=2cos )3(x +π+2cosx=2cos3πcosx-2sin 3πsinx+2cosx=3cosx-3sinx =23⎪⎪⎭⎫⎝⎛-x x sin 21cos 23=23cos )6(π+x . ∵)6cos(π+x ≤1,∴该函数值域为[-23,23].10.解析:(1)f (x )=0,即a=sin 2x -sinx=(sinx -21)2-41∴当sinx=21时,a min =-41,当sinx=-1时,a max =2, ∴a ∈[41-,2]为所求.(2)由1≤f (x )≤47得⎪⎩⎪⎨⎧+-≥+-≤1sin sin 417sin sin 22x x a x x a∵ u 1=sin 2x -sinx+2)21(sin 417-=x +4≥4u 2=sin 2x -sinx+1=43)21(sin 2+-x ≤3 ∴ 3≤a≤4.11.解析:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.12.解析:令sin x =t ,∵x ∈[0,2π],∴t ∈[0,1], 而f (x )=g (t )=2at 2-22at +a +b =2a (t -22)2+b . 当a >0时,则⎩⎨⎧=+-=,,15b a b 解之得a =6,b =-5.当a <0时,则⎩⎨⎧-=+=,,51b a b 解之得a =-6,b =1.。

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

第五章 第四节 三角函数的图象与性质 课件(共63张PPT)

,解
得 ω=32 .
法二:由题意,得 f(x)max=fπ3
2.(必修 4P35 例 2 改编)若函数 y=2sin 2x-1 的最小正周期为 T,最大
值为 A,则( )
A.T=π,A=1
B.T=2π,A=1
C.T=π,A=2
D.T=2π,A=2
A [T=22π =π,A=2-1=1.]
3.(必修 4P40 练习 T4 改编)下列关于函数 y=4cos x,x∈[-π,π]的单 调性的叙述,正确的是( )
求三角函数单调区间的两种方法 (1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个 角 u(或 t),利用复合函数的单调性列不等式求解.(如本例(1)) (2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. [注意] 要注意求函数 y=A sin (ωx+φ)的单调区间时 ω 的符号,若 ω<0, 那么一定先借助诱导公式将 ω 化为正数.同时切莫漏掉考虑函数自身的定义 域.
又当 x∈[0,π2
]时,f(x)∈[-
2 2
,1],所以π2
≤ω2π
-π4
≤5π4
,解得
3 2
≤ω≤3,故选 B.
π
π
π
优解:当 ω=2 时,f(x)=sin (2x- 4 ).因为 x∈[0,2 ],所以 2x- 4 ∈
π [- 4
,3π4
π ],所以 sin (2x- 4
)∈[-
2 2
,1],满足题意,故排除 A,C,
B.[kπ,kπ+π2 ](k∈Z)
C.[kπ+π6 ,kπ+23π ](k∈Z)
D.[kπ-π2 ,kπ](k∈Z)
(2)函数 y=tan x 在-π2,32π 上的单调减区间为__________.

5.4-三角函数的图像及性质(共3课时)高一数学同步精讲课件(人教A版2019必修第一册)

5.4-三角函数的图像及性质(共3课时)高一数学同步精讲课件(人教A版2019必修第一册)

0
0

2

1
0
y
1
3
2
2
-1
0
o
(2) 描点
(3) 连线(用光滑的曲线连接)
-1

2

3
2
2
x
? 思考
如何根据y=sinx,x∈R的图像得到y=cosx,x∈R的图像呢?
y
y=cosx 1
y=sinx
0 π 3 2π
2
-1
2
x
PART 3 余弦函数的图像
y
1
0
x
-1
余弦函数y=cosx(x∈R)的图象叫做余弦曲线,
sin

(
2
+ )=
cos

(
2
+ )=−
诱导公式五
诱导公式六
奇变偶不变,符号看象限
? 问题
三角函数是我们学习的一类新的基本初等函数,按照函数研
究的方法,学习了三角函数的定义之后,接下来我们应该研
究什么问题?
? 追问
之前研究指数函数、对数函数的图像和性质的思路是怎样的?
定义
图像
上或([-π,π]上)写出适合三角不等式的解集;
3.根据公式一写出定义域内的解集.
跟 踪 训 练 2
利用正、余弦函数的图象解简单的三角不等式
求函数y=lg(-cosx)的定义域.
例 题 探 究 3
利用正弦(余弦)函数图象解决图象交点问题
例3 方程x+sinx=0的根有( B )A.0个

C.2个
它是与正弦曲线具有相同形状的波浪起伏的连
续光滑曲线
? 探究

人教版高一数学课件-三角函数的图像和性质

人教版高一数学课件-三角函数的图像和性质

歸納總結
正弦、余弦函數的奇偶性、單調性
函數 奇偶性 單調性(單調區間)
正弦函數
奇函數
[
2
+2k,
2
+2k],kZ
單調遞增
[
2
+2k, 3
2
+2k],kZ
單調遞減
余弦函數
偶函數
[ +2k, 2k],kZ
[2k, 2k + ], kZ
單調遞增 單調遞減
歸納總結 (一)三角函數的圖象與性質
y=sinx
1. 正弦函數、余弦函數的週期性; 2. 正弦函數、余弦函數的奇偶性; 3. 正弦函數、余弦函數的性質還有哪些呢?
2
( ,-1)
3

4
5 6 x
思考辨析
週期函數的定義
一般地,對於函數f(x),如果存在一個 非零常數T ,使得當 x 取定義域內的每一 個值時,都有f( x+T )=f(x) , 那麼函數f(x) 就叫做週期函數,非零常數T叫做這個函 數的週期。
對於一個週期函數f(x) ,如果在它所有 的週期中存在一個最小的正數,那麼這個 最小正數就叫做f(x)的最小正週期。
第一章 三角函數 1.4 三角函數的圖象與性質(3)
正弦和余弦函數的圖像
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函數的圖象 y=cosx=sin(x+ ), xR
2
正弦曲 線
形狀完全一樣 只是位置不同
余弦函數的圖象
y
余弦曲
-4 -3
-2
(0,11)
3
( 2 ,1)

【课件】正弦函数、余弦函数的图象课件高一上学期数学人教A版(2019)必修第一册

【课件】正弦函数、余弦函数的图象课件高一上学期数学人教A版(2019)必修第一册


光滑的曲线连接起来。
在精度要求不高的情况下作函数y=sinx,x∈[0,2]的
图象,只要先作出这五个点,然后用光滑的曲线连接
起来即可,这种作图法叫“五点画图法”即“五点法”
新知引入
余弦函数的图像又是怎样的呢?如何作出来?
回忆正弦函数和余弦函数的哪些关系,能否通过图
形变换,将正弦函数的图象变换为余弦函数的图象?
与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.
你会用五点法作出余弦函数的图像吗?
选哪个区间上的五点?观察下图,探索分析。
不难发现,自变量在[-,]这一周内的图像,更靠近原点,且在
对称性、增减性等方面,更具有特点,所以图像更具有代表性。
新知引入
类似于用“五点法”画正弦函数图象,找出余弦函数
变换得到y=1+sinx,x∈[0,2]的图象吗?
先认真观察右图变化
对于任意一个x0∈[0 ,2]
设y1=sinx0, y2=1+sinx0
y2-y1=1
即函数y=sinx,x∈[0,2]
的图象的每一点向上平移
一个单位就得到y=1+sinx,
x∈[0,2]的图象
图5.4-6
Flash
动画
巩固与练习

对于函数y=cosx,由诱导公式cosx=sin(x+ )得,


y= cosx=sin(x+ ) ,x∈R.


而函数y=sin(x+ ) ,x∈R的图象和正弦函数y=sinx,x∈R

的图像又有怎么的关系?
新知引入

y=sin(x+ )

y=sinx,
1、①与②两函数的图像形状相同;

高一数学课程第9讲-三角函数的图像及性质

高一数学课程第9讲-三角函数的图像及性质

第八讲 三角函数一、知识梳理1.正弦函数、余弦函数和正切函数的图象与性质:2.周期函数定义:对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期.结论:如果函数)()(k x f k x f -=+对于R x ∈任意的,那么函数()f x 的周期T=2k ;如果函数)()(x k f k x f -=+对于R x ∈任意的,那么函数()f x 的对称轴是k x k k x x =-++=2)()(3.图象的平移对函数y =A sin (ωx +ϕ)+k (A .>.0.,. ω.>.0.,. ϕ.≠0..,. k .≠0..).,其图象的基本变换有: (1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长. (3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移. (4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移二、方法归纳1.求三角函数的值域的常用方法:① 化为求代数函数的值域;② 化为求sin()y A x B ωϕ=++的值域; ③ 化为关于sin x (或cos x )的二次函数式;2.三角函数的周期问题一般将函数式化为()y Af x ωϕ=+(其中()f x 为三角函数,0ω>).3.函数sin()y A x ωϕ=+为奇函数k ϕπ⇔=()k ∈Z ; 函数sin()y A x ωϕ=+为偶函数2k πϕπ⇔=+()k ∈Z函数cos()y A x ωϕ=+为偶函数k ϕπ⇔=; 函数cos()y A x ωϕ=+为奇函数2k πϕπ⇔=+()k ∈Z4.函数sin()y A x ωϕ=+(0,0)A ω>>的单调增区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出,单调减区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出; 函数sin()y A x ωϕ=+(0,0)A ω<>的单调增区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出, 单调减区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出.5.对称性:(1)函数sin()y A x ωϕ=+对称轴可由2x k πωϕπ+=+()k ∈Z 解出;对称中心的横坐标是方程x k ωϕπ+=()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法) (2)函数()cos y A x ωϕ=+对称轴可由x k ωϕπ+=()k ∈Z 解出;对称中心的横坐标是方程2x k πωϕπ+=+()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法)(3)函数()tan y A x ωϕ=+对称中心的横坐标可由2kx ωϕπ+=()k ∈Z 解出, 对称中心的纵坐标为0,函数()tan y x ωϕ=+不具有轴对称性.三、课堂例题精讲例1.下列函数中,周期为2π的是( ) A.sin 2x y = B.sin 2y x =C.cos4x y = D.cos 4y x =答案:D例2.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A.关于点0π⎛⎫ ⎪3⎝⎭,对称B.关于直线x π=4对称 C.关于点0π⎛⎫ ⎪4⎝⎭,对称D.关于直线x π=3对称 答案:A.解析:由题意知2ω=,所以解析式为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,经验证可知它的一个对称中心为,03π⎛⎫⎪⎝⎭.例3.函数的最小正周期和最大值分别为( )A.π,1B.π2C.2π,1D.2π2答案:A.解析:x x x x x y 2cos 232sin 212cos 212cos 232sin =⋅-⋅+⋅+⋅=,∴T =π,y max =1 例4.函数[]()sin 3(π0)f x x x x =∈-,的单调递增区间是( )A.5ππ6⎡⎤--⎢⎥⎣⎦,B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,答案:D.解析:因为⎪⎭⎫ ⎝⎛π-=3sin 2)(x x f ,.0,6656,0),(65262),(22322符合题意由此可得得令得令⎥⎦⎤⎢⎣⎡π-π≤≤π-=∈π+π≤≤π-π∈π+π≤π-≤π-πx k k k x k k k x k Z Z例5.将⎪⎭⎫⎝⎛π+=63cos 2x y 的图象按向量a =⎪⎭⎫⎝⎛-π-2,4平移,则平移后所得图象的解析式为( ) A.243cos 2-⎪⎭⎫⎝⎛π+=x y B. 243cos 2+⎪⎭⎫ ⎝⎛π-=x y C. 2123cos 2-⎪⎭⎫ ⎝⎛π-=x y D. 2123cos 2+⎪⎭⎫⎝⎛π+=x y 答案:A.解析:看向量a =⎪⎭⎫⎝⎛-π-2,4的数据“符号”,指令图象左移和下移,按“同旁相减,异旁相加”的口诀,立可否定B 、C 、D.例6.函数sin y x =的一个单调增区间是( )A.ππ⎛⎫- ⎪44⎝⎭, B.3ππ⎛⎫ ⎪44⎝⎭, C.3π⎛⎫π ⎪2⎝⎭,D.32π⎛⎫π⎪2⎝⎭, 答案:C解析:法一:∵函数sin y x =的一个单调递增区间为⎥⎦⎤⎢⎣⎡π2,0, 又函数sin y x =是以π为周期的函数,∴函数sin y x =的单调递增区间为⎥⎦⎤⎢⎣⎡π+ππ2,k k (k ∈Z ).当k =1时,函数sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C. 法二:作出函数sin y x =的图象,由图易知sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C.法三:将每个选择支中区间的两个端点值代入函数表达式,A 、B 两个选择支的端点值相等,而选择支D 的左端点值大于右端点值, 所以根据单调递增的概念判断,可排除A 、B 、D ,故选C.例7.函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .答案: ω=3例8.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()2cos 21g x x ϕ=++的图象的对称轴完全相同.若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围是 . 答案:3[-,3]2解析:由题意知,2ω=,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,由三角函数图象知:()f x 的最小值为33sin (-)=-62π,最大值为3sin =32π, 所以()f x 的取值范围是3[-,3]2. 例9.定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图象与y=5tanx 的图象的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图象交于点P 2,则线段P 1P 2的长为 . 答案:23解析“线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx=5tanx ,解得sinx=23. 故线段P 1P 2的长为23.例10.设函数()f x =·a b ,其中向量(cos2)mx =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫⎪⎝⎭,. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.解析:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1 由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,. 例11. 已知函数()sin(),(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,其图象关于点M )0,43(π对称,且在区间[0,2π]上是单调函数,求ϕ和ω的值. 解析:由)(x f 是偶函数,得)()(x f x f =-,故sin()sin()x x ωϕωϕ-+=+,cos sin cos sin x x ϕωϕω-=对任意x 都成立, 且0,cos 0.ωϕ>∴=依题设0≤ϕ≤π,cos .2πϕ∴=由)(x f 的图象关于点M 对称,得)43()43(x f x f +-=-ππ取0)43(),43()43(0=∴-==πππf f f x 得 0)43cos(),43cos()243sin()43(=∴=+=x x x f ωωπωπ又0>ω,得......2,1,0,243=+=k k x ππω ...2,1,0),12(32=+=∴k k ω当0=k 时,)232sin()(,32πω+==x x f 在]2,0[π上是减函数.当1=k 时,)22sin()(,2πω+==x x f 在]2,0[π上是减函数. 当k ≥2时,)2sin()(,310πωω+==x x f 在]2,0[π上不是单调函数. 所以,综合得32=ω或2=ω.四、课后作业1.函数22()cos2cos2xf x x=-的一个单调增区间是()A.233ππ⎛⎫⎪⎝⎭, B.62ππ⎛⎫⎪⎝⎭, C.03π⎛⎫⎪⎝⎭, D.66ππ⎛⎫-⎪⎝⎭,2.已知函数()f x=Acos(xωϕ+)的图象如图所示,2()23fπ=-,则(0)f=()A.23- B .23C.32D.32-3. 设ω>0,函数f(x)=2sinωx在]4,3[ππ-上为增函数,那么ω的取值范围是.4.判断方程sinx=π100x实数解的个数.5.求函数y=2sin)4(x-π的单调区间.6.已知函数()f x=xxx2cos1cos3cos224+-,求它的定义域和值域,并判断奇偶性.100л7.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.8.设()f x = x x 2sin 3cos 62-, (1)求()f x 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求tan α54的值.9. 求下列函数的值域: (1)y=x x x cos 1sin 2sin -; (2)y=sinx+cosx+sinxcosx ; (3)y=2cos )3(x +π+2cosx.10.已知函数f (x )=-sin 2x+sinx+a ,(1)当f (x )=0有实数解时,求a 的取值范围; (2)若x ∈R ,有1≤f (x )≤417,求a 的取值范围.11.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (Ⅰ)求()f x 的最大值和最小值;(Ⅱ)若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.12.已知f (x )=2a sin 2x -22a sin x +a +b 的定义域是[0,2π],值域是[-5,1],求a 、b 的值.参考答案: 1.答案:A 2.答案:C 3.答案:203ω<≤ 4.答案:199解析:方程sinx=π100x 的实数解的个数等于函数y=sinx 与y=π100x 的图象交点个数, ∵|sinx|≤1∴|π100x|≤1, |x|≤100л 当x≥0时,如下图,此时两线共有100个交点, 因y=sinx 与y=π100x都是奇函数,由对称性知当x≤0时,也有100个交点, 原点是重复计数的,所以只有199个交点. 5.解析:y=2sin )4(x -π可看作是由y=2sinu 与u=x -4π复合而成的.又∵u=x -4π为减函数,∴由2k π-2π≤u ≤2k π+2π(k ∈Z ),得-2k π-4π≤x ≤-2k π+43π (k ∈Z ). 即⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z )为y=2sin )4(x -π 的递减区间. 由2k π+2π≤u ≤2k π+23π (k ∈Z ), 得2k π+2π≤4π-x ≤2k π+23π(k ∈Z ), 解得-2k π-45π≤x ≤-2k π-4π (k ∈Z ),即⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z )为y=2sin )4(x -π的递增区间. 综上可知:y=2sin )4(x -π的递增区间为⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z ); 递减区间为⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z ). 6.解析:由题意知cos2x≠0,得2x≠k π+2π, 解得x≠42ππ+k (k ∈Z ). 所以()f x 的定义域为⎭⎬⎫⎩⎨⎧∈+≠∈Z R k k x x x ,42ππ且,. 又()f x =xx x 2cos 1cos 3cos 224+-=x x x 2cos )1)(cos 1cos 2(22--=cos 2x-1=-sin 2x.又定义域关于原点对称, ∴()f x 是偶函数. 显然-sin 2x ∈[-1,0],但∵x≠42ππ+k ,k ∈Z . ∴-sin 2x≠-21.所以原函数的值域为⎭⎬⎫⎩⎨⎧≤<--<≤-021211|y y y 或.7.解析:(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上增,在区间3π3π84⎡⎤⎢⎥⎣⎦,上减,又π08f ⎛⎫=⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为3π14f ⎛⎫=- ⎪⎝⎭.8.解析:(Ⅰ)1cos 2()622xf x x +=3cos 223x x =+12sin 2322x x ⎫=-+⎪⎪⎭236x π⎛⎫=++ ⎪⎝⎭. 故()f x的最大值为3;最小正周期22T π==π.(Ⅱ)由()3f α=-2336απ⎛⎫++=- ⎪⎝⎭故cos 216απ⎛⎫+=- ⎪⎝⎭. 又由02απ<<得2666απππ<+<π+,故26απ+=π,解得512α=π.从而4tan tan 53απ==.9.解析:(1)y=x x x x cos 1sin cos sin 2-=xx x cos 1)cos 1(cos 22--=2cos 2x+2cosx=22)21(cos +x -21.于是当且仅当cosx=1时取得y max =4,但cosx≠1,∴y <4,且y min =-21,当且仅当cosx=-21时取得. 故函数值域为⎪⎭⎫⎢⎣⎡-4,21.(2)令t=sinx+cosx ,则有t 2=1+2sinxcosx ,即sinxcosx=212-t .有y=f (t )=t+212-t =1)1(212-+t .又t=sinx+cosx=2sin )4(π+x , ∴-2≤t≤2.故y=f (t )=1)1(212-+t (-2≤t≤2), 从而知:f (-1)≤y≤f (2), 即-1≤y≤2+21. 即函数的值域为⎥⎦⎤⎢⎣⎡+-212,1.(3)y=2cos )3(x +π+2cosx=2cos3πcosx-2sin 3πsinx+2cosx=3cosx-3sinx =23⎪⎪⎭⎫⎝⎛-x x sin 21cos 23=23cos )6(π+x . ∵)6cos(π+x ≤1,∴该函数值域为[-23,23].10.解析:(1)f (x )=0,即a=sin 2x -sinx=(sinx -21)2-41∴当sinx=21时,a min =-41,当sinx=-1时,a max =2, ∴a ∈[41-,2]为所求.(2)由1≤f (x )≤47得⎪⎩⎪⎨⎧+-≥+-≤1sin sin 417sin sin 22x x a x x a∵ u 1=sin 2x -sinx+2)21(sin 417-=x +4≥4u 2=sin 2x -sinx+1=43)21(sin 2+-x ≤3 ∴ 3≤a≤4.11.解析:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.12.解析:令sin x =t ,∵x ∈[0,2π],∴t ∈[0,1], 而f (x )=g (t )=2at 2-22at +a +b =2a (t -22)2+b .当a >0时,则⎩⎨⎧=+-=,,15b a b 解之得a =6,b =-5.当a <0时,则⎩⎨⎧-=+=,,51b a b 解之得a =-6,b =1.。

三角函数的图象和性质

三角函数的图象和性质

在区间 [0,
2
]
上是单调函数,
必有
2

,
即 0<≤2.
∴0<
4k+2 3
≤2(kZ).
解得 k=0 或 1.
∴=2

2 3
.
综上所述,
=
2
,
=2 或
2 3
.
6.如果函数 的值.
y=sin2x+acos2x
的图象关于直线
x=-
8
对称,
求a
解: y=sin2x+acos2x= a2+1 sin(2x+), 其中, tan=a.
3.周期性: ①y=sinx、y=cosx 的最小正周期都是
Asin(x+) 和 f(x)=Acos(x+)的最小正周期都是
2;
T=
2|②| .f(x)=
4.奇偶性与对称性: 正弦函数y=sinx(xR)是奇函数, 对称中心
是 (x(kR),是0)偶(k函Z数),,对对称称轴中是心直是线(kx=+k2,+02)((kkZZ)),;对余称弦轴函是数直y=线coxs=x k (kZ) (正(余)弦型函数的对称轴为过最高点或最低点且垂
性, 如果是周期函数, 求出它的一个周期.
解:
(1)由∴∵∴2kfsfs((iixnx+n))xx=的4--lcoc<定oogxss<21xx义(2s=>ik域n0,x2+为-s即ic5n4o{(xsx,x2|-k)s2≥ik4nlZ)(o≤x+g-21424<2,)x>=<0-2得k12:.+
5
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数要求层次重难点sin y x =,cos y x =,tan y x =的图象和性质C了解正弦、余弦、正切、余切函数的图象的画法 函数sin()y A x ωϕ=+的图象C会用“五点法”画正弦、余弦函数和函数sin()y A x ωϕ=+的简图,理解,,A ωϕ的物理意义,掌握由函数sin y x =的图象到函数sin()y A x ωϕ=+的图象的变换原理和方法用三角函数的图象解决一些简单的实际问题 B 掌握正弦、余弦、正切函数图象的对称轴或对称中心三角函数的定义域和值域B 掌握三角函数的定义域、值域的求法三角函数的性质 C掌握三角函数的奇偶性与单调性,并能应用它们解决一些问题,会求经过简单的恒等变形可化为sin()y A x ωϕ=+的三角函数的性质三角函数的图象和性质的应用C掌握三角函数奇偶性的判断及三角函数单调区间的求解及其应用三角函数的图象是高考的热点之一,重点考查已知图象求解析式,函数的图象变换及对称问题,利用图象变换和对称以及图象的性质解决实际问题,多为中档题.板块一:三角函数的图象 高考要求第九讲三角函数的图像与性质知识精讲1.三角函数的图象2.函数()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象的作法――五点法①确定函数的最小正周期2πT ω=;②令x ωϕ+=0、π2、π、3π2、2π,得x ϕω=-、1π()2ϕω-、1(π)ϕω-、13π()2ϕω-、1(2π)ϕω-,于是得到五个关键点(,0)ϕω-、1π((),1)2ϕω-、1((π),0)ϕω-、13π((),1)2ϕω--、1((2π),0)ϕω-;③描点作图,先作出函数在一个周期内的图象,然后根据函数的周期性,把函数在一个周期内的图象向左、右扩展,得到函数()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象.3.()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象函数()()sin 0,0,y A x A x R ωϕω=+>>∈的图象可以用下面的方法得到:先把sin y x=的图象上所有点向左(0)ϕ>或向右(0)ϕ<平行移动||ϕ个单位;再把所得各点的横坐标缩短(1)ω>或伸长(01)ω<<到原来的1ω倍(纵坐标不变);再把所得的各点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍(横坐标不变),从而得到sin()y A x ωϕ=+的图象.当函数sin()y A x ωϕ=+表示一个振动量时:A 叫做振幅;T 叫做周期;1T叫做频率;x ωϕ+叫做相位,ϕ叫做初相.上面是一种函数的平移缩放的过程,可以用这种方法来把一种三角函数转换成另外一种三角函数.下面把这个过程分解一下: (1)相位变换要得到函数sin()(0)y x ϕϕ=+≠的图象,可以令x x ϕ=+,也就是原来的x 变成了现在的x ϕ+,相当于x 减小了(0)ϕϕ<,即可以看做是把sin y x =的图象上的各点向左(0)ϕ>或向变换,使相位由x 变为x ϕ+,我们称它为相位变换.它实质上是一种左右平移变换. (2)周期变换要得到函数sin (0,1)y x ωωω=>≠的图象,令x x ω=,即现在的x 缩小到了原来的ω倍,就可以看做是把sin y x =的图象上的各点的横坐标缩短(1)ω>或伸长(01)ω<<到原来的1ω倍(纵坐标不变)得到,由sin y x =的图象变换为sin y x ω=的图象,其周期由2π变为2πω,这种变换叫周期变换.周期变换是一种横向的伸缩. (3)振幅变换要得到sin (0,1)y A x A A =>≠且的图象,令yy A=,即相当于y 变为原来的A 倍,也就是把sin y x =的图象上的各点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍(横坐标不变)而得到的.这种变换叫做振幅变换.振幅变换是一种纵向的伸缩.【说明】本题的所有变换都是针对x 和y 来的,也就是说所有的转换都是用在x 和y 身上的,他们的系数也不包括在内.例如()()sin 0,0,y A x A x R ωϕω=+>>∈的图象,如果先把sin y x =各点的横坐标缩短(1)ω>或伸长(01)ω<<到原来的1ω倍(纵坐标不变)变成sin y x ω=,再把所得的各点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍(横坐标不变),得到sin y A x ω=,而最后才所有点向左(0)ϕ>或向右(0)ϕ<平行移动||ϕ个单位,这样得到就是sin ()y A x ωϕ=+,而不是sin()y A x ωϕ=+.希望大家能够从中理解“坐标变换是针对x 和y 做的” 这句话的意义.(二)典例分析【例1】 ⑴(2009年全国I )如果函数()3cos 2y x ϕ=+的图象关于点4π3⎛⎫⎪⎝⎭,0中心对称,那么ϕ的最小值为( )A .π6B .π4C .π3D .π2 ⑵(2008浙江卷5)在同一平面直角坐标系中,函数3πcos ([0,2π])22x y x ⎛⎫=+∈ ⎪⎝⎭的图象和直线12y =的交点个数是( )A .0B .1C .2D .4【例2】 函数()sin()(0,0)f x A x A ωϕω=+>>的部分图象如下图所示,则(1)(2)(3)f f f +++…(11) f=【例3】方程1sin22x=在[2π,2π]-内解的个数为.【例4】如图,方程sin2sinx x=在区间(0,2π)内解的个数是( ) A.1B.2C.3D.4【例5】⑴求方程lg sin0x x-=的解的个数;⑵求方程100sin x x=的解的个数.【例6】(2006年-辽宁)已知函数11()(sin cos)sin cos22f x x x x x=+--,求()f x的值域.【例7】 函数cos(sin )y x =的值域为_______【例8】 ⑴求函数22log (1sin )log (1sin )y x x =++-,ππ,64x ⎡⎤∈-⎢⎥⎣⎦的值域.⑵求函数223sin sin y x x=+(π,)x k k ≠∈Z 的值域.【例9】 (1sin )(3sin )2sin x x y x++=+的最值及对应的x 的集合【例10】 已知正弦曲线sin()(0,0,02π)y A x A ωϕωϕ=+>><<上的一个最高点是(2,,由这个最高点到相邻的最低点,曲线与x 轴相交于点(6,0),试求这个函数的解析式.【例11】 已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为0(,2)x 和0(3π,2)x +-. ⑴求()f x 的解析式;⑵用列表作图的方法画出函数()y f x =在长度为一个周期的闭区间上的图象.【例12】 如图,是函数sin()(0,0)y A x A ωϕω=+>>,πϕ<的图象的一部分,由图中条件写出函数解析式.【例13】 右图是函数sin()y A x ωϕ=+(0,0,02π)A ωϕ>><<的图象的一部分,试求此函数的解析式.【例14】 函数sin()y A x ωϕ=+(0,0,π)A ωϕ>><的图象的一段如图所示,确定该函数的解析式.【例15】 (2005年湖南高考)设函数()f x 的图象与直线x a =,x b =及x 轴围成图形的面积称为函数()f x 在[,]a b 上的面积,已知函数sin y nx =在π0,n ⎡⎤⎢⎥⎣⎦上的面积为2n ()n *∈N , ⑴sin3y x =在2π0,3⎡⎤⎢⎥⎣⎦上的面积为 ;⑵sin(3π)1y x =-+在π4π,33⎡⎤⎢⎥⎣⎦上的面积为 . 【例16】 设π()sin (0)53kf x x k ⎛⎫=+≠ ⎪⎝⎭⑴求当3k =时,函数图象的对称轴方程和对称中心坐标.⑵求最小正整数k ,使得当自变量在任意两个整数间(包括整数本身)变化时,函数至少取得一次最大值M 和最小值m .【例17】 已知函数2sin sin 1y x a x =++的最小值为1,求a 的值.【例18】 求证:在区间π0,2⎛⎫ ⎪⎝⎭内存在唯一的实数对(,)c d ,π,0,2c d ⎛⎫∈ ⎪⎝⎭,且c d <,使得sin(cos )c c =,cos(sin )d d =成立.【例19】 已知函数()b x a x x a x a x f ++⋅+=22cos 33cos sin 2sin 3⎪⎭⎫ ⎝⎛≤≤20πx 的值域为[23,-],求a 、b 的值.【例20】 已知函数R ∈+⋅+=x x x x y ,1cos sin 23cos 212. (1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?【例21】 已知函数f (x )=A sin(ωx +φ)(200πϕω<>>,,A )的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2). (1)求f (x )的解析式;(2)将y =f (x )图象上所有点的横坐标缩短到原来的31,(纵坐标不变),然后再将所得图象沿x 轴正方向平移3π个单位,得到函数y =g (x )的图象.写出函数y =g (x )的解析式并用“五点法”画出y =g (x )在长度为一个周期的闭区间上的图象.板块二:三角函数图象变换(一)知识内容1.函数图象平移基本结论小结如下:(0)()()a a y f x y f x a >=−−−−−−→=+左移个单位 (0)()()a a y f x y f x a >=−−−−−−→=-右移个单位 (0)()()a a y f x y a f x >=−−−−−−→-=上移个单位 (0)()()a a y f x y a f x >=−−−−−−→+=下移个单位1()()y f x y f x ωω=−−−−−−−−→=各点横坐标变成原来的倍()()y f x Ay f x =−−−−−−−−→=1各点纵坐标变成原来的倍A()()x y f x y f x =−−−−→-=绕轴翻折 ()()y f x y f x =−−−−→=-绕y 轴翻折设00(,)P x y 为()y f x =左移a 个单位后所得图象上的任意一点,则将P右移a 个单位得到的00'(,)P x a y +必在()y f x =的图象上,故00()y f x a =+,又00(,)P x y 点任意,故()y f x =的图象左移a 个单位得到的新的函数的解析式为:()y f x a =+.1(二)典例分析【例22】 已知函数()sin f x x a =-,a ∈R⑴讨论函数()f x 的奇偶性⑵求当()f x 取最大值时,自变量x 的取值集合.【例23】 设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( )A .在区间27,36ππ⎡⎤⎢⎥⎣⎦上是增函数 B .在区间,2π⎡⎤-π-⎢⎥⎣⎦上是减函数C .在区间,84ππ⎡⎤⎢⎥⎣⎦上是增函数D .在区间5,36ππ⎡⎤⎢⎥⎣⎦上是减函数【例24】 设函数()sin3|sin3|f x x x =+,则()f x 为( )A .周期函数,最小正周期为π3B .周期函数,最小正周期为2π3C .周期函数,最小正周期为2πD .非周期函数【例25】 已知函数f (x )=A sin(ωx +φ)(200πϕω<>>,,A )的图象在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2)和(x 0+3π,-2). (1)求f (x )的解析式;(2)将y =f (x )图象上所有点的横坐标缩短到原来的31,(纵坐标不变),然后再将所得图象沿x 轴正方向平移3π个单位,得到函数y =g (x )的图象.写出函数y =g (x )的解析式并用“五点法”画出y =g (x )在长度为一个周期的闭区间上的图象.【例26】 (2005年湖北文)函数sin cos 1y x x =-的最小正周期与最大值的和为 .【例27】 已知函数π()sin ()4f x a x a b ⎛⎫=+∈ ⎪⎝⎭Z ,,当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的最大值为1.⑴求()f x 的解析式;⑵由()f x 的图象是否可以经过平移变换得到一个奇函数()y g x =的图象?若能,请写出变换过程;若不能,请说明理由.板块三:三角函数的性质(一)知识内容]2π,(21)π]()k k k +∈Z(2π,x k =(二)典例分析【例28】 求使1cos 1ax a+=-有意义的a 的取值范围.【例29】 当方程224sin 4sin 20x x k k +-+-=有解时,求k 的取值范围.【例30】 设f (x )满足ππ2(sin )3(sin )4sin cos ()44f x f x x x x -+=-≤≤,求()f x 的表达式.板块四:三角函数与二次函数典例分析【例31】 求函数22sin 2sin 1y x x =-++的值域.【例32】 求函数222cos sin y a x x =--的最大值与最小值.【例33】 求函数253sin cos 82y x a x a =++-π(0)2x ≤≤的最大值【例34】 为使方程2cos sin 0x x a -+=在π0,2⎛⎤ ⎥⎝⎦内有解,则a 的取值范围是( )A.11a -≤≤B.11a -<≤C.10a -<≤D.54a -≤【例35】 已知定义在(,4]-∞上的减函数()f x ,使得27(sin )(12cos )4f m x f m x -+-+≤,对一切实数x 均成立,求实数m 的取值范围 .【例36】 已知,b c 是实数,函数2()f x x bx c =++对任意,αβ∈R 有:①(sin )0f α≥②(2cos )0f β+≤⑴求(1)f 的值; ⑵证明:3c ≥;⑶设(sin )f α的最大值为 10,求()f x .(一)知识内容1.定义:对于函数()f x ,如果存在一个不为零的数T ,使得当x 取定义域中的任意一个数时,()()f x T f x +=总成立,那么称()f x 是周期函数,T 称为这个函数的周期,如果函数()f x 的所有正周期总存在最小值0T ,则称0T 为这个函数的最小正周期.2.说明:周期函数的定义域是无界的;若T 是某函数的周期,则(,0)nT n n ∈≠N 均为此函数的周期;若函数()y f x =的最小正周期是T ,则函数()y f x ωϕ=+的最小正周期是Tω.3.对称轴为x a =的函数,对称中心为(,)a b 的函数的解析式问题函数()y f x =周期为T ⇔如果点(,)x y 在图象上,则(,)x T y +也在图象上⇔()()y f x f x T ==+推广:关于一般的轴对称:函数()y f x =关于直线x a =对称⇔如果点(,)x y 在图象上则它关于直线x a =的对称点(2,)a x y -也在图象上⇔()(2)y f x f a x ==-板块五:三角函数的周期性关于一般的中心对称:()y f x =关于点(,)a b 对称⇔如果点(,)x y 在图象上,则它关于点(,)a b 的对称点(2,2)a x b y --也在图象上⇔2()(2)b f x f a x -=-4.某个函数关于点对称或轴对称,周期的特点:⑴若定义在R 上的函数()f x 有两条对称轴x a =,x b =()a b >,则这个函数必定是周期函数,2()T a b =-是它的周期.证:[2()][(2)]f a b x f a a b x -+=+-+[(2)](2)f a a b x f b x =--+=- [()]f b b x =+-[()]()f b b x f x =--=∴()f x 以2()a b -为周期⑵若函数()f x 在R 上的图象关于某点0(,)A a y 与某直线x b =()a b ≠对称,则此函数为周期函数,4T b a =-是它的周期.证:图象上任一点(,())x f x 关于点0(,)A a y 的对称点0(2,2())a x y f x --也在图象上,即有0(2)2()f a x y f x -=-,且()()f b x f b x -=+,则0()2(2)f x y f a x =-- 02[(2)]y f b b a x =---+02[(2)]y f b b a x =-+-+02(22)y f b a x =--+[2(22)]f a b a x =--+[(34)]f b b a x =--+[(34)]f b b a x =+-+[4()]f b a x =-+∴()f x 是以4()b a -为周期的函数(二)典例分析【例37】 ⑴设函数ππ()2sin()25f x x =+,若对任意x ∈R ,都有12()()()f x f x f x ≤≤成立,则12x x -的最小值( )A.4B.2C.1D.12⑵已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.【例38】 已知函数2sin()y x ωϕ=+(0π)ϕ<<为偶函数,其图象与直线2y =相邻的两个交点的横坐标分别为1x ,2x ,且12πx x -=,则( ) A.π2,2ωϕ==B.1π,22ωϕ==C.1π,24ωϕ==D.π2,4ωϕ== 【例39】 函数()f x ,当(,)x ∈-∞+∞时,(2)(2)f x f x -=+,(7)(7)f x f x -=+,在闭区间[0,7]上,只有(1)(3)0f f ==.⑴试判断函数()f x 的奇偶性.⑵试求方程()0f x =在闭区间[2005,2005]-上的根的个数,证明你的结论.【例40】 设()f x 是定义在R 上并以2为周期的函数, 当[1,1]x ∈-时,2()f x x =.⑴求(1,3]x ∈时,()f x 的表达式;⑵作出()f x 的图象,并求(3)f -及(3.5)f 的值.【例41】 函数sin (0)y x ωω=>在区间[0,1]上恰好有50个最大值,则ω的取值范围是 .【例42】 函数21π5cos π36k y x +⎛⎫=- ⎪⎝⎭()k *∈N 对于任意实数a ,在区间[,3]a a +上的值54出现的次数习题1. 函数()cos(3)f x x x ϕ=+∈R ,的图象关于原点中心对称,则ϕ=( )A.π3 B.ππ2k k +∈Z , C.πk k ∈Z , D.π2π2k k -∈Z ,习题2. ⑴函数sin 1y a x =+的最大值是3,则它的最小值_____________________.⑵函数sin y x =的一个单调增区间是( ) A.ππ⎛⎫- ⎪44⎝⎭,B.3ππ⎛⎫ ⎪44⎝⎭,C.3π⎛⎫π ⎪2⎝⎭,D.32π⎛⎫π⎪2⎝⎭,家庭作业习题3. 已知函数()()cos ωϕ=+f x A x 的图象如图所示,π223⎛⎫=- ⎪⎝⎭f ,则()0=f ( )A.23-B.12-C.23D.12习题4. 求下列不等式x 的取值范围.⑴2sin 10x +≥;⑵π2cos(3)106x +-≤.习题5. 若函数sin()y A x ωϕ=+,(0,0,02π)A ωϕ>><≤的图象上一个最高点的坐标为(,由这个最高点到相邻的最低点间,图象与x 轴的交点为(4,0).求此函数的解析式.习题6. 把曲线π:2sin 24C y x ⎛⎫=+ ⎪⎝⎭向右平移(0)a a >个单位,得到的曲线G 关于直线π4x =对称.求a 的最小值.习题1. 定义在R 上的函数()f x 既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π[0,]2x ∈时,()sin f x x =,则5π()3f 的值为( ) A . 12- B .3C .3-D .12习题2. 设()f x 是定义在R 上且最小正周期为3π2的函数,在某一周期内,πcos 2,0,2()sin ,0π,x x f x x x ⎧-<⎪=⎨⎪<⎩≤≤则()15π4f -= .习题3. 已知π4x ≤,求函数2cos sin y x x =+的最小值习题4. (2005山东卷)函数21sin(),10(),0x x x f x e x π-⎧-<<⎪=⎨⎪⎩≥,若(1)()2f f a +=,则a 的所有可能值为( )A.1B.21,-C.2- D.21, 习题5. 设()f x 是定义在R 上的偶函数,其图象关于直线1x =对称,对任意的1x ,2x 10,2⎡⎤∈⎢⎥⎣⎦都有1212()()()f x x f x f x +=⋅,且(1)0f a =>,⑴求12f ⎛⎫ ⎪⎝⎭及14f ⎛⎫⎪⎝⎭⑵证明()f x 是周期函数习题6. 关于x 的不等式222sin 2cos 2a a x a x +--≥的解集是全体实数,求实数a 的取值范围月测备选。

相关文档
最新文档