算法设计与分析实验报告01背包问题

合集下载

贪心算法-01背包问题

贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。

2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。

若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。

显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。

3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。

由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。

此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。

背包问题实验报告

背包问题实验报告

背包问题实验报告背包问题实验报告背包问题是计算机科学中的经典问题之一,它涉及到在给定的一组物品中选择一些物品放入背包中,以使得背包的总重量不超过其容量,并且所选择的物品具有最大的总价值。

在本次实验中,我们将通过不同的算法来解决背包问题,并对比它们的效率和准确性。

1. 实验背景和目的背包问题是一个重要的优化问题,它在许多实际应用中都有广泛的应用,比如货物装载、资源分配等。

在本次实验中,我们的目的是通过实际的算法实现,比较不同算法在解决背包问题时的性能差异,并分析其优缺点。

2. 实验方法和步骤为了解决背包问题,我们选择了以下几种常见的算法:贪心算法、动态规划算法和遗传算法。

下面将对每种算法的具体步骤进行介绍。

2.1 贪心算法贪心算法是一种简单而直观的算法,它通过每次选择当前状态下最优的解决方案来逐步构建最终解决方案。

在背包问题中,贪心算法可以按照物品的单位价值进行排序,然后依次选择单位价值最高的物品放入背包中,直到背包的容量达到上限。

2.2 动态规划算法动态规划算法是一种基于递推关系的算法,它通过将原问题分解为多个子问题,并利用子问题的解来构建原问题的解。

在背包问题中,动态规划算法可以通过构建一个二维数组来记录每个子问题的最优解,然后逐步推导出整个问题的最优解。

2.3 遗传算法遗传算法是一种模拟生物进化的算法,它通过模拟自然选择、交叉和变异等过程来搜索问题的最优解。

在背包问题中,遗传算法可以通过表示每个解决方案的染色体,然后通过选择、交叉和变异等操作来不断优化解决方案,直到找到最优解。

3. 实验结果和分析我们使用不同算法对一组测试数据进行求解,并对比它们的结果和运行时间进行分析。

下面是我们的实验结果:对于一个容量为10的背包和以下物品:物品1:重量2,价值6物品2:重量2,价值10物品3:重量3,价值12物品4:重量4,价值14物品5:重量5,价值20贪心算法的结果是选择物品4和物品5,总重量为9,总价值为34。

【优质】背包问题实验报告-范文word版 (13页)

【优质】背包问题实验报告-范文word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。

二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。

三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。

动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。

0-1背包问题具有最优子结构性质。

假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。

i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。

背包问题实验报告

背包问题实验报告

背包问题实验报告1. 引言背包问题是一类经典的组合优化问题,在现实生活中有着广泛的应用。

背包问题可以描述为:有一个背包容量为W的背包和N个物品,每个物品有一定的重量和价值,要求将物品放入背包中使得背包的总价值最大。

本实验旨在通过比较不同的算法策略,找到解决背包问题的最佳方法,以提高背包问题的求解效率。

2. 实验环境•操作系统:Windows 10•编程语言:Python 3.8•开发环境:Visual Studio Code3. 实验过程3.1 暴力穷举法暴力穷举法是解决背包问题的一种基本策略。

该方法通过遍历所有可能的组合,计算每个组合的价值,并找到最大价值的组合作为最优解。

具体步骤如下:1.初始化最大价值max_value为0,最优解combo为空集。

2.遍历所有可能的物品组合:–将组合中的物品放入背包中,计算背包中物品的总价值。

–若背包总价值超过max_value,则更新max_value和combo。

3.输出最优解combo和最大价值max_value。

该方法的时间复杂度为O(2^N),其中N为物品的数量,在物品数量较大时效率较低。

3.2 动态规划法动态规划法是解决背包问题的一种高效策略。

该方法通过构建价值表,利用子问题的最优解来求解背包问题的最优解。

具体步骤如下:1.初始化一个二维数组value_table,其中value_table[i][j]表示前i个物品放入容量为j的背包中的最大价值。

2.根据以下递推关系来填充value_table的值:–若第i个物品的重量大于背包容量j,则value_table[i][j]等于value_table[i-1][j],表示第i个物品不能放入背包中。

–若第i个物品的重量小于等于背包容量j,则value_table[i][j]等于max(value_table[i-1][j], value_table[i-1][j-w[i]]+v[i]),表示第i个物品可以选取并放入背包中,或不选取第i个物品。

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。

(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。

有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。

01背包实验报告

01背包实验报告

算法设计与分析实验报告0_1背包一.问题描述假设有n件物品,每件物品有各自的重量W1,W2,……,Wn和与之对应的价值V1,V2,……,Vn。

设背包的容量为c,在不超过背包容量的前提下,求出获得最大价值总和的方案。

(0-1背包的情况下物品不可分割,只能选择放入,或者不放入背包中)。

二.求解思路1.贪心策略问题开始阶段,将所有物品按价值从高到低排列,每一次往背包里放入不超过背包容量的价值最大的物品,直到没有物品可放入为止。

但事实证明,由于物品的不可分割性,0-1背包并不适合贪心策略。

例:假设背包的容量为50,共有三件物品(重量,价值):(10,60),(20,100),(30,120)。

若使用贪心策略,则会选择一个(30,120)和一个(20,100)。

得到的价值总和是220。

而稍加计算便可知选取两个(20,100)和一个(10,60)可以得到更大的价值总和260。

因此贪心策略不能给出0-1背包的最优解。

后话:即使是普通背包问题(物品可分割),每次选择价值最大的物品也不能得到最优解。

正确的贪心策略应是:每次选择单位重量下价值最大的物品。

由于本次实验主要讨论的是0-1背包问题,这里就不给出该贪心策略的证明。

2.动态规划(1)证明0-1背包问题具有最优子结构性质:假设(x1,x2,……,xn)是容量为c的背包的一组最优解,其中xi的取值为0或1,表示是否放入背包中。

则必有(x2,x3,……,xn)为如下子问题的一组最优解:sum{xi*wi} (2<=i<=n)<=c-x1*w1利用反证法证明,假设(y1,y2,……,yn)是该子问题的一组最优解而(x2,x3,……,xn)不是。

则sum{yi*vi} > sum{xi*vi} (2<=i<=n)那么就可得到:x1*v1+ sum{yi*vi} > x1*v1+ sum{xi*vi} (2<=i<=n)则(x1,y2,……,yn)是原问题的最优解,而(x1,x2,……,xn)不是,与假设矛盾。

优先队列式分支限界法求解0-1背包问题

优先队列式分支限界法求解0-1背包问题

算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。

背包问题实验报告

背包问题实验报告

背包问题实验报告《背包问题实验报告》背包问题是一个经典的组合优化问题,它在计算机科学和运筹学领域被广泛应用。

在这个问题中,我们需要从一组物品中选择一些放入背包,使得它们的总重量不超过背包的承载能力,同时价值最大化。

在本实验中,我们将探讨不同算法在解决背包问题时的表现,并分析它们的优缺点。

首先,我们使用了贪心算法来解决背包问题。

贪心算法的基本思想是每次选择当前最有利的物品放入背包,直到背包装满或者没有物品可选。

虽然贪心算法在一些情况下能够得到较好的解,但它并不保证能够得到最优解,因为它只考虑了局部最优解而没有综合考虑所有可能的选择。

接着,我们使用了动态规划算法来解决背包问题。

动态规划算法通过将问题分解成子问题,并保存子问题的解来避免重复计算,从而得到最优解。

动态规划算法在解决背包问题时能够得到最优解,但它需要额外的空间来保存子问题的解,因此在处理大规模问题时可能会消耗较多的内存。

最后,我们使用了回溯算法来解决背包问题。

回溯算法通过不断尝试所有可能的选择,并在满足条件时继续向下搜索,直到找到解或者搜索完所有可能的选择。

回溯算法能够得到最优解,但它的时间复杂度较高,因为它需要尝试所有可能的选择。

通过实验我们发现,不同算法在解决背包问题时有各自的优缺点。

贪心算法简单快速,但不能保证得到最优解;动态规划算法能够得到最优解,但需要额外的空间;回溯算法能够得到最优解,但时间复杂度较高。

因此,在实际应用中需要根据具体情况选择合适的算法来解决背包问题。

综上所述,通过本实验我们对背包问题的解决算法有了更深入的了解,并且能够根据具体情况选择合适的算法来解决实际问题。

希望本实验能够对相关领域的研究和应用有所帮助。

回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)

回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)
BBnode enode =null;
inti = 1;
doublebestp = 0.0;
doubleup = bound(1);
while(i !=n+ 1) {
doublewt =cw+w[i];
//检查当前扩展节点的左儿子节点
if(wt <=c) {
if(cp+p[i] > bestp) {
}
do{
System.out.println("请输入背包的容量:");
input = in.readLine().trim();
input = in.readLine().replaceAll(" ","");
}while(input.equals(""));
if(input.equals("2")){
w=newdouble[n+ 1];
for(inti = 1; i <=n; i++) {
p[i] = pp[q[i - 1].id- 1];
w[i] = ww[q[i - 1].id- 1];
}
backtrack(1);
returnbestp;
}
//回溯过程
privatevoidbacktrack(inti) {
c= cc;
n= pp.length;
Element[] q =newElement[n];
doublews = 0.0;
doubleps = 0.0;
for(inti = 0; i <n; i++) {
q[i] =newElement(i + 1, pp[i] / ww[i]);

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含源代码

动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。

这可是算法领域里的经典难题,也是体现动态规划思想的好例子。

我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。

假设你是一个盗贼,要盗取一个博物馆里的宝贝。

博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。

你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。

这个问题,就是我们要解决的背包问题。

一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。

2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。

3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。

4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。

5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。

6.dp[i][j]取两种情况的最大值。

二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。

0-1背包问题(回溯法)

0-1背包问题(回溯法)

0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。

物品i 的重量是w i ,其价值为v i ,背包的容量为C 。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。

不能将物品装入背包多次,也不能只装入部分的物品。

三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。

2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。

3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。

关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。

算法设计与分析实验报告-背包问题

算法设计与分析实验报告-背包问题

算法设计与分析实验报告一、实验内容:给定n 种物品和一背包。

物品i 的重量是w i ,其价值为v i ,背包的容量为C 。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、算法思想与设计描述:(一)基本算法:1、使用动态规划算法计算最优值,递归式如下,m(i ,j)是背包容量为j ,可选择物品为i ,i+1,…,n 时0-1背包问题的最优值具体代码:for(i=1; i<=num; i++)for(j=1; j<=C; j++){int temp = value[i -1][j -goods[i].weight]+goods[i].value;if(j>=goods[i].weight && temp > value[i -1][j])value[i][j] = temp;elsevalue[i][j] = value[i -1][j];}2、逆推得出装入背包的物品:j = C;for(i=num; i>=1; i --){if(value[i][j] > value[i -1][j]){judge[i] = 1;j -= goods[i].weight;}}(二)改进算法:1、求最大价值:i i i i w j w j j i m v w j i m j i m j i m <≤≥⎩⎨⎧+-=0),1-(}),1-(),,1-(max{),(具体代码:for(i=0; i<MAXNUM; i++){for(j=0; j<MAXNUM; j++){p[i][j].weight = 0;p[i][j].value = 0;q[i][j].weight = 0;q[i][j].value = 0;}}for(i=0; i<=num-1; i++){j = 0;//计算q集合的值while(j == 0 || (j>0 && p[i][j].weight!=0)){q[i][j].weight = p[i][j].weight + goods[i+1].weight;q[i][j].value = p[i][j].value + goods[i+1].value;j++;}m = 1; k = 0; j = 1;//复制i层的p、q到i+1层的p中并按重量由小到大排序while(p[i][j].weight!=0 && q[i][k].weight!=0){if(p[i][j].weight <= q[i][k].weight){p[i+1][m] = p[i][j];j++;}else{p[i+1][m] = q[i][k];k++;}m++;}while(p[i][j].weight != 0)//i层的p还没有复制结束{p[i+1][m] = p[i][j];j++;m++;}while(q[i][k].weight != 0)//i层的p还没有复制结束{p[i+1][m] = q[i][k];k++;m++;}k = 1;while(p[i+1][k].weight)//删除集合A、集合B中的元素{if((p[i+1][k].value<p[i+1][k-1].value) || (p[i+1][k].weight > C)){j = k;while(p[i+1][j].weight){p[i+1][j] = p[i+1][j+1];j++;}}elsek++;}}max_value=p[i][k-1].value;2、逆推得出最优装法:•初设i=n•比较p[i](j1,v1)与p[i-1](j2,v2)的最后一个元素,如果不同,则第i个一定被选了,且下一次i为(j1-wi,v1-vi)第一次出现的位置;如果相同则i——;•循环执行上述步骤直到i=0为止//逆推得到最优装法i = num;while(i){j = 1; k = 1;while(p[i][j].weight)j++;while(p[i-1][k].weight)k++;j--; k--;if(p[i][j].value != p[i-1][k].value){judge[i] = 1;//第i个被选中了if(i == 1)i--;int last_weight = p[i][j].weight-goods[i].weight;int last_value = p[i][j].value - goods[i].value;m = 1;while(i>1 && m<=num)//找到下一个i{j = 1;while(p[m][j].weight){if(p[m][j].weight == last_weight && p[m][j].value == last_value){i = m;break;}else{j++;}}if(i == m)break;m++;}}elsei--;}三、测试说明:1、基本算法算法复杂度:O(nC)2、改进算法:算法复杂度:O(min{nC, 2^n})四、实验总结:动态规划算法可以避免普通递归算法在某些问题上的重复计算,是一种聪明的递归。

01背包问题实验心得体会

01背包问题实验心得体会

01背包问题实验心得体会01背包问题是一个经典的动态规划问题,也是算法设计与分析中常见的一个问题。

在这个问题中,有一个容量为C的背包和N个物品,每个物品有一个重量和一个价值,要求选出一些物品放入背包中,使得总重量不超过背包容量且总价值最大。

在实验中,我首先对01背包问题进行了建模和分析,然后使用了两种不同的算法进行求解,分别是基于贪心算法和动态规划算法。

最后,对两种算法进行了对比和分析。

首先,我对01背包问题进行了建模。

根据题目要求,我将问题定义为一个二维表格,表格的行表示物品的索引,列表示背包的容量。

表格中的每个元素表示在考虑前i个物品并且背包容量为j的情况下,可以获得的最大价值。

根据这个定义,我可以通过填充表格中的元素来逐步求解问题。

然后,我使用了两种算法来求解01背包问题。

首先是贪心算法,贪心算法的核心思想是每次选择当前最优解,但是在01背包问题中,贪心算法不一定能够得到最优解。

因此,我使用了一个简单的贪心策略,即每次选择单位价值最高的物品放入背包中。

这个算法的时间复杂度为O(NlogN),因为需要对物品按照单位价值进行排序。

然后是动态规划算法,动态规划算法是一种通过将问题分解为子问题,并且利用子问题的解来求解原问题的方法。

对于01背包问题,动态规划算法的思路是从表格的左上角开始,逐行逐列地填充表格中的元素。

具体的填充方法是,对于第i个物品和第j个背包容量,如果当前物品的重量大于背包容量,则当前元素的值等于上一行相同列的元素的值;否则,当前元素的值等于上一行相同列的元素的值和上一行当前列减去当前物品重量所对应的元素的值的最大值。

这个算法的时间复杂度为O(NC),其中N为物品的个数,C为背包的容量。

实验结果显示,贪心算法的解并不一定是最优解,而动态规划算法的解一定是最优解。

这是因为贪心算法在每一次选择中只考虑了当前最优解,而没有考虑到整体最优解。

而动态规划算法通过填充表格的方式,可以逐步求解出整体最优解,并且保证了子问题的最优解是原问题的最优解。

实验报告-分支限界法01背包

实验报告-分支限界法01背包

《算法设计与分析》实验报告六学号: 1004091130 姓名:金玉琦日期: 2011-11-17 得分:一、实验内容:运用分支限界法解决0-1背包问题。

二、所用算法的基本思想及复杂度分析:分支限界法分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。

因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。

0-1背包问题1)基本思想给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。

对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:u b = v + ( W - w) × ( vi + 1/ wi + 1 )根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。

2)复杂度分析时间复杂度是O(2n);三、源程序及注释:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;int *x;struct node{//结点表结点数据结构node *parent,//父结点指针*next; //后继结点指针int level,//结点的层bag,//节点的解cw,//当前背包装载量cp;//当前背包价值float ub; //结点的上界值};class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点void addnode(node *nod);//将结点添加到队列中void deletenode(node *nod);//将结点队列中删除struct node *nextnode(); //取下一个void display(); //输出结果void solvebag(); //背包问题求解};Knap::Knap(int *pp,int *ww,int cc,int nn){int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i;}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}float Knap::Bound(int i,int cw,int cp){// 计算上界int cleft=c-cw;float b=(float)cp;while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}if (i<n) b+=1.0*p[i]/w[i]*cleft;return b;}node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}void Knap::addnode(node *no){//将结点加入优先队列node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;}next1=p;p=p->next;}if(p==NULL){next1->next=no;}}node *Knap::nextnode(){//取上限最大结点node *p=front->next;front->next=p->next;return(p);}void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=1.0*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<1.0*p[j]/w[j]){minl=1.0*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}void Knap::display(){int i;cout<<"最大价值是:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值为:"<<endl;for(i=1;i<=n;i++)cout<<"x("<<setw(2)<<i<<")="<<x[i-1]<<endl;}void Knap::solvebag(){//背包问题求解int i;float ubb;node *aa;first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0;first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp){ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}void main(){int c,n;int i=0;int *p;int *w;cout<<"请输入背包容量:"<<endl;cin>>c;cout<<"请输入物品数:"<<endl;cin>>n;x=new int[n];p=new int[n];w=new int[n];cout<<"请输入"<<n<<"个物品的重量:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<"请输入"<<n<<"个物品价值:"<<endl;for(i=0;i<n;i++)cin>>p[i];x=new int[n];Knap knbag(p,w,c,n);knbag.solvebag();getch();return;}四、运行输出结果:五、调试和运行程序过程中产生的问题、采取的措施及获得的相关经验教训:解决该问题首先要确定一个合适的限界函数数, 并根据限界函数确定目标函数的界[down,up],然后按照广度优先策略遍历问题的解空间树,在分支结点上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值,如果某孩子结点的目标函数可能取得的值超出目标函数的界, 则将其丢弃, 因为从这个结点生成的解不会比目前已经得到的解更好; 否则, 将其加入待处理结点表中。

背包问题问题实验报告(3篇)

背包问题问题实验报告(3篇)

第1篇一、实验目的1. 理解背包问题的基本概念和分类。

2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。

3. 分析背包问题的复杂度,比较不同算法的效率。

4. 通过实验验证算法的正确性和实用性。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。

c. 返回dp[n][C],即为最大价值。

2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。

背包问题实验报告

背包问题实验报告

一、实验背景背包问题是组合优化领域中经典的NP难问题,具有广泛的应用背景。

背包问题是指在一个背包的容量限制下,如何从一组物品中选择一部分物品,使得所选物品的总价值最大。

背包问题分为0-1背包问题、完全背包问题、多重背包问题等。

本实验旨在比较不同背包问题的算法性能,为实际应用提供参考。

二、实验目的1. 比较不同背包问题的算法性能;2. 分析不同算法的时间复杂度和空间复杂度;3. 为实际应用选择合适的背包问题算法。

三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 数据集:随机生成的背包问题数据集四、实验方法1. 实验数据:生成不同规模的背包问题数据集,包括物品数量、背包容量和物品价值;2. 算法:比较以下背包问题的算法性能:(1)0-1背包问题的动态规划算法;(2)完全背包问题的动态规划算法;(3)多重背包问题的动态规划算法;3. 性能指标:计算每个算法的运行时间、空间复杂度和最优解价值。

五、实验结果与分析1. 0-1背包问题(1)动态规划算法算法实现:根据0-1背包问题的状态转移方程,实现动态规划算法。

运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。

空间复杂度:O(n×C),其中n为物品数量,C为背包容量。

最优解价值:根据动态规划算法,得到最优解价值为198。

(2)回溯法算法实现:根据0-1背包问题的状态转移方程,实现回溯法。

运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。

空间复杂度:O(n×C),其中n为物品数量,C为背包容量。

最优解价值:根据回溯法,得到最优解价值为198。

2. 完全背包问题(1)动态规划算法算法实现:根据完全背包问题的状态转移方程,实现动态规划算法。

运行时间:随背包容量和物品数量的增加,运行时间呈线性增长。

空间复杂度:O(n×C),其中n为物品数量,C为背包容量。

最优解价值:根据动态规划算法,得到最优解价值为300。

算法分析与设计实验报告-最大子段和、0-1背包问题

算法分析与设计实验报告-最大子段和、0-1背包问题

实验报告课程计算机算法设计与分析实验名称最大子段和、0-1背包问题学号姓名实验日期:实验二最大子段和、0-1背包问题一.实验目的(1)学习最大子段和问题的简单算法,掌握原理,运用C++编程实现。

(2)学习0-1背包问题的简单算法,掌握原理,运用C++编程实现。

二.实验内容(1)设计最大子段和问题的算法,上机编程实现。

(2)设计0-1背包问题的算法,上机编程实现。

三.实验代码1 .分治法实现最大子段和程序如下:#include<iostream.h>int MaxSum(int a[],int left,int right){int sum=0;if (left==right){if (a[left]>0)sum=a[left];elsesum=0;}else{int center=(left+right)/2;int leftsum=MaxSum(a,left,center);int rightsum=MaxSum(a,center+1,right);int s1=0;int lefts=0;for(int i=center;i>=left;i--){lefts+=a[i];if(lefts>s1)s1=lefts;}int s2=0;int rights=0;for(int j=center+1;j<=right;j++){rights+=a[j];if(rights>s2)s2=rights;}sum=s1+s2;if(sum<leftsum)sum=leftsum;if(sum<rightsum)sum=rightsum;}return sum;}void main(){int n,a[100],m,maxsum;cout<<"分治法求解"<<endl;cout<<"请输入待求的元素数目"<<endl;cin>>n;cout<<"请输入各元素"<<endl;for(m=1;m<=n;m++)cin>>a[m];maxsum=MaxSum(a,1,n);cout<<"当前序列最大子段和为:"<<maxsum<<endl; }(2)0-1背包问题程序如下:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;template<class ty>class Knap{ public:friend void Init();friend void Knapsack();friend void Backtrack(int i);friend float Bound(int i);bool operator<(Knap<ty> a)const{ if(fl<a.fl)return true;elsereturn false; }private:ty w; //重量ty v; //价值float fl; //单位重量的价值v/wint kk; //记录第几个物品int flag; //记录是否放入包中};template<class ty>void Sort(Knap<ty> *li,int n){ int i,j,k;Knap<ty> minl;for(i=1;i<n;i++){ minl=li[0];k=0;for(j=1;j<=n-i;j++){ if(minl<li[j]){ minl=li[j];swap(li[j],li[k]);k=j; } } } }namespace jie //命名空间{ int c=0,n=0;int *x=NULL;Knap<int> *bag=NULL;int cp=0,cw=0; int bestp=0; }using namespace jie;void Init(){ int i=0;cout<<endl;cout<<"请输入物品数量n = ";cin>>n;cout<<endl;cout<<"请输入背包容量C = ";cin>>c;cout<<endl;bag=new Knap<int> [n];x=new int[n];cout<<"请依次输入"<<n<<"个物品的重量W:"<<endl; for(i=0;i<n;i++)cin>>bag[i].w;cout<<endl;cout<<"请依次输入"<<n<<"个物品的价值P:"<<endl; for(i=0;i<n;i++)cin>>bag[i].v;for(i=0;i<n;i++){ bag[i].flag=0;bag[i].kk=i;bag[i].fl=1.0*bag[i].v/bag[i].w;}}void Backtrack(int i) { if(i>=n) //到达叶节点{ bestp=cp; //更新最优价值return; }if(cw+bag[i].w<=c) //进入左子树{ bag[i].flag=1;cw+=bag[i].w;cp+=bag[i].v;Backtrack(i+1);cw-=bag[i].w;cp-=bag[i].v; }if(Bound(i+1)>bestp)//进入右子树{ bag[i].flag=0;Backtrack(i+1); } } //计算当前节点处的上界float Bound(int i){ int cleft = c-cw; //剩余容量float b = cp;while (i<n&&bag[i].w<=cleft){ //以物品单位重量价值递减序装入cleft-=bag[i].w;b+=bag[i].v;i++; } //装满背包if (i<n) b+=1.0*bag[i].v/bag[i].w * cleft;return b; }void Knapsack() //计算最优解和变量值{ int L(0); //用L累计价值,初始价值设置为0for(int k=0;k<n;k++){ x[bag[k].kk]=bag[k].flag; //x=0表示未放入背包,x=1表示放入背包L+=bag[k].flag*bag[k].v; //价值累加}cout<<endl;cout<<"当前最优价值为:"<<L<<endl;cout<<"变量值x = ";for(int i=1;i<=n;i++){ cout<<x[i-1]; }delete []bag;bag=NULL;delete []x;x=NULL;cout<<endl;getch(); }int main(){ cout<<endl;cout<<"|**********回溯法解0-1背包问题**********|"<<endl;Init();Backtrack(0);Knapsack();return 0;}四.实验结果(1)分治法最大子段和问题运行结果如下:(2)0-1背包问题运行结果如下:五.总结与思考。

贪心算法实现背包问题算法设计与分析实验报告

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告实验名称 贪心算法实现背包问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号一.实验要求1. 优化问题有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组 成,而把满足约束条件的子集称为该问题的可行解。

可行解一般来说是不唯一的。

那些使目标函数取极值(极大或极小)的可行解,称为最优解。

2.贪心法求优化问题算法思想:在贪心算法中采用逐步构造最优解的方法。

在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。

决策一旦作出,就不可再更改。

作出贪心决策的依据称为贪心准则(greedy criterion)。

3.一般方法1)根据题意,选取一种量度标准。

2)按这种量度标准对这n个输入排序3)依次选择输入量加入部分解中。

如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。

procedure GREEDY(A,n) /*贪心法一般控制流程*///A(1:n)包含n个输入//solutions←φ //将解向量solution初始化为空/for i←1 to n dox←SELECT(A)if FEASIBLE(solution,x)then solutions←UNION(solution,x)endifrepeatreturn(solution)end GREEDY4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。

二.实验内容1. 编程实现背包问题贪心算法。

通过具体算法理解如何通过局部最优实现全局最优,并验证算法的时间复杂性。

2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。

3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。

三.程序算法1. 背包问题的贪心算法procedure KNAPSACK(P,W,M,X,n)//P(1:n)和W(1;n)分别含有按P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值和重量。

连续背包问题实验报告

连续背包问题实验报告

一、实验背景连续背包问题(Knapsack Problem)是一种经典的组合优化问题,其基本模型是在一个容量有限的背包中,如何从n种物品中选择若干种物品,使得所选物品的总重量不超过背包的容量,且所选物品的总价值最大。

连续背包问题与0-1背包问题不同之处在于,连续背包问题要求选中的物品必须连续放置在背包中。

二、实验目的1. 了解连续背包问题的基本概念和解决方法。

2. 通过实验验证不同算法在连续背包问题上的性能。

3. 分析算法的优缺点,为实际应用提供参考。

三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 背包容量:1004. 物品数量:505. 物品重量和价值的随机生成四、实验方法1. 生成实验数据:随机生成50种物品,每种物品的重量和价值在1到100之间。

2. 设计算法:分别采用动态规划、贪心算法和遗传算法解决连续背包问题。

3. 实验步骤:a. 使用动态规划算法求解连续背包问题。

b. 使用贪心算法求解连续背包问题。

c. 使用遗传算法求解连续背包问题。

d. 比较三种算法的求解结果和运行时间。

五、实验结果与分析1. 动态规划算法动态规划算法是一种常用的解决连续背包问题的方法。

通过构建一个二维数组dp,其中dp[i][j]表示在背包容量为j的情况下,前i种物品的最大价值。

动态规划算法的时间复杂度为O(nC),其中n为物品数量,C为背包容量。

实验结果显示,动态规划算法在连续背包问题上的求解结果较为理想,但运行时间较长。

2. 贪心算法贪心算法是一种启发式算法,其基本思想是在每次选择物品时,优先选择价值最大的物品。

贪心算法的时间复杂度为O(nlogn),其中n为物品数量。

实验结果显示,贪心算法在连续背包问题上的求解结果较差,且运行时间较短。

3. 遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。

通过初始化种群、选择、交叉和变异等操作,不断优化求解结果。

遗传算法的时间复杂度为O(GF),其中G为迭代次数,F为每个个体的编码长度。

回溯法求0-1背包问题

回溯法求0-1背包问题

学号:日期:《算法设计与分析》实验报告姓名:得分:____________、实验内容:用回溯法求解0/1背包问题注:给定n种物品和一个容量为C的背包,物品i的重量是W i,其价值为V i,背包问题是如何使选择装入背包内的物品,使得装入背包中的物品的总价值最大。

其中,每种物品只有全部装入背包或不装入背包两种选择。

、所用算法的基本思想及复杂度分析:1. 回溯法求解背包问题:1)基本思想:回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function) 来处死那些实际上不可能产生所需解的活结点,以减少问题的计算量。

这种具有限界函数的深度优先生成法称为回溯法。

对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1 向量组成,可用子集数表示。

在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。

当右子树中有可能包含最优解时就进入右子树搜索。

2)复杂度分析:回溯法求解0/1背包问题的时间复杂度为:T(n) 0(2n)。

空间复杂度:有n个物品,即最多递归n层,存储物品信息就是一个一维数组,即回溯法求解0/1背包问题的空间复杂度为0(n) o2. 以动态规划法验证:1)基本思想:令V(i,j)表示在前i(1 i n)个物品中能够装入容量为j(1 j C) 的背包中的物品的最大值,则可以得到如下动态函数:V(i,0) V(0,j) 0V(i,j)V(i 1,j)(j W i)maxV(i 1, j),V(i 1, j wj y (j wj按照下述方法来划分阶段:第一阶段,只装入前1 个物品,确定在各种情况下的背包能够得到的最大价值;第二阶段,只装入前2 个物品,确定在各种情况下的背包能够得到的最大价值;以此类推,直到第n 个阶段。

最后,V n,C)便是在容量为C的背包中装入n个物品时取得的最大价值。

2)复杂度分析:动态规划法求解0/1 背包问题的时间复杂度为:T(n) O(n C) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计分析实验报告
课程名称:计算机算法设计分析
专业:
班级:
学号:
姓名:
指导教师:
一、问题的提出
问题描述:
给定n种物品和一个背包。

物品i的重量是wi,体积是bi,其价值为vi,背包的容量为c,容积为d。

问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?
在选择装入背包的物品时,对每种物品只有两个选择:即装入或不装入。

不能重复装入,也不能只装入部分的物品i。

要求:
试设计一个解决此问题的动态规划算法,并分析算法的计算复杂性。

二、算法的基本思想
该问题具有最优子结构特征。

标准0-1背包问题,MaxV表示前i 个物品装入容量为j的背包中时所能产生的最大价值,结构体objec 表示每一个可装入物品,其中w表示物品的重量,v表示物品的价值。

如果某物品超过了背包的容量,则该物品一定不能放入背包,问题就变成了剩余i-1个物品装入容量为j的背包中所能产生的最大价值;如果该物品能装入背包,问题就变成i-1个物品装入容量为j-objec[i].w的背包所能产生的最大价值加上物品i的价值objec[i].v。

三、算法的程序实现
#include <iostream>
using namespace std;
int V [200][200][200];
int max(int a,int b)
{
if(a>=b)
return a;
else
return b;
}
int KnapSack(int n,int w[],int z[],int v[],int x[],int c,int b) {
int i,p,q;
for(i=0;i<=n;i++)
V[i][0][0]=0;
for(p=0;p<=c;p++)
for (q=0;q<=b;q++)
V[0][p][q]=0;
for(i=0;i<=n-1;i++)
for(p=0;p<=c;p++)
for(q=0;q<=b;q++)
if(p<w[i]&&q<z[i])
V[i][p][q]=V[i-1][p][q];
else
V[i][p][q]=max(V[i-1][p][q],V[i-1][p-w[i]][q-z[i]]+v[i]); p=c;
q=b;
for(i=n-1;i>=0;i--)
{
if(V[i][p][q]>V[i-1][p][q])
{
x[i]=1;
p=p-w[i];
q=q-z[i];
}
else
x[i]=0;
}
cout<<"选中的物品是:";
for(i=0;i<n;i++)
cout<<" "<<x[i];
cout<<endl;
int r=0;
for(i=0;i<n;i++)
{
if(x[i]==1)
r+=v[i];
else
r+=0;
}
return r;
}
void main()
{
int mv;
int w[150];
int z[150];
int v[150];
int x[150];
int n,i;
int c;
int b;//背包最大容量和容积
cout<<"请输入背包的最大容量:"<<endl;
cin>>c;
cout<<"请输入背包的最大容积:"<<endl;
cin>>b;
cout<<"输入物品数:"<<endl;
cin>>n;
cout<<"请分别输入物品的重量:"<<endl;
for(i=0;i<n;i++)
cin>>w[i];
cout<<"请分别输入物品的体积:"<<endl;
for(i=0;i<n;i++)
cin>>z[i];
cout<<"请分别输入物品的价值:"<<endl;
for(i=0;i<n;i++)
cin>>v[i];
mv=KnapSack(n,w,z,v,x,c,b);
cout<<"最大物品价值为:"<<mv<<endl;
}
四、算法的复杂度分析
时间复杂度为O(n)。

五、算法运行结果及分析(截屏)
输入数据的第一行分别为:背包的容量c,背包的容积d,物品的个数n。

接下来的n行表示n个物品的重量、体积和价值。

输出为最大的总价值。

六、结束语
1.通过本次实验掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。

2.掌握分阶段的和递推的最优子结构分析方法。

3.学会利用动态规划算法解决实际问题。

相关文档
最新文档