比较线性模型和Probit模型 Logit模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研究生考试录取相关因素的实验报告
一,研究目的
通过对南开大学国际经济研究所1999级研究生考试分数及录取情况的研究,引入录取与未录取这一虚拟变量,比较线性概率模型与Probit模型,Logit模型,预测正确率。
二,模型设定
表1,南开大学国际经济研究所1999级研究生考试分数及录取情况见数据表
定义变量SCORE :考生考试分数;Y :考生录取为1,未录取为0。 上图为样本观测值。 1. 线性概率模型
根据上面资料建立模型
用Eviews 得到回归结果如图:
Dependent Variable: Y Method: Least Squares Date: 12/10/10 Time: 20:38
Sample: 1 97
Included observations: 97
Variable Coefficient Std. Error t-Statistic Prob.?? C -0.847407 0.159663 -5.307476 0.0000 SCORE
0.003297
0.000521
6.325970
0.0000 R-squared
0.296390 ????Mean dependent var 0.144330 Adjusted R-squared 0.288983 ????S.D. dependent var 0.353250 S.E. of regression 0.297866 ????Akaike info criterion 0.436060 Sum squared resid 8.428818 ????Schwarz criterion 0.489147 Log likelihood -19.14890 ????F-statistic 40.01790 Durbin-Watson stat
0.359992 ????Prob(F-statistic)
0.000000
参数估计结果为: i
Y ˆ-0.847407+0.003297 i SCORE Se=(0.159663)( 0.000521) t=(-5.307476) (6.325970)
p=(0.0000) (0.0000)
预测正确率:
Forecast: YF Actual: Y
Forecast sample: 1 97 Included observations: 97 Root Mean Squared Error 0.294780 Mean Absolute Error?????
0.233437
Mean Absolute Percentage Error 8.689503 Theil Inequality Coefficient? 0.475786 ?????Bias Proportion???????? 0.000000 ?????Variance Proportion? 0.294987 ?????Covariance Proportion?
0.705013
2.Logit 模型
Dependent Variable: Y
Method: ML - Binary Logit (Quadratic hill climbing) Date: 12/10/10 Time: 21:38
Sample: 1 97
Included observations: 97
Convergence achieved after 11 iterations
Covariance matrix computed using second derivatives
Variable Coefficient Std. Error z-Statistic Prob.?? C -243.7362 125.5564 -1.941248 0.0522 SCORE
0.679441
0.350492
1.938536
0.0526 Mean dependent var 0.144330 ????S.D. dependent var 0.353250 S.E. of regression 0.115440 ????Akaike info criterion 0.123553 Sum squared resid 1.266017 ????Schwarz criterion 0.176640 Log likelihood -3.992330 ????Hannan-Quinn criter. 0.145019 Restr. log likelihood -40.03639 ????Avg. log likelihood -0.041158 LR statistic (1 df) 72.08812 ????McFadden R-squared 0.900282
Probability(LR stat) 0.000000
Obs with Dep=0 83 ?????Total obs 97
Obs with Dep=1
14
得Logit 模型估计结果如下
p i = F (y i ) =
)
6794.07362.243(11
i x e +--+ 拐点坐标 (358.7, 0.5)
其中Y=-243.7362+0.6794X
预测正确率
Forecast: YF
Actual: Y
Forecast sample: 1 97
Included observations: 97
Root Mean Squared Error 0.114244
Mean Absolute Error????? 0.025502
Mean Absolute Percentage Error 1.275122
Theil Inequality Coefficient? 0.153748
?????Bias Proportion???????? 0.000000
?????Variance Proportion? 0.025338
?????Covariance Proportion? 0.974662
3.Probit模型
Dependent Variable: Y
Method: ML - Binary Probit (Quadratic hill climbing)
Date: 12/10/10 Time: 21:40
Sample: 1 97
Included observations: 97
Convergence achieved after 11 iterations
Covariance matrix computed using second derivatives
Variable Coefficient Std. Error z-Statistic Prob.??
C -144.4560 70.19809 -2.057833 0.0396
SCORE 0.402868 0.196186 2.053504 0.0400
Mean dependent var 0.144330 ????S.D. dependent var 0.353250 S.E. of regression 0.116277 ????Akaike info criterion 0.122406 Sum squared resid 1.284441 ????Schwarz criterion 0.175493 Log likelihood -3.936702 ????Hannan-Quinn criter. 0.143872 Restr. log likelihood -40.03639 ????Avg. log likelihood -0.040585 LR statistic (1 df) 72.19938 ????McFadden R-squared 0.901672
Probability(LR stat) 0.000000
Obs with Dep=0 83 ?????Total obs 97 Obs with Dep=1 14