高中数学选修2-1知识点、考点、附典型例题新选.

合集下载

人教版高中数学选修21知识点小结

人教版高中数学选修21知识点小结

选修2-1知识点选修2-1第一章 经常使用逻辑用语一、命题:用语言、符号或式子表达的,能够判定真假的陈述句. 真命题:判定为真的语句.假命题:判定为假的语句. 二、“若p ,那么q ”:p 称为命题的条件,q 称为命题的结论. 3、假设原命题为“若p ,那么q ”,那么它的逆命题为“若q ,那么p ”. 4、假设原命题为“若p ,那么q ”,那么它的否命题为“若p ⌝,那么q ⌝”. 五、假设原命题为“若p ,那么q ”,那么它的逆否命题为“若q ⌝,那么p ⌝”.四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、p 是q 的充要条件:p q ⇔p 是q 的充分没必要要条件:q p ⇒,p q ≠> p 是q 的必要不充分条件:p q q p ⇒≠>,p 是q 的既不充分没必要要条件:,q p ≠>p q ≠> 8、逻辑联结词:(1)用联结词“且”把命题p 和命题q 联结起来,取得一个新命题,记作p q ∧.全真那么真,有假那么假。

(2)用联结词“或”把命题p 和命题q 联结起来,取得一个新命题,记作p q ∨.全假那么假,有真那么真。

(2)对一个命题p 通盘否定,取得一个新命题,记作p ⌝.真假性相反 九、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程一、椭圆概念:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的核心,两核心的距离称为椭圆的焦距. 二、椭圆的几何性质:焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y x a b a b+=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的核心,两核心的距离称为双曲线的焦距.4、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率 ()2211c b e e a a==+>渐近线方程b y x a =±a y x b=± 六、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F称为抛物线的核心,定直线l 称为抛物线的准线.7、过抛物线的核心作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 八、焦半径公式:假设点()00,x y P 在抛物线()220y px p =>上,核心为F ,那么02pF x P =+; 假设点()00,x y P 在抛物线()220y px p =->上,核心为F ,那么02pF x P =-+;假设点()00,x y P 在抛物线()220x py p =>上,核心为F ,那么02pF y P =+;假设点()00,x y P 在抛物线()220x py p =->上,核心为F ,那么02pF y P =-+.九、抛物线的几何性质:标准方程22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-()0p > 图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤解题注意点:一、“回归概念” 是一种重要的解题策略。

数学选修2-1知识点汇总

数学选修2-1知识点汇总

数学选修2-1知识点汇总————————————————————————————————作者:————————————————————————————————日期:数学选修2-1知识点总结第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。

若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。

其中一个命题称为原命题,另一个称为原命题的逆否命题。

若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”。

6、四种命题的真假性:原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 假 假 假假假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示.含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝。

(完整版)高中数学选修2-1知识点总结.docx

(完整版)高中数学选修2-1知识点总结.docx

数学选修 2-1第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则 q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题. 其中一个命题称为原命题,另一个称为原命题的逆命题。

若原命题为“若p ,则 q ”,它的逆命题为“若q ,则 p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题. 中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则 q ”,则它的否命题为“若p ,则q ”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。

其中一个命题称为原命题,另一个称为原命题的逆否命题。

若原命题为“若p ,则 q ”,则它的否命题为“若q ,则p ”。

6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假四种命题的真假性之间的关系:1 2两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ,则 p 是 q 的充分条件, q 是 p 的必要条件.若 p q ,则 p 是 q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题 q 联结起来,得到一个新命题,记作p q.当 p 、 q 都是真命题时, p q 是真命题;当p 、 q 两个命题中有一个命题是假命题时, p q是假命题.用联结词“或”把命题p 和命题 q 联结起来,得到一个新命题,记作p q.当 p 、 q 两个命题中有一个命题是真命题时,p q 是真命题;当p 、q两个命题都是假命题时,p q 是假命题.对一个命题 p 全盘否定,得到一个新命题,记作p .若 p 是真命题,则p 必是假命题;若p 是假命题,则p 必是真命题.9、短语“对所有的” 、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个 x ,有p x 成立”,记作“x, p x ”.短语“存在一个” 、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.特称命题“存在中的一个 x ,使p x成立”,记作“x, p x ”.10、全称命题p :x, p x ,它的否定p :x,p x 。

高中数学选修2-1抛物线知识点与典例精析

高中数学选修2-1抛物线知识点与典例精析

高中数学选修2-1抛物线知识点与典例精析知识点一抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)距离________的点的轨迹叫做抛物线.点F叫做抛物线的________,直线l叫做抛物线的________.知识点二抛物线的标准方程与几何性质O(0,0)规律与方法:解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.例1已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与点P 到该抛物线的准线的距离之和的最小值为()A.172B.3C.5D.92例2(2015年10月学考)设抛物线y2=2px(p>0)的焦点为F,若F到直线y=3 x的距离为3,则p等于()A.2B.4C.23D.43例3(2016年10月学考)已知抛物线y2=2px过点A(1,2),则p=________,准线方程是________________.例4已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(4,-22),则它的标准方程为________.例5已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,则动圆圆心M的轨迹方程为________.例6已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A、B两点,且|AB|=52p,求AB所在直线的方程.例7 过抛物线y 2=2x 的顶点作互相垂直的两条弦OA ,OB . (1)求AB 的中点的轨迹方程; (2)求证:直线AB 过定点.一、选择题1.抛物线y =2x 2的焦点坐标是( ) A .(12,0) B .(14,0) C .(0,18)D .(0,14)2.已知抛物线y =4x 2上一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716B .1516C .78D .03.已知抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A .-18B .18C .8D .-84.从抛物线y 2=4x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△MPF 的面积为( ) A .5B .10C .20D.155.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A .18B .24C .36D .486.若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( ) A .(0,0)B .(12,1)C .(1,2)D .(2,2)7.已知抛物线C 的顶点在坐标原点,准线方程为x =-1,直线l 与抛物线C 相交于A ,B 两点.若线段AB 的中点为(2,1),则直线l 的方程为( ) A .y =2x -3 B .y =-2x +5 C .y =-x +3D .y =x -18.设抛物线C :y 2=16x ,斜率为m 的直线l 与C 交于A ,B 两点,且OA ⊥OB ,O 为坐标原点,则直线l 恒过定点( ) A .(8,0) B .(4,0) C .(16,0) D .(6,0)二、填空题9.若点P 到点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是__________.10.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________. 11.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________. 12.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________. 三、解答题13.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1|AF |+1|BF |为定值;(3)以AB 为直径的圆与抛物线的准线相切.答案精析知识条目排查知识点一相等焦点准线题型分类示例例1A如图,由抛物线定义知|P A|+|PQ|=|P A|+|PF|,则所求距离之和的最小值转化为求|P A|+|PF|的最小值,则当A、P、F三点共线时,|P A|+|PF|取得最小值.又A(0,2),F(12,0),∴(|P A|+|PF|)min=|AF|=(0-12)2+(2-0)2=172.]例2B由抛物线y2=2px(p>0)的焦点为F(p2,0).F到直线y=3x的距离为3,可得|3p2|(3)2+(-1)2=3,解得p=4,故选B.]例32x=-1例4y2=2x解析由题意可知抛物线的焦点在x轴上,设方程为y2=2px(p>0)或y2=-2px(p>0).若方程为y 2=2px (p >0),则8=2p ×4,得p =1,故方程为y 2=2x ;若方程为y 2=-2px (p >0),则8=-2p ×4,得p =-1,不符合条件,故不成立. 所以抛物线的标准方程为y 2=2x . 例5 x 2=-12y解析 设动圆圆心M (x ,y ),半径为r ,根据题意可得⎩⎨⎧y <2,r =|y -2|,x 2+(y +3)2=1+r ,解得x 2=-12y .例6 解 方法一 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox , 则|AB |=2p <52p ,∴直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得,y 1+y 2=2pk ,y 1y 2=-p 2. ∴|AB |=(x 1-x 2)2+(y 1-y 2)2 =(1+1k 2)·(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2 =2p (1+1k 2)=52p ,解得k =±2.∴AB 所在直线方程为y =2(x -p 2)或y =-2(x -p2). 方法二如图所示,抛物线y 2=2px (p >0)的准线为x =-p2,A (x 1,y 1),B (x 2,y 2), 设A ,B 到准线的距离分别为d A ,d B ,由抛物线的定义知, |AF |=d A =x 1+p 2,|BF |=d B =x 2+p2, 于是|AB |=x 1+x 2+p =52p ,x 1+x 2=32p .当x 1=x 2时,|AB |=2p <52p , ∴直线AB 与Ox 不垂直. 设直线AB 的方程为y =k (x -p2). 由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,得k 2x 2-p (k 2+2)x +14k 2p 2=0,x 1+x 2=p (k 2+2)k 2=32p ,解得k =±2,∴直线AB 的方程为y =2(x -p 2)或y =-2(x -p2).例7 (1)解 设直线OA 的方程为y =kx ,则直线OB 的方程为y =-1k x . 联立直线OA 与抛物线的方程知,点A 的坐标为(2k 2,2k ), 联立直线OB 与抛物线的方程知,点B 的坐标为(2k 2,-2k ),则AB 的中点M 的坐标为(1k 2+k 2,1k -k ),故点M 的轨迹方程为x =y 2+2.(2)证明 由(1)可知k AB =-k -1kk 2-1k 2=-1k -1k=-k k 2-1,则直线AB 的方程为y -(1k -k ) =-k k 2-1x -(1k 2+k 2)],整理,得y =-kk 2-1(x -2).所以直线经过定点(2,0). 考点专项训练1.C 抛物线y =2x 2的标准形式为x 2=12y , ∴p =14,则p 2=18, ∴焦点坐标是(0,18).]2.B 抛物线y =4x 2的标准形式为x 2=14y , ∴其准线方程为y =-116, 设点M 的纵坐标是y 0,由抛物线的定义,得y 0+116=1, ∴y 0=1516.] 3.A4.B 设P (x 0,y 0),依题意可知抛物线准线方程为x =-1, ∴x 0=5-1=4,∴|y 0|=4×4=4, ∴△MPF 的面积为12×5×4=10.]5.C 不妨设抛物线方程为y 2=2px (p >0),依题意,l ⊥x 轴,且焦点F (p2,0), ∵当x =p2时,|y |=p ,∴|AB |=2p =12,∴p =6, 又点P 到直线AB 的距离为p 2+p2=p =6, 故S △ABP =12|AB |·p =12×12×6=36.]6.D 由题意得F (12,0),准线方程为x =-12. 设点M 在准线x =-12上的射影为P , 则M 到准线的距离为d =|PM |,则由抛物线的定义得|MA |+|MF |=|MA |+|PM |,故当P 、A 、M 三点共线时,|MF |+|MA |取得最小值为|AP |=3-(-12)=72. 把y =2代入抛物线y 2=2x ,得x =2,故点M 的坐标是(2,2).] 7.A ∵抛物线C 的顶点在坐标原点,准线方程为x =-1, ∴-p2=-1,∴p =2, ∴抛物线的方程为y 2=4x . 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21=4x 1,y 22=4x 2,两式相减得 (y 1+y 2)(y 1-y 2)=4(x 1-x 2),∴直线AB 的斜率k =y 1-y 2x 1-x 2=4y 1+y 2=42=2,从而直线AB 的方程为y -1=2(x -2),即y =2x -3.]8.C 设直线l :x =my +b (b ≠0),代入抛物线y 2=16x ,可得y 2-16my -16b =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=16m ,y 1y 2=-16b , ∴x 1x 2=(my 1+b )(my 2+b )=b 2, ∵OA ⊥OB ,∴x 1x 2+y 1y 2=0, 可得b 2-16b =0,∵b ≠0,∴b =16,∴直线l :x =my +16, ∴直线l 过定点(16,0).] 9.y 2=16x解析 点P 到点F 的距离与到x =-4的距离相等,由抛物线定义,知点P 轨迹为抛物线,设y 2=2px ,由p2=4,知p =8.10.1或0解析 由⎩⎨⎧y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解得k =1.因此若直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =0或k =1. 11.(18,±24)解析 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18, ∴此点坐标为(18,±24). 12.8 解析如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8.13.证明 (1)由已知得抛物线焦点坐标为(p2,0). 由题意可设直线方程为x =my +p2,代入y 2=2px , 得y 2=2p (my +p2),即y 2-2pmy -p 2=0.(*)因为y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24.因为x 1x 2=p 24,x 1+x 2=|AB |-p ,代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |. 所以以AB 为直径的圆与抛物线的准线相切.。

高中二年级数学选修2-1知识点总结(精华版)

高中二年级数学选修2-1知识点总结(精华版)

高二数学选修2-1知识点1、命题:用语言、符号或式子表达的,可以判断真假的述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假 四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题(一假必假).用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题(一真必真);当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.11、平面与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210x ya b a b+=>> ()222210y x a b a b+=>> 围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率 )22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 虚轴的长2b =实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率 )2211c b e e a a==+>准线方程 2a x c =±2a y c =±渐近线方程b y x a=±a y x b=±16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.21、抛物线的几何性质: 标准方程 22y px =()0p > 22y px =-()0p > 22x py =()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率1e =围0x ≥ 0x ≤0y ≥ 0y ≤22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.24、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.25、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.28、平行于同一个平面的向量称为共面向量.29、向量共面定理:空间一点P 位于平面C AB 的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.30、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值围是:[],0,a b π〈〉∈. 31、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.32、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.33、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 34、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.35、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.36、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.37、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.38、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()821cos ,a b a b a bx ⋅〈〉==+()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点.43、空间中平面α的位置可以由α的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 44、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 45、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.46、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.47、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.48、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.49、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.50、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.51、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.53、点P 是平面α外一点,A 是平面α的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为。

(完整)高中数学选修2-1知识点、考点、附典型例题,推荐文档

(完整)高中数学选修2-1知识点、考点、附典型例题,推荐文档

高二数学选修2- 1第一章:命题与逻辑结构 知识点:1、 命题:用语言、符号或式子表达的,可以判断真假的陈述句 真命题:判断为真的语句.假命题:判断为假的语句.2、 “若p ,则q ”形式的命题中的 p 称为命题的条件,q 称为命题的结论.3、 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个 命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题 .若原命题为“若 p ,则q ”,它的逆命题为“若 q ,则p ” .4、 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否 定,则这两个命题称为互否命题 .中一个命题称为原命题,另一个称为原命题的否命题 若原命题为“若 p ,则q ”,则它的否命题为“若 p ,贝U q ”.5、 对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否 定,则这两个命题称为互为逆否命题 .其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若 p ,则q ”,则它的否命题为“若q ,贝U p ”.6、 四种命题的真假性: 原命题 逆命题 否命题 逆否命题真 真 真 真真 假 假 真 假 真 真 真 假 假假假四种命题的真假性之间的关系:1两个命题互为逆否命题,它们有相同的真假性;2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ,贝U p 是q 的充分条件,q 是p 的必要条件. 若p q ,则p 是q 的充要条件(充分必要条件).&用联结词“且”把命题 p 和命题q 联结起来,得到一个新命题,记作 p q .当p 、q 都是真命题时,p q 是真命题;当p 、q 两个命题中有一个命题是假命题时,p q是假命题.用联结词“或”把命题 p 和命题q 联结起来,得到一个新命题,记作 p q .当p 、q 两个命题中有一个命题是真命题时, p q 是真命题;当p 、q 两个命题都是假命题时,p q 是假命题.对一个命题p 全盘否定,得到一个新命题,记作 p .若p 是真命题,则p 必是假命题;若 p 是假命题,则 p 必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“ ”表示.含有全称量词的命题称为全称命题. 全称命题“对中任意一个x ,有p x 成立”,记作“ x , p x ”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“ ”表示.含有存在量词的命题称为特称命题.特称命题“存在 中的一个x ,使p x 成立”,记作“ x , p x ”.是特称命题.考点:1、充要条件的判定10、全称命题p : x,p x ,它的否定 p : x,p x .全称命题的否定2 、命题之间的关系典型例题:★ 1.下面四个条件中,使a b成立的充分而不必要的条件是C. a2 b2a3b3★ 2 .已知命题P: n € N , 2n> 1000,则P为A. n€ N, 2n w 1000 C. n€ N , 2n w 1000B.D.n€ N , 2n> 1000 n€N , 2n v 1000★ 3. "X 1"是"|X| 1"的A .充分不必要条件C .充分必要条件第二章:圆锥曲线知识点:1、平面内与两个定点E.必要不充分条件D•既不充分又不必要条件F1 ,F2的距离之和等于常数(大于|F i F^ )的点的轨迹称为椭圆.两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置图形焦点在x轴上2标准方程X ~~2 a y- 1 b21 a b 0y_2 a』1 b21a b 0范围a x a且b y b b x b且a y1a,0、2a,010, a、20,a顶点10, b、20,b1b,0、2b,0轴长短轴的长2b 长轴的长2a焦占八'、八、、F1c,0、F2c,0F10, c、F20,c焦距F1F22c c2a2b'2对称性关于x轴、y轴、原点对称尔离心率 c e -a 0 e12224、平面内与两个定点F1 , F2的距离之差的绝对值等于常数(小于F1F2)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:焦点的位置图形焦点在x轴上标准方程范围顶点a,0、 2 a,0 0, a、 2 0,a 轴长虚轴的长2b实轴的长2a焦占八'、八、、F i c,0、F2 c,0 F i 0, c、F20,c焦距F i F』2c a2b2对称性关于x轴、y轴对称,关于原点中心对称离心率1 I e 1渐近线方程&平面内与一个定点ax bF和一条定直线I的距离相等的点的轨迹称为抛物线.定点by -xaF称为抛物线的焦点,定直线I称为抛物线的准线.9、过抛物线的焦点作垂直于对称轴且交抛物线于两点的线段,称为抛物线的“通径”,即2p .10、抛物线的几何性质:标准方程2y 2 pxp 0y2x 2 pyp 0顶点0,0对称轴焦占 八 '、八\、F 匕0 F2 □F 0,f F 0,炸准线方程x-E x -P yE y 卫2222离心率e 1范围x 0x 0y 0y 0考点:1、 圆锥曲线方程的求解2、 直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★ 1 •设双曲线的左准线与两条渐近线交于A,B 两点,左焦点在以 AB 为直径的圆内,则该双曲线的离心率的取值范围为 A • (0八 2)B • (1八2)C .(辽,1)D • ( '2 )2| PF 2 | | F 1F 21. (I)求椭圆的离心率 e ;(n )设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆(x 1)2 (y ..3)2 16相5交于M , N 两点,且| MN | I AB |,求椭圆的方程。

高中数学选修2-1、2-2知识点小结

高中数学选修2-1、2-2知识点小结

选修2-1、2-2知识点选修2-1第一章 常用逻辑用语 1. 命题及其关系① 四种命题相互间关系: ② 逆否命题同真同假 2. 充分条件与必要条件p 是q 的充要条件:p q ⇔p 是q 的充分不必要条件:,p q q p ⇒¿ p 是q 的必要不充分条件:,q p p q ⇒¿ p 是q 的既充分不必要条件:,p q q p 靠3. 逻辑联结词 “或”“且”“非”4. 全称量词与存在量词 注意命题的否定形式(联系反证法的反设),主要是量词的变化. 例:“a=1”是“0,21ax x x∀>+≥”的( ) A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 第二章 圆锥曲线与方程 1.2. “回归定义” 是一种重要的解题策略。

如:(1)在求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决。

3. 直线与圆锥曲线的位置关系(1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线方程联立时二次项系数是否为0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是0∆>、0∆=、0∆<.应注意数形结合(例如双曲线中,利用直线斜率与渐近线的斜率之间的关系考查直线与双曲线的位置关系)常见方法:①联立直线与圆锥曲线方程,利用韦达定理等;②点差法 (主要适用中点问题,设而不求,注意需检验,化简依据:12122100212,2,22x x y y y yx y k x x ++-===-) (2)有关弦长问题,应注意运用弦长公式及韦达定理来解决;(注意斜率是否存在)① 直线具有斜率k ,两个交点坐标分别为1122(,),(,)A x y B x y1212AB x y =-==- ② 直线斜率不存在,则12AB y y =-.(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。

人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结.doc

人教版高中数学知识点总结:新课标人教A版高中数学选修2-1知识点总结.doc

高中数学选修2・1知识点总结第一章常用逻辑用语1、 命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、 “若p ,则g”: 〃称为命题的条件,q 称为命题的结论.3、 若原命题为“若p,则q”,则它的逆命题为“若Q,则・4、 若原命题为“若p,则Q”,则它的否命题为“若",则「彳” •5、 若原命题为“若”,则q”,贝U 它的逆否命题为“若制,则.6、 四种命题的真假性:原命题 逆命题否命题 逆否命题 真 真 真真 真 假 假 真 假 真 真 真 假假假假四种命题的真假性之间的关系:(1) 两个命题互为逆否命题,它们有相同的真假性;(2) 两个命题为互逆命题或互否命题,它们的真假性没有关系.原命题 ------- 互逆 •逆命题 碧农则g 、 :|・ 否命题 若「卩则-1?7、〃是彳的充要条件:p°q〃是彳的充分不必要条件:p=q, "是彳的必要不充分条件:p^>q 、qd p命题及 其关系-BTIf四种命题否否杏命题H_4逆否命题若p ■则g若g,则p』原命题卜~——4逆命题常用逻辑用- 1条件_ - 充分不必耍条件 T 必要不充分条件 彳 充分必耍条件-既不充分也不必耍条件就 一:逆否命题 若则F"是Q的既不充分不必要条件:p±>q、q4 P8、逻辑联结词:(1)用联结词“且”把命题〃和命题q联结起來,得到一个新命题,记作全真则真,有假则假。

(2)川联结词“或”把命题p和命题q联结起來,得到一个新命题,记作pvq.全假则假,有真则真。

(2)对一个命题#全盘否定,得到一个新命题,记作真假性相反9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“V”表示.含有全称量词的命题称为全称命题.全称命题“对M中任意一个兀,有p(兀)成立”,记作“VxwM, 〃(兀)”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用表示.含有存在量词的命题称为特称命题.特称命题“存在M中的一个兀,使p(兀)成立”,记作“3XG M,〃(兀)”・10^全称命题〃:V XG M , p(x),它的否定, -ip(x).全称命题的否定是特称命题.例:“a=l”是“0兀〉0,2兀+纟>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件pH相交卜彳関谯曲线的戎—T IM 切]脚离|1、椭鬪定义:平面内与两个定点F2的距离Z和等于常数(大于F(F2)的点的轨迹称为椭圆.这两个定点称为椭闘的焦点,两焦点的距离称为椭閲的焦距.2、椭圆的几何性质:焦点的位置焦点在X轴上焦点在y轴上图形y1第二章锥曲线与方程曲线与方程闘饰1111线与方~I定义—ifffiiM-―「标准方程r_I儿何性质}I定义一I双曲线一―I你來方程}—|标准方程}—|儿何性质}圈形TC线与脚俳曲线的位时关系3、平面内与两个定点件,F2的距离Z差的绝对值等于常数(小于F, F2)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质:5实轴和虚轴等长的双曲线称为等轴双曲线.6平面内与一个定点F和一条定宜线2的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点, 定直线/称为抛物线的准线.7过抛物线的焦点作垂直于对称轴且交抛物线于A、B两点的线段AB,称为抛物线的“通径”,即|AB| = 2/?.8焦半径公式:若点P(x0,y0)在抛物线y2 =2px(p>0)±,焦点为F,则|PF| = x0 :若点P(x0,y0)在抛物线),=-2〃兀(〃>0)上,焦点为F,贝ij|PF| = -x0 +y : 若点P(x0,y0)在抛物线宀2py(p〉0)上,焦点为F,则|PF|=%+牛2若点P(So )在抛物线宀-2py(p>0)上,焦点为F,贝IJ |PF| = —%+£.29、抛物线的几何性质:解题注意点:1、“回归定义”是一种重要的解题策略。

高中数学必修二 选修2-1 知识点归纳

高中数学必修二 选修2-1 知识点归纳

必修二 知识点归纳: 第一章 空间几何体1. 棱柱 直棱柱:侧棱垂直于底面的棱柱。

(正棱柱: 底面为正多边形的直棱柱。

)斜棱柱:侧棱不垂直于底面的棱柱。

(平行六面体:底面为平行四边形的斜棱柱。

) 棱锥 正棱锥:底面为正多边形,顶点在底面的投影为底面的中心的棱锥。

斜棱锥:以上条件之一不满足的棱锥。

棱台 正棱台:由平行于底面的平面截正棱锥得到的棱台。

斜棱台:由平行于底面的平面截斜棱锥得到的棱台。

四面体:三棱锥正四面体:六条棱均相等的三棱锥。

空间四边形ABCD :三棱锥,其中有四条边:AB 、BC 、CD 、DA ;两条对角线:AC 、BD 。

2. 三视图(会识别,会画图)3. 斜二测画法画直观图:见《名师面对面》P10:3题;P12:6、7题4. S 圆柱侧=2πrl S 圆柱表=2πrl+2πr 2S 圆锥侧=πrl S 圆锥表=πrl+πr 2S 圆台侧=π(r +r ′)l S 圆台表=π(r +r ′)l +πr 2+πr′2 其中r 为底面半径,l 为母线长 5. V 柱体=Sh V 锥体=13Sh V 台体=13(S+√SS′+S’)h 其中S ,S’为底面积,h 为高 6. S 球表=4πR 2 V 球=43πR 37. 球内接正方体棱长a 与球半径R 关系:2R=√3a 注意:将《名师面对面》P12-21重做一遍。

第二章:点、直线、平面之间的位置关系1.平面的概念,画法,与点的属于关系,与直线的包含关系。

2.三个公理:(1)如果一条直线上的两点在同一个平面内,那么这条直线在此平面内。

(2)不共线三点确定一个平面。

推论:①一条直线与直线外一点确定一个平面。

②两条平行直线确定一个平面。

③两条相交直线确定一个平面。

(3)如果两个不重合平面有一个公共点,那么它们有且仅有一条过该点的公共直线。

注意:将《名师面对面》P22-24重做一遍。

3.空间两直线的位置关系:_____、_____、_____。

高中数学选修2-1知识点总结

高中数学选修2-1知识点总结

ur ze3
.把
x

y

z
称作向量
pr
在单位正交基底
ur e1

uur e2

ur e3
下的坐标,记作
pr
x,
y,
z .此时,向量
pr
的坐标是点
在空间直角坐标系
xyz 中的坐标 x, y, z .
18、设
ar
x1,
y1,
z1

r b
x2 ,
y2 ,
z2
,则
(1)
ar
r b
x1
x2 ,
y1
y2 ,
z1
F1 c, 0、 F2 c, 0
A1 0, a、 A2 0, a、 1 b, 0、 2 b, 0
长轴的长 2a F1 0, c、 F2 0, c
焦距
F1F2 2c c2 a2 b2 ,a 最大
对称性
关于 x 轴、 y 轴对称,关于原点中心对称
离心率
e c a
1
b2 a2
0
e
1
准线方程
3、椭圆的几何性质:
焦点的位置
焦点在 x 轴上
焦点在 y 轴上
图形
标准方程 范围
x2 a2
y2 b2
1a
b
0
a x a 且 b y b
y2 x2 1a b 0
a2 b2
b x b 且 a y a
顶点 轴长 焦点
A1 a, 0、 A2 a, 0、 1 0, b、 2 0,b
短轴的长 2b
(6)方向相同且模相等的向量称为相等向量.
2、空间向量的加法和减法:

(完整版)高中数学选修2-1知识点总结.docx

(完整版)高中数学选修2-1知识点总结.docx

数学选修 2-1第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则 q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题. 其中一个命题称为原命题,另一个称为原命题的逆命题。

若原命题为“若p ,则 q ”,它的逆命题为“若q ,则 p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题. 中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则 q ”,则它的否命题为“若p ,则q ”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。

其中一个命题称为原命题,另一个称为原命题的逆否命题。

若原命题为“若p ,则 q ”,则它的否命题为“若q ,则p ”。

6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假四种命题的真假性之间的关系:1 2两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ,则 p 是 q 的充分条件, q 是 p 的必要条件.若 p q ,则 p 是 q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题 q 联结起来,得到一个新命题,记作p q.当 p 、 q 都是真命题时, p q 是真命题;当p 、 q 两个命题中有一个命题是假命题时, p q是假命题.用联结词“或”把命题p 和命题 q 联结起来,得到一个新命题,记作p q.当 p 、 q 两个命题中有一个命题是真命题时,p q 是真命题;当p 、q两个命题都是假命题时,p q 是假命题.对一个命题 p 全盘否定,得到一个新命题,记作p .若 p 是真命题,则p 必是假命题;若p 是假命题,则p 必是真命题.9、短语“对所有的” 、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个 x ,有p x 成立”,记作“x, p x ”.短语“存在一个” 、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.特称命题“存在中的一个 x ,使p x成立”,记作“x, p x ”.10、全称命题p :x, p x ,它的否定p :x,p x 。

人教版高二数学选修2-1知识点总结(理科)

人教版高二数学选修2-1知识点总结(理科)

高二数学选修2-1知识点第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表原命题 逆命题 否命题 逆否命题 真 真 真真 真 假 假 真 假 真 真 真 假 假 假 假示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>准线方程2a x c =± 2a y c =± 渐近线方程b y x a =± a y x b=± 16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02p F y P =-+. 21、抛物线的几何性质:标准方程22y px =()0p > 22y px =-()0p > 22x py =()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤第三章 空间向量与立体几何22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB u u u r的大小称为向量的模(或长度),记作AB u u u r . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a r 长度相等且方向相反的向量称为a r 的相反向量,记作a -r. ()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a r 、b r为邻边作平行四边形C OA B ,则以O 起点的对角线C O u u u r 就是a r 与b r的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =u u u r r ,b OB =u u u r r ,则a b BA =-u u u r r r .24、实数λ与空间向量a r 的乘积a λr是一个向量,称为向量的数乘运算.当0λ>时,a λr 与a r 方向相同;当0λ<时,a λr 与a r 方向相反;当0λ=时,a λr为零向量,记为0r .a λr 的长度是a r的长度的λ倍.25、设λ,μ为实数,a r ,b r是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+r r r r ;结合律:()()a a λμλμ=r r.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a r ,()0b b ≠r r,//a b r r 的充要条件是存在实数λ,使a b λ=r r.28、平行于同一个平面的向量称为共面向量. 29、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A u u u r u u u r u u u r ;或对空间任一定点O ,有x y C OP =OA +AB +A u u u r u u u r u u u r u u u r;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=u u u r u u u r u u u r u u u r.30、已知两个非零向量a r 和b r,在空间任取一点O ,作a OA =u u u r r ,b OB =u u u r r ,则∠AOB 称为向量a r ,b r的夹角,记作,a b 〈〉r r .两个向量夹角的取值范围是:[],0,a b π〈〉∈r r .31、对于两个非零向量a r 和b r ,若,2a b π〈〉=r r ,则向量a r ,b r互相垂直,记作a b ⊥r r .32、已知两个非零向量a r 和b r ,则cos ,a b a b 〈〉r r r r 称为a r ,b r的数量积,记作a b ⋅r r .即cos ,a b a b a b ⋅=〈〉r r rr r r .零向量与任何向量的数量积为0.33、a b ⋅r r 等于a r 的长度a r 与b r 在a r的方向上的投影cos ,b a b 〈〉r r r 的乘积.34、若a r ,b r 为非零向量,e r为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉r r r r r r r ;()20a b a b ⊥⇔⋅=r r r r ;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩r r r r r r r rr r 与同向与反向,2a a a ⋅=r r r ,a a a =⋅r r r; ()4cos ,a b a b a b⋅〈〉=r r r r r r ;()5a b a b ⋅≤r rr r .35、向量数乘积的运算律:()1a b b a ⋅=⋅r r r r ;()2()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;()3()a b c a c b c +⋅=⋅+⋅r r r r r r r .36、若i r ,j r ,k r 是空间三个两两垂直的向量,则对空间任一向量p r,存在有序实数组{},,x y z ,使得p xi yj zk =++r r r r ,称xi r ,yj r ,zk r 为向量p r在i r ,j r ,k r 上的分量.37、空间向量基本定理:若三个向量a r ,b r ,c r不共面,则对空间任一向量p r ,存在实数组{},,x y z ,使得p xa yb zc =++r r r r.38、若三个向量a r ,b r ,c r不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈r r r r r .这个集合可看作是由向量a r ,b r ,c r生成的,{},,a b c r r r 称为空间的一个基底,a r ,b r ,c r称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e u r ,2e u u r ,3e u r为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e u r ,2e u u r ,3e u r 的公共起点O 为原点,分别以1e u r ,2e u u r ,3e u r的方向为x轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p r ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =u u u r r.存在有序实数组{},,x y z ,使得123p xe ye ze =++u r u u r u r r.把x ,y ,z 称作向量p r 在单位正交基底1e u r ,2e u u r ,3e u r 下的坐标,记作(),,p x y z =r .此时,向量p r的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z =r ,()222,,b x y z =r ,则()1()121212,,a b x x y y z z +=+++rr . ()2()121212,,a b x x y y z z -=---rr .()3()111,,a x y z λλλλ=r . ()4121212a b x x y y z z ⋅=++rr .()5若a r 、b r为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=r r r r .()6若0b ≠r r ,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r.()7222111a a a x y z =⋅=++r r r.()8121212222222111222cos ,x x y y z z a b a b a b x y z x y z ++⋅〈〉==++⋅++r r r rr r .()9()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z z AB =AB =-+-+-u u u r.41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP u u u r 来表示.向量OP u u u r称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a r表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =u u u r r ,这样点A 和向量a r不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 43、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a r ,b r.P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+u u u r r r ,这样点O 与向量a r ,b r就确定了平面α的位置.44、直线l 垂直α,取直线l 的方向向量a r ,则向量a r称为平面α的法向量.45、若空间不重合两条直线a ,b 的方向向量分别为a r ,b r,则////a b a b ⇔⇔r r()a b R λλ=∈r r,0a b a b a b ⊥⇔⊥⇔⋅=r r r r .46、若直线a 的方向向量为a r ,平面α的法向量为n r ,且a α⊄,则////a a αα⇔r0a n a n ⇔⊥⇔⋅=r r r r ,//a a a n a n ααλ⊥⇔⊥⇔⇔=r r r r r .47、若空间不重合的两个平面α,β的法向量分别为a r ,b r,则////a b αβ⇔⇔r ra b λ=r r ,0a b a b αβ⊥⇔⊥⇔⋅=r rr r .48、设异面直线a ,b 的夹角为θ,方向向量为a r ,b r,其夹角为ϕ,则有cos cos a ba bθϕ⋅==r r r r .49、设直线l 的方向向量为l r ,平面α的法向量为n r ,l 与α所成的角为θ,l r 与nr的夹角为ϕ,则有sin cos l nl nθϕ⋅==r r r r .50、设1n u r ,2n u u r 是二面角l αβ--的两个面α,β的法向量,则向量1n u r ,2n u u r的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=u r u u r u r u u r .51、点A 与点B 之间的距离可以转化为两点对应向量AB u u u r的模AB u u u r 计算.52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n r,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=u u u r r u u u r u u u r rr .53、点P 是平面α外一点,A 是平面α内的一定点,n r为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n n PA ⋅=PA 〈PA 〉=u u u r r u u u r u u u r rr .数学选修2-2知识点总结一、导数1.函数的平均变化率为=∆∆=∆∆x fx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。

人教A版高中数学选修2-1知识点总结

人教A版高中数学选修2-1知识点总结

高二数学选修2-1知识点第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题.若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”.6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表原命题 逆命题 否命题 逆否命题 真 真 真真 真 假 假 真 假 真 真 真 假 假 假 假示.含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<准线方程2a x c=±2a y c=±13、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.14、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.15、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>准线方程 2a x c =± 2a y c =±渐近线方程b y x a =± a y x b=± 16、实轴和虚轴等长的双曲线称为等轴双曲线.17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==. 18、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02p F y P =-+. 21、抛物线的几何性质:标准方程22y px =()0p > 22y px =-()0p > 22x py =()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤第三章 空间向量与立体几何22、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.23、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.24、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.25、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.26、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.27、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.28、平行于同一个平面的向量称为共面向量. 29、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=.30、已知两个非零向量a 和b ,在空间任取一点O ,作a O A =,b OB =,则∠A O B 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 31、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.32、已知两个非零向量a 和b ,则c o s ,a b ab 〈〉称为a ,b 的数量积,记作a b ⋅.即c o s ,a b a bab ⋅=〈〉.零向量与任何向量的数量积为0.33、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 34、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,ab a b a b⋅〈〉=;()5a b a b ⋅≤.35、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.36、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.37、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.38、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.39、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .40、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---.()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()7222111a a a x y z =⋅=++.()8121212222222111222cos ,x x y y z z a b a b a bx y z x y z++⋅〈〉==++⋅++.()9()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z z AB =AB =-+-+-.41、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.42、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 43、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 44、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 45、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.46、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.47、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.48、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.49、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.50、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.51、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 52、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.53、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.。

高中数学选修2-1知识点总结

高中数学选修2-1知识点总结

数学选修2-1第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。

若原命题为“若p,则q”,它的逆命题为“若q,则p”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题.若原命题为“若p,则q”,则它的否命题为“若p,则q”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。

其中一个命题称为原命题,另一个称为原命题的逆否命题。

若原命题为“若p,则q”,则它的否命题为“若q,则p”。

6、四种命题的真假性:原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假四种命题的真假性之间的关系:1两个命题互为逆否命题,它们有相同的真假性;2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若pq,则p是q的充分条件,q是p的必要条件.若pq,则p是q的充要条件(充分必要条件).8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作pq.当p、q都是真命题时,pq是真命题;当p、q两个命题中有一个命题是假命题时,pq是假命题.用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作pq.当p、q两个命题中有一个命题是真命题时,pq是真命题;当p、q两个命题都是假命题时,pq是假命题.对一个命题p全盘否定,得到一个新命题,记作p.若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.含有全称量词的命题称为全称命题.全称命题“对中任意一个x,有px成立”,记作“x,px”.短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.含有存在量词的命题称为特称命题.特称命题“存在中的一个x,使px成立”,记作“x,px”.10、全称命题p:x,px,它的否定p:x,px。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2-1第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”. 6、四种命题的真假性:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假假假假四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.考点:1、充要条件的判定2、命题之间的关系典型例题:★1.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >★2.已知命题P :∃n ∈N ,2n >1000,则⌝P 为 A .∀n ∈N ,2n ≤1000 B .∀n ∈N ,2n >1000C .∃n ∈N ,2n ≤1000D .∃n ∈N ,2n <1000★3."1""||1"x x >>是的A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D .既不充分又不必要条件第二章:圆锥曲线知识点:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率)22101c b e e a a==-<<准线方程2a x c =±2a y c=±3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.4、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率)2211c b e e a a==+>准线方程2a x c=±2a y c=±渐近线方程b y x a=±a y x b=±6、实轴和虚轴等长的双曲线称为等轴双曲线.7、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==. 8、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.9、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 10、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率 1e =范围 0x ≥ 0x ≤0y ≥ 0y ≤考点:1、圆锥曲线方程的求解2、直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★1.设双曲线的左准线与两条渐近线交于,A B 两点,左焦点在以AB 为直径的圆内,则该双曲线的离心率的取值范围为A .(0,2)B .(1,2)C . 2(,1) D .(2,)+∞★★★2.设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为F 1,F 2。

点(,)P a b 满足212||||.PF F F = (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆22(1)(3)16x y ++-=相交于M ,N 两点,且5||||8MN AB =,求椭圆的方程。

第三章:空间向量知识点:1、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB u u u r的大小称为向量的模(或长度),记作AB u u u r . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a r 长度相等且方向相反的向量称为a r 的相反向量,记作a -r. ()6方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a r 、b r为邻边作平行四边形C OA B ,则以O 起点的对角线C O u u u r 就是a r 与b r的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =u u u r r ,b OB =u u u r r ,则a b BA =-u u u r r r .3、实数λ与空间向量a r 的乘积a λr 是一个向量,称为向量的数乘运算.当0λ>时,a λr与a r 方向相同;当0λ<时,a λr 与a r 方向相反;当0λ=时,a λr 为零向量,记为0r .a λr的长度是a r的长度的λ倍.4、设λ,μ为实数,a r ,b r是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+r r r r ;结合律:()()a a λμλμ=r r.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a r ,()0b b ≠r r,//a b r r 的充要条件是存在实数λ,使a b λ=r r.7、平行于同一个平面的向量称为共面向量.8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A u u u r u u u r u u u r ;或对空间任一定点O ,有x y C OP =OA +AB +A u u u r u u u r u u u r u u u r ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=u u u r u u u r u u u r u u u r.9、已知两个非零向量a r 和b r,在空间任取一点O ,作a OA =u u u r r ,b OB =u u u r r ,则∠AOB 称为向量a r ,b r的夹角,记作,a b 〈〉r r .两个向量夹角的取值范围是:[],0,a b π〈〉∈r r .10、对于两个非零向量a r 和b r ,若,2a b π〈〉=r r ,则向量a r ,b r互相垂直,记作a b ⊥r r .11、已知两个非零向量a r 和b r ,则cos ,a b a b 〈〉r r r r 称为a r ,b r的数量积,记作a b ⋅r r .即cos ,a b a b a b ⋅=〈〉r r rr r r .零向量与任何向量的数量积为0.12、a b ⋅rr 等于a r 的长度a r与b r在a r的方向上的投影cos ,b a b 〈〉rrr 的乘积.13、若a r ,b r 为非零向量,e r为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉r r r r r r r ;()20a b a b ⊥⇔⋅=r r r r ;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩r r r r r r r rr r 与同向与反向,2a a a ⋅=r r r,a =r ; ()4cos ,a b a b a b⋅〈〉=r r r r r r ;()5a b a b ⋅≤r rr r .14、量数乘积的运算律:()1a b b a ⋅=⋅r r r r ;()2()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;()3()a b c a c b c +⋅=⋅+⋅r r r r r r r .15、空间向量基本定理:若三个向量a r ,b r ,c r不共面,则对空间任一向量p r ,存在实数组{},,x y z ,使得p xa yb zc =++r r r r.16、三个向量a r ,b r ,c r不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈r r r r r .这个集合可看作是由向量a r ,b r ,c r生成的,{},,a b c r r r 称为空间的一个基底,a r ,b r ,c r称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.17、设1e u r ,2e u u r ,3e u r为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e u r ,2e u u r ,3e u r 的公共起点O 为原点,分别以1e u r ,2e u u r ,3e u r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p r,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =u u u r r.存在有序实数组{},,x y z ,使得123p xe ye ze =++u r u u r u r r.把x ,y ,z 称作向量p r 在单位正交基底1e u r ,2e u u r ,3e u r 下的坐标,记作(),,p x y z =r .此时,向量p r的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .18、设()111,,a x y z =r ,()222,,b x y z =r ,则()1()121212,,a b x x y y z z +=+++rr . ()2()121212,,a b x x y y z z -=---rr .()3()111,,a x y z λλλλ=r .()4121212a b x x y y z z ⋅=++rr .()5若a r 、b r为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=r r r r .()6若0b ≠r r ,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r.()7a ==r ()8cos ,a b a b a b ⋅〈〉==r rr r r ()9()111,,x y z A ,()222,,x y z B =,则d AB=AB =u u u r19、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP u u u r来表示.向量OP u u u r称为点P 的位置向量.20、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a r表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =u u u r r ,这样点A 和向量a r不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 21、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a r ,b r.P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+u u u r r r ,这样点O 与向量a r ,b r就确定了平面α的位置.22、直线l 垂直α,取直线l 的方向向量a r ,则向量a r称为平面α的法向量.23、若空间不重合两条直线a ,b 的方向向量分别为a r ,b r,则////a b a b ⇔⇔r r()a b R λλ=∈r r,0a b a b a b ⊥⇔⊥⇔⋅=r r r r .24、若直线a 的方向向量为a r ,平面α的法向量为n r ,且a α⊄,则////a a αα⇔r0a n a n ⇔⊥⇔⋅=r r r r ,//a a a n a n ααλ⊥⇔⊥⇔⇔=r r r r r .25、若空间不重合的两个平面α,β的法向量分别为a r ,b r,则////a b αβ⇔⇔r ra b λ=r r ,0a b a b αβ⊥⇔⊥⇔⋅=r rr r .26、设异面直线a ,b 的夹角为θ,方向向量为a r ,b r,其夹角为ϕ,则有cos cos a ba bθϕ⋅==r r r r .27、设直线l 的方向向量为l r ,平面α的法向量为n r,l 与α所成的角为θ,l r 与n r 的夹角为ϕ,则有sin cos l nl nθϕ⋅==r r r r .28、设1n u r ,2n u u r 是二面角l αβ--的两个面α,β的法向量,则向量1n u r ,2n u u r的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=u r u u r u r u u r .29、点A 与点B 之间的距离可以转化为两点对应向量AB u u u r的模AB u u u r 计算.30、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n r,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=u u u r r u u u r u u u r rr .31、点P 是平面α外一点,A 是平面α内的一定点,n r为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=u u u r r u u u r u u u r rr .考点:1、利用空间向量证明线线平行、线线垂直2、利用空间向量证明线面平行、线面垂直、面面平行、面面垂直3、利用空间向量证明线线角、线面角、面面角问题典型例题:★★1.已知正方体ABCD —A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为 。

相关文档
最新文档