第5章模型设定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
21
2 ˆ ˆ C 41 . 2863 0 . 8600 Y 0 . 000087 C OLS估计结果为: t t t
t统计值 p值
待检验假设为:
31.0749 -5.9849 0.0000 0.0000 T=29 R 2 0.9989
第5章 模型设定
《计量经济学》,高教出版社,2011年6月 王少平、杨继生、欧阳志刚等编著
1
前 言




高斯—马尔可夫定理:OLS估计量无偏、最优的首 要条件是,模型必须正确设定。 对于一个现实的经济问题,什么样的模型才是正确 设定的模型? 对于所谓设定不正确的模型,其设定偏误有什么样 的具体表现?我们该如何去识别模型的设定是否存 在某种偏误? 如果一个模型确实存在某种设定偏误,它对我们的 分析结论又会产生什么样的影响?
2
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
19
三、拉姆齐的RESERT检验

拉姆齐的RESERT检验可用于模型函数形式的检验, 也可用于模型拟合不足的检验。 消费函数 (5.1.1) Ct 0 1Yt 1t 检验步骤: ˆ ˆ1t 和 C (1)估计(5.1.1),得到 t ˆ 作图,观测近似函数关系。 ˆ1t 对 C (2 ) 以 t ˆ 函数形式加入原回归方程,建 (3)将相应的 C t 立新的辅助回归方程。 (4)对新加入的解释变量进行联合显著性检验。 若拒绝新解释变量联合不显著的原假设,则认为 模型设定存在偏误。
性的结论。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
9


二、模型过度拟合
如果模型包含了多余的解释变量,称之为模型过度 拟合。 如果“真实” 的消费函数模型应该是(5.1.1),但 我们却选择了模型(5.1.4):
Ct 0 1Yt 2Ct 1 4t
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
15
消费函数:
ˆ 84.5579 0.4491 C Yt 0.3819 Ct 1 t
t统计值 4.3152 p值 0.0002 5.7279 0.0000
T=28
3.1316 0.0044
(5.3.1)
R 2 0.9982
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
11
表现:


消费函数
1
ˆ 在模型(5.1.4)中,
ˆ ) var( 1
的方差为:
(5.2.6)
2 (1 r12 ) (Yt Y ) 2
2
其中: r12 是 Yt 和 Ct 1 的样本相关系数。 ˆ 在模型(5.1.1)中, 1 的方差为:
(5.1.4)

模型(5.1.4)的误差项 实际上是真正的误差项 1t 减去 2Ct 1 ,即:
4t 2Ct 1 1t 1t
(5.2.5)
问题:估计了一个不需要估计的参数
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
10
具体影响:

t检验结果表明可以拒绝解释变量 Ct 1
的系数为0。
不存在过度拟合的问题。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
16
二、拟合不足的检验

检验方法:LM检验(拉格朗日乘数检验)。
消费模型 备选模型
Ct 0 1Yt 1t
(5.1.1)
(5.3.2)

模型(5.1.2)和(5.1.3)都能够反映边际消费倾向递 减的特征。 ——“真实”模型不可知的,二者之间如何选择?
基于样本数据进行检验

《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
14
§5.3 模型误设的检验


一、过度拟合的检验
对有疑问的解释变量进行显著性检验。 一个可疑变量:t检验。 多个可疑变量:F检验。 目的:判定过度拟合的假设是否成立,不是筛选 解释变量。 显著性检验不能作为模型设定时解释变量取舍的 主要依据。
判定规则:对给定的显著性水平 ,LM统计值 2 大于临界值 ,就拒绝原假设,否则不拒绝。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
18
举例:
ˆ (5.3.6) ˆ1t 86.5232 0.0326Yt 0.000031Yt 2 0.1213Ct 1 t
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
3


二、模型设定偏误的类型

消费函数:Ct为消费支出,Yt表为收入 ——凯恩斯的绝对收入假定模型 假定边际消费倾向不变:
Ct 0 1Yt 1t
(5.1.1) (5.1.2) (5.1.3)
考虑到边际消费倾向递减:
ˆ ) var( 1
只要
(Y
2
t
Y )
2
(5.2.7)
Yt 和 Ct 1 的样本相关系数不为0,多余解释 ˆ 方差 变量 Ct 1 的加入就会导致系数 Yt 估计量 1
的增大。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
12
其他影响:
由于过度拟合模型的误差项是真实的随机误差项,
Ct 0 1Yt 2Yt 2 2t


ln Ct 0 1 ln Yt 3t
——基于预期因素的模型
Ct 0 1Yt 2Ct 1 4t
(5.1.4)
4
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
我们对 2 的估计是正确的。相应地,参数的置信 区间和显著性检验仍然有效,但由于估计量的方差 增大,统计推断的精度会下降。
拟合不足和过度拟合在实证分析中并没有明显的优
劣差异。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
13


三、不正确的函数形式
“真实”的消费函数是(5.1.3),但选择了模型 (5.1.1)或(5.1.2)。 ——所估计的经济关系与现实的经济关系不一致。
2.4383 0.0219
H0 :
2 0
H1 :
2 ˆ C 结论: t
2 0
(5.3.9)
系数估计值t检验的p值为0.0000,拒绝 原假设,认为模型(5.1.1)存在拟合不足或函数形 式误设。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
22
四、非嵌套模型的检验
2
的函数。
1 2
f (rX X )=0。 有相同的符号。 rX X =0时,
8
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
其他影响:
由于拟合不足模型的误差项不是真正的随机误差项,
我们对 2的估计也是错误的。
对参数估计量方差的估计也是有偏的。
基于参数的置信区间和显著性检验很可能产生误导
ˆ1t (1)对(5.1.1)进行OLS估计,得到方程的残差 (2)对原方程解释变量和被怀疑为遗漏的变量作 辅助回归:
ˆ1t 0 1Yt 2Yt 2 3Ct 1 t
2 R 判定系数 e
2 LM NRe2 ( q) asy
(5.3.4)

影响:
遗漏的解释变量对被解释变量的部分影响由现 有解释变量来解释。
表现:
现有解释变量系数的OLS估计量是有偏的、非一 致的。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
7
问题的一般化:
如果“真实”的模型为:
Yt 0 1 X 1t 2 X 2t t
设定偏误主要有两个来源:

不适当的解释变量:漏掉了必要的解释变量或包含 了不必要的解释变量。 不适当的函数形式。

《计量经济学》,高教出版社2011年6月,王少平、杨继Hale Waihona Puke Baidu、欧阳志刚等编著
5
§5.2 模型设定偏误的后果
一、模型拟合不足

如果模型中漏掉了必要的解释变量,称之为模型 拟合不足。 若消费函数的“真实”的模型是(5.1.4),而选择 了模型(5.1.1)
却被错误地设定为:
(5.2.2) (5.2.3) (5.2.4)
Yt 0 1 X 1t t
则:
ˆ ) f (r ) E( 1 1 2 X1 X 2
1 2
其中: f (rX X ) 是
rX1 X 2 和
f (rX1 X 2 )
X1

X2
样本相关系数 rX X
1 1 2
t统计值 -6.1905 p值 0.0000
Re2 0.7209
0.4808 0.6350 N=28
-6.1171 0.0000
1.3673 0.1842
2 LM 28 0.9975 27.93 (q) 5.991

拒绝原假设,(5.1.1)遗漏了必要的解释变量 Yt 或者 Ct 1 或者兼而有之,即存在拟合不足的问题。
t 0 1 t 2 t 1 4t
Ct 0 1Yt 2Yt 2 2t

ˆ B 的系数进行显著性检验。 (3)对 C t 若拒绝其系数为0,则拒绝A为真的原假设,选择B。 反之,选择模型A。 反过来,假设B为真,A为备选模型。 进行上述步骤(1)~(3)的检验。

误差项满足经典假定,模型的参数估计量是无偏的。 问题本质:估计了一个实际上不必估计的参数 2 0 不会导致误差项与解释变量之间相关,不影响参数 OLS估计量的无偏性。 拟合过度模型OLS估计量的方差会增大:多余的解 释变量和模型中必要的解释变量总是存在一定的相 关性,部分变化信息重复。重复信息的影响难以在 解释变量间准确分解,导致系数估计精度下降。 OLS估计量仍然是线性无偏的,但是,估计量的 方差会增大,除非多余解释变量与其他解释变量 的样本相关系数为0(在现实中几乎不可能出现)
Ct 0 1Yt 2Yt 2 3Ct 1 5t
拟合不足进行检验的假设:
H0 :
HA :
2 3 0
2 和 3至少一个不为0
(5.3.3)
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
17


F检验的问题:无约束模型的误差项是经典误差项 且满足正态性假定,有限样本中不一定能够满足。 大样本的检验统计量——LM检验统计量。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
20
举例:
60 40 20 0 -20 -40 -60 -80 400 800 1,200 1,600 2,000 2,400 2,800
图5.3.1 辅助回归方程
ˆ 和 C t
ˆ1t
的对应关系
ˆ 2 Ct 0 1Yt 2C t t

非嵌套关系:模型的解释变量之间没有完全的包容 关系,一个模型不是另一个模型的约束形式这种关 系。

非嵌套模型之间进行选择:戴维森和麦金农的J检 验。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
23
基本思想:
(5.1.2) 模型A: 模型B: C Y C (5.1.4) 假设A为真,B为备选模型。 (1)估计模型B,得被解释变量的拟合值 ˆ B (5.3.11) Ct 0 1Yt 2Yt 2 3C (2)建立辅助回归: t t
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
2
§5.1 计量经济学模型的设定偏误

一、模型设定偏误
如果所建立的计量经济学模型与真实的经济关系 不一致,模型就出现了所谓的“设定偏误”。 对于正确设定的模型,一个最基本的信息是:其 参数估计值的符号必须与理论预期或基于现实观 察的经验预期相一致。
Ct 0 1Yt 1t
(5.1.1)
1t 2Ct 1 4t
(5.2.1)
问题:误差并不是真正的随机误差,它包含遗漏 解释变量的影响
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
6
后果:
如果解释变量之间相关,会导致现有解释变量 与扰动项相关,表现出内生性。
相关文档
最新文档