算术平方根及平方根难题
《算术平方根、平方根、立方根》易错题训练
《算术平方根、平方根、立方根》易错题训练算术平方根、平方根、立方根易错题训练1. 算术平方根的定义和计算方法在数学中,算术平方根指的是一个数的平方等于给定数的平方根。
如果我们要计算16的算术平方根,我们需要找到一个数,使得这个数的平方等于16。
在这个例子中,16的算术平方根是4,因为4的平方等于16。
在实际计算中,我们可以使用开方符号√来表示算术平方根,即√16=4。
但在实际运用中,很多学生容易将算术平方根和平方根搞混,导致错题。
掌握算术平方根的定义和计算方法非常重要。
2. 平方根的概念和应用与算术平方根类似,平方根也是一个数的平方等于给定数的根。
但与算术平方根不同的是,平方根更常用于几何和物理问题中。
在计算一个矩形的对角线长度时,我们就需要使用平方根来计算。
平方根通常用来求解两边边长已知的等腰三角形的高、直角三角形斜边等问题。
然而,很多学生在高中数学学习中,由于对平方根的概念和应用理解不够深入,容易在相关题目中出错。
理解平方根的概念及其应用也是十分重要的。
3. 立方根的特点和求解方法立方根是一个数的立方等于给定数的根。
27的立方根是3,因为3的立方等于27。
立方根在几何和物理问题中同样有广泛的应用,如求解立方体的体积、长方体的对角线长度等。
虽然立方根的概念和求解方法比较直观,但在实际运用时,一些立方根的运算和问题求解可能会让学生感到困惑,容易出错。
熟练掌握立方根的特点和求解方法对于学生来说也是必不可少的。
4. 总结和回顾通过本篇文章的训练,我们可以得出结论:学生需要深入理解算术平方根、平方根、立方根的定义和计算方法,避免混淆和错题。
学生需要在实际问题中灵活应用平方根和立方根的知识,加深对概念和应用的理解。
学生可以通过练习题目加深对这些数学概念的掌握,并避免在考试中出现低级错误。
5. 个人观点和理解在我看来,数学中的算术平方根、平方根、立方根是非常基础但又非常重要的知识点。
它们不仅在数学中有着广泛的应用,而且还是建立数学思维和逻辑推理能力的重要基础。
平方根专项练习60题(有答案)
平方根专项练习60题(有答案)本文档包含了60道关于平方根的专项练题,每道题后附有答案供参考。
第一部分:基础练题1. 计算下列数的平方根:- 16- 25- 36- 49- 642. 下列数中,哪个数的平方根是8?- 64- 81- 100- 121- 1443. 判断下列等式是否正确:- √9 = 3- √16 = 4- √25 = 6- √36 = 6- √49 = 74. 计算下列数的平方根,并将结果四舍五入到最接近的整数:- 19- 37- 55- 73- 915. 计算下列平方根的值,并将结果保留两位小数:- √20- √32- √45- √58- √72第二部分:复杂练题1. 计算下列数的平方根,并将结果保留三位有效数字:- 1000----2. 判断下列等式是否成立:- (√4)^2 = 4- (√9)^2 = 9- (√16)^2 = 16- (√25)^2 = 25- (√36)^2 = 363. 解方程:√(x-7) = 54. 解方程:2√x = 105. 计算下列表达式的值:- √(64 + 36)- √(100 - 25)- √(144 - 9)- √(81 + 16)- √(121 + 25)以上为平方根的专项练题,答案请参考附后,希望对你的研究有所帮助。
答案:1.- √16 = 4- √25 = 5- √36 = 6- √49 = 7- √64 = 82. 643.- 正确- 正确- 错误(正确答案是5)- 正确- 正确4.- 19 ≈ 4- 37 ≈ 6- 55 ≈ 7- 73 ≈ 9- 91 ≈ 105.- √20 ≈ 4.47- √32 ≈ 5.66- √45 ≈ 6.71- √58 ≈ 7.62 - √72 ≈ 8.49。
人教版数学七年级下册 第六章 实数 算术平方根、平方根、立方根的难点突破 专题练习题 含答案
第六章实数算术平方根、平方根、立方根的难点突破一、求算术平方根、平方根、立方根1. 一个自然数的算术平方根是a,则与这个自然数相邻的下一个自然数的算术平方根是2. 一个非负数的两个平方根分别是2a-1和a-5,则这个非负数是多少?3. 若x2=4,y2=9,且x>y,求x-y的平方根4. 已知x-2的平方根是±1,2x+y+17的立方根是3,求x2+y2的平方根和立方根.5. 已知M=m-1m+6是m+6的算术平方根,N=2m-3n+3n+6是n+6的立方根,试求M-N的值.二、算术平方根的非负性6. 若x -3有意义,则x 的取值范围是___________ __.7. 已知y =x -8+8-x +5,求x +y 的值8. 若y =x -12+12-x -6,求xy 的值.9. 已知实数x ,y ,z 满足|4x -4y +1|+132y +z +(z -12)2=0,求(y +z)·x 2的值.三、利用算术平方根、立方根解决实际问题10. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.11. 一种集装箱是正方体,它的体积是343 m3,则这种正方体集装箱的棱长是____________.12. 国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间.某地新建了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用于国际比赛吗?并说明理由.13. 在做浮力实验时,小华用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱形烧杯中,溢出水的体积为40 cm3;小华又将铁块从烧杯中提起,量得烧杯中的水位下降了0.6 cm.请问烧杯内部的底面半径和铁块的棱长各是多少?(用计算器计算,结果精确到0.01 cm)14. 全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35 cm,问冰川约是在多少年前消失的?15. 将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.四、探究算术平方根、平方根、立方根的变化规律16. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数) 17. 观察下列各式,并用所得出的规律解决问题:(1)2=1.414,200=14.14,20 000=141.4,…0.03=0.173 2,3=1.732,300=17.32,…由此可见,被开方数的小数点每向右移动_______位,其算术平方根的小数点向_______ __移动______ __位;(2)已知5=2.236,50=7.071,则0.5=_____________,500=___________; (3)31=1,31 000=10,31 000 000=100,…小数点变化的规律是:(4)已知310=2.154,3100=4.642,则310 000=__________,-30.1=______________.18. 先观察,再解决问题 3227=2327; 33326=33326; 34463=43463;…(1)请再写出一个类似的式子;(2)请用含n 的式子表示上述规律.19. 不用计算器,探究解决下列问题:(1)已知x 3=10 648,则x 的个位数字一定是____;∵8 000=203<10 648<303=27 000,∴x 的十位数字一定是____,∴x =________;(2)已知x 3=59 319,则x 的个位数字一定是____;∵27 000=303<59 319<403=64 000,∴x的十位数字一定是____,∴x=_________;(3)已知x3=148 877,则x的个位数字一定是____;∵125 000=503<148 877<603=216 000,∴x的十位数字一定是____,∴x=______;(4)按照以上思考方法,直接写出x的值.①若x2=857 375,则x=______;②若x3=373 248,则x=______.答案:一、1. a2+12. 解:根据题意,有(2a-1)+(a-5)=0,解得a=2.∴这个非负数为(2a-1)2=(2×2-1)2=9.3. 解:∵x2=4,y2=9,∴x=±2,y=±3.∵x>y,∴x=±2,y=-3.当x=2,y=-3时,x-y的平方根是±5;当x=-2,y=-3时,x-y的平方根是±1.4. 解:∵x-2的平方根是±1,∴x-2=1,则x=3.∵2x+y+17的立方根是3,∴2x+y+17=27.把x=3代入2x+y+17=27中,得y=4.∴x2+y2=32+42=25,∴x2+y2的平方根是±5,立方根是3 25.5. 解:由题意可知m-1=2,2m-3n+3=3,解得m=3,n=2.∴M=9=3,N=38=2,∴M-N=3-2=1.二、6. x≥37. 由题意可得x -8≥0,且8-x ≥0,∴x =8.当x =8时,y =5,∴x +y =13.8. 由题意可得x -12≥0,且12-x ≥0,∴x =12.当x =12时,y =-6,∴xy =12×(-6)=-3.9. 解:根据题意可得4x -4y +1=0,2y +z =0,z -12=0, ∴x =-12,y =-14,z =12,∴(y +z)·x 2=116. 三、 10. 611. 7m12. 解:这个足球场能用于国际比赛,理由:设足球场的宽为x m ,则长为1.5x m ,由题意得1.5x 2=7 560,∴x 2=5 040.∵x >0,∴x = 5 040.又∵702=4 900,712=5 041,∴70< 5 040<71,∴70<x <71,∴105<1.5x <106.5,符合要求,∴这个足球场能用于国际比赛.13. 解:设铁块的棱长为a cm ,根据题意,得a 3=40,解得a≈3.42.设烧杯内部的底面半径为r cm ,根据题意,得πr 2×0.6=40,解得r≈4.61(舍去负值),则烧杯内部的底面半径约是4.61 cm ,铁块的棱长约是3.42 cm.14. 解:(1)当t =16时,d =7×t -12=7×2=14(cm ),则冰川消失16年后苔藓的直径为14 cm .(2)当d =35时,t -12=5,即t -12=25,解得t =37,则冰川约是在37年前消失的.15. 解:设每个小立方体铝块的棱长为x cm,则8x3=0.216.∴x3=0.027.∴x=0.3.∴6×0.32=0.54(m2),即每个小立方体铝块的表面积为0.54 m2.16. (-1)n+13(n-1)17. (1) 两右一(2) 0.7071 22.36(3) 被开方数的小数点向右(左)移动三位,其立方根的小数点向右(左)移动一位.(4) 21.54 -0.464218. (1) 解:355124=535124.(2) 解:3n+nn3-1=n3nn3-1(n≠1,且n为正整数).19. (1) 2 2 22(2) 9 3 39(3) 3 5 53(4) ① 95② 72。
平方根难题题解
平方根难题题解一、选择1、下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π-4)2的算术平方根不可能是负数;⑤算术平方根不可能是负数。
其中,不正确的有()个A 、2B 、3C 、4D 、52、下列说法正确的是()2B 、-a 2一定没有平方根C 、0.9的平方根是±0.3D 、a 2+1一定有平方根3、下列各数中:0,(—3)2,—(—9),—︱—4︱,3.14-π,x 2-1,有平方根的数有( )A 、3个B 、4个C 、5个D 、6个4、下列语句正确的是()A 、-9的平方根是-3B 、9的平方根是3C 、9的算术平方根是-3D 、9的算术平方根是35、下列语句正确的是()A 、1的平方根是1B 、-4的平方根是±2C 、(-2)2的平方根是±2D 、0没有平方根6、下列说法不正确的是( )A 、0的平方根是0B 、非负数的平方根互为相反数C 、-22的平方根是±2D 、一个正数的算术平方根一定大于这个数的相反数7、下列说法正确的是()A 、绝对值等于它本身的只有0B 、倒数等于它本身的只有1C 、相反数等于它本身的只有0D 、算术平方根等于它本身的只有18、2(5)-平方根为()A .-5 B. 5 C. 5± D. 无意义9、下列各式正确的是( )A 、、10、能使有意义的数a 有( )A 、1个B 、2个C 、无数个D 、不存在11、一个自然数的算术平方根是a ,则下面紧接着的一个自然数的算术平方根是( )A 、a+1B 、、a 2+1 D 12、若a 为正数,则有( )3=-10=6=±5=A 、、、、a 与的大小不能确定 13、下列各式:①±16 =±4,②-()=,③(-5)2 =5,④(-4)(-9) =6,⑤a 2 =a(a<0),⑥(-16)2=16,其中表示一个数的算术平方根的是( )A .①②③B.④⑤⑥C.③④D.②⑤二、填空1、分别写出下列各数的平方根与算术平方根10-6:,0:,-5:,2的平方根是。
平方根算术平方根精选习题训练及详细解析
平方根和算术平方根精选习题训练及详细解析一.解答题(共8小题)1.若实数a、b满足|a+2|+=0,求的值.2.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个 (1)当2m﹣6=m﹣2,解得m=4 (2)(2m﹣6)=(2×4﹣6)=2 (3)这个数为4当2m﹣6=﹣(m﹣2)时,解得m= (4)(2m﹣6)=(2×﹣6)=﹣ (5)这个数为综上可得,这个数为4或 (6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.3.已知+|2x﹣3|=0.(1)求x,y的值;(2)求x+y的平方根.4.若|x﹣1|+(y+3)2+=0,求4x﹣2y+3z的平方根.5.已知a,b为实数,且﹣(b﹣1)=0,求a2015﹣b2016的值.6.(1)若5a+1和a﹣19是数m的两个不同的平方根,求m的值.(2)如果y=+3,试求2x+y的值.7.已知:=0,求:代数式的值.8.已知a,b为实数,且﹣(b﹣1)=0,求a2005﹣b2006的值.2017年10月05日hrui88的初中数学组卷参考答案与试题解析一.解答题(共8小题)1.若实数a、b满足|a+2|+=0,求的值.【分析】由非负数的性质得到a+2=0,b﹣4=0,解得a=﹣2,b=4,代入求得=1.【解答】解:∵实数a、b满足|a+2|+=0,∴a+2=0,b﹣4=0,∴a=﹣2,b=4,∴=1.【点评】本题考查了非负数的性质,算术平方根,绝对值,熟记非负数的性质是解题的关键.2.王老师给同学们布置了这样一道习题:一个数的算术平方根为2m﹣6,它的平方根为±(m﹣2),求这个数.小张的解法如下:依题意可知,2m﹣6是m﹣2或者是﹣(m﹣2)两数中的一个 (1)当2m﹣6=m﹣2,解得m=4 (2)(2m﹣6)=(2×4﹣6)=2 (3)这个数为4当2m﹣6=﹣(m﹣2)时,解得m= (4)(2m﹣6)=(2×﹣6)=﹣ (5)这个数为综上可得,这个数为4或 (6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予改正.【分析】由算术平方根的非负性质可知2m﹣6≥0,从而可对求得的m的值作出取舍.【解答】解:∵2m﹣6是某数的算术平方根,∴2m﹣6≥0.解得:m≥3.∴当m=不符合题意应舍去.故答案为:这个数为4.【点评】本题主要考查的是算术平方根、平方根的定义,掌握算术平方根的非负性是解题的关键.3.已知+|2x﹣3|=0.(1)求x,y的值;(2)求x+y的平方根.【分析】(1)根据非负数的性质求出x、y的值;(2)根据(1)求出x+y,开方即可.【解答】解:(1)∵≥0,|2x﹣3|≥0,+|2x﹣3|=0,∴2x+4y﹣5=0,2x﹣3=0,则x=,y=.(2)x+y=+=2,则x+y的平方根为±.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.4.若|x﹣1|+(y+3)2+=0,求4x﹣2y+3z的平方根.【分析】根据非负数的性质列式求出x、y、z的值,然后代入代数式进行计算,再根据平方根的定义解答.【解答】解:由题意得,x﹣1=0,y+3=0,x+y+z=0,解得x=1,y=﹣3,z=2,所以,4x﹣2y+3z=4×1﹣2×(﹣3)+3×2=4+6+6=16,∵(±4)2=16,∴4x﹣2y+3z的平方根是±4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.已知a,b为实数,且﹣(b﹣1)=0,求a2015﹣b2016的值.【分析】由已知条件得到+(1﹣b)=0,利用二次根式有意义的条件得到1﹣b≥0,再根据几个非负数和的性质得到1+a=0,1﹣b=0,解得a=﹣1,b=1,然后根据乘方的意义计算a2015﹣b2016的值.【解答】解:∵﹣(b﹣1)=0,∴+(1﹣b)=0,∵1﹣b≥0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2015﹣b2016=(﹣1)2015﹣12016=﹣1﹣1=﹣2.【点评】本题考查了非负数的性质:算术平方根具有非负性.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.6.(1)若5a+1和a﹣19是数m的两个不同的平方根,求m的值.(2)如果y=+3,试求2x+y的值.【分析】(1)根据正数的两个平方根互为相反数列方程求出a的值,再求出一个平方根,然后平方即可得到m的值;(2)根据被开方数大于等于,分母不等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:(1)∵5a+1和a﹣19是数m的两个不同的平方根,∴5a+1+a﹣19=0,解得a=3,所以,5a+1=3×5+1=16,m=162=256;(2)由题意得,x2﹣4≥0且4﹣x2≥0,所以,x2≥4且x2≤4,所以,x2=4,解得x=±2,又∵x+2≠0,∴x≠﹣2,所以,x=2,y=3,所以,2x+y=2×2+3=7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7.已知:=0,求:代数式的值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵=0,∴=0,≠0,∴3a﹣b=0,a2﹣49=0,∴a=7,b=21,∴=2.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.已知a,b为实数,且﹣(b﹣1)=0,求a2005﹣b2006的值.【分析】根据被开方数大于等于求出b的取值范围,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,1﹣b≥0,∴b≤1,∴原式可化为+(1﹣b)=0,由非负数的性质得,1+a=0,1﹣b=0,解得a=﹣1,b=1,所以,a2005﹣b2006=(﹣1)2005﹣12006=﹣1﹣1=﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,求出b的取值范围是解题的关键.。
算术平方根与平方根
例1、 求下列各数的算术平方根与平方根(1)()25- (2)100 (3)0例2、 计算(1)81 (2)41(3)-169(4)()264 (5)24925⎪⎪⎭⎫⎝⎛ (6)()22.7 (7)()22- (8(9)例3求x 的值(1)、()x -=292(2)、()3010752x -=..(3) (x -1)2-121=0; (4) 81(3x -2)2=625;例5 已知536.136.2=,858.46.23= ① 求236和00236.0的值; ② 若x =0.4858,求x 的值;例6、求下列各数的立方根(1)512 (2)833- (3)0例7、求下列各式的值:④⑤⎛ ⎝例7.⑴ 填表:⑵ 由上你发现了什么规律?用语言叙述这个规律。
⑶ 根据你发现的规律填空:① 已知442.133=,则=33000 ,=3003.0② 已知07696.0000456.03=,则=3456 ;③已知0157053953..= 15711623..= 15725043..= 00000157157033.和的值。
例8求x 的值(1)(x+3)3+27=0; (2)(x-0.5)3+10-3=0.(3) (x-1)3=8 (4)(0.1+x)3=-27000;例4、若,622=----y x x 求y x的立方根.练习:已知,21221+-+-=x x y 求y x 的值.例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习①已知233(2)0x y z -+-++=,求xyz 的值。
②已知互为相反数,求a ,b 的值。
1:求x x +-的值2:已知21140a b -++=,求ab的值3:如果a 为正整数,14-a 为整数,求14-a 的最大值及此时a 的值4:已知x y x y +=-=23424 求x y +的值2.已知x 是10 的整数部分,y 是10 的小数部分,求 110x y --()的平方根。
平方根算术平方根经典题型
平方根算术平方根经典题型
平方根算术平方根经典题型是指涉及平方根和算术平方根(平方根的平方)的经典问题。
下面列举几个常见的题型:
1. 求平方根:给定一个数x,求其平方根。
比如,求2的平方根。
2. 求算术平方根:给定一个数y,求其算术平方根。
比如,求
4的算术平方根。
3. 平方根的运算性质:给定数a和b,若已知a的平方根为x,b的平方根为y,问a+b的平方根等于多少。
比如,已知2的
平方根为√2,3的平方根为√3,求(2+3)的平方根。
4. 平方根的不等式问题:给定一个不等式,要求找到满足不等式的平方根范围。
比如,求解不等式x^2>4的平方根。
5. 平方根的近似值:给定一个数x,要求求出其近似的平方根。
比如,求根号2的近似值。
以上只是平方根算术平方根经典题型的一部分,实际上,根据题目的难度不同,还可以有更多的题型。
在解题时,可以运用平方根的性质和运算规则,结合数学知识解决问题。
平方根与算术平方根的习题
它是 0 ,负数 没有平方根。
2:41
1
的平方是 16
,41
的 平方根是
±
1 2
。
3:0.64的算术平方根是 0.8 ,平方根是 ±0.8 。
4如果a2-1=24则a=±5 若a>0,则a的平方根是 ± .5
5:如果3b-6没有平方根,则b <2;如果3b-6的平方根 是0,则b =2 ;如果3b-6的一个平方根是-3,那么 b= 5 .
例4:已知:x、y都是实数,且(3x-1)2=- 3x-y-5 求:13x2-y的平方根
例5:已知:x、y、z
满足 4x-4y+1
+
1 5
2y+z
+(z-
1 2
)2=0
求:x-y+z 的平方根
例6:已知:a、b为实数且 2a+6 + b- 2 =0 解关于x的方程(a+2)x+b2=a-1
例7:已知x+y=-
a - 3 + 3- a )2004 3-a
12.已知7 10与7 10的小数部分分别是a、b,
求a2 b2的绝对值.
解: 3
10
4,
7
10 10 a
7 10 3 b
a
10 3
b 4 10
a2 b2 ( 10 3)2 (4 10)2
7 2 10
7 2 10, a2 b2 7 2 10.
Байду номын сангаас已知
,求x与y的值。
3 2
,
求:(x+y)2-2x-2y+1的平方根
专题02 平方根重难点题型专训(9大题型+15道拓展培优)(解析版)七年级数学下册-
专题02平方根重难点题型专训(9大题型+15道拓展培优)【题型目录】题型一平方根与算术平方根概念理解题型二求一个数的算术平方根题型三利用算术平方根的非负性解题题型四求算术平方根的整数部分与小数部分题型五与算术平方根有关的规律探索题题型六求一个数的平方根题型七已知一个数的平方根,求这个数题型八利用平方根解方程题型九平方根的应用【知识梳理】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a,读作“a 的算术平方根”,a 叫做被开方数.特别说明:有意义时,aa ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a ≥是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.特别说明:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.=.=0.25=25=, 2.5250【经典例题一平方根与算术平方根概念理解】【变式训练】平方差公式和完全平方公式,下,【经典例题二求一个数的算术平方根】【变式训练】A.3B.3±C.3【答案】A【分析】本题主要考查了有理数和无理数的识别,根据程序图及算术平方根的计算方法,依次计算即可,理解算术平方根是解题的关键.【点睛】本题主要考查了同类项、代数式求值、算术平方根等知识,熟练掌握相关知识是解题关键.七年级统考期末)我们知道,任意一个有理数与无理数的和为无理数,任意一个不为【经典例题三利用算术平方根的非负性解题】【变式训练】【经典例题四求算术平方根的整数部分与小数部分】【变式训练】8.(2022下·广东珠海·七年级统考期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【经典例题五与算术平方根有关的规律探索题】【答案】B【分析】根据算术平方根的定义解决此题.【详解】解:由题意得:从0.0625开始,小数点每向右移动两位,对应算术平方根扩大10倍,从0.625开始,小数点每向右移动两位,对应算术平方根扩大10倍,∴可得:6.25的算术平方根为2.5,62.5的算术平方根约为7.91,故选B.【点睛】本题主要考查数字类规律探索,算术平方根,熟练掌握原数和平方根的变化规律是解决本题的关键.【变式训练】【经典例题六求一个数的平方根】n 【变式训练】∴x y+的平方根是2±,±.故答案为:2【点睛】本题考查根式的非负性,以及计算一个数的平方根,能够根据根式的非负性计算出未知数的值是解决本题的关键.【经典例题七已知一个数的平方根,求这个数】【变式训练】的值,再找出关系即可.【详解】(1)解:由题意得,6290a a ++-=,解得1a =,21649m +∴==();(2)当1a =时,2160x -=,216x ∴=,4x ∴=±.【点睛】本题考查平方根的意义及求平方根,关键是要掌握一个正数有两个平方根,互为相反数.【经典例题八利用平方根解方程】【变式训练】1.(2023下·河北石家庄·七年级统考期中)问题:在一块面积为2400cm 的正方形纸片上,沿着边的方向裁出一块面积为2300cm ,且长宽之比为3:2的长方形纸片(不拼接),能裁出吗?对于上述问题的解决,嘉嘉和琪琪进行如下对话:嘉嘉:可是不符合实际情况啊正方形纸片的面积为【经典例题九平方根的应用】【变式训练】1.(2023下·河南郑州·八年级统考期末)电流通过导线时会产生热量,满足2=,其中Q为产生的热量Q I Rt为通电时间(单位:,则乙的面积为【拓展培优】A.2B.【答案】C【分析】本题主要考查算术平方根的定义,准确求出阴影部分的面积是解题的关键.根据割补法求出阴影部分的面积即可得到答案.①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则±【答案】2【分析】本题考查了二元一次方程组的应用,平方根,找准等量关系,列出二元一次方程组是解题的关键.则3757.69的算术平方根为.【答案】61.3【分析】本题考查了求一个数的算术平方根,根据题目所给的方法进行解答即可.;,由于10.(2023上·浙江丽水·七年级统考期中)如图角形和一个阴影小正方形(无缝隙、不重叠)折后得到图2所示的大正方形.(1)若阴影小正方形的边长为1,则图2中大正方形的面积为(2)若图2中大正方形的边长为正整数,则阴影小正方形的边长为【答案】7123或8【分析】(1)根据图1求出四个直角三角形的面积,根据翻折的性质,从而得到图可;(2)设小正方形的面积为x,从而得到图2大正方形的面积,再根据大正方形的边长为正整数,即可得到x的值.【详解】解:(1)∵一个边长为6的正方形被分割成四个完全相同的直角三角形和一个阴影小正方形,阴影小正方形的边长为1,②∵3,2a b ==-,∴a b >,∴()()33228a b ⊕=⊕-=-=-,∵83-<,∴()()()8328313a b a ⊕⊕=-⊕=⨯-+=-.13.(2023上·湖北黄冈·七年级武穴市实验中学校考期中)如图,A 、B 、C 、D 四张卡片分别代表一种运算,例如,5经过A B C D →→→顺序的运算,可列式为:2[(52)3]4⨯-+,8经过运算顺序B D A C →→→运算,可列式为2{[(83)4]2}-+⨯(1)请计算2[(52)3]4⨯-+;(2)列式计算2-经过C D A B →→→顺序的运算结果;(3)若数x 经过B C A D →→→顺序的运算,结果是12.则求初始数字x 是多少?【答案】(1)53(2)13(3)初始数字x 是5或1【分析】(1)根据有理数的运算法则和运算顺序计算即可;(2)根据题意可以列出算式2[(2)4]23-+⨯-,计算即可;(3)根据题意可以得到()223412x -+=,即可求解.【详解】(1)解:2[(52)3]4⨯-+()21034=-+274=+53=;(2)解:由题意得:2[(2)4]23-+⨯-(44)23=+⨯-2。
平方根经典题型10道
平方根经典题型10道一、基础概念理解题1. 什么数的平方根是它本身?- 这就像在找一个超级特别的数呢。
我们知道正数有两个平方根,一正一负,0的平方根就只有一个,就是0本身。
所以这个数就是0呀,它是独一无二的,平方根就是自己,就像照镜子,镜子里还是自己一样有趣。
2. 若x^2=16,求x的值。
- 这就相当于在问,哪个数的平方等于16呢?我们知道4×4 = 16,但是别忘了,( - 4)×( - 4)=16。
所以x = 4或者x=-4,就像一个数有两个“分身”,一个正的一个负的,都满足这个平方的关系。
二、计算求值题3. 计算√(25)的值。
- 这就好比在找一个数,这个数自己乘以自己等于25。
那我们一下子就能想到5啦,因为5的平方就是25。
不过要注意哦,平方根有正负两个,这里求的是算术平方根,所以√(25)=5,就像找到了那个正数的代表。
4. 计算√(121)。
- 这题就是要找到一个数,它的平方等于121。
我们可以从1开始试,试到11的时候就发现11×11 = 121,所以√(121)=11,就像解开了一个小密码一样。
5. 计算√(0.09)。
- 想一下,哪个数自己乘以自己等于0.09呢?我们知道0.3×0.3 = 0.09,所以√(0.09)=0.3,虽然这个数是个小数,但平方根的规则还是一样的哦。
三、化简题6. 化简√(18)。
- 这就有点像给√(18)“减肥”啦。
我们先把18分解因数,18 = 2×9,而9 = 3×3,所以√(18)=√(2×9)=√(2)×√(9)=3√(2),就像把一个复杂的东西拆分成简单的部分再组合起来。
7. 化简√(75)。
- 对于√(75),我们把75分解因数,75 = 3×25,25 = 5×5。
那么√(75)=√(3×25)=√(3)×√(25)=5√(3),就像把一个大包裹拆成小包裹一样,让它看起来更简洁。
算术平方根与平方根专项练习
算术平方根与平方根专项练习算术平方根与平方根专项练一、填空1、如果一个数的平方等于a,即x^2=a,那么x叫做a的算术平方根。
注:①数a的算术平方根记作√a,其中a≥0;②0的算术平方根为0;③只有当a≥0时,数a才有算术平方根。
2、如果一个数的平方等于a,即x^2=a,那么x叫做a的平方根(二次方根)。
注:①一个正数a有两个平方根,且它们互为相反数,记为±√a;②有一个正数的平方根,就是正数;③负数没有平方根。
3、4的平方根是2;算术平方根是2.4、36有个正平方根6,一个负平方根-6;它们的和是0;它们互为相反数。
5、0.04的算术平方根是0.2,开平方等于±0.2的数是0.2和-0.2.6、81的正平方根是9;(-5)^2的平方根是5i。
7、算术平方根等于它本身的数只有0和1;平方根等于它本身的数只有1.8、若5x+4的平方根为±1,则x=-3或x=-0.2;若m-4没有实数平方根,则|m-4|=m-4.9、已知2a-1的平方根是±4,3a+b-1的平方根是±4,则a+2b的平方根是±10.10、若实数x,y满足x-2+(3-y)^2=0,则代数式xy-x的值为1.11、在小于或等于100的非负整数中,其平方根是整数的共有10个。
12、已知x+2与y-3互为相反数,则xy=-6.13、因为没有什么数的平方会等于负数,所以负数没有实数平方根,因此被开方数一定是非负数或0.14、当m≥3时,3-m有意义。
二、选择题15、(-3)^2的平方根是B.-3.16、9的算术平方根是B.3.17、下列个数没有平方根的是C.(-1)。
18、如果3x-5有意义,则x可以取的最小整数为D.3.19、x是16的算术平方根,那么x的算术平方根是B.2.20、选B。
因为(-9)的平方是81,而81不等于9.21、选B。
因为64的平方根是8,而8的相反数是-8,故平方根为±8.22、选C。
算术平方根--平方根--立方根测试题
算术平方根平方根立方根测试题一.选择题1,在数5,(-3)2,-32,x2+1,-a2,-x2-4,中,也许有平方根旳个数( )A. 2 B. 3 C. 4 D.52,4旳算术平方根是( )A. 2B. 2 C. 4 D. 163,若1m故意义,则m能取旳最小整数为( )4+A.-1 B. 0 C. 1 D. -44,如果a200是一种整数,那么最小正整数a应取( )A. 20B. 5C. 1 D.25,2+a=2,则(a+2)2旳平方根是()A. 16 B. ±16 C. ±4 D. ±26.若a是(-4)2旳平方根,b旳一种平方根是2,则代数式a+b 旳值为( )A.8 B. 0 C. 8或0 D. -4或47.①一种自然数旳算术平方根是X,则它背面旳一种数旳算术平方根()A. X+1 B. X2+1 C. X+1 D. 12+X②一种自然数旳算术平方根是X,则和这个自然数相邻旳下一种自然数是( )A.X+1 B. X2+1 C. X+1 D. 12+X8. 若a2=4,b2=9,且ab<0,则a-b旳值为()A.-2 B.±5C.5D. -59. 33)2(K-=2-K,那么K旳取值范畴是( )A. K≤2 B. K≥2 C. 0≤K≤2 D. K为任意实数10. 一种数旳平方根和立方根相等,则这个数是( )A . 1 B. ±1 C. 0D.-111.若31+X=2,则(X+1)3等于( )A. 8 B. ±8C.512D. -51212. 364旳平方根是()A. 4B. ±8 C. 2 D.±213. a23-等于最大旳负整数,则a=( )9A. ±5 B.-5 C. 5 D.不存在14.下列推理不对旳旳是( )A.若a=b则3a=3b B.若a=b则a=bC.若a=b则a=b D.若3a=3b则a=b二.填空题15.若X2=(-4)2,则X=___.16.若1+X=2,则2X-1=___.17.若X+Y=0,则3X+3Y=___.18.(m-2n)3旳立方根等于___。
(完整word版)平方根和算术平方根练习题
1。
填空题(1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________; (4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_________,4的平方根为_________; (7)(-4)2的平方根是_________,算术平方根是_________. 2。
选择题(1)2)2(-的化简结果是A.2 B 。
-2 C.2或-2D 。
4(2)9的算术平方根是 A.±3B 。
3C 。
±3D.3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根 (4)下列式子中,正确的是A.55-=-B.-6.3=-0。
6 C 。
2)13(-=13D.36=±6(5)7-2的算术平方根是 A.71 B 。
7 C 。
41 D.4(6)16的平方根是 A 。
±4B.24 C 。
±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是 A.a +2B.a -2C.a +2D 。
a 2+2(8)下列说法正确的是A 。
-2是-4的平方根B 。
2是(-2)2的算术平方根C 。
(-2)2的平方根是2D 。
8的平方根是4(9)16的平方根是A。
4 B。
-4 C。
±4 D.±29 的值是(10)16A.7B.-1C.1 D。
-7三、解答题11.已知某数有两个平方根分别是a+3与2a-15,求这个数.12。
已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值。
13。
已知a<0,b<0,求4a2+12ab+9b2的算术平方根。
14.要切一块面积为36 m2的正方形铁板,它的边长应是多少?。
算术平方根与平方根练习题
算术平方根与平方根练习题1.9的算术平方根是3.2.下列计算正确的是22=±2.3.计算(-3)²的结果是9.4.若a=2,则a的值为2.5.下列结论正确的是16的平方根是4.6.有平方根的数共有6个,分别是2,-4,-3,-5,4,-3.7.给出下列各数:49,3,-4,其中有平方根的数共有4个。
8.平方根等于它本身的数是1.9.81的平方根是9.10.下列计算或判断:①±3都是27的立方根;②3a³=a;③6根是4;④3(±8)=±4,其中正确的个数有2个。
11.在下列各式中,正确的是25=±5.12.若a²=25,|b|=3,则a+b的值是±8.13.a²的算术平方根一定是|a|。
14.0.0001≈0.01≈1≈100≈≈300.15.如果3≈1.732,30≈5.477,那么≈5477.16.如果2≈1.414,20≈4.472,那么≈4472.17.在a中,a的取值范围是(-∞。
+∞);在(a²)中,a的取值范围是[0.+∞);在a²中,a的取值范围是(-∞。
+∞);在±a中,a 的取值范围是(-∞。
+∞);在3a中,a的取值范围是(-∞。
+∞)。
18.一个正数的平方根分别是x+1和x-5,则x=13.19.6的整数部分是6,17的整数部分是17,41的整数部分是41.20.化简(a)²=a²,(a²)=(a²)。
3化简(31)3=27;(3(1))=3333化简(38)3=1029;(3(8))=24化简(3-8)= -15;(3(-8))= -24化简(3a)3=27a;(3a3)=27a^321.3-a=3a22.求下列各数的算术平方根.1)196;(2)5.-5;(3)0.2;23.求下列各数的平方根:1)12;(2)0.1,-0.1;(3)7/3,-7/3;24.求下列各式的值:1)25;(2)-0.0004;25.计算下列各式的值:1)-40.875;(2)2.973;26.求下列各式中x的值.1)x=5,-5;(2)x=13,-13;3)x=1/3,-1/3;4)x=±3/2.3)x=2±10.。
平方根与算术平方根的习题
平方根与算术平方根的习题
【引言】
在数学中,平方根和算术平方根是重要的概念。
平方根是指一个数的平方等于给定的值,而算术平方根是指一个数的平方根为给定的值。
对于初学者来说,理解和掌握平方根和算术平方根的概念是非常重要的。
本文将提供一系列习题,有助于加深对平方根和算术平方根的理解,并通过解答习题来巩固相关概念的运用。
【习题一】
1. 求下列数的平方根:
a) 25
b) 36
c) 49
d) 64
【习题二】
2. 求下列数的算术平方根:
a) 9
b) 16
c) 25
d) 36
【习题三】
3. 判断下列说法的真假,并给出理由:
a) 一个数的平方根一定比这个数本身要小。
b) 一个数的算术平方根一定比这个数本身要小。
【习题四】
4. 求下列问题的答案:
a) 找出第一个正整数的平方根。
b) 找出第一个负整数的算术平方根。
c) 找出第一个小数的平方根。
【习题五】。
平方根及算术平方根综合训练题及答案解析
第 5 页 共 10 页 ◎ 第 6 页 共 10 页
参考答案与试题解析
一、 选择题 1.【答案】D【解析】依据平方根的性质即可作出判断. 2.【答案】C【解析】������、根据平方根的定义即可判定; ������、根据算术平方根的定义即可判定; ������、根据平方根的定义即可判定; ������、根据平方根的定义即可判定.
Байду номын сангаас
16. 一个正方形的面积为21,估计该正方形边长应在( )
A.2到3之间
B.3到4之间
C.4到5之间
D.1 D.3
D.2 ∼ 3之间 D.5到6之间
C.√5是5的一个平方根 3. 下列语句写成数学式子正确的是( ) A.9是81的算术平方根:±√81 = 9 C.5是(−5)2的算术平方根:√(−5)2 = 5
一、 选择题 1. 下列说法正确的是( ) A.4的平方根是2 C.(−2)2没有平方根 2. 下列叙述正确的是( ) A.如果������存在平方根,则������ > 0
B.−4的平方根是−2 D.2是4的一个平方根
B.√16 = ±4
13. 当√4������ + 1的值为最小值时,������的取值为( )
36. 已知������ = √������ − 4 + √4 − ������ + 9,则������������的算术平方根为_______________________.
37. 若|������ − ������ + 1|与√������ + 2������ + 4互为相反数,则(������ − ������)2013 =___________________.
专题6.6有关平方根及算术平方根综合问题(重难点培优)-2020-2021学年七年级数学下册
2020-2021学年七年级数学下册尖子生同步培优题典【人教版】专题6.6有关平方根及算术平方根综合问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共25小题)1.(2020秋•兰州期末)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的值.【分析】根据平方根的定义列式求出a的值,再根据算术平方根的定义列式求出b的值,然后代入代数式进行计算即可得解.【解析】∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵3a+b﹣1的算术平方根是4,∴3a+b﹣1=16,∴3×5+b﹣1=16,∴b=2,∴a+2b=5+2×2=9.2.(2020秋•泰兴市期中)已知一个正数m的两个不同的平方根是a﹣1与5﹣2a,求a和m的值.【分析】直接利用平方根的定义得出a的值,进而得出答案.【解析】∵一个正数m的两个不同的平方根是a﹣1与5﹣2a,∴a﹣1+5﹣2a=0,解得:a=4,则a﹣1=3,故m=32=9.3.(2020秋•滨湖区期中)已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4.(1)求a、b的值;(2)求a+2b的算术平方根.【分析】(1)根据平方根和算术平方根的定义列方程求出a、b的值即可;(2)把a、b的值代入要求的式子,再根据算术平方根的定义解答即可.【解析】(1)∵2a﹣1的平方根为±3,∴2a﹣1=9,解得a=5,∵3a+b﹣1的算术平方根为4,∴3a+b﹣1=16,解得b=2;(2)∵a=5,b=2,∴a+2b=5+2×2=9,∴a+2b的算术平方根为3.4.(2020秋•慈溪市期中)(1)x﹣1的算术平方根为3,4是y+2的一个平方根,求2x﹣3y;(2)若代数式(3x2+ay)+(﹣2x2﹣4y+5)的值与y的取值无关(a为某一确定的数),求当x=﹣2时这个代数式的值.【分析】(1)先由平方根的定义和算术平方根的定义求出x、y的值,即可求2x﹣3y的值;(2)根据整式的运算法则即可求出答案.【解析】(1)根据题意可得:x﹣1=9,x=10,y+2=16,y=14,∴2x﹣3y=2×10﹣3×14=﹣22;(2)原式=3x2+ay﹣2x2﹣4y+5=x2+(a﹣4)y+5,∴a=4,当x=﹣2时,原式=(﹣2)2+5=9.5.(2020春•新乡期末)已知正实数a的两个平方根为9﹣3x和2y+4,且x+y=﹣4,求正实数a的值.【分析】首先根据正实数a的两个平方根为9﹣3x和2y+4,可得:(9﹣3x)+(2y+4)=0,然后根据x+y =﹣4,求出x、y的值各是多少,即可求出正实数a的值是多少.【解析】∵正实数a的两个平方根为9﹣3x和2y+4,∴(9﹣3x)+(2y+4)=0,∴3x﹣2y=13,又∵x+y=﹣4,∴{3x −2y =13①x +y =−4②,①+②×2,可得5x =5, 解得x =1,把x =1代入①,解得y =﹣5, ∴原方程组的解是{x =1y =−5,∴9﹣3x =9﹣3×1 =9﹣3 =6, ∴a =62=36.6.(2020春•华亭市期末)已知2a ﹣1的一个平方根是3,3a +b ﹣1的一个平方根是﹣4,求a +2b 的平方根. 【分析】先根据题意得出2a ﹣1=9,3a +b ﹣1=16,然后解出a =5,b =2,从而得出a +2b =5+4=9,所以a +2b 的平方根为±3.【解析】∵2a ﹣1的平方根为±3,3a +b ﹣1的平方根为±4, ∴2a ﹣1=9,3a +b ﹣1=16, 解得:a =5,b =2, ∴a +2b =5+4=9, ∴a +2b 的平方根为±3.7.(2020秋•遵化市期中)已知正实数x 的平方根是a 和a +b . (1)当b =6时,求a ;(2)若a 2x +(a +b )2x =6,求x 的值.【分析】(1)利用正实数平方根互为相反数即可求出a 的值;(2)利用平方根的定义得到(a +b )2=x ,a 2=x ,代入式子a 2x +(a +b )2x =6即可求出x 值. 【解析】(1)∵正实数x 的平方根是a 和a +b , ∴a +a +b =0, ∵b =6, ∴2a +6=0 ∴a =﹣3;(2)∵正实数x的平方根是a和a+b,∴(a+b)2=x,a2=x,∵a2x+(a+b)2x=6,∴x2+x2=6,∴x2=3,∵x>0,∴x=√3.8.(2020春•武鸣区校级期中)若a是(﹣2)2的平方根,b是√16的算术平方根,求a2+2b的值.【分析】根据平方根和算术平方根得出a、b的值,再代入计算可得.【解析】根据题意知a=±√(−2)2=±2,b=√√16=√4=2,则原式=(±2)2+2×2=4+4=8.9.(2020秋•崂山区期中)已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求3a﹣4b的平方根.【分析】根据平方根和算术平方根的定义列方程求出a、b的值,然后求出3a﹣4b的值,再根据平方根的定义解答.【解析】∵2a+1的平方根是±3,∴2a+1=9,解得a=4,∵5a+2b﹣2的算术平方根是4,∴5a+2b﹣2=16,解得b=﹣1,∴3a﹣4b=3×4﹣4×(﹣1)=12+4=16,∴3a﹣4b的平方根是±4.10.(2020春•西湖区校级期中)一个正数x的两个不同的平方根是3a﹣4和1﹣6a,求a及x的值.【分析】由于应该正数的两个平方根互为相反数,据此可列出关于a的方程,求出a的值,进而可求出x的值.【解析】由题意,得:3a﹣4+1﹣6a=0,解得a=﹣1;所以正数x的平方根是:7和﹣7,故正数x的值是49.11.(2020春•武川县期中)若5a+1和a﹣19是数m的平方根.求a和m的值.【分析】根据5a +1和a ﹣19是数m 的平方根,分5a +1和a ﹣19互为相反数和相等两种情况讨论,据此列方程求得a 的值,然后根据平方根的定义求得m 的值. 【解析】①当(5a +1)+(a ﹣19)=0, 解得:a =3,则m =(5a +1)2=162=256. ②当5a +1=a ﹣19时, 解得:a =﹣5,则m =(﹣25+1)2=576.故a 的值为3,m 的值为256;或a 的值为﹣5,m 的值为576.12.(2020秋•诸暨市期中)先阅读所给材料,再解答下列问题:若√x −1与√1−x 同时成立,求x 的值? 解:√x −1和√1−x 都是算术平方根,故两者的被开方数x ﹣1≥0,且1﹣x ≥0,而x ﹣1和1﹣x 是互为相反数.两个非负数互为相反数,只有一种情形成立,那就是它们都等于0,即x ﹣1=0,1﹣x =0,故x =1.解答问题:已知y =√1−2x +√2x −1+2,求x y 的值.【分析】根据被开方数互为相反数,可得方程,根据解方程,可得x 的值,再根据乘方运算,可得答案. 【解析】已知y =√1−2x +√2x −1+2, 1﹣2x =0,2x ﹣1=0, 解得x =12, 则y =2,则x y =(12)2=14.13.(2020春•江岸区校级月考)已知6a +3的立方根是3,3a +b ﹣1的算术平方根是4. (1)求a ,b 的值; (2)求b 2﹣a 2的平方根.【分析】(1)根据平方根、立方根的定义可求出a 、b 的值; (2)先求出b 2﹣a 2的值,再求b 2﹣a 2的平方根. 【解析】(1)∵27的立方根是3,即√273=3, ∴6a +3=27, 解得a =4,又∵16的算术平方根是4,即√16=4,∴3a+b﹣1=16,而a=4,∴b=5,答:a=4,b=5;(2)当a=4,b=5时,b2﹣a2=25﹣16=9,∴b2﹣a2的平方根为±√9=±3.14.(2020秋•滨海县月考)已知正数x的两个不同的平方根分别是a+3和2a﹣15,y的立方根是﹣1.求(1)a的值;(2)x﹣2y+1的值.【分析】(1)依据一个正数有两个平方根,这两个平方根互为相反数,即可求出x的值;(2)再根据立方根的定义,即可得到y的值,进而确定出x﹣2y+1的值.【解析】(1)∵正数x的两个不同的平方根分别是a+3和2a﹣15,∴a+3+2a﹣15=0,解得:a=4;(2)由题可得,x=(a+3)2=49,y=(﹣1)3=﹣1,∴x﹣2y+1=49+2+1=52.15.(2020秋•碑林区校级月考)已知2a﹣1的平方根是±3,3a+b﹣1的算术平方根是4,求a+2b的立方根.【分析】利用平方根及算术平方根的定义列出方程组,求出方程组的解得到a与b的值,确定出a+2b 的值,即可确定出立方根.【解析】由题意得2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,则a+2b=9,3.则9的立方根为√916.(2020秋•荥阳市期中)已知2x+1的算术平方根是0,√y=4,z是﹣27的立方根,求2x+y+z的平方根.【分析】先根据算术平方根的定义求得2x的值,再根据算术平方根的定义求出y,根据立方根的定义求z,然后代入要求的式子进行计算,最后根据平方根的定义即可得出答案.【解析】∵2x+1的算术平方根是0,∴2x+1=0,∴2x =﹣1, ∵√y =4, ∴y =16,∵z 是﹣27的立方根, ∴z =﹣3,∴2x +y +z =﹣1+16﹣3=12,∴2x +y +z 的平方根是±√12=±2√3. 故答案为:±2√3.17.(2020秋•正定县期中)已知x 2﹣25=0,64(y ﹣1)3﹣1=0,求|x ﹣4y |的值. 【分析】分别根据平方根与立方根的定义求出x 与y 的值,再代入所求式子计算即可. 【解析】∵x 2﹣25=0, ∴x 2=25, ∴x =±5;∵64(y ﹣1)3﹣1=0, ∴(y ﹣1)3=164, ∴y ﹣1=14, ∴y =54,当x =5,y =54时,|x ﹣4y |=5﹣5=0, 当x =﹣5,y =54时,|x ﹣4y |=|﹣5﹣5|=10. 故|x ﹣4y |的值为0或10. 18.(2020秋•滦州市期中)已知A =√2x −y +4x−y是2x ﹣y +4的算术平方根,B =√y −3x x+2y−2是y ﹣3x的立方根,试求A +B 的平方根.【分析】先根据题意列方程组,解方程组求出对应的x 和y 的值,再计算A 和B 的值,最后计算其结果. 【解析】由题意得: {x −y =2x +2y −2=3, 方程组整理,得,{x −y =2①x +2y =5②,②﹣①,得3y =3,解得y =1,把y =1代入①,得x ﹣1=2,解得x =3, ∴A =√2x −y +4=√2×3−1+4=√9=3, B =√y −3x 3=√1−93=√−83=−2, ∴A +B =3﹣2=1,∴A +B 的平方根为:±√1=±1.19.(2020秋•常熟市期中)已知2x ﹣y 的立方根为1,﹣3是3x +y 的平方根,求x +y 的平方根. 【分析】直接利用立方根、平方根的定义得出x ,y 的值,进而得出答案. 【解析】∵2x ﹣y 的立方根为1, ∴2x ﹣y =1,∵﹣3是3x +y 的平方根, ∴3x +y =9, 则{2x −y =13x +y =9, 解得:{x =2y =3,∴x +y =5,∴x +y 的平方根是±√5.20.(2020秋•东港市期中)已知5a +2的立方根是3,3a +b ﹣1的算术平方根是4. (1)求a ,b 的值. (2)求4a ﹣b 的平方根.【分析】(1)运用立方根和算术平方根的定义求解. (2)根据平方根的定义即可解答.【解析】(1)∵5a +2的立方根是3,3a +b ﹣1的算术平方根是4, ∴5a +2=27,3a +b ﹣1=16, ∴a =5,b =2;(2)由(1)知a =5,b =2, ∴4a ﹣b =4×5﹣2=18, ∴4a ﹣b 的平方根为±3√2.21.(2020秋•临泽县期中)已知2b +1的平方根为±3,3a +2b +1的立方根为3,求a +2b 的平方根. 【分析】先根据平方根和立方根的定义得出a 、b 的值,再求出a +2b 的值,最后利用平方根的定义求解即可.【解析】∵2b+1的平方根为±3,3a+2b+1的立方根为3,∴2b+1=9,3a+2b+1=27,解得:b=4,a=6,则a+2b=6+2×4=14,∴a+2b的平方根为±√14.22.(2020秋•唐山期中)已知5是2a﹣3的算术平方根,1﹣2a﹣b的立方根为﹣4.(1)求a和b的值;(2)求3b﹣2a﹣2的平方根.【分析】(1)运用立方根和算术平方根的定义求解.(2)根据平方根的定义即可解答.【解析】(1)∵5是2a﹣3的算术平方根,1﹣2a﹣b的立方根为﹣4,∴2a﹣3=25,1﹣2a﹣b=﹣64,∴a=14,b=37;(2)由(1)知a=14,b=37,∴3b﹣2a﹣2=3×37﹣2×14﹣2=81,∴3b﹣2a﹣2的平方根为±9.23.(2020秋•泰兴市期中)已知a+7的立方根是2,一个正数b的平方根分别是5x﹣2和4﹣6x,求3b+4a 的平方根.【分析】根据立方根的定义可得a+7=8,得a的值,根据平方根的性质得出关于x的方程,解出可得b 的值,代入3b+4a可解答.【解析】∵a+7的立方根是2,∴a+7=8,∴a=1,∵一个正数b的平方根分别是5x﹣2和4﹣6x,∴5x﹣2+4﹣6x=0,解得:x=2,∴4﹣6x=4﹣6×2=﹣8,∴b=(﹣8)2=64,∴3b +4a =3×64+4×1=196, ∴3b +4a 的平方根是±14.24.(2020秋•靖江市期中)若3是2x ﹣1的平方根,﹣2是y ﹣3x 的立方根,求3x +y 的平方根.【分析】先根据算术平方根的定义求得x 的值,再根据立方根的定义求y ,最后根据平方根的定义解答. 【解析】根据题意得2x ﹣1=9,y ﹣3x =﹣8, 解得:x =5,y =7, ∴3x +y =3×5+7=22. ∴3x +y 的平方根为±√22.25.(2020秋•成都期中)已知2a ﹣1的平方根是±3,3a +b +10的立方根是3,求a +b 的算术平方根. 【分析】先根据2a ﹣1的平方根是±3,3a +b +10的立方根是3得出{2a −1=93a +b +10=27,解之求出a 、b的值,再利用算术平方根定义得出答案.【解析】∵2a ﹣1的平方根是±3,3a +b +10的立方根是3, ∴{2a −1=93a +b +10=27, 解得a =5,b =2, ∴a +b =7,则a +b 的算术平方根为√7.。
初中数学平方根算术平方根实数运算练习题(附答案)
初中数学平方根算术平方根实数运算练习题一、单选题1. )A.5和6之间B.6和7之间C.7和8之间D.8和9之间2.点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是( )A.2b a <<B.1212a b ->-C.2a b -<<D.2a b <-<-3.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在数轴上,原点两旁的两个点所表示的数都是互为相反数; ④π3是分数,它是有理数;9.其中正确的个数是( ).A.lB.2C.3D.4 4.下列说法中正确的是( ).A.27的立方根是3±B.8-没有立方根C.立方根是它本身的数只有1±D.平方根是它本身的数只有05.4a =-成立,那么a 的取值范围是( )A.4a ≤B.4a ≤-C.4a ≥D.—切实数6.有下列说法:①任何数的平方根都有两个;②如果—个数有立方根,那么它一定有平方根;③算术平方根一定是正数;④非负数的立方根不一定是非负数.其中,错误的个数是( ).A.1B.2C.3D.47.已知5a =7=,且a b a b +=+,则a b -的值为( )A. 2或12B. 2 或12-C. 2-或12D. 2- 或12-8.下列各组数中互为相反数的是( )A. 2-B. 2-C. 2-与12-D. 2-与29.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)10.11日凌晨,阿里巴巴公布了2015双十一购物狂欢节的相关数据: 33分53秒时,成交额破200亿。
200亿用科学记数法表示为( ) A.0.2×1010 B.2×1010 C.2×109 D.20×10911.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张12.实数,a b 在数轴上对应点的位置如图所示,化简2()a a b +-的结果是( )A.2a b -+B.2a b -C.b -D.b13.对于实数a,b,下列判断正确的是( )A.若|a|=|b|,则a=bB.若a 2>b 2,则a>bC.若2a b =,则a=bD.若33a b =,则a=b14.如图,已知数轴上的点A 、B 、C 、D 分别表示数2-、1、2、3,则表示35-的点P 应落在线段( )A. AO 上B. OB 上C. BC 上D. CD 上15.在3.1?41?5,17,83,0,2-,0.89-,13π-,2011-,0.303?003?000?3,57+中,无理数有( )A.2个B.3个C.4个D.5个16、下列无理数中,在 与 之间的是( )A.B.C.D.二、解答题17.计算:1(2)321(2)()2--3 1.--18.已知52a +的立方根是3,31a b +-的算术平方根是4,c .(1)求,,a b c 的值;(2)求3a b c -+的平方根.19.已知: ()225434170x y x y +++--=,.20.一个正数x 的两个不同的平方很分别是2a 和2a --1.求a 和x 的值;2.求22a x -的立方根.21.已知a ,b 是有理数,且满足()220ab -=1.求a ,b 的 值;2.求()()()()()()1111112220182018ab a b a b a b ++++++++++的 值三、计算题22.计算: 20(2)1)--;四、填空题__________.24.已知一个正数的平方根是32x -和56x +,则这个数是__________.25.若一个正数的两个平方根分别是3a -和31a -,则这个正数是 .26.观察下表,按规律填空.参考答案1.答案:D解析:2.答案:C解析:3.答案:A解析:4.答案:D解析:5.答案:D解析:6.答案:D解析:7.答案:D解析:∵5a =7=,∴5a =±,7b =±,∵a b a b +=+,∴0a b +≥,∴5a =,7b =或5a =-,7b =,∴2a b -=-或12-.8.答案:A解析:对于A,2=,易知2-与2互为相反数,故选A.9.答案:C解析:用四舍五入法对0.05049取近似值时,四舍五入,所以C.精确到千分位应该是0.050. 考点:近似值,精确值10.答案:B解析:11.答案:D解析:A.161162844=⨯=⨯=⨯最少需要图钉(41)(41)25++=枚.B.181182936=⨯=⨯=⨯最少需要图钉(31)(61)28++=枚.C.2012021045=⨯=⨯=⨯最少需要图钉(41)(51)30++=枚.D.2112137=⨯=⨯最少需要图钉(31)(71)32++=枚.还剩余2枚图钉.故选D.12.答案:A解析:题图知,0,00a b a b <>-<,所以,则()2,a a a b a a b a b =-+-=---=-+故选A13.答案:D解析:14.答案:B解析:∵23<<,∴031<<,则表示3-P 应落在线段OB 上,故选B.15.答案:C解析:,13π-,0.3030030003-,5+,共4 个,其余则为有理数.答案: 16、解析: ∵, ∴A,D 不在与 之间. ∵, ∴ 在 与 之间.17.答案:解:(1)原式2413=-+=-(2) 原式184********.4=-⨯-⨯-=---=- (3) 原式1151371.282324=-+--= 解析:18.答案:解:(1) 52a +的立方根是3,31a b +-的算术平方根是4,5227,3116,5, 2.91316,34,a a b a b ∴+=+-=∴==<<∴<的整数部分 3.c =(2)将5,2,3a b c ===代入得316a b c -+=,3a b c ∴-+的平方根是4±. 解析:19.答案:±2解析:20.答案:1.由题意,得()220,2a a a +--==解得()222416x a ∴===2.222=2216=82a x -⨯--==-,,即22a x -的立方根是-2 解析:21.答案:1.()()2220,20ab ab -=-≥≥ 20,10,2,1ab b a b ∴-=-=∴==2.当2,1a b ==时,()()()()()()1111=12211122122201812018++++⨯+⨯++⨯++⨯+原式 111112233420192020=+++⨯⨯⨯⨯ 1111111112233420192020=-+-+-+++ 12019120202020=-=解析:22.答案:5-解析:23.答案:2在求其算术平方根,4=,4的算术平方根是2.24.答案:494解析:由题意得32560x x -++=,解得12x =-, ∴7732,5622x x -=-+= ∴2749()24±=. 25.答案:4解析:因为一个正数的两个平方根分别是3a -和31a -,()()3310a a ∴-++=,()21,314a a ∴=∴-=26.答案:387.3解析:15 3.873,387.3≈≈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算术平方根及平方根难题
一、选择题(本大题共 2 小题,共 2 分)
1、下列说法中,错误的是()
A. 2是2的一个平方根
B. −2的平方是2
C. 2的平方根就是2的算术平方根
D. 2是2的算术平方根
2、一个数式的值不能等于零,么它)
A. a2
B. a0
C. a
D. |a|
二、填空题(本大题共 5 小题,共 5 分)
3、如果a的平方根等于±2,那么a= ______ .
4、已知5x2=10,则x= ______ .
5、64的算术平方根与81的平方根之和是 ______ .
6、已知x,y为实数,且满足1+x−(y−1)=0,那么x2011−
y2011=.
7、已知|2a+1|+=0,则ab= ______ .
三、解答题(本大题共 4 小题,共 4 分)
8、若5a+1和a−19是正数m的两个平方根,求m的值.
9、如一个数的两个平方根分别是a+3和2a−15,试求这个数.
10、一个正数x的两个不同的平方根分别是2a−1和−a+2.
(1)求a和x的值;
(2)化简:2|a+2|+|x−22|−|3a+x|
+2−x,求x+y的平方根.11、已知x是正整数,且满足y=4
x−1。