数系的扩充与复数的引入(课件)

合集下载

高考数学考点回归总复习课件 数系的扩充与复数的引入

高考数学考点回归总复习课件 数系的扩充与复数的引入

注意:(1)如果两个复数都是实数,则可以比较大小;否则,不能 比较大小.
(2)复数相等的条件是把虚数问题转化为实数问题的重要依据, 是虚数问题实数化这一重要数学思想方法的体现.
2.复平面的概念 建立直角坐标系来表示复数的平面,叫做复平面.x轴叫做实
轴,y轴叫做虚轴.实轴上的点都表示实数;除原点外,虚轴上 的点都表示纯虚数;各象限内的点都表示虚数. 复数集C和复平面内所有的点组成的集合是一一对应的,复数 集C与复平面内所有以原点O为起点的向量组成的集合也 是一一对应的.
(1 sin cos )2 (cos sin )2
2 sin2 cos2 2 1 sin2 2 .
4
故|
z1
z2
|的最大值为 3 ,最小值为 2
2.
技法二
数形结合思想
【典例2】 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值 为( )
A.1 B. 2 C.2 D. 5
答案:C
2.(2010·陕西)复数
z 在1复i i平面上对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
解析 :因为z i i(1 i) 1 i 1 1 i,所以其对 1 i (1 i)(1 i) 11 2 2
应的点
1 2
,
1 2
位于第一象限, 故选A.
答案:A
3.(2010·湖北)若i为虚数单位,图中复平面内点Z表示复数z,则
【典例1】 已知复数z=m2(1+i)-m(3+i)-6i,则当m为何实数 时,复数z是(1)实数?(2)虚数?(3)纯虚数?(4)零?(5)对应点 在第三象限?

7.1.1数系的扩充和复数的概念课件(人教版)

7.1.1数系的扩充和复数的概念课件(人教版)
A.2,3
B.2,-3
C.-2,3
( B )
D.-2,-3
分析:两个复数相等,即这两个复数的实部和虚部分别对应相等,
得到等式求解.
解析:由2+bi与a-3i相等,得a=2,b=-3.故
实数a,b的值分别为2,-3.
五、举例应用 掌握定义

【例6】若关于x的方程3x²- x-1=(10-x-2x²)i有实根,求实
问题2:两个复数有大小关系吗?探究5:复数z=a+bi在什么条件下是实数、虚数?
四、定义辨析 强化理解
辨析1:若a,b为实数,则z=a+bi为虚数.( × )
提示:只有当b不等于零时z=a+bi为虚数.
辨析2:复数z1=3i,z2=2i,则z1>z2. ( × )
提示:复数不能比较大小,只有相等和不相等之分.
辨析3:复数z=bi(b∈R)是纯虚数.
( × )
提示:只有当b不等于零时z=bi才为纯虚数.
辨析4:实数集与复数集的交集是实数集.( √ )
提示:因为实数和虚数统称为复数,故实数集与复数
集的交集是实数集.
五、举例应用 掌握定义
【例1】复数3-i的实部和虚部分别是( C )
A.3和1
B.3和i
C.3和-1
所以ቊ
≠ 0.
解得y=3.
五、举例应用 掌握定义
【例4】 已知复数z=
²−−6
+(m²-2m-15)i.当m为何值时,
+3
(1)z是虚数;(2)z是纯虚数.
分析:解决复数分类问题的关键是找出等价条件,
列出方程(组).
五、举例应用 掌握定义
【例4】 已知复数z=

人教A版7.1.1数系的扩充和复数的概念课件(22张)

人教A版7.1.1数系的扩充和复数的概念课件(22张)
自然数是现实世界最基 本的数量,是全部数学 的发源地.
以史增智,数系扩充
1 3 2
相反量的需要
负数
“欠”出负数
负数的引入,解决了在 数集中不够减的矛盾.
以史增智,数系扩充
“分”出分数
分数的引入,解决了在 整数中不能整除的矛盾.
4x 1 x 1
4
等额公平分配的需要
分数
以史增智,数系扩充
“开”出无理数 1
应用巩固
B
3,3
学后反思,学有所获
1.复数的概念
2.数系扩充
负整数
分数
无理数
虚数
自然数集
整数集
有理数集
实数集
复数集
3. 复数相等的条件
两个复数可以比较大小吗?
课后作业
课本P73复习巩固1、2、3题
2 i,
2 , 3i, i, 0.
2
辨析探究,理解概念
实数 虚数
纯虚数 非纯虚数
辨析探究,理解概念

讨论?
复数集 虚数集
实数集 纯虚数集
实数: 虚数:
纯虚数: 非纯虚数:
复数集C和实数集R之间有什么关系?
辨析探究,理解概念
辨析探究,理解概念
4.复数相等
辨析探究,理解概念
辨析探究,理解概念
imaginary
欧拉(公元1707-1783年)是18世 纪最优秀的数学家,也是人类历史 上最伟大的数学家之一
以史增智,数系扩充
思考3
实数系经过扩充后,得到的新数系由哪些数组成 呢?
以史增智,数系扩充
辨析探究,理解概念
实部
虚部
i2= -1
辨析探究,理解概念
例1:说出下列复数的实部与虚部

北师大版必修第二册5-1-1复数的概念课件(32张)

北师大版必修第二册5-1-1复数的概念课件(32张)

2x-1+i=y-3-yi

2x+ay-4x-y+bi=9-8i②
有实数解,则实数 a,b 的值分别为__1_,_2____.
解析:(1)因为 m∈R,z1=z2,所以(2m+7)+(m2-2)i=(m2-8)+(4m+3)i.由复数相 等的充要条件得2mm2-+27==4mm2- +83, , 解得 m=5.
[正解] 设方程一实根为 a,则有 a2+(k+2i)a+2+ki=0, 由复数相等的定义可得a22a++kka=+02,=0, 解得 k=±2 2, 因此当 k=±2 2时,原方程至少有一个实根. [防范措施] 对于复系数的一元二次方程,方程有实根,不能使用 Δ≥0,而应设出 实根代入,然后利用复数相 等的条件解出,这与实系数一元二次方程的解法是有区别的.
[自主记]
[解析] 因为 a,m∈R,所以由 a2+am+2+(2a+m)i=0,可得a22a++amm=+02,=0,
解得am==-2,2 2
或am==-2
2, 2,
所以 a=± 2.
(2)[解] 设方程的实数根为 x=m,
则 3m2-a2m-1=(10-m-2m2)i,
∴3m2-a2m-1=0, 10-m-2m2=0,
当 b≠0 时,x0=-db存在,则 abd=d2+b2c. 综上可知,当 b=d=0,且 Δ=a2-4c≥0 或 b≠0,且 abd=d2+b2c 时,方程 x2+(a +bi)x+c+di=0(a,b,c,d∈R)有实数根.
m2-m-6=0, ③当m+3≠0,
m2-2m-15≠0,
即mm=≠--23或,m=3, m≠5且m≠-3,
即 m=-2 或 m=3 时,z 是纯虚数.
研习 2 复数相等的充要条件 [典例 2] (1)已知 a2+(m+2i)a+2+mi=0(m∈R)成立,则实数 a=___±___2__. (2)关于 x 的方程 3x2-a2x-1=(10-x-2x2)i 有实根,求实数 a 的值.

第四节 数系的扩充与复数的引入课件

第四节 数系的扩充与复数的引入课件
A.eπi+1=0 B.|eix|=1 C.cos x=eix-2e-ix D.e12i在复平面内对应的点位于第二象限
①实数;②虚数;③纯虚数. (2)实数m取什么值时,复平面内表示复数z=(m2-8m+15)+(m2-5m-14)i的点 ①位于第四象限;②位于第一、三象限;③位于直线y=x上.
解:(1)①当m2-3m=0,即m=0或m=3时,所给复数是实数. ②当m2-3m≠0,即m≠0且m≠3时,所给复数是虚数.
m2+m-6=0, m-2≠0,
解得m=-
3,故选D.
方/法/指/导(来自课堂的最有用的方法) 复数的分类问题
1.将复数(非标准形式)化为a+bi(a,b∈R)的形式, 实数⇔b=0 纯虚数⇔a=0,b≠0 非纯虚数⇔a≠0,b≠0 2.ac++dbii为实数(a,b,c,d∈R,c+di≠0),则 ac=bd(c,d≠0);a与c或b与d同时为0.
试/题/调/研(题题精选,每题都代表一个方向)
1.[2019全国卷Ⅰ]设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则
( C) A.(x+1)2+y2=1
B.(x-1)2+y2=1
C.x2+(y-1)2=1
D.x2+(y+1)2=1
[解析] 由已知条件,可得z=x+yi. ∵|z-i|=1,∴|x+yi-i|=1, ∴x2+(y-1)2=1.故选C.
的点的坐标为( A )
A.(-1,-1)
B.(-1,1)
C.(1,2)
D.(1,-2)
[解析]
z=-
1 i
-1=-1+i,
- z
=-1-i,则在复平面内,
- z
对应点的坐标为
(-1,-1).故选A.

5.1 数系的扩充与复数的引入 课件(北师大选修2-2)

5.1 数系的扩充与复数的引入 课件(北师大选修2-2)

一个复数z=a+bi(a,b∈R)与复平面内的向量 OZ = (a,b) 是一一对应的.

2.复数的模 设复数 z=a+bi(a, b∈R)在复平面内对应的点是 Z(a, b),点 Z 到 原点的距离 |OZ|叫作复数 z 的模或绝对值, 记
a2+b2 . 作|z|,显然,|z|=
1.注意复数的代数形式z=a+bi中a,b∈R这一条
答案:0或2
1 9.求复数 z1=6+8i 及 z2=- - 2i 的模,并比较它们的 2 模的大小.
1 解:∵z1=6+8i,z2=- - 2i, 2 ∴|z1|= 62+82=10, |z2|=
1 - 2+- 2
3 2 = . 2
2
3 ∵10> , 2 ∴|z1|>|z2|.
1.区分实数、虚数、纯虚数与复数的关系,特别要明 确:实数也是复数,要把复数与实数加以区别.对于纯虚 数bi(b≠0,b∈R)不要只记形式,要注意b≠0. 2.复数与复平面内的点一一对应,复数与向量一一对
应,可知复数z=a+bi(a,b∈R)、复平面内的点Z(a,b)和
平面向量 OZ 之间的关系可用图表示.
解析: 复数 z1, 2 对应的点分别为 Z1(1, 3), 2(1, 3), z Z - 关于 x 轴对称. 答案:A
6.已知平面直角坐标系中O是原点,向量 OA ,OB 对应 的复数分别为2-3i,-3+2i,那么向量 BA 的坐标是
( A.(-5,5) C.(5,5) B.(5,-5) D.(-5,-5) )
OB 对应的复数分别记作z1=2-3i,z2 解析:向量 OA ,
=-3+2i,根据复数与复平面内的点一一对应,可得向
量 OA =(2,-3), OB =(-3,2).

人教版数学 选修1-2 1 数系的扩充和复数的概念(共14张ppt)教育课件

人教版数学 选修1-2 1 数系的扩充和复数的概念(共14张ppt)教育课件

: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
有些人经常做一些计划,有的计划几乎 不去做 或者做 了坚持 不了多 久。其 实成功 的关键 是做很 坚持。 上帝没 有在我 们出生 的时候 给我们 什么额 外的装 备,也 许你对 未来充 满迷惑 ,也许 你觉得 是在雾 里看花 ,但是 只要我 们不停 的去做 ,去实 践,总 是可以 走到一 个鲜花 盛开的 地方, 也许在 那个时 候,你 就能感 受到什 么叫柳 暗花明 。走向 成功的 过程就 好像你 的起点 是南极 ,而成 功路径 的重点 在北极 。那么 无论你 往哪个 方向走 ,只要 中途的 方向不 变,最 终都会 到达北 极,那 就在于 坚持。

数系的扩充和复数的概念(课件)-人教A版(2019)必修第二册

数系的扩充和复数的概念(课件)-人教A版(2019)必修第二册

无理数
为表示各种几何量(例如长度、面积、体积)与物理量(例如速率、力 的大小),人类很早已发现有必要 引进无理数。约在公元前530,毕达哥拉 斯学派已知道边长为1的正方形的对角线的长度(即 )不能是有理数。
15世纪达芬奇(Leonardo da Vinci2, 1452- 1519) 把它们称为是“无理的 数”(irrational number),开普勒(J. Kepler, 1571- 1630)称它们是“不可 名状”的数。 法国数学家柯西(A.Cauchy,1789- 1875)给出了回答:无理数是有理数序列 的极限。
由于有理数可表示成有限小数或无限循环小数,人们想到用“无限不循 环小数”来定义无理数,这也是直至19世纪中叶以前的实际做法。
实数
实数系的逻辑基础直到19世纪70年代才得以奠定。从19世纪20年代 肇始的数学分析严密化潮流,使得数学 家们认识到必须建立严格的实 数理论,尤其是关于实数系的连续性的理论。在这方面,外尔斯特拉斯 (1859年 开始)、梅雷(1869)、戴德金(1872)与康托尔(1872 ) 作出了杰出的贡献。
整数集
有理数集
“数”是万物的本 源,支配整个自然界和 人类社会.世间一切事 物都可归结为数或数的 比例,这是世界所以美 好和谐的源泉.
毕达哥拉斯(约公元前560—480年)
数系的扩充
自然数集
整数集
有理数集
问题:边长为1的正方形的对角线长度为多少?
1 1
数系的扩充
自然数集
整数集
有理数集
实数集
实数
பைடு நூலகம்有理数 无理数
7.1复数的概念
7.1.1 数系的扩充和复数的概念
09人教A版 必修二

数系的扩充与复数的引入公开课课件

数系的扩充与复数的引入公开课课件
控制工程
在控制工程中,复数用于描述系统的传递函数和稳定性,对于系统分析和设计至关重要。
感谢您的观看
THANKS
微积分中的连续性讨论
在微积分中,连续性是一个重要的概念。在实数范围内,连续性可以通过极限来定义和讨论。但在处理一些涉及无穷大或无 穷小的数学问题时,实数范围的局限性可能会限制讨论的深入。
通过引入复数,可以扩展连续性的定义和讨论范围。例如,在复变函数中,函数在复平面上的连续性和可导性得到了广泛的 研究和应用。这使得复数在处理涉及连续性和无穷大/无穷小的数学问题时更加有效和精确。
无理数是不能表示为两个整数的比的 无限不循环小数。
虽然无理数系能够表示无理数,但它 无法表示某些超越无理数,如某些高 阶无穷小量和高阶无穷大量。
无理数系的作用
无理数系使得数学能够处理所有的无 理数,如常见的圆周率π和自然对数 的底数e。
02
复数的引入
复数的定义

总结词
复数是实数域的扩充,由实部和虚部组成,表示为a+bi的形式,其中a和b是实 数,i是虚数单位。
04
复数在物理中的应用
交流电的分析
交流电的频率和相位分析
复数可以用于表示交流电的电压和电流,通过分析复数的模和辐角,可以得出电压和电流的有效值和 相位信息。
阻抗匹配
在电子和电气工程中,阻抗匹配是非常重要的概念。利用复数表示阻抗,可以方便地分析电路中的电 压和电流关系,实现阻抗匹配。
波动方程的求解
算符和矩阵
在量子力学中,算符和矩阵是非 常重要的概念。利用复数表示算 符和矩阵,可以简化计算过程, 并方便地描述量子态的变化。
05
复数的历史与文化背景
复数在数学史中的地位
数学发展里程碑

7.1.1 数系的扩充和复数的概念 (超好用的优秀公开课获奖课件)高一下学期数学(人教A版2019

7.1.1 数系的扩充和复数的概念 (超好用的优秀公开课获奖课件)高一下学期数学(人教A版2019

(1) i 2 1 ;
(2)实数可以与i 进行四则运算,在进行四则运算时,
原有的加法与乘法的运算律(包括交换律、结合律 和分配律)仍然成立.
注:数单位i是瑞士数学家欧拉最早引用的,它取自 imaginary(想象的,假想的)一词的词头.
实数 a+bi
实际应用
由它所创造的复变函数理论,成为解决电磁理论, 航空理论,原子能及核物理等尖端科学的数学工具.
分 配 、 测 量 中 的产 等生 分了
分 数
为了解决度量正方形对角线长的问题产生了 ——无理数(无限不循环小数).
一个学生画了一个边长为1的正方形.
设对角线长为x.
x 2 12 12 根2据勾股定理
可见对角线的长度是 存在的,可它是多少
其实,这就是后来人 们发现的“无理数”
2.数学内部发展的需要
2+3i与1+2i不能比较大小.
[例2]已知(3x 2 y) (5x y)i 17 2i,求实数x, y的值.

: 由复数相等得53xx
2 y
y 17 ,
2
解得xy
1 .
7
[变式]x是实数, y是纯虚数,(2x 1) (3 y)i y i,求x, y的值.
解 : 设y bi(b R), 2x 1 (3 bi)i (2x 1 b) 3i (b 1)i.
正方形对角 线的度量
解决x2
2
0
引入无理数(根号)
实数集R
算协调一致.
如:Q中的加/乘法交换律、结合律等 R中也适用
解决x2 1 0 引入?数 ?数集
探究点2 复数的概念
解决方程x2+1=0在实数集中无解的问题:
为了解决负数开平方问题,数学家大胆引入一个新数 i , 把 i 叫做虚数单位,并且规定:

7-1-1数系的扩充和复数的概念(教学课件) -高中数学人教A版(2019)必修第二册

7-1-1数系的扩充和复数的概念(教学课件) -高中数学人教A版(2019)必修第二册

探究新知
设:实数可以与i进行加法和乘法的运算:
实数a与数i的相加计为__a____i___
实数b与数i的相加乘为___b__i____
实数a与数i和实数b的相乘的结果计为__a____b__i_______
结论:实数与i进行加法与乘法运算时,原有的加法, 乘法的运算依然成立
形如a+bi (a,b∈R)的数叫做复数. 全体复数所构成的集合C={a+bi |a,b∈R}叫做复数集.
练习巩固
变式训练2:求满足下列条件的实数 x, y的值: (1)(x y) ( y 1)i (2x 3y) (2 y 1)i (2)(x y 3) (x 2)i 0
探究新知
没有复数,便没有电磁学 ,便没有量子力学,便没有 近代文明!
——华裔数学家 陈省身
探究新知
它,曾是数学领域中一个飘荡了数百年的幽灵. 笛卡儿第一次提出了它的名字,却引来一片困惑, 很多大数学家都不承认它. 欧拉说:“对于这类数,我们只能断言,它们既不是 什么都不是,也不比什么都不是多些什么,更不比什么 都不是少些什么,它们纯属虚幻.” 它的名字叫虚数.
i是数学家欧拉(Leonhard Euler,1707-1783)最早引 入的,它取自imaginary(想象的,假想的)一词的词头, i2=i·i.
把新引进的数i添加到实数集中,我们希望数i与和实数 之间仍然能像实数那样进行加法和乘法运算,并希望加法和 乘法都满足交换律、结合律以及乘法对加法满足分配律,那 么,实数系是经过扩充后,得到的新数系由哪些数组成呢?
(3)当
m2
m2
m
2 1
0,
0,
即m 2 时,复数z 是纯虚数.
应用举例

3.1.1数系的扩充和复数的概念课件人教新课标

3.1.1数系的扩充和复数的概念课件人教新课标

数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
[问题1] 方程2x2-3x+1=0.试求方程的整数解?方程的 实数解?
[提示 1] 方程的整数解为 1,方程的实数解为 1 和12. [问题2] 方程x2+1=0在实数范围内有解吗? [提示2] 没有解.
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.实数 x 分别取什么值时,复数 z=x2-x+x-3 6+(x2-2x- 15)i 是(1)实数?(2)虚数?(3)纯虚数?
解析: (1)要使 z 是实数,必须且只需
x+3≠0 x2-2x-15=0
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)由复数相等的充要条件知
x+32=y,

2y+1=4x,

2x+ay=9,

-4x-y+b=-8, ④
由①②得x=52, y=4,
代入③④得ab==12 .
数学 选修2-2
第三章 数合作探究 课堂互动
高效测评 知能提升
答案: A
数学 选修2-2
第三章 数系的扩充与复数的引入
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
复数的概念
已知复数 z=a2-a27-a+1 6+(a2-5a-6)i(a∈R),试求 实数 a 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚 数.
数学 选修2-2
第三章 数系的扩充与复数的引入
解析: (1)由复数相等的充要条件知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(a bi) (c di) a bi c di
(a bi)(c di) (c di)(c di)
(ac
bd ) c2
(bc d2
ad )i
分母实数化
问题3 复数 (2 2等i)4于( )
(1 3i)5
A.1 3i B. 1 3i
C. 1 3Di .
1 3i
方法点拨—在掌握复数运算法则的基 础上注意以下几点
2、建立复数的概念之后, 我们主要研究了复数的代数 形式及其运算,复数的几何 表示(复平面上的点、向 量),复数运算的几何意义。
本课复习要点:
1.复数的有关概念 2.复数的代数运算 3.复数的几何意义
复数的代数形式: 通常用字母 z 表示,即
z a bi (a R,b R)
i 实部 虚部 其中 称为虚数单位。
作业
1.已知z是复数,z+2i、 z均为实 2i
数,且复数(z+ai)z在复平面上对应的 点在第一象限,求实数a的取值范围.
(2x–1)+xi=y–(3–y)i,求x, y。
解题总结:
复数相等 转化 求方程组的解
的问题
的问题
一种重要的数学思想—转化思想
变式练习
1.若方程 x2
+(m+2i)x+(2+mi)=0 至少有一 个实数根,试求实数m的值.
2.已知不等式 m-(2 -m3m2 )i
<10+(m2-4m+3)i,试求实数m的
3、复数的几何意义
问题5 已知复数z=(m2+m-
6)+(m2+m-2)i在复平面内所对应的
点位于第二象限,求实数m的取值范
围解。:由mm22
m m
6 2
0 0
得m
3 m 2 2或 m
1
m(3,2) U(1,2)
背景知识
有序实数对(a,b)
一一对应
复数z=a+bi
直角坐标系中的点Z(a,b)
解法1—向量法
uuur uuur uuur OC OA OB
y
C
B
A
解法2—几何法
0
x
平行四边形对角线互相平分
Z
Z1
x
不等 z1 z 2 z1z 2 z1 z 2 相等 z1z 2 2 | z1 z2 |2 2( z1 2 z 2 2 )
问题7
如果复数z满足|z+i|+|z-i|=2,
即对任何z1,z2,z3∈C,有
z1+z2=z2+z1, (z1+z2)+z3=z1+(z2+z3).
2.复数的乘法与除法
(1)复数乘法的法则 复数的乘法与多项式的乘法是类似
的,但必须在所得的结果中把i2换成-1, 并且把实部合并.即:
(a+bi)(c+di)=ac+bci+adi+bdi2
=(ac-bd)+(bc+ad)i.
(数)复数的一个几何意义
(形)
z=a+bi
y
Z(a,b)
b
复平面
x轴------实轴
a
ox
y轴------虚轴
复数z=a+bi
点Z(a,b)
uuur 向量 OZ
复数的另一几何表示
问题6 如图,已知复平面内一个平行
四边形的三个顶点O,A,B对应的复 数分别是0, 5+2i , -3+i ,求第四 个顶点C对应的复数.
那么|z+i+1|的最小值是( )
A.1 B. C2.2 D.
5
y
ox
思想方法—数形结合
方法与技巧
掌握一些常见曲线的复数方程,充 分运用复数的几何意义解题,就可 以快速准确的解答有关问题。
(1) z z 0 r (2) z z 1 z z 2
(3) z z 1 z z 2 2a
值.
误点警示:虚数不能比较大小!
1.复数加减法的运算法则:
(1)运算法则:设复数z1=a+bi,z2=c+di,
那么:z1+z2=(a+c)+(b+d)i; z1-z2=(a-c)+(b-d)i.
即:两个复数相加(减)就是实部与 实部,虚部与虚部分 别相加(减).
(2)复数的加法满足交换律、结合律,
i 1. n的周期性
2. (1 i)2 2i 1 i i 1i
3. 1 3 i
22
1 i i 1 i
3 1,2 ,1 2 0
高考链接
1.(06年陕西卷)复数 (1 i等)2 于
1i
A.1-i B.1+i C.-1+ i D.-1-i
2. (05年重庆卷) (1 i )2005
(2)复数乘法的运算定理
复数的乘法满足交换律、结合律以 及乘法对加法的分配律. 即对任何z1,z2,z3有
z1z2=z2z1; (z1z2)z3=z1(z2z3); z1(z2+z3)=z1z2+z1z3.
(3)复数的除法法则
先把除式写成分式的形式,再把分子
与分母都乘以分母的共轭复数,化简后
写成代数形式(分母实数化).即
解法2着眼于整体处理,巧用共轭 复数的性质,对解题方法技巧有较 高的要求。
方法与技巧—共轭复数的性质
z1 z2 z1 z2 , z1 z2 z1 z2 ,
( z1 ) z1 ; z2 z2
z R z z;
z 0 时,z是纯虚数 z z 0;
| z |2 | z |2 z z.
z
a2 b2
又Q b 0, a2 b2 9 0
即a2 b2 9 | z | 3
解法2 z 9 R z 9 z 9
z
z
z
z 9 z 9 (z z)(z z 9) 0
z
z
zz
| z |2 9 | z | 3
解题总结
解法1入手容易、思路清楚,是我 们处理这类问题的常规方法,必须 熟练掌握。
1i
A.i B.i C.22005 D.22005
问题4 设z为虚数,且满足 z 9 R z
求|z|。
解法1 设 z=a+bi (a,b∈R且
b≠0), z 9 a bi 9
z
a bi
a
bi
9(a a2
bi)
b2
(a
9a a2 b2
)
(b
9b a2 b2
)i
Q z 9 R, b 9b 0
讨 论?
复数集C和实数集R之间有什么关系?
实数b 0
R C
复数a+bi虚数b
纯虚数a 0非纯虚数 a
0,b 0 0,b
0
1.复数的有关概念
问题1 设复数z=lg(m2–2m– 2)+ (m2+3m+2)i,试求实数m 取何值时。 (1)z是纯虚数; (2)z是实数;
问题2 设x,y∈R,并且
人教A版2-2半期复习 --数系的扩充与复数 复习课
一、本章知识结构
虚数的引入 复数
复数的表示
复数的运算
代数表示 几何表示 代数运算 几何意义
结构图简析
1、我们为解决负数开方的问 题引入虚数单位i,把形如 a+bi(a,b∈R)的数叫做复 数,数系由实数集扩充到复数 集,实现了数系的扩充。
结构图简析
(4) | z z 1 z z 2 | 2a
回顾总结
1.两个复数相等的充要条件是实现 把复数问题转化为实数问题的重要 途径,也是我们解决有关的方程、 不等式问题的重要依据。
2.在熟练进行复数运算的同时,掌 握一些运算技巧方法,以求快速准 确地解答问题。
回顾总结
3.复数的几何表示建立了复数与平 面图形、复数与向量沟通的桥梁, 由此我们可以方便地进行数形转换, 寻找更为直观、方便的解题方法与 途径。
相关文档
最新文档