几种特殊土地基上的基本工程

几种特殊土地基上的基本工程
几种特殊土地基上的基本工程

第七章几种特殊土地基上的基础工程特殊土定义:由于生成时不同的地理环境、气候条件、地质成因以及次生变化等原因,使一些土类具有特殊的成分、结构和工程性质。通常把这些具有特殊工程性质的土类称为特殊土。特殊土种类很多,大部分都具有地区特点,故又有区域性特殊土之称。

第一节湿陷性黄土地基

一、湿陷性黄土的定义和分布

湿陷性黄土的定义:凡天然黄土在一定压力作用下,受水浸湿后,土的结构迅速破坏,发生显著的湿陷变形,强度也随之降低的,称为湿陷性黄土。湿陷性黄土分为自重湿陷性和非自重湿陷性两种。黄土受水浸湿后,在上覆土层自重应力作用下发生湿陷的称自重湿陷性黄土;若在自重应力作用下不发生湿陷,而需在自重和外荷共同作用下才发生湿陷的称为非自重湿陷性黄土。

湿陷性黄土的分布:在我国,它占黄土地区总面积的60%以上,约为40万km2,而且又多出现在地表浅层,如晚更新世(Q3)及全新世(Q4)新黄土或新堆积黄土是湿陷性黄土主要土层,主要分布在黄河中游山西、陕西、甘肃大部分地区以及河南西部,其次是宁夏、青海、河北的一部分地区,新疆、山东、辽宁等地局部也有发现。

二、黄土湿陷发生的原因和影响因素

黄土湿陷的原因:

(一)水的浸湿:由于管道(或水池)漏水、地面积水、生产和生活用水等渗入地下,或由于降水量较大,灌溉渠和水库的渗漏或回水使地下水位上升等原因而引起。但受水浸湿只是湿陷发生所必需的外界条件;而黄土的结构特征及其物质成分是产生湿陷性的内在原因。

(二)黄土的结构特征:季节性的短期雨水把松散干燥的粉粒粘聚起来,而长期的干旱使土中水分不断蒸发,于是,少量的水分连同溶于其中的盐类都集中在粗粉粒的接触点处。可溶盐逐渐浓缩沉淀而成为胶结物。随着含水量的减少土粒彼此靠近,颗粒间的分子引力以及结合水和毛细水的联结力也逐渐加大。这些因素都增强了土粒之间抵抗滑移的能力,阻止了土体的自重压密,于是形成了以粗粉粒为主体骨架的多孔隙结构。

黄土受水浸湿时,结合水膜增厚楔入颗粒之间。于是,结合水联结消失,盐类溶于水中,骨架强度随着降低,土体在上覆土层的自重应力或在附加应力与自重应力综合作用下,其结构迅速破坏,土粒滑向大孔,粒间孔隙减少。这就是黄土湿陷现象的内在过程。

(三)物质成分:黄土中胶结物的多寡和成分,以及颗粒的组成和分布,对于黄土的结构特点和湿陷性的强弱有着重要的影响。胶结物含量大,可把骨架颗粒包围起来,则结构致密。粘粒含量多,并且均匀分布在骨架之间也起了胶结物的作用。这些情况都会使湿陷性降低并使力学性质得到改善。反之,粒径大于0.05mm的颗粒增多,胶结物多呈薄膜状分布,骨架颗粒多数彼此直接接触,则结构疏松,强度降低而湿陷性增强。此外,黄土中的盐类,如以较难溶解的碳酸钙为主而具有胶结作用时,湿陷性减弱,但石膏及易溶盐的含量愈大时,湿陷性增强。

此外,黄土的湿陷性还与孔隙比、含水量以及所受压力的大小有关。天然孔隙比愈大,或天然含水量愈小则湿陷性愈强。在天然孔隙比和含水量不变的情况下,随着压力的增大,黄土的湿陷量增加,但当压力超过某一数值后,再增加压力,湿陷量反而减少。

三、黄土湿陷性的判定和地基的评价

(一)黄土湿陷性的判定

黄土湿陷性在国内外都采用湿陷系数δs 值来判定,湿陷系数δs 为单位厚度的土层,由于浸水在规定压力下产生的湿陷量,它表示

了土样所代表黄土层的湿陷程度。

试验方法:δs 可通过室内浸水压缩试

验测定。把保持天然含水量和结构的黄土

土样装入侧限压缩仪内,逐级加压,达到

规定试验压力,土样压缩稳定后,进行浸

水,使含水量接近饱和,土样又迅速下沉,再次达到稳定,得到浸水后土样高度'p

h (图7-1),由式(7-1)求得土的湿陷系数δs

0'h h h p

p s -=δ (7-1)

式中:h 0——土样的原始高度(m);

h p ——土样在无侧向膨胀条件下,在规定试验压力p 的作用下,压缩稳定后的高度

(m);

'p h ——对在压力p 作用下的土样进行浸水,到达湿陷稳定后的土样高度(m)。

湿陷性判定:我国《湿陷性黄土地区建筑规范》(GBJ25-90)按照国内各地经验采用δs =0.015作为湿陷性黄土的界限值,δs ≥0.015定为湿陷性黄土,否则为非湿陷性黄土。湿陷性土层的厚度也是用此界限值确定的。一般认为δs <0.03为弱湿陷性黄土,0.03<δs ≤0.07为中等湿陷性黄土,δs >0.07为强湿陷性黄土。

(二)湿陷性黄土地基湿陷类型的划分

定义:黄土受水浸湿后,在上覆土层自重应力作用下发生湿陷的称自重湿陷性黄土;若在自重应力作用下不发生湿陷,而需在自重和外荷共同作用下才发生湿陷的称为非自重湿陷

图7-1在压力P 下浸水压缩曲线

性黄土。

划分:《湿陷性黄土地区建筑规范》用计算自重湿陷量?zs 来划分这两种湿陷类型的地基,?zs (cm)按下式计算

∑==?n i i zsi zs h 10

δβ (7-2)

式中:β0——根据我国建筑经验,因各地区土质而异的修正系数。对陇西地区可取1.5,陇

东、陕北地区可取1.2,关中地区取0.7,其他地区(如山西、河北、河南等)

取0.5;

δzsi ——第i 层地基土样在压力值等于上覆土的饱和(S γ>85%)自重应力时,试验测

定的自重湿陷系数(当饱和自重应力大于300kPa 时,仍用300kPa);

h i ——地基中第i 层土的厚度(m);

n ——计算总厚度内土层数。

当?zs >7cm 时为自重湿陷性黄土地基,?zs ≤7cm 时为非自重湿陷性黄土地基。

用上式计算时,土层总厚度从基底算起,到全部湿陷性黄土层底面为止,其中δzs <0.015的土层(属于非自重湿陷性黄土层)不累计在内。

(三)湿陷性黄土地基湿陷等级的判定

定义:湿陷性黄土地基的湿陷等级,即地基土受水浸湿,发生湿陷的程度,可以用地基内各土层湿陷下沉稳定后所发生湿陷量的总和(总湿陷量)来衡量。

《湿陷性黄土地区建筑规范》对地基总湿陷量?s (cm )用下式计算:

∑==

?n i i si s h 1βδ

(7-3)

式中:δsi——第i层土的湿陷系数;

h i——第i层土的厚度(cm);

β——考虑地基土浸水机率、侧向挤出条件等因素的修正系数,基底下5m(或压缩层)深度内取1.5;5m(或压缩层)以下,非自重湿陷性黄土地基β=0,自重湿

陷性黄土地基可按式(7-2)β0取值。

湿陷等级的判定:可根据地基总湿陷量?s和计算自重湿陷量?zs综合,按表7-1判定。

四、湿陷性黄土地基的处理

目的:改善土的性质和结构,减少土的渗水性、压缩性,控制其湿陷性的发生,部分或全部消除它的湿陷性。在明确地基湿陷性黄土层的厚度、湿陷性类型、等级等后,应结合建筑物的工程性质,施工条件和材料来源等,采取必要的措施,对地基进行处理,满足建筑物在安全、使用方面的要求。

桥梁工程中,对较高的墩、台和超静定结构,应采用刚性扩大基础、桩基础或沉井等型式,并将基础底面设置到非湿陷性土层中;对一般结构的大中桥梁,重要的道路人工构造物,如属Ⅱ级非自重湿陷性地基或各级自重湿陷性黄土地基也应将基础置于非湿陷性黄土层或对全部湿陷性黄土层进行处理并加强结构措施;如属Ⅰ级非自重湿陷性黄土也应对全部湿陷性黄土层进行处理或加强结构措施。小桥涵及其附属工程和一般道路人工构造物视地基湿陷程度,可对全部湿陷性土层进行处理,也可消除地基的部分湿陷性或仅采取结构措施。

结构措施是指结构形式尽可能采用简支梁等对不均匀沉降不敏感的结构;加大基础刚度使受力较均匀;对长度较大且体形复杂的建筑物,采用沉降缝将其分为若干独立单元。

按处理厚度可分为全部湿陷性黄土层处理和部分湿陷性黄土层处理,前者对于非自重湿陷性黄土地基,应自基底处理至非湿陷性土层顶面(或压缩层下限),或者以土层的湿陷起始压力来控制处理厚度;对于自重湿陷性黄土地基是指全部湿陷性黄土层的厚度。后者指处理基础底面以下适当深度的土层,因为该部分土层的湿陷量一般占总湿陷量的大部分。这样处理后,虽发生少部分湿陷也不致影响建筑物的安全和使用。处理厚度视建筑物类别,土的湿陷等级、厚度,基底压力大小而定,一般对非自重湿陷性黄土为1~3m,自重湿陷性黄土地基为2~5m。

常用的处理湿陷性黄土地基的方法:

(一)灰土或素土垫层

将基底以下湿陷性土层全部挖除或挖到预计深度,然后用灰土(三分石灰七分土)或素土(就地挖出的粘性土)分层夯实回填,垫层厚度及尺寸计算方法同砂砾垫层,压力扩散角θ对灰土用30?,对素土用22?。垫层厚度一般为1.0~3.0m。它施工简易,效果显著,是一种常用的地基浅层湿陷性处理或部分处理的方法。

(二)重锤夯实及强夯法

重锤夯实法能消除浅层的湿陷性,如用15kN~40kN的重锤,落高2.5~4.5m,在最佳含水量情况下,可消除在1.0~1.5m深度内土层的湿陷性。强夯法根据国内使用纪录,锤重100~200kN,自由落下高度10~20m锤击两遍,可消除4~6m范围内土层的湿陷性。

两种方法均应事先在现场进行夯击试验,以确定为达到预期处理效果(一定深度内湿陷性的消除情况)所必需的夯点、锤击数、夯沉量等,以指导施工,保证质量。

(三)石灰土或二灰(石灰与粉煤灰)挤密桩

用打入桩、冲钻或爆扩等方法在土中成孔,然后用石灰土或将石灰与粉煤灰混合分层夯填桩孔而成(少数也有用素土),用挤密的方法破坏黄土地基的松散、大孔结构,达到消除或减轻地基的湿陷性。此方法适用于消除5~10m深度内地基土的湿陷性。

(四)预浸水处理

自重湿陷性黄土地基利用其自重湿陷的特性,可在建筑物修筑前,先将地基充分浸水,使其在自重作用下发生湿陷,然后再修筑。

除以上的地基处理方法外,对既有桥涵等建筑物地基的湿陷也可考虑采用硅化法等加固地基

五、湿陷性黄土地基的容许承载力和沉降计算

湿陷性黄土地基容许承载力:可根据地基载荷试验、规范提出数据及当地经验数据确定。当地基土在水平方向物理力学性质较均匀,基础底面下5m深度内土的压缩性变化不显著时,可根据我国《公桥基规》确定其容许承载力。经灰土垫层(或素土垫层)、重锤夯实处理后地基土承载力应通过现场测试或根据当地建筑经验确定,其容许承载力一般不宜超过250kPa(素土垫层为200kPa)。垫层下如有软弱下卧层,也需验算其强度。对各种深层挤密桩、强夯等处理的地基,其承载力也应作静载荷试验来确定。

沉降计算:应结合地基的各种具体情况进行,除考虑土层的压缩变形外,对进行消除全部湿陷性处理的地基,可不再计算湿陷量(但仍应计算下卧层的压缩变形);对进行消除部分湿陷性处理的地基,应计算地基在处理后的剩余湿陷量;对仅进行结构处理或防水处理的湿陷性黄土地基应计算其全部湿陷量。压缩沉降及湿陷量之和如超过沉降容许值时,必须采取减少沉降量、湿陷量措施。

第二节膨胀土地基

膨胀土的定义:按照我国《膨胀土地区建筑技术规范》(GBJ112--87)中的定义,膨胀土应是土中粘粒成分主要由亲水性矿物组成,同时具有显著的吸水膨胀和失水收缩两种变形特性的粘性土。

膨胀土的分布范围:据现有的资料,广西、云南、湖北、安徽、四川、河南、山东等20多个省、自治区、市均有膨胀土。国外也一样,如美国,50个州中有膨胀土的占40个州,此外在印度、澳大利亚、南美洲、非洲和中东广大地区,也都有不同程度的分布。目前膨胀土的工程问题,已成为世界性的研究课题。

膨胀土的危害:使大量的轻型房屋发生开裂、倾斜,公路路基发生破坏,堤岸、路堑产生滑坡;在我国,据不完全统计,在膨胀土地区修建的各类工业与民用建筑物,因地基土胀缩变形而导致损坏或破坏的有1000万m2;我国过去修建的公路一般等级较低,膨胀土引起的工程问题不太突出,所以尚未引起广泛关注。然而,近年来由于高等级公路的兴建,在膨胀土地区新建的高等级公路,也出现了严重的病害,已引起了公路交通部门的重视。

一、膨胀土的判别和膨胀土地基的胀缩等级

(一)影响膨胀土胀缩特性的主要因素

内在机制:主要是指矿物成分及微观结构两方面。实验证明,膨胀土含大量的活性粘土矿物,如蒙脱石和伊利石,尤其是蒙脱石,比表面积大,在低含水量时对水有巨大的吸力,土中蒙脱石含量的多寡直接决定着土的胀缩性质的大小。除了矿物成分因素外,这些矿物成分在空间上的联结状态也影响其胀缩性质。经对大量不同地点的膨胀土扫描电镜分析得知,面——面连接的叠聚体是膨胀土的一种普遍的结构形式,这种结构比团粒结构具有更大的吸水膨胀和失水吸缩的能力。

外界因素:是水对膨胀土的作用,或者更确切地说,水分的迁移是控制土胀、缩特性

的关键外在因素。因为只有土中存在着可能产生水分迁移的梯度和进行水分迁移的途径,才有可能引起土的膨胀或收缩。

(二)膨胀土的胀缩性指标

1.自由膨胀率δef

将人工制备的磨细烘干土样,经无颈漏斗注入量杯,量其体积,然后倒入盛水的量筒中,经充分吸水膨胀稳定后,再测其体积。增加的体积与原体积的比值δef称为自由膨胀率。

o o

w ef V V

V-

=

δ

(7-4)

式中:V o——干土样原有体积,即量土杯体积,ml;

V w——土样在水中膨胀稳定后的体积,由量筒刻度量出,ml。

2.膨胀率δep与膨胀力P e

膨胀率表示原状土在侧限压缩仪中,在一定压力下,浸水膨胀稳定后,土样增加的高度与原高度之比,表示为:

o o

w ep h h

h-

=

δ(7-5)式中:h w——土样浸水膨胀稳定后的高度,mm;

h o——土样的原始高度,mm。

以各级压力下的膨胀率δep为纵坐标,压力p为横坐标,将试验结果绘制成p-δep关系曲线,该曲线与横坐标的交点P e称为试样的膨胀力,膨胀力表示原状土样在体积不变时,由于浸水膨胀产生的最大内应力。

3.线缩率δsr与收缩系数λs

膨胀土失水收缩,其收缩性可用线缩率与收缩系数表示。

线缩率δsr是指土的竖向收缩变形与原状土样高度之比,表示为:

%100?-=

o

i o sri h h h δ (7-6)

式中:h o ——土样的原始高度,mm ; h i ——某含水量w i 时的土样高度,mm 。

利用收缩曲线直线收缩段可求得收缩系数λs ,其定义为:原状土样在直线收缩阶段内,含水量每减少1%时所对应的线缩率的改变值,即:

w

sr s ??=

δλ (7-7)

式中:?w ——收缩过程中,直线变化阶段内,两点含水量之差,%;

?δsr ——两点含水量之差对应的竖向线缩率之差,%。

(三)膨胀土的判别

《膨胀土规范》中规定,凡具有下列工程地质特征的场地,且自由膨胀率δef ≥40%的土应判定为膨胀土。

1.裂隙发育,常有光滑面和擦痕,有的裂隙中充填着灰白、灰绿色粘土。在自然条件下呈坚硬或硬塑状态;

2.多出露于二级或二级以上阶地、山前和盆地边缘丘陵地带,地形平缓,无明显自然陡坎;

3.常见浅层塑性滑坡、地裂,新开挖坑(槽)壁易发生坍塌等;

4.建筑物裂缝随气候变化而张开和闭合。

(四)膨胀土地基评价

《膨胀土规范》规定以50kPa 压力下测定的土的膨胀率,计算地基分级变形量,作为划分胀缩等级的标准,表7-2给出了膨胀土地基的胀、缩等级。

注:地基分级变形量S e 应按公式(7-8)计算,式中膨胀率采用的压力应为50kPa 。

(五)膨胀土地基变形量计算

在不同条件下可表现为3种不同的变形形态,即:上升型变形,下降型变形,和升降型变形。因此,膨胀土地基变形量计算应根据实际情况,可按下列3种情况分别计算:①当离地表1m 处地基土的天然含水量等于或接近最小值时,或地面有覆盖且无蒸发可能时,以及建筑物在使用期间经常受水浸湿的地基,可按膨胀变形量计算;②当离地表1m 处地基土的天然含水量大于1.2倍塑限含水量时,或直接受高温作用的地基,可按收缩变形量计算;③其它情况下可按胀、缩变形量计算。

地基变形量的计算方法仍采用分层总和法。下面分别将上述3种变形量计算方法介绍如下:

1.地基土的膨胀变形量s e

∑==n i i epi e

e h s 1δψ

(7-8)

式中:ψe ——计算膨胀变形量的经验系数,宜根据当地经验确定,若无可依据经验时,3

层及3层以下建筑物,可采用0.6; δep i ——基础底面下第i 层土在该层土的平均自重应力与平均附加应力之和作用下的

膨胀率,由室内试验确定,%;

h i ——第i 层土的计算厚度,mm ;

n ——自基础底面至计算深度z n 内所划分的土层数(图7-6(a )),计算深度应根据

大气影响深度确定;有浸水可能时,可按浸水影响深度确定。

2.地基土的收缩变形量s s

∑=?=n i i i si s s h w s 1λ

ψ (7-9)

式中:ψs ——计算收缩变形量的经验系数,宜根据当地经验确定。若无可依据经验时,3

层及3层以下建筑物,可采用0.8;

λs i ——第i 层土的收缩系数,应由室内试验确定;

?w i ——地基土收缩过程中,第i 层土可能发生的含水量变化的平均值(以小数表示); n ——自基础底面至计算深度内所划分的土层数。计算深度可取大气影响深度,当

有热源影响时,应按热源影响深度确定。在计算深度时,各土层的含水量变化

值?w i (图7-6(b ))应按下式计算:

1

111)

01.0(---?-?=?n i i z z w w w (7-10)

p w w w w w -=?11 (7-11) 式中:w 1,w p ——地表下1m 处土的天然含水量和塑限含水量(以小数表示);

ψw ——土的湿度系数;

z i ——第i 层土的深度,m ;

z n ——计算深度,可取大气影响深度,m 。

3.地基土的胀缩变形量s

∑=?+=n i i i si epi h w s 1)(λδ

ψ

(7-12)

式中:ψ——计算胀缩变形量的经验系数,可取0.7。

二、膨胀土地基承载力

膨胀土地基的承载力同一般地基土的承载力的区别:一是膨胀土在自然环境或人为因素等影响下,将产生显著的胀缩变形,二是膨胀土的强度具有显著的衰减性,地基承载力实际上是随若干因素而变动的。其中,尤其是地基膨胀土的湿度状态的变化。将明显地影响土的压缩性和承载力的改变。

膨胀土基本承载力有以下特点:

1.各个地区及不同成因类型膨胀土的基本承载力是不同的,而且差异性比较显著。

2.与膨胀土强度衰减关系最密切的含水量因素,同样明显地影响着地基承载力的变化。其规律是:对同一地区的同类膨胀土而言,膨胀土的含水量愈低,地基承载力愈大;相反,膨胀土的含水量愈高,则地基承载力愈小。

3.不同地区膨胀土的基本承载力与含水量的变化关系,在不同地区无论是变化数值或变化范围都不一样。

综上所述,在确定膨胀土地基承载力时,应综合考虑以上诸多规律及其影响因素,通过现场膨胀土的原位测试资料,结合桥、涵地基的工作环境综合确定,在一般条件不具备的情况下,也可参考现有研究成果,初步选择合适的基本承载力,再进行必要的修正。

三、膨胀土地区桥涵基础工程问题及设计与施工要点

(一)膨胀土地基上的桥涵工程问题

桥梁主体工程的变形损害,在膨胀土地区很少见到。然而在膨胀土地基上的桥梁附属工程,如桥台、护坡、桥的两端与填土路堤之间的结合部位等,各种工程问题存在比较普遍,变形病害也较严重。桥台不均匀下沉,护坡开裂破坏,桥台与路堤之间结合带不均匀下沉等等。有的普通公路桥受地基膨胀土胀缩变形影响严重者,不仅桥台与护坡严重变形、开裂、位移,甚至桥面也遭破坏,导致整座桥梁废弃,公路行车中断。

涵洞因基础埋置深度较浅,自重荷载又较小,一方面直接受地基土胀缩变形影响,另一方面还受洞顶回填膨胀土不均匀沉降与膨胀压力的影响,故变形破坏比较普遍。

(二)膨胀土地基上桥涵基础工程设计与施工应采取的措施

1.换土垫层

在较强或强膨胀性土层出露较浅的建筑场地,可采用非膨胀性的粘性土、砂石、灰土等置换膨胀土,以减少可膨胀的土层,达到减少地基胀缩变形量的目的。

2.合理选择基础埋置深度

桥涵基础埋置深度应根据膨胀土地区的气候特征,大气风化作用的影响深度,并结合膨胀土的胀缩特性确定。一般情况下,基础应埋置在大气风化作用影响深度以下。当以基础埋深为主要防治措施时,基础埋深还可适当增大。

3.石灰灌浆加固

在膨胀土中掺入一定量的石灰能有效提高土的强度,增加土中湿度的稳定性,减少膨胀势。工程上可采用压力灌浆的办法将石灰浆液灌注入膨胀土的裂隙中起加固作用。

4.合理选用基础类型

桥涵设计应合理选择有利于克服膨胀土胀缩变形的基础类型。当大气影响深度较深,膨胀土层厚,选用地基加固或墩式基础施工有困难或不经济时,可选用桩基。这种情况下,桩尖应锚固在非膨胀土层或伸入大气影响急剧层以下的土层中。具体桩基设计应满足《膨胀土规范》的要求。

5.合理选择施工方法

在膨胀土地基上进行基础施工时,宜采用分段快速作业法,特别应防止基坑暴晒开裂与基坑浸水膨胀软化。因此,雨季应采取防水措施,最好在旱季施工,基坑随挖随砌基础,同时做好地表排水等。

第三节冻土地区基础工程

冻土的定义:温度为0℃或负温,含有冰且与土颗粒呈胶结状态的土称为冻土。

冻土的分类:根据冻土冻结延续时间可分为季节性冻土和多年冻土两大类,土层冬季冻结,夏季全部融化,冻结延续时间一般不超过一个季节,称为季节性冻土层,其下边界线称为冻深线或冻结线;土层冻结延续时间在三年或三年以上称为多年冻土。

冻土的分布:季节性冻土在我国分布很广,东北、华北、西北是季节性冻结层厚0.5m 以上的主要分布地区;多年冻土主要分布在黑龙江的大小兴安岭一带、内蒙古纬度较大地区,青藏高原部分地区与甘肃、新疆的高山区,其厚度从不足一米到几十米。

一、季节性冻土基础工程

(一)季节性冻土按冻胀性的分类

土的冻胀由于侧向和下面有土体的约束,主要反映在体积向上的增量上(隆胀),季节性冻土地区建筑物的破坏很多是由于地基土冻胀造成的。

对季节性冻土按冻胀变形量大小结合对建筑物的危害程度分为五类,以野外冻胀观测得出的冻胀系数K d为分类标准

Ⅰ类不冻胀土:K d<1%,冻结时基本无水分迁移,冻胀变形很小,对各种浅埋基础无任何危害。

Ⅱ类弱冻胀土:1%<K d≤3.5%,冻结时水分迁移很少,地表无明显冻胀隆起,对一般浅埋基础也无危害。

Ⅲ类冻胀土:3.5%<K d≤6%,冻结时水分有较多迁移,形成冰夹层,如建筑物自重轻、基础埋置过浅,会产生较大的冻胀变形,冻深大时会由于切向冻胀力而使基础上拔。

Ⅳ类强冻胀土,6%<K d≤13%,冻结时水分大量迁移,形成较厚冰夹层,冻胀严重,即使基础埋深超过冻结线,也可能由于切向冻胀力而上拔。

Ⅴ类特强冻胀土K d >13%,冻胀量很大,是使桥梁基础冻胀上拔破坏的主要原因。

%1000

??=Z h K d 式中:?h ——地面最大冻胀量(m );

Z o ——最大冻结深度(m )。

(二)考虑地基土冻胀影响桥涵基础最小理置深度的确定

基底最小埋置深度h (m)可用下式表达

d t h z m h -=0

(7-13)

上部结构为超静定结构时,除Ⅰ类不冻胀土外,基底埋深应在冻结线以下不小于0.25m 。当建筑物基底设置在不冻胀土层中时,基底埋深可不考虑冻结问题。

(三)刚性扩大基础及桩基础抗冻拔稳定性的验算

按上述原则确定基础埋置深度后,基底法向冻胀力由于允许冻胀变形而基本消失。考虑基础侧面切向冻胀力的抗冻拔稳定性按下式计算。

kT Q W N T ≥++ (7-14)

在冻结深度较大地区,小桥涵扩大基础或桩基础的地基土为Ⅲ~Ⅴ类冻胀性土时,由于上部恒重较小,当基础较浅时常会因周围土冻胀而被上拔,使桥涵遭到破坏。基桩的入土长度往往由在冻结线以下抗冻拔需要的锚固长度控制。为了保证安全,以上计算中基础重力在冻土和暖土部分均不再考虑。

(四)基础薄弱截面的强度验算

当切向冻胀力较大时,应验算基桩在未(少)配筋处抗拉断的能力。

)(11F W N kT P ++-= (7-16)

式中:P ——验算截面拉力(kN );

W 1——验算截面以上基桩重力(kN );

F 1——验算截面以上基桩在暖土部分阻力(kN )计算方法同式(7-14)中Q T 。其余

符号意义同前。

(五)防冻胀措施

目前多从减少冻胀力和改善周围冻土的冻胀性来防治冻胀。

1.基础四侧换土,采用较纯净的砂、砂砾石等粗颗粒土换填基础四周冻土,填土夯实;

2.改善基础侧表面平滑度,基础必须浇筑密实,具有平滑表面。基础侧面在冻土范围内还可用工业凡土林、渣油等涂刷以减少切向冻胀力。对桩基础也可用混凝土套管来减除切向冻胀力。

3.选用抗冻胀性基础改变基础断面形状,利用冻胀反力的自锚作用增加基础抗冻拔的能力。

二、多年冻土地区基础工程

(一)多年冻土按其融沉性的等级划分

多年冻土的融沉性是评价其工程性质的重要指标,可用融化下沉系数A 作为分级的直接控制指标。

%100?-=

m

T m h h h A (7-17)

式中:h m ——季节融化层冻土试样冻结时的高度(m )(季冻层土质与其下多年冻土相同); h T ——季节融化层冻土试样融化后(侧限条件下)的高度(m )。

Ⅰ级(不融沉):A 小于1%,是仅次于岩石的地基土,在其上修筑建筑物时可不考虑冻融问题。

Ⅱ级(弱融沉):1%≤A <5%,是多年冻土中较好的地基土,可直接作为建筑物的地基,

当控制基底最大融化深度在3m 以内时,建筑物不会遭受明显融沉破坏。

Ⅲ级(融沉):5%≤A <10%,具有较大的融化下沉量而且冬季回冻时有较大冻胀量。作为地基的一般基底融深不得大于1m ,并采取专门措施,如深基、保温防止基底融化等。

Ⅳ级(强融沉):10%≤A <25%,融化下沉量很大,因此施工、运营时内不允许地基发生融化,设计时应保持冻土不融或采用桩基础。

Ⅴ级(融陷):A ≥25%,为含土冰层,融化后呈流动、饱和状态,不能直接作地基,应进行专门处理。

(二)多年冻土地基设计原则

多年冻土地区的地基,应根据冻土的稳定状态和修筑建筑物后地基地温、冻深等可能发生的变化,分别采取两种原则设计,即保持冻结原则和容许融化原则。

(三)多年冻土地基容许承载力的确定

决定多年冻土承载力的主要因素有粒度成分,含水(冰)量和地温,具体的确定方法可用如下几种:

1.根据规范推荐值确定

2.理论公式计算

理论上可通过临塑荷载p cr (kPa)和极限荷载p u (kPa)确定冻土容许承载力,计算公式形式较多,可参考下式计算:

h c p s cr 22γ+=

h

c p s u 271.5γ+=

(7-18)

式中:c s ——冻土的长期粘聚力(kPa ),应由试验求得; γ2h ——基底埋置深度以上土的自重压力(kPa );

p cr 可以直接作为冻土的容许承载力,而p u 应除以安全系数1.5~2.0。

此外也可通过现场荷载试验(考虑地基强度随荷载作用时间而降低的规律),调查观测地质、水文、植被条件等基本相同的邻近建筑物等方法来确定。

(四)多年冻土融沉计算

冻土地基总融沉量由两部分组成,一是冻土解冻后冰融化体积缩小和部分水在融化过程中被挤出,土粒重新排列所产生下沉量;一是融化完成后,在土自重和恒载作用下产生的压缩下沉。最终沉降量S (m)计算如下:

∑∑∑===++=n

i i pi i n i i ci i n i i i h h h A S 111σασα (7-19)

式中:A i ——第i 层冻土融化系数,见式(7-17);

h i ——第i 层冻土厚度(m );

αi ——第i 层冻土压缩系数(1/kPa )由试验确定;

σci ——第i 层冻土中点处自重应力(kPa );

σpi ——第i 层冻土中点处建筑物恒载附加应力(kPa )。

(五)多年冻土地基基桩承载力的确定

采取保持冻结原则时,多年冻土地基基桩轴向容许承载力由季节融土层的摩阻力F 1(冬季则变成切向冻胀力),多年冻土层内桩侧冻结力F 2和桩尖反力R 三部分组成。其中桩与桩侧土的冻结力是承载力的主要部分。除通过试桩的静载试验外,单桩轴向容许承载力[P ](kN )可由下式计算

∑∑==++=n i i ji n i i

i A m A A f P 100211][][στ

(7-20)

(六)多年冻土地区基础抗拔验算

多年冻土地区,当季节融化层为冻胀土或强冻胀土时,扩大基础(或基桩)冻拔稳定

验算:

kT Q Q W N m T ≥+++ (7-21)

(七)防融沉措施

1.换填基底土 对采用融化原则的基底土可换填碎、卵、砾石或粗砂等,换填深度可到季节融化深度或到受压层深度。

2.选择好施工季节 采用保持冻结原则时基础宜在冬季施工,采用融化原则时,最好在夏季施工。

3.选择好基础型式 对融沉、强融沉土宜用轻型墩台,适当增大基底面积,减少压应力,或结合具体情况,加深基础埋置深度。

4.注意隔热措施 采取保持冻结原则时施工中注意保护地表上覆盖植被,或以保温性能较好的材料铺盖地表,减少热渗入量。施工和养护中,保证建筑物周围排水通畅,防止地表水灌入基坑内。

如抗冻胀稳定性不够,可在季节融化层范围内,按前介绍的防冻胀措施第1、2条处理。

第四节 地震区的基础工程

一、地基与基础的震害

(一)地基土的液化

地震时地基土的液化是指地面以下,一定深度范围内(一般指20m )的饱和粉细砂土、亚砂土层,在地震过程中出现软化、稀释、失去承载力而形成类似液体性状的现象。它使地面下沉,土坡滑坍,地基失效、失稳,天然地基和摩擦桩上的建筑物大量下沉、倾斜、水平位移等损害。

(二)地基与基础的震沉,边坡的滑坍以及地裂

软弱粘性土和松散砂土地基,在地震作用下,结构被扰动,强度降低,产生附加的沉陷

软土地基对桥梁施工产生的危害及处理措施

软土地基对桥梁施工产生的危害及处理措施 发表时间:2020-03-24T11:49:08.515Z 来源:《防护工程》2019年21期作者:李玲 [导读] 在当前的工程建设过程中,工程质量是衡量工程项目管理能力的关键指标,基础施工风险成为桥梁安全事故的核心因素,为了加强桥梁施工管理水平,我们需要科学地管理基础建设。 山东沂蒙交通发展集团有限公司山东临沂 276000 摘要:随着我国社会建设水平的发展,社会经济的不断提高,对公路网络的建设也越来越多,在公路网建设中肯定有桥梁的建设,而在软土基质地方建桥,是一个广泛的现象,这样一来就形成了在软基地质建筑的技术问题,这个问题在桥梁建筑中非常突出和重要。由于软土地基的自然孔隙小,含水量高,渗透性小,可以缩短桥梁的使用寿命,影响桥梁的质量。同时,天气对其影响很大,恶劣天气下其稳定性不强。这就要求施工单位在遇到软土地基施工时,要注意技术处理,保证桥梁的质量。 关键词:软土地基;桥梁施工;危害;处理措施 导言: 在当前的工程建设过程中,工程质量是衡量工程项目管理能力的关键指标,基础施工风险成为桥梁安全事故的核心因素,为了加强桥梁施工管理水平,我们需要科学地管理基础建设。在具体的桥梁施工中软土基施工技术的使用决定着施工作业的有效性,因此要分析施工技术的使用注意事项,落实桥梁施工作业,全面彰显桥梁施工软土基施 1桥梁施工中软土地基施工必要性 软土地基的施工会给予桥梁整体施工作业的压实度产生影响,还会引起路面硬化与沉降情况。(1)桥梁压实度层面。现有的软土地基土结构涉及软土和松散砂体,软土地基的压实在具体桥梁施工中尚未得到实施,影响了桥梁运行的稳定性。此外,软土地基的渗透性相对较小,含水量相对较高,因此如果施工期长雨季,则会造成桥梁被雨水侵蚀,降低工程运行质量;(2)引起路面硬化现象。桥梁的实际施工期间因为使用材料往往是混凝土与沥青,且沥青与混凝土自身稳定性不佳,在一定程度上会造成施工路面硬化或者开裂现象,同时因为软土地基稳定性不佳,桥梁施工期间便有可能出现硬化现象;(3)沉降现象。因为浅层降水或者深层抽汲地下水的作用,会引发水土流失,导致软土地基的强度有所降低,以致于建筑物出现地面沉降,势必会影响到桥梁的实际使用寿命与施工效率,且软土地基施工的最大风险便是路面的沉降现象。 2软土地基施工影响因素分析 2.1环境因素 环境对软土地基的影响是不容忽视的。桥梁施工中软土地基可大致分为两种:粘性地基和砂性地基。前者需对地基进行实压,让其固定,而后者需对地基进行挤压,让砂性地基变得紧密。施工时要结合当地环境的特点和土地的特性进行,确保桥梁施工质量。 2.2项目设计 项目设计也是影响软土地基施工的因素之一,尤其在桥梁施工过程中的缓和过渡段影响较大。因此,桥梁软土地基的施工也需要注意工程设计,良好的工程设计可以很大程度上避免一些施工问题。桥梁施工按截面进行,根据不同的施工区段需要进行不同的设计,能很好地适应地基的特点和差异。在过渡段施工中,软土地基会增加工程施工难度,因为工程设计沉降过大,导致桥梁断裂甚至倒塌,因此过渡段的设计需要结合地基的实际情况。 2.3现场施工 软土地基施工会受到周围因素特别是施工现场的干扰,且影响较大。如果不能很好地控制施工现场,就不能进行软土地基的施工,从而延缓施工的整体进度,甚至影响桥梁施工质量。此外,桥梁施工需要使用一些大型机械设备,这些大型机械设备会损坏软土地基,影响地基的稳定性和承载力,在施工过程中需要避免。 3常见的桥梁工程软土地基处理技术研究 3.1垫层处理技术 常用的垫层处理技术主要有砂砾石垫层和砂垫层两种方法。该技术主要应用于砂、砾石等建筑材料。通过软基垫层,达到了加固软土地基,提高地基承载力的目的。在垫层处理技术的应用中,应注意以下几点:首先,施工企业应根据施工现场的实际情况选择更换材料,因为材料的质量直接影响到软基处理工程的质量,所以应该引起高度重视。在选材过程中,应选用级配好、质地坚硬的中砂、粗砂和砾石,也可加入卵石等材料进行混合。第二,换填施工前,施工人员要对基坑内的具体情况进行检查,对基坑内的杂物或给水应及时清除,

浅谈软土地基的常用处理方法

浅谈软土地基的常用处理方法 摘要:在工程项目建设中,经常需要对软土地基进行处理。本文通过对工程中 几种常用的软土地基处理方法进行综述,分析了各种处理方法的作用机理和适用 条件,便于在以后的工程中,选择适用的软土地基处理方法,提高地基处理质量,为在软土地基建设LNG接收站或油气场站提供借鉴价值。 关键词:软土地基处理方法换垫层法 一、引言 随着我国LNG接收站建设的飞速发展,加之土地资源的供给日趋紧张,现各LNG接收站大多用吹填土方式围海造田,但因吹填的海沙地质较为复杂,有粉土、黄土、淤泥和淤泥质土等多种软土地基,特别是广泛分布着含水量高、孔隙比大、承载力低、压缩性高、透水性差、覆盖层厚、呈软塑或者流塑的软弱淤泥层,因 此想要在软土地基上进行工程建设,关键就是要对软土地基进行有效的处理。 二、软土与软土地基 软土一般是指在静水和缓慢流水环境中沉积,以黏粒为主并伴有微生物作用 的近代沉积物,呈软塑到流塑状态,其外观以灰色为主的细粒土,如淤泥和淤泥 质土、泥炭土和沼泽土,以及其他高压缩性饱和黏性土、填土等,其具有天然含 水量高、孔隙比大、压缩性高、抗剪强度低、固结系数小、固结时间长、灵敏度高、扰动性大、透水性差、土层层状分布复杂、各层之间物理力学性质相差较大 等特点。 软土地基是由软土层构成的地基,软土地基共同特点是其上方的填土及构造 物稳定性差且容易发生沉降和不均匀沉降。 三、软土地基的常用处理方法 软土地基的处理目前已经相对的成熟,处理方法也很多,需要根据实际的工 程情况来确定,常用的处理方法有:换填垫层法、预压法、强夯法、水泥搅拌桩法、高压喷射注浆法、挤密碎石桩法、加筋法、桩基础等地基处理方法。 1、换垫层法 换填垫层法就是挖除浅层软弱土或不良土,换填后分层碾压或夯实土,按回 填的材料可分为砂(或砂石)垫层、碎石垫层、粉煤灰垫层、干渣垫层、土(灰土、 二灰)垫层等。干渣分为分级干渣、混合干渣和原状干渣;粉煤灰分为湿排灰和调湿灰。换填垫层法可提高持力层的承载力,减少沉降量;常用机械碾压、平板振 动和重锤夯实进行施工。该法常用于基坑面积宽大和开挖土方量较大的回填土方 工程,一般适用于处理浅层软弱土层和不均匀地基处理等。 2、预压法 预压法指的是为提高软弱地基的承载力和减少建筑物建成后的沉降量,预先 在拟建构造物的地基上施加一定静荷载,使地基土压密后再将荷载卸除的压实方法。对软土地基预先加压,在预压过程中软土地基完成大部分沉降,与此同时, 地基的承载能力有所提高。预压法适用于淤泥、淤泥质黏土与人工冲填土等软弱 地基。预压法一般有堆载预压和真空预压两种。 堆载预压是指在地基上堆放重物(水、土、砂、石等)进行预压。当堆载超过计划建造的建筑物荷载时,称为超载预压。为了防止堆载时压坏地基,需分级加载,即:在前一级荷载作用下地基基本固结后,再施加下一级荷载,直至达到设计荷 载为止。预压所需时间的长短取决于地基土层的渗透特性、厚度和预压荷载的大 小等因素。这些因素可以根据地基固结理论进行预算。施工时应监测地面沉降和

浅谈软土地基处理

浅谈软土地基及处理方法 【摘要】:软土一般是指在静水和缓慢流水环境中沉积,以黏粒为主并伴有 微生物作用的近代沉积物。软土是一种呈软塑到流塑状态,其外观以灰色为主的 细土粒,如淤泥和淤泥质土、泥炭土和沼泽土,以及其他高压缩性饱和黏性土、粉土等。其中淤泥和淤泥质土是软土的主要类型。 软土地基的处理质量是保证建筑物建成后安全、高效运营的关键,也直接影响 到地基的基础承栽力。 处理方法有:表层处理法、强夯法、静力排水固结法、反压护道法,桩基法 换土法,灌浆法,加筋法等,排水砂垫层,石灰浅坑法及其他辅助方法!不同的软 土地基应该结合工程实际采取有效经济的处理办法! 【关键词】:软土地基处理主要类型危害路基工程地基承载力影响使 用性能抗剪强度工程质量有机质空隙比含水量地基土投资变形 一软土地基的辨认 软土地基的确认是一项比较容易引起争议的工作,我们在具体施工时决定用 量化的试验指标来控制和确认。在确定软土时要查明软土及与之共同存在的一般 土层的成因、类别、范围、物理力学性质和必要的化学性质,以便采取经济有效 的处理措施。既可降低造价,又能确保质量、缩短工期。由于各省区各公路工程 的软土成因不尽相同,因此会同乐监理和业主确定了切实可行的鉴别方法,对本 路段的主要软基取样并进行了试验分析,根据实验检测数据分析可得出以下规律: 1.1 土质的影响一般天然细粒土的天然密度在1. 60~1. 75 g/ cm 3 之间,而水又是不可压缩的,密度远小于土的天然密度,所以对于同样的土质,含 水量的增加必然导致土体干密度的减小,这也就意味着作为路基填料时其压实度 的降低,这对地基成型后的强度和稳定性有重要的影响。 1.2 液塑限的影响由以上结果分析,液塑限对软基的断定并非必然的联系,只要含水量控制得当,在透水性较好的砂砾料紧缺地段,用高液限土作路基填料 也可取得很好的效果。事实上,在本工程中,我们遇到了相当多的高液限土(约 为60 %),考虑到该工程为二级公路,压实度要求仅为94 %左右,为降低工程造 价我们采取了分段开挖晾晒、换位填筑路基的办法,将软土全部挖除晾晒换填,考虑到路基耐久性的要求,只是在换填段增加了30~50mm 厚的砂砾料垫层,这 样既解决了软土路段的交通问题,又避免了大量的土方调运,缩短了工期,降低 了造价,取得了很好的综合效益。当然,高液限土( w l > 50 %) 是一种不适宜材料,击实试验表明液限大,最佳含水量也较大,自然对应的最大干密度就会较小,一般高液限粘土的最大干密度为1. 55~1. 65g/cm3。 1.3 孔隙比的影响孔隙比与含水量有较大的关系,其公式为e 0=Gρ ω(1+ ω)/ρ-1,其中ρω为水的密度,G为土粒比重,ρ为天然密度,ω为含水

八种常见不良地基土及其特点

八种常见不良地基土及其特点 软粘土 软粘土也称软土,是软弱粘性土的简称。它形成于第四纪晚期,属于海相、泻湖相、河谷相、湖沼相、溺谷相、三角洲相等的粘性沉积物或河流冲积物。多分布于沿海、河流中下游或湖泊附近地区。常见的软弱粘性土是淤泥和淤泥质土。软土的物理力学性质包括如下几个方面:(1)物理性质 粘粒含量较多,塑性指数Ip一般大于17,属粘性土。软粘土多呈深灰、暗绿色,有臭味,含有机质,含水量较高、一般大于40%,而淤泥也有大于80%的情况。孔隙比一般为1.0-2.0,其中孔隙比为1.0~1.5称为淤泥质粘土,孔隙比大于1.5时称为淤泥。由于其高粘粒含量、高含水量、大孔隙比,因而其力学性质也就呈现与之对应的特点---低强度、高压缩性、低渗透性、高灵敏度。 (2)力学性质 软粘土的强度极低,不排水强度通常仅为5~30kPa,表现为承载力基本值很低,一般不超过70kPa,有的甚至只有20kPa。软粘土尤其是淤泥灵敏度较高,这也是区别于一般粘土的重要指标。 软粘土的压缩性很大。压缩系数大于0.5MPa-1,最大可达45MPa-1,压缩指数约为0.35-0.75。通常情况下,软粘土层属于正常固结土或微超固结土,但有些土层特别是新近沉积的土层有可能属于欠固结土。 渗透系数很小是软粘土的又一重要特点,一般在10-5-10-200px/s之间,渗透系数小则固结速率就很慢,有效应力增长缓慢,从而沉降稳定慢,

地基强度增长也十分缓慢。这一特点是严重制约地基处理方法和处理效果的重要方面。 (3)工程特性 软粘土地基承载力低,强度增长缓慢;加荷后易变形且不均匀;变形速率大且稳定时间长;具有渗透性小、触变性及流变性大的特点。常用的地基处理方法有预压法、置换法、搅拌法等。 2.杂填土 杂填土主要出现在一些老的居民区和工矿区内,是人们的生活和生产活动所遗留或堆放的垃圾土。这些垃圾土一般分为三类:即建筑垃圾土、生活垃圾土和工业生产垃圾土。不同类型的垃圾土、不同时间堆放的垃圾土很难用统一的强度指标、压缩指标、渗透性指标加以描述。 杂填土的主要特点是无规划堆积、成分复杂、性质各异、厚薄不均、规律性差。因而同一场地表现为压缩性和强度的明显差异,极易造成不均匀沉降,通常都需要进行地基处理。 3.冲填土 冲填土是人为的用水力冲填方式而沉积的土。近年来多用于沿海滩涂开发及河漫滩造地。西北地区常见的水坠坝(也称冲填坝)即是冲填土堆筑的坝。冲填土形成的地基可视为天然地基的一种,它的工程性质主要取决于冲填土的性质。冲填土地基一般具有如下一些重要特点。 (1)颗粒沉积分选性明显,在入泥口附近,粗颗粒较先沉积,远离入泥口处,所沉积的颗粒变细;同时在深度方向上存在明显的层理。 (2)冲填土的含水量较高,一般大于液限,呈流动状态。停止冲填后,表

大工论文-浅谈几种特殊土地基及地基处理(模板)

网络高等教育 本科生毕业论文(设计)题目:浅谈几种特殊地基及其处理方法

1 浅谈几种特殊土地及其地基处理方法 内容摘要 随着城市化和工业化进程的快速发展,使得土木工程向各种复杂地基条件的区域发展,特殊土地基的工程特性引起工程师的重视。在施工空间拓展过程中需要面临很多特殊的地质结构,这就对工程的技术人员提出了更高的要求,也为工程建设制造了极大的挑战。不言而喻,建筑物必须建造在良好的地基上,才能保证建筑的安全性。对于一些地质条件不好的地基,需要进行适当的地基处理后,才能建造建筑物。针对这些特殊的地质结构,我们必须要采取适当措施,这样才能保证建筑质量。本文总结了软土,膨胀土,湿陷性黄土、等几种常见的特殊土的重要工程性质,提出了相应的地基处理方法以及工程措施。 关键词:软土;膨胀土;湿陷性黄土;工程特性;地基处理

2 大连理工大学网络高等教育毕业论文(设计)模板 目录 内容摘要 (1) 引言 (4) 1 软土 (5) 2 膨胀土 (8) 2.4.2 土性改良法 (9) 2.4.4 隔水法 (10) 2.5 膨胀土地基的处理原则 (11) 3 湿陷性黄土 (11) 3.1 概述 (12) 3.2 湿陷性土的物理性质 (12) 3.3 湿陷性黄土的力学性质 (13) 3.3.1 压缩性 (13) 3.3.2 抗剪强度 (13) 3.4 湿陷性黄土地基设计措施的选择 (14) 3.4.1 原则 (14) 3.4.2 建筑物的设计措施 (14) 3.4.3 对各类建筑物采取设计时,还要求按下列情况确定 (14) 3.5 湿陷黄土的计算厚度 (15) 3.6 黄土的湿陷起始压力 (15) 3.6.1 黄土湿陷起始压力的测定方法 (15) 3.6.2 影响湿陷起始压力的因素 (15) 3.6.3 地下水位上升的原因 (16) 3.6.4 地下水位上升所引起的地基湿陷变形 (16) 3.6.5 地下水位上升造成建筑物的开裂 (16) 3.6.6 地下水位上升的防治 (16)

城市道路软土地基常用的处理方法

城市道路软土地基常用的处理方法 摘要随着城市化发展,我国的道路建设发展迅速,在道路建设工程中,会遇到多种地质情况并存的情况,而软弱地基会降低路基承载力,如软弱地基处理不当,将会严重影响道路的使用寿命及使用质量。因此,在道路建设中要对地质条件做好详细分析,做好施工方案,从中选择最为经济适合的软基处理方法。 关键词市政工程;软土路基;处理方法 1软土地基对城市道路的影响 软土地基的特点是强度低、固结慢、变形大,在软土地基上修筑道路最突出的问题就是稳定与沉降变形。软土地基对道路还有一种影响,即其含水量不能达到较好的压实要求和其他的技术标准。 2软弱地基的处理方法 针对软弱土地基的特性,目前在道路施工过程中主要通过换填土、夯实、深层搅拌桩、喷粉桩、塑料排水板、碎石桩、加筋等技术手段对软弱土地基进行处理,如选用不当或施工方法错误,不按规范和操作规程进行,就会造成质量事故。下面对以上方法进行单独介绍。 2.1换填土法 换土加固是处理浅层地基的方法,所谓换填土法是指当地基持力层的承载力和变形满足不了设计要求,而软弱土层的厚度又不是很大时,一般采用把一定厚度的弱土层挖除,然后分层换填强度较大的砂或其它性能稳定、无侵蚀性的材料,并压实至要求的密实度为止,多用于公路构筑物的地基处理。机械碾压、重锤夯实、平板振动可作为压实垫层的不同施工方法,这些施工方法不但可处理分层回填土,又可加固地基表层土。换填土法的加固原理是根据土中附加应力分布规律,让垫层承受上部较大的应力,软弱层承担较小的应力,以满足设计对地基的要求。换填土法适用于淤泥、淤泥质土、湿陷性黄土、素填土、杂填土地基及暗沟、暗塘等的浅层处理。换填土法要注意换土夯实中出现橡皮土,换土用的土料不纯、分层虚铺厚度过大、土料含水量过大、过小或机械使用不当,夯击能量不能达到有效深度时,都会造成换土后的地基达不到设计要求的密实度。 2.2夯实法 夯实地基分重锤夯实地基和强夯夯实地基: 1)重锤夯实是用起重机械将特制的重锤,提升到一定高度后,将重锤自由下落,重复夯击基土表面,使地基土受到压实加固,从而达到满足设计要求的承载力。是属于浅层地基处理方法之一,此法适用于地下水位以上稍湿的粘性土、

特殊土种地基工程特性及地基处理研究

特殊土种地基工程特性及地基处理研究 要:本文介绍了特殊土种的开发必要性及类型、特点,处理方法,并分析了其发展前景。 关键词:特殊土种地基工程;特性;地基处理;有效措施 1 概述 特殊土是指在特定地理环境或人为条件下形成的具有特殊性质的土。它的分布一般具有明显的地域性。特殊土种包括以下几种:①杂填土:房渣土(建筑垃圾)、工业废渣、生活垃圾等杂物堆积而成的土。 ②盐渍土:地表下1m深的土层内易溶盐平均含量大于0.3%的土。③膨胀土:吸水后显著膨胀,失水后显著收缩的高液限粘质土。④湿陷性黄土:受水浸湿后会产生较大的沉陷的黄土。其他未列入本规范的土类,应遵照有关规定进行施工。 随着城市化和工业化进程的快速发展,特殊土种地基的工程特性引起工程师的重视,相应的地基处理方法以及工程注意事项也至关重要。这就需要采取有效处理措施预防工程灾害发生。一般来讲,土的工程性能决定性体现在其物质成分、结构特征及形成过程。笔者分析认为,这也是我们所说的土质学进行土性分析的根本。 2 常见的特殊土种及其工程特性 2.1 湿陷性黄土及其工程特性 黄土在一定压力下遇水浸湿后,一般来说它体的结构性能就会被迅速破坏,其强度也会随着迅速的降低,我们把具有这样条件的土性特性的土称为湿陷性黄土。经过笔者的分析总结认为,在一定压力下受水浸

湿是黄土湿陷现象产生所必须的外界条件很多。在实际工程施工中,如果压力不断增加,黄土的湿陷性就会增加,但是当压力超过某一数值后,再增加压力,湿陷性就会大大降低。 2.2 液化土及其工程特性 地震的震害现象包括振动液化、滑坡、地裂和震陷等方面,液化土的治理是抗震设计的一个重要内容。就无粘性土而言,这种由固体状态变为液体状态的转化是孔隙水压力增大和有效应力减少的结果。在连续的震动作用下,砂土层内的孔隙水压力累积增高到某一时刻,就会等于初始上覆有效压力。液化现象是一种特殊的强度问题,它发生在饱和砂土和饱和粉土中。 2.3 盐渍土及其工程特性 所谓的盐渍土一般是指易溶盐的土。实际应用中如果当自然条件发生变化,固相中的结晶易溶盐将会被溶解为液体,这个时候盐渍土就会发生化学变化,它可由三相体变为二相体,盐渍土相态的变化对上部结构具有严重影响。盐渍土由于富含易溶盐,使土中微颗粒胶结成小集粒,当水浸入后土中盐分就会溶解,土颗粒的分散度也将会增加。 3 特殊土种地基的有效处理措施 3.1 置换垫层法地基处理措施 目前,在土木工程建设施工过程中,当遇到软弱或不良地基条件时,我们就需要对天然地基进行处理,以满足建筑物对地基的实际要求。用物理力学性质较好的岩土材料置换天然地基中软弱土形成垫层,减少沉降的地基处理方法称为置换垫层法。该方法适用于浅层软弱不良地基的

特殊土地基处理方法

四、地基处理方法 (一)、对暗浜、暗塘。墓穴、古河道的处理 1、当范围不大时,一般采用基础加深或换垫处理。 2、当宽度不大时,一般采用基础梁跨越处理 3、当范围较大时,一般采用短桩处理 (二)、对表层或浅层不均匀地基及软土的处理 1、对不均与地基长采用机械碾压法或夯实法。 2、对软层长采用垫层法。 (三)、对厚层软土处理 1、采用堆载预压法或真空预压法,或在地基土层中埋置砂井、袋装砂井或塑料排水板与预压相结合的方法。 2、采用复合地基,包括砂桩、碎石桩、灰土桩、旋喷桩和小断面的预制桩等。 3、采用桩基,穿透软土层以达到增大承载力和减小沉降量的目的。 膨胀土 换土、砂石垫层、土性改良等方法。也可采用桩基或墩基。 红粘土 三、工程地质性质 与一般粘土相比,天然含水量高1倍,孔隙比高30-50%,液限也高出1~2倍,但承载能力却并不低,一般为150~250Kpa,可以作为八层以下民用建筑和单层工业厂房的天然地基。而300Kpa以上的也不少见,个别可达到380Kpa 。 1、红粘土的裂隙性 裂隙为竖向构造,较少形成横向贯通裂缝。大多数裂隙有所谓“一裂到底”的特{正,即裂隙从顶面一直裂至基岩面 2、红粘土的胀缩性 红粘土遇水后膨胀量小,而失水后的收缩量大,这是红粘土与其它膨胀土不尽相同而又有别于一般性粘土所特有的性质,特别是在失水而剧烈收缩后,再遇水浸湿,则可产生较大的膨胀,并且甚至产生湿化和裂解等现象。如反复循环试验,有的土样膨胀量可超过原状土的大小。 红粘土的这种特性对施工不利,如在气温高的夏季,基槽在开挖后,若不及时建筑基础,则地基表层干缩加剧而迅速龟裂,再加上红粘土具有竖向裂隙,水分能从深层蒸发出来,使裂隙宽度加大,再遇到雨水或地表水侵入,地基反复湿胀、湿化,最后使土的结构遭到破坏,红粘土会丧失作天然地基的可能性. 3、红粘土层上硬下软的特性 一般来说,上层硬塑土层厚度约占整层红粘土的7O%,厚度在3— 5 m范围内。可塑状态土层厚度约占l5%,接近基岩的软塑和流塑状土,约占lO~15%。由于红粘土有这种上硬下软的特性,故在施工中,应尽量利用上层硬塑层作天然地基。 在基础施工中,开挖基槽,一般在见红粘土后挖去表层20cm 即可作天然地基。由于硬塑红粘土一般厚3- 5 m,故建筑物的附加应力扩散传递通过可塑层再达到软塑和流塑层时,已经非常微小,不会影响建筑物的安全。 四、红粘土地基的处理措施 1、对于六层和六层以下的建筑物,用红粘土作天然地基,可采用毛石混凝土条形基础。 2、对不均匀地基,宜作地基处理。对外露的石芽可用褥垫;对土层厚度、状态不均匀的地段可置换。

软土地基处理方案

一、引言 如果地基的承载能力足够,则基础的分布方式可与竖向结构的分布方式相同。但有时由于土或荷载的条件,需要采用满铺的伐形基础。伐形基础有扩大地基接触面的优点,但与独立基础相比,它的造价通常要高的多,因此只在必要时才使用。不论哪一种情况,基础的概念都是把集中荷载分散到地基上,使荷载不超过地基的长期承载力。因此,分散的程度与地基的承载能力成反比。有时,柱子可以直接支承在下面的方形基础上,墙则支承在沿墙长度方向布置的条形基础上。当建筑物只有几层高时,只需要把墙下的条形基础和柱下的方形基础结合使用,就常常足以把荷载传给地基。这些单独基础可用基础梁连接起来,以加强基础抵抗地震的能力。只是在地基非常软弱,或者建筑物比较高的情况下,才需要采用伐形基础。多数建筑物的竖向结构,墙、柱都可以用各自的基础分别支承在地基上。中等地基条件可以要求增设拱式或预应力梁式的基础连接构件,这样可以比独立基础更均匀地分布荷载。 如果地基承载力不足,就可以判定为软弱地基,就必须采取措施对软弱地基进行处理。软弱地基系指主要由淤泥、淤泥质土、冲填土、杂填土或其他高压缩性土层构成的地基。在建筑地基的局部范围内有高压缩性土层时,应按局部软弱土层考虑。勘察时,应查明软弱土层的均匀性、组成、分布范围和土质情况,根据拟采用的地基处理方法提供相应参数。冲填土尚应了解排水固结条件。杂填土应查明堆积历史,明确自重下稳定性、湿陷性等基本因素。 在初步计算时,最好先计算房屋结构的大致重量,并假设它均匀的分布在全部面积上,从而等到平均的荷载值,可以和地基本身的承载力相比较。如果地基的容许承载力大于4 倍的平均荷载值,则用单独基础可能比伐形基础更经济;如果地基的容许承载力小于2倍的平均荷载值,那么建造满铺在全部面积上的伐形基础可能更经济。如果介于二者之间,则用桩基或沉井基础。 二、地基的处理方法 利用软弱土层作为持力层时,可按下列规定执行: 1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施; 2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层; 3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。

软土地基中几个问题的分析

软土地基中几个问题的分析 摘要:位于滨江、谷底、河滩等的城市地带,经常存在着含水量高、孔隙大、压缩性强、抗剪能力弱、承载能力低的软土。在这样的地质环境下进行市政工程施工,如果没有对地基做适当的处理,地基将难以承受较大的荷载,譬如路堤可能由于地基不稳而引起沉降开裂甚至剪切破坏。本文将以市政工程软土地基的施工问题为切入点,探讨工程软土地基的处理方法,以求改善地基的变形性和渗透性等工程性质,提高软土地基的抗剪能力和承载能力。 关键词:市政工程,软土地基,问题处理 一、市政工程软土地基的常见问题 软土俗称淤泥质土,包括淤泥、泥炭、冲填土、杂填土等。地基中不同沉积年代和成因类型的软土,对市政工程施工带来不利的影响。笔者根据施工实践,对软土地基存在危害性进行分析,认为形成软土地基危害性的主要原因有: 1.承载力太低的原因 软土地基的危害性之一就是承载能力弱,在高强度的施工环境下,地基的整体很容易遭到破坏。软土地基在承载力不足的原因,是因为软土含水量高,譬如淤泥软土,含水量最低35%,最高为50%。在高含水量的状态下,软土的孔隙被水充满,致使土质疏松,容易被压缩,承载强度就越低。 2.沉降量太大的原因 软土地基的不均匀沉降,会影响工程施工功能的正常发挥,譬如在市政道路施工中,沉降量太大的软土地基道路容易出现裂缝,致使路面不均匀,甚至使得地下管线断裂。软土地基沉降量太大的原因是弱透水性使然,软土的渗透系数小,在压力的作用下难以在短时间内固结,如果在加荷初期受到高强度的孔隙水压力,地基强度就会加速降低。目前一些市内交通主干道的路基,软土沉降情况严重,这也是工程界的焦点难题之一。 3.地基上建筑物移位的原因 软土地基上的建筑落成后,过了一段时间可能发生移位情况,使得周边其他建筑和市政地下管网的安全性受到威胁。这种移位情况缘于软土的高压缩性,软土的压缩性与其含水量成正比,在地基上部建筑物荷载作用下,会发生不均匀沉降,在超出地基允许承载力之外时,就会发生差异性的倾斜,引起建筑物移位。 4.地下水破坏的原因 软土地基的市政工程地下水含量高,地下水的承压力会影响基础施工,甚至破坏基础施工。软土地基本身的抗剪强度小,受到荷载力之后,孔隙的水没有排

分析几种特殊土地基的工程特性及地基处理

分析几种特殊土地基的工程特性及地基处理 城市化与工业化的快速发展,使建筑业进入了新时代,土木工程也开始向拥有复杂地基条件的地区展开工作。工程建筑必须先打地基,建筑工程的施工过程首要考虑因素就是地基条件,只有确定土壤种类才能采取针对性措施,保证工程顺利进行。特殊土地基工程特性引起了工程師的高度重视,也对工程技术人员提出了更高的要求。 标签:特殊土地基地基处理特殊土壤湿陷性黄土 近些年,建筑业渐渐兴起并建设了各种各样的建筑用以满足人们的日常生活工作的需要,例如居民楼,办公楼或标志性建筑物等,但建筑物多种多样的安全建设全都依赖于对不同地基的特殊处理。近年来,对复杂地基条件地区进行开展,地基特殊土壤的工程特性也渐渐被建筑业悉知并成为了工程中首要注意的问题。下面,我们对几种特殊土地基进行介绍并分析特殊土地基的处理办法。 1湿陷性黄土 1.1土地基特性 湿陷性黄土属于特殊性质的土壤,当土壤受到压力后会有下沉现象发生,待下沉稳定后其土质结构极易被迅速破坏,并有附加下沉效果。尤其是黄土在压力后再遇水,土质结构更容易被破坏且更加迅速。在湿陷性黄土地质上进行施工建设的压力若逐渐增大,则黄土湿陷性也会增加,但若压力超过固定数值后继续增加压力,湿陷性则会大大降低。 1.2处理方法 建筑施工中处理湿陷性黄土,根据其不同情况共有四种处理方法:(1)灰土或素土回填法。把地基底部湿陷性黄土土层全部挖出或将其挖至指定深度,再利用灰土或素土在开挖处根据不同处理参数进行回填工作并层层夯实基础。以上就是灰土或素土回填的处理方法,利用灰土或者素土进行回填是建筑施工中针对湿陷性黄土的、比较常用的方法,得到广泛使用的同时也取得了很好的效果。(2)夯实法。顾名思义,夯实法即借用外力对土质结构不稳定的土壤进行土壤密度加大的工作。夯实法有重锤法与强夯法两种,根据不同实际情况而采取不同措施。重锤法是解决浅层土层湿陷性问题的最好方法,它能够在保证土壤最佳含水量的前提下解决湿陷性问题。强夯法则适用于较深层土壤,方法是使用重锤连续夯击两次。但在采取此法时要确定各方面材料的准确性,确保施工质量。(3)挤密桩处理法。挤密桩处理是指在施工过程中,在土层上钻孔并将石灰粉或石灰土等根据实际情况填到孔中,将其夯实形成挤密桩,但在施工同时要注意防水处理,必须严格按照操作规范执行具体步骤。(4)预湿处理法。预湿处理法是针对自重湿陷性黄土而采用的处理办法,是指事先将地基进行浸湿处理使其发生人为湿陷,等土壤充分湿陷后进行人工处理及基础施工。此法适用于消除地下数米以外的自

软土地基路堤设计计算书样本

理正软土地基路堤设计软件 计算项目: 简单软土地基路基设计 1 计算时间: -11-17 15:15:10 星期二 =========================================================== ================= 原始条件: 路堤设计高度: 3.600(m) 路堤设计顶宽: 14.000(m) 路堤边坡坡度: 1:4.000 工后沉降基准期结束时间: 60(月) 荷载施加级数: 1 序号起始时间 (月) 终止时间(月) 填土高度(m) 是否作稳定计算 1 0.000 6.000 3.600 是

路堤土层数: 1 超载个数: 0 层号层厚度(m) 重度(kN/m3) 内聚力(kPa) 内摩擦角(度) 1 3.600 18.000 17.000 30.000 地基土层数: 5 地下水埋深: 1.000(m) 层号土层厚度重度饱和重度地基承载力快剪C 快剪? 固结快剪竖向固结系水平固结系排水层 (m) (kN/m3) (kN/m3) (kPa) (kPa) (度) ?(度) 数(cm2/s) 数(cm2/s) 1 1.100 18.400 18.520 60.000 7.500 24.000 0.000 0.01500 0.01500 否 2 3.500 17.500 17.740 50.000 13.300 8.900 0.000 0.00800 0.00800 否 3 1.600 18.400 18.520 100.000 4.500 26.300 0.000 0.01500 0.01500 否 4 9.800 18.800 19.020 180.000 11.100 9.100 0.000 0.01500 0.01500 否 5 7.600 18.400 18.520 160.000 4.500

几种特殊土地基的工程特性及地基处理

几种特殊土地基的工程特性及地基处理 城市化和工业化进程的快速发展,使得土木工程向各种复杂地基条件的区域发展,特殊土地基的工程特性引起工程师的重视。总结了湿陷性黄土、液化土、盐渍土等几种特殊土的重要工程性质,提出了相应的地基处理方法以及工程注意事项;最后针对山西采煤大省的特点,对老采空区上建(构)筑物基础的稳定性评价、勘察技术及处治技术进行了论述。 关键词:膨胀土;湿陷性黄土;盐渍土;地基处理 我国地域辽阔,从沿海到内陆,从山区到平原,分布着多种多样的土类。由于生成时地理环境、气候条件、地质成因不同以及次生变化等原因,使一些土类具有特殊的成分、结构和工程性质。通常把这些具有特殊工程性质的土类称为特殊土。随着人类生活水平的不断提高,土地的需求日益上涨,人们不得不在各种复杂和软弱地基上开展工程建设。因此,正确认识各种特殊土的工程特性就显得尤为重要。 1 膨胀土 膨胀土是指土中黏粒成分主要由亲水性矿物组成,同时具有显著的吸水膨胀和失水收缩两种变形特性和黏性土。膨胀土地基的国内外研究动态国际膨胀土工程问题,始于20世纪20年代末30年代初。由于建筑技术的发展,一些国家过去本来能够承受较大变形的轻载框架式建筑物,逐渐被承受变性较差的砖石结构所取代,随之在膨胀土地区便出现了房屋开裂问题。 (1)膨胀土的物理性质及力学性质分析 膨胀土按粘土矿物分类,可以归纳为两大类:一类以蒙脱石为主,另一类以伊利土和高岭土为主。蒙脱石粘土在含水量增加时出现膨胀,而伊利土和高岭土则发生有限的膨胀,引起膨胀土发生变化的条件,分析概述如下: 1.1 含水量 膨胀土具有很高的膨胀潜势,这与它含水量的大小及变化有关。如果其含水量保持不变,则不会有体积变化。在工程施工中,建造在含水量保持不变的粘土上的构造物不会遭受由膨胀而引起的破坏。当粘土的含水量发生变化,立即就会产生垂直和水平两个方向的体积膨胀。含水量的轻微变化,仅1%~2%的量值,就足以引起有害的膨胀。 1.2 干容量 粘土的干容重与其天然含水量是息息相关的,干容重是膨胀土的另一重要指标。Y=18.0KN/M3的粘土,通常显示很高的膨胀潜势。

常见软土地基的加固方法

一.软土的定义 所谓软土,从广义上讲就是强度低、压缩性高的软弱土层。 二.软土的类型:按孔隙比及有机质含量为主划分为:软粘性土、淤泥质土、淤泥,称软土; 泥炭质土、泥炭,称为泥沼。 三.软土的特性 a.天然含水量高、孔隙比大。含水量在34%~72%之间,孔隙比在1.0~1.9之间,饱和度一般大于95%,液限一般为35%~60%,塑性指数一般为13~30,天然容积密度为15~19KN/m3 b.透水性差。大部分软土的渗透系数为10-8~10-7cm/s c.压缩性高。压缩系数为0.3~0.5,属于高压缩性土。 d.抗剪强度低。其快剪粘聚力在10KPa左右,快剪内摩擦角在0~5o e.具有触变性。一旦受到扰动,土的强度明显下降,甚至成流动状态。 f.流变性显著。其长期抗剪强度只有一般抗剪强度的0.4~0.8倍。 四.软土地基的处理原则 主要原则是:技术可行、经济合理、满足工期要求。 五.软土地基的加固方法 1.垫层与浅层处治。设置于路堤与软基之间的透水性垫层是地基中的孔隙水排出的通道,软土地基上修筑的路堤,其下均宜设置透水性垫层。浅层处治适用于表层软土厚度小于3m的软土路段的处理。 2、辗压实法——挖制最佳含水量,对土基分层压实,以提高强度和降低压缩性。 强夯法是以8—12t(甚至20t)的重锤,8-20m落距(最高达40m),土基进行强力夯击,利用冲击波和动应力达到加固土基的目的。 3、排水固结法——饱和软土在荷载作用下,排水固结后,抗剪强度可得到提高,则达到加固的目的。 4、挤密法——土基成孔后,在孔中灌以砂、石、灰土石灰等材料,捣实成直径较大的桩体,孔隙减少,提高承载力和加固的目的。 砂井——是利用各种打桩机具击入钢管或高压射水,爆破等方法在地基中获得一定规律排列的孔眼并灌入中、粗砂形成砂柱。 A.外砂井顶面应铺设砂垫层,以构成完整的地基排水系统; B.砂井直径一般为20~30cm,软土厚大于5m; C.砂井施工方法——打入空心管法、射水法。 挤实砂(碎石)桩——是以撞击或振动的方法强力将砂、石等材料挤入软土地基中,形成直径较大的密实柱体,提高软土地基的整体抗剪强度,减少沉降。 生石灰桩——用生石灰碎块置于桩孔中形成桩体。其孔径20~40cm,长在12m以内。 5、化学加固法——利用化学溶液或胶结制,采用压力灌或搅拌混合料等措施,使土粒胶结起来,达到加固土的目的。 6、抛石挤淤——是强置换土的一种形式,不必抽水挖淤,施工简便。适用于软土3~4m,石块大小不小于0.3m。 7、反压护道法——是在路堤两侧填筑一定宽度和不定期定高度的护道,它运用力学平衡原理保持路基的稳定。适用于反压护道高度为1/2路堤高度。 8、土工合成材料自治——土工合成材料具有加筋、防护、过滤、排水、隔离等功能。利用

几种特殊土地基上的基本工程

第七章几种特殊土地基上的基础工程特殊土定义:由于生成时不同的地理环境、气候条件、地质成因以及次生变化等原因,使一些土类具有特殊的成分、结构和工程性质。通常把这些具有特殊工程性质的土类称为特殊土。特殊土种类很多,大部分都具有地区特点,故又有区域性特殊土之称。 第一节湿陷性黄土地基 一、湿陷性黄土的定义和分布 湿陷性黄土的定义:凡天然黄土在一定压力作用下,受水浸湿后,土的结构迅速破坏,发生显著的湿陷变形,强度也随之降低的,称为湿陷性黄土。湿陷性黄土分为自重湿陷性和非自重湿陷性两种。黄土受水浸湿后,在上覆土层自重应力作用下发生湿陷的称自重湿陷性黄土;若在自重应力作用下不发生湿陷,而需在自重和外荷共同作用下才发生湿陷的称为非自重湿陷性黄土。 湿陷性黄土的分布:在我国,它占黄土地区总面积的60%以上,约为40万km2,而且又多出现在地表浅层,如晚更新世(Q3)及全新世(Q4)新黄土或新堆积黄土是湿陷性黄土主要土层,主要分布在黄河中游山西、陕西、甘肃大部分地区以及河南西部,其次是宁夏、青海、河北的一部分地区,新疆、山东、辽宁等地局部也有发现。 二、黄土湿陷发生的原因和影响因素 黄土湿陷的原因: (一)水的浸湿:由于管道(或水池)漏水、地面积水、生产和生活用水等渗入地下,或由于降水量较大,灌溉渠和水库的渗漏或回水使地下水位上升等原因而引起。但受水浸湿只是湿陷发生所必需的外界条件;而黄土的结构特征及其物质成分是产生湿陷性的内在原因。

(二)黄土的结构特征:季节性的短期雨水把松散干燥的粉粒粘聚起来,而长期的干旱使土中水分不断蒸发,于是,少量的水分连同溶于其中的盐类都集中在粗粉粒的接触点处。可溶盐逐渐浓缩沉淀而成为胶结物。随着含水量的减少土粒彼此靠近,颗粒间的分子引力以及结合水和毛细水的联结力也逐渐加大。这些因素都增强了土粒之间抵抗滑移的能力,阻止了土体的自重压密,于是形成了以粗粉粒为主体骨架的多孔隙结构。 黄土受水浸湿时,结合水膜增厚楔入颗粒之间。于是,结合水联结消失,盐类溶于水中,骨架强度随着降低,土体在上覆土层的自重应力或在附加应力与自重应力综合作用下,其结构迅速破坏,土粒滑向大孔,粒间孔隙减少。这就是黄土湿陷现象的内在过程。 (三)物质成分:黄土中胶结物的多寡和成分,以及颗粒的组成和分布,对于黄土的结构特点和湿陷性的强弱有着重要的影响。胶结物含量大,可把骨架颗粒包围起来,则结构致密。粘粒含量多,并且均匀分布在骨架之间也起了胶结物的作用。这些情况都会使湿陷性降低并使力学性质得到改善。反之,粒径大于0.05mm的颗粒增多,胶结物多呈薄膜状分布,骨架颗粒多数彼此直接接触,则结构疏松,强度降低而湿陷性增强。此外,黄土中的盐类,如以较难溶解的碳酸钙为主而具有胶结作用时,湿陷性减弱,但石膏及易溶盐的含量愈大时,湿陷性增强。 此外,黄土的湿陷性还与孔隙比、含水量以及所受压力的大小有关。天然孔隙比愈大,或天然含水量愈小则湿陷性愈强。在天然孔隙比和含水量不变的情况下,随着压力的增大,黄土的湿陷量增加,但当压力超过某一数值后,再增加压力,湿陷量反而减少。 三、黄土湿陷性的判定和地基的评价 (一)黄土湿陷性的判定

浅谈软土地基与地基处理本科毕业论文

网络高等教育 本科生毕业论文(设计) 题目:浅谈软土地基与地基处理 学习中心:奥鹏远程教育学习中心(直属)[2]VIP 层次:专科起点本科 专业:土木工程(道桥方向) 年级:秋季 学号: 学生: 指导教师:颖 完成日期: 201 年 08 月 20 日

容摘要 所谓软土,是指强度低,压缩性较高的软弱土层。多数含有一定的有机物质。由于软土强度低,沉隐量大,往往给道路工程带来很大的危害,如处理不当,会给公路的施工和使用造成很大影响。软土根据特征,可划分为:软粘性土、淤泥质土、淤泥、泥炭质土及泥炭五种类型。路基中常见的软土,一般是指处于软朔或者流朔状态下的粘性土。其特点是天然含水量大、孔隙比大、压缩系数高、强度低,并具有蠕变性、触变性等特殊的工程地质性质,工程地质条件较差。选用软土作为路基应用,必须提采取出切实可行的技术措施。 这种土质如果在施工中出现在路基填土或桥涵构造物基础中,最佳含水量不易把握,极难达到规定的压实度值,满足不了相应的密实度要求,在通车后,往往会发生路基失稳或过量沉陷。其危害性显而易见,故禁止采用。 在软土地基上修筑路堤,特别是桥头引道,如不采取有效的加固措施,就会产生不同程度的坍滑或沉陷,导致公路破坏或不能正常使用。 软土地基下沉的一个主要原因是软土地基的沉降,包括瞬时沉降、固结沉降和次固结沉降三部分。根据沉降标准,按我国现行的有关规定,用容许工后沉降——路面设计使用年限的剩余沉降来控制(其值见有关设计标准)。 一般地,除要确保新填筑路基的密实度以减少沉降外,包括原地面的地基总沉降必须达到基本稳定,沉降量大致达到总沉降量的80%以上时,才容许铺路面。软土地基沉降严重时,不仅增加填方数量,而且沉降或水平位移对临近填土的桥台、挡土墙、涵洞,甚至对附近的住宅、农田以及路线的技术标准都会产生很大的影响。 为此,首先应做好深入细致的工程地质勘探工作,充分研究已有地质资料,采取调绘、钻探、原位测试及物探等综合勘测手段。查明路段所处的地形、地质、水文、气候、径流条件等自然环境条件和路基排水条件,明确松软土层的成因、类型、分布围及其在路线通过地带分布的具体情况,确定软土层在纵向、横向的分布厚度、层次、各层土的土质及物理力学性质(如天然容重量、天然含水量、塑限、液限、孔隙比、聚力、摩擦角、承载力及渗透系数等)。根据路基土的工程特性,选用适当的处理措施。 关键词:软土定义,软土下沉,软土危害,软土勘察

软土地基常见五种处理方法

鉴于淤泥软土地基承载力低,压缩性大,透水性差,不易满足水工建筑物地基设计要求,故需进行处理,下面介绍淤泥软土地基五种处理方法。 1、桩基法 当淤土层较厚,难以大面积进行深处理,可采用打桩办法进行加固处理。而桩基础技术多种多样,早期多采用水泥土搅拌桩、砂石桩、木桩,目前很少使用,一是水泥土搅拌桩水灰比、输浆量和搅拌次数等控制管理自动化系统未健全,设备陈旧,技术落后,存在搅拌均匀性差及成桩质量不稳定问题;二是砂石桩用以加固较深淤泥软土地基,由于存在工期长,工后变形大等问题,已不再用作对变形有要求的建筑地基处理;三是民用建筑已禁用木桩基础。 钢筋混凝土预制桩(钢筋混凝土桩和预应力管桩)目前由于具有较强承载力,投资省,质量有保证,施工速度快等特点,得到普遍运用,如本人设计龙海市角美镇金山水闸,其地质条件覆盖一层10m以上厚的淤泥土层,地基处理采用边长为250mm钢筋混凝土预制方桩,挤密淤土层并靠摩擦承载,钢筋混凝土预制桩还具有抗水闸水压力产生水平荷载,达到水平稳定作用。 淤土层较厚地基处理还可以采用灌注桩,打灌注桩至硬土层,作承载台,灌注桩有沉管灌注桩和冲钻孔灌注桩,但两种方法灌注桩还存在一些技术难题,一是沉管灌注桩在深厚软土中存在桩身完整性问题;

二是冲钻孔灌注桩存在泥浆污染问题,桩身混凝土灌注质量,桩底沉渣清理和持力层判断不易监控等问题。福建省龙海市发生几起灌注桩基础民用建筑不均匀沉陷,导致墙体裂缝事件,是由于施工中存在上述技术问题造成。 2、换土法 当淤土层厚度较簿时,也可采用淤土层换填砂壤土、灰土、粗砂、水泥土及采用沉井基础等办法进行地基处理,鉴于换砂不利于防渗,且工程造价较高,一般应就地取材,以换填泥土为宜。换土法要回填有较好压密特性土进行压实或夯实,形成良好的持力层,从而改变地基承载力特性,提高抗变形和稳定能力,施工时应注意坑边稳定,保证填料质量,填料应分层夯实。 3、灌浆法 是利用气压、液压或电化学原理将能够固化的某些浆液注入地基介质中或建筑物与地基的缝隙部位。灌浆浆液可以是水泥浆、水泥砂浆、粘土水泥浆、粘土浆及各种化学浆材如聚氨酯类、木质素类、硅酸盐类等。灌浆法对加固淤泥软土地基具有明显效果,如福建省龙海市角美壶屿港水闸由于淤泥软基不均匀,沉陷闸基沉降最大达到0.63m,加固时采用单管高压旋喷灌浆处理,每个闸墩上、下游侧和中间各设5个灌浆孔,沿闸墩轴线两侧布孔,灌注水泥浆,成桩直径0.5m,伸

相关文档
最新文档