混凝土试验实验报告 步骤
混凝土强度实验报告结论
一、实验目的本次实验旨在通过混凝土立方体抗压强度试验,检验混凝土拌合物在不同配合比、养护条件下的强度,为实际工程中混凝土配比设计和质量控制提供依据。
二、实验方法1. 实验材料:水泥、砂、石子、水、外加剂等。
2. 实验仪器:混凝土立方体试模、压力机、电子秤、搅拌机等。
3. 实验步骤:(1)按照实验设计要求,计算各配合比所需材料用量。
(2)将水泥、砂、石子等材料按比例称量,搅拌均匀。
(3)将搅拌好的混凝土拌合物倒入试模中,振动密实。
(4)将试模置于标准养护室进行养护。
(5)养护至规定龄期后,取出试件进行抗压强度试验。
(6)记录试验数据,分析结果。
三、实验结果与分析1. 实验结果根据实验数据,得出以下各龄期混凝土立方体抗压强度:- 1d龄期:C15强度为10.5MPa,C20强度为14.8MPa,C25强度为19.2MPa,C30强度为24.6MPa。
- 3d龄期:C15强度为16.3MPa,C20强度为21.7MPa,C25强度为27.8MPa,C30强度为35.2MPa。
- 7d龄期:C15强度为21.9MPa,C20强度为29.5MPa,C25强度为38.1MPa,C30强度为48.3MPa。
- 28d龄期:C15强度为30.6MPa,C20强度为40.3MPa,C25强度为51.9MPa,C30强度为63.4MPa。
2. 结果分析(1)混凝土强度随龄期增长而提高,且增长速度逐渐放缓。
1d龄期强度增长较快,28d龄期强度达到最大值。
(2)不同配合比的混凝土强度存在差异,水胶比对混凝土强度影响较大。
水胶比越小,混凝土强度越高。
(3)外加剂对混凝土强度有促进作用,但需根据具体外加剂类型和掺量进行调整。
(4)养护条件对混凝土强度有较大影响,适宜的养护条件有利于提高混凝土强度。
四、结论1. 混凝土立方体抗压强度试验结果符合实际工程需求,为混凝土配比设计和质量控制提供了依据。
2. 在实际工程中,应根据工程特点、环境条件和设计要求,合理选择混凝土配合比、外加剂和养护措施。
混凝土成型实验报告
混凝土成型实验报告
一、实验目的
本次实验旨在研究混凝土的成型过程,了解混凝土在成型过程中的物理性质和工艺要求。
通过实际操作,掌握混凝土成型的基本方法和注意事项。
二、实验原理
混凝土是一种由水泥、骨料、粗骨料、掺合料等按照一定比例配制而成的人工石料,其制作过程主要包括拌合、浇筑、振实、养护等步骤。
在混凝土实验中,成型是混凝土工艺的重要环节,直接影响混凝土的强度和密实性。
三、实验材料与仪器
•水泥
•砂
•碎石
•水
•搅拌机
•试模具
•振动台
四、实验步骤与方法
1.将水泥、砂、碎石按照设计配合比称量好。
2.将混合物放入搅拌机中进行拌合,保证混合均匀。
3.准备好试模具,将混凝土倒入模具中并用振动台进行振实处理。
4.等混凝土凝固后,取出样品进行养护。
五、实验注意事项
1.配合比的准确性对混凝土强度至关重要,应严格按照设计要求进行配比。
2.搅拌时间不宜过长,避免混凝土早期硬化。
3.振实时应控制振动时间和力度,以避免产生气孔。
4.混凝土养护过程中,应及时进行保湿,保证混凝土的正常养护。
六、实验结果与分析
经过实验操作,成功制作出符合要求的混凝土样品。
经检测,样品强度达到设计要求,密实性良好。
通过本次实验,加深了对混凝土成型工艺的理解,为今后的相关研究和工程实践提供了实用经验。
七、结论
本实验通过混凝土的成型过程,深入探讨了混凝土的物理性质和工艺要求,为后续混凝土工程提供了有益参考。
掌握了混凝土成型的基本方法和注意事项,为日后的工作积累了经验。
混凝土常见的实验报告
一、实验目的1. 了解混凝土的组成及各组分的作用;2. 掌握混凝土配合比设计的方法;3. 掌握混凝土拌合、养护、强度测试等基本操作;4. 评估混凝土的性能。
二、实验原理混凝土是由水泥、砂、石子、水等材料按一定比例配合,经搅拌、浇筑、养护等工艺制成的建筑材料。
混凝土的强度、耐久性、和易性等性能与其组成、配合比及施工工艺密切相关。
三、实验材料1. 水泥:P.O 42.5;2. 砂:中砂;3. 石子:5-20mm;4. 水:自来水;5. 减水剂:聚羧酸减水剂;6. 实验设备:混凝土搅拌机、混凝土试验台、坍落度筒、养护箱、压力试验机等。
四、实验步骤1. 混凝土配合比设计根据实验要求,设计C30混凝土配合比,具体如下:水泥:砂:石子:水:减水剂 = 1:1.6:2.5:0.42:0.022. 混凝土拌合(1)将水泥、砂、石子、水、减水剂按比例称量;(2)将水泥、砂、石子混合均匀;(3)将混合好的材料加入搅拌机中,加入减水剂,搅拌均匀;(4)继续搅拌,直至混凝土拌合物达到要求的状态。
3. 混凝土浇筑将拌好的混凝土倒入模具中,振捣密实,确保混凝土无气泡。
4. 养护将混凝土模具放入养护箱中,温度控制在20±2℃,相对湿度控制在95%以上,养护时间分别为1天、3天、7天、28天。
5. 强度测试将养护好的混凝土试件取出,进行抗压强度测试。
6. 数据记录与分析记录混凝土拌合物坍落度、抗压强度等数据,分析混凝土性能。
五、实验结果与分析1. 混凝土拌合物坍落度:坍落度达到要求,说明混凝土拌合均匀,流动性良好。
2. 混凝土抗压强度:- 1天:30.2MPa;- 3天:39.5MPa;- 7天:51.3MPa;- 28天:63.4MPa。
根据实验结果,C30混凝土在28天龄期的抗压强度达到设计要求,说明混凝土强度满足设计要求。
六、结论1. 通过本次实验,掌握了混凝土的组成、配合比设计、拌合、养护、强度测试等基本操作;2. 设计的C30混凝土配合比满足设计要求,强度满足设计标准;3. 实验结果为混凝土工程提供了参考依据。
创新型混凝土实验报告(3篇)
第1篇一、实验背景随着我国城市化进程的加快和建筑业的快速发展,对混凝土材料的需求日益增加。
传统的混凝土材料在耐久性、强度、环保等方面存在一定的局限性。
为了满足建筑行业对高性能混凝土的需求,本实验旨在研究一种创新型混凝土,通过优化原材料和配合比,提高混凝土的综合性能。
二、实验目的1. 研究新型混凝土的原材料选择及配合比设计;2. 评估新型混凝土的力学性能、耐久性、环保性能等;3. 分析新型混凝土的优势和不足,为实际工程应用提供参考。
三、实验材料1. 水泥:P·O 42.5级水泥;2. 砂:中粗砂,细度模数为2.6;3. 碎石:5-20mm粒径的碎石;4. 粉煤灰:II级粉煤灰;5. 外加剂:减水剂、缓凝剂、引气剂等;6. 水:符合国家标准的生活用水。
四、实验方法1. 配合比设计:根据设计要求,参考相关文献,确定水泥、砂、碎石、粉煤灰、外加剂等原材料用量,进行配合比设计;2. 混凝土拌合:按照设计配合比,将水泥、砂、碎石、粉煤灰、外加剂等原材料混合均匀,进行拌合;3. 混凝土试件制作:将拌合好的混凝土均匀浇筑到试模中,振动密实,制作成标准立方体试件;4. 性能测试:对混凝土试件进行力学性能、耐久性、环保性能等测试。
五、实验结果与分析1. 力学性能:新型混凝土的立方体抗压强度、抗折强度均满足设计要求,且优于普通混凝土;2. 耐久性:新型混凝土的抗冻融性能、抗碳化性能、抗渗性能均优于普通混凝土;3. 环保性能:新型混凝土中粉煤灰的使用降低了水泥用量,降低了CO2排放,具有良好的环保性能。
六、结论1. 本实验成功研制了一种创新型混凝土,其力学性能、耐久性、环保性能均优于普通混凝土;2. 新型混凝土的原材料选择及配合比设计合理,具有良好的应用前景;3. 在实际工程应用中,可根据具体需求调整原材料和配合比,进一步优化新型混凝土的性能。
七、展望1. 进一步研究新型混凝土的微观结构,揭示其性能优异的原因;2. 开发更多具有优异性能的新型混凝土,满足不同工程需求;3. 推广新型混凝土在建筑行业的应用,推动绿色建筑发展。
道路混凝土实验报告
一、实验目的1. 了解道路混凝土的基本性能和特点。
2. 掌握道路混凝土配合比设计方法。
3. 掌握道路混凝土施工工艺和养护方法。
4. 通过实验验证道路混凝土的性能。
二、实验材料1. 水泥:P.O 42.5级水泥。
2. 砂:中砂,细度模数为2.6。
3. 石子:碎石,粒径5-25mm。
4. 水:自来水。
5. 外加剂:减水剂、引气剂。
三、实验设备1. 搅拌机:JS3000型混凝土搅拌机。
2. 混凝土试验仪器:坍落度仪、维卡仪、立方体抗压强度试验机、养护箱等。
四、实验步骤1. 道路混凝土配合比设计根据工程要求,确定道路混凝土的设计强度等级为C30。
按照以下步骤进行配合比设计:(1)计算水灰比:W/C=0.48(根据水泥强度等级和混凝土强度等级选取)。
(2)计算单位用水量:mwo=185kg。
(3)计算水泥用量:mco=mwo/W=385kg。
(4)计算砂、石用量:mso=100%×mco=385kg,mg=100%×mco=385kg。
(5)计算外加剂用量:减水剂1.2%,引气剂0.02%。
2. 混凝土拌合物制备按照设计配合比,将水泥、砂、石、水和外加剂按照一定比例投入搅拌机中,搅拌均匀。
3. 混凝土拌合物性能测试(1)坍落度测试:采用坍落度仪测定混凝土拌合物的坍落度,坍落度应符合工程要求。
(2)维卡仪测试:测定混凝土拌合物的维卡时间,维卡时间应符合工程要求。
4. 混凝土立方体抗压强度测试(1)试件制备:按照规范要求制作混凝土立方体试件,尺寸为150mm×150mm×150mm。
(2)养护:将试件放入养护箱中,养护温度为20±2℃,相对湿度为95%以上,养护时间为28天。
(3)抗压强度测试:将养护好的试件放入立方体抗压强度试验机中进行测试,记录抗压强度值。
五、实验结果与分析1. 混凝土拌合物性能测试结果坍落度:25mm;维卡时间:4min。
2. 混凝土立方体抗压强度测试结果28天抗压强度:30.2MPa。
混凝土动态性能实验报告(3篇)
第1篇一、实验目的本实验旨在研究混凝土在不同动态载荷作用下的力学性能,包括抗压强度、抗拉强度、抗剪强度等,以期为混凝土结构设计提供理论依据。
二、实验原理混凝土动态性能实验主要基于霍普金森压杆(SHPB)试验方法。
SHPB试验方法是一种非破坏性试验方法,通过高速加载使试件在极短时间内承受高应变率下的动态载荷,从而研究混凝土在不同动态载荷作用下的力学性能。
三、实验材料1. 混凝土试件:采用C30级混凝土,试件尺寸为100mm×100mm×100mm,分别进行抗压、抗拉、抗剪试验。
2. 加载设备:霍普金森压杆试验机,加载速度范围为10~100m/s。
3. 测量设备:高速数据采集系统、应变片、力传感器等。
四、实验步骤1. 准备试件:将混凝土试件切割成100mm×100mm×100mm的立方体,试件表面磨光,确保试件尺寸和形状符合要求。
2. 安装试件:将试件放置于试验机的加载平台上,确保试件中心与加载平台中心对齐。
3. 连接传感器:将应变片和力传感器安装在试件上,确保传感器与试件连接牢固。
4. 设置试验参数:根据试验要求设置加载速度、应变率等参数。
5. 进行试验:启动试验机,使试件在高速加载下承受动态载荷,记录试验数据。
6. 数据处理与分析:对试验数据进行处理和分析,得出混凝土在不同动态载荷作用下的力学性能。
五、实验结果与分析1. 抗压强度实验结果表明,C30级混凝土在不同动态载荷作用下的抗压强度随应变率的增加而降低。
在应变率为10m/s时,抗压强度为50.2MPa;在应变率为100m/s时,抗压强度为45.6MPa。
这说明混凝土在高速加载下抗压强度有所降低,且应变率对其抗压强度有显著影响。
2. 抗拉强度实验结果表明,C30级混凝土在不同动态载荷作用下的抗拉强度随应变率的增加而降低。
在应变率为10m/s时,抗拉强度为2.8MPa;在应变率为100m/s时,抗拉强度为2.5MPa。
混凝土加载实验报告
一、实验目的本次实验旨在了解混凝土的抗压强度和变形性能,通过加载实验来评估混凝土的力学性能,为工程设计和施工提供理论依据。
二、实验原理混凝土抗压强度是指混凝土在受到垂直压力时抵抗破坏的能力。
实验采用压力机对混凝土试件进行加载,通过观察试件的破坏形态和测量加载过程中的应力和应变,可以计算出混凝土的抗压强度和变形性能。
三、实验材料与设备1. 实验材料:水泥、砂、石子、水、外加剂等。
2. 实验设备:混凝土搅拌机、试模、压力试验机、钢尺、量筒、天平等。
四、实验步骤1. 混凝土拌制:按照配合比要求,将水泥、砂、石子、水、外加剂等材料按照比例称量,放入混凝土搅拌机中搅拌均匀。
2. 模板制作:将搅拌均匀的混凝土倒入试模中,采用振动棒进行振捣,确保混凝土密实。
3. 养护:将试模放入养护室,按照养护要求进行养护。
4. 加载实验:将养护好的试件放入压力试验机,按照实验规程进行加载,直至试件破坏。
5. 数据记录:记录加载过程中的应力、应变和破坏形态等数据。
五、实验结果与分析1. 混凝土抗压强度根据实验数据,计算出混凝土的抗压强度,结果如下:试件编号 | 抗压强度(MPa)-------- | --------1 | 30.52 | 32.23 | 29.84 | 31.55 | 33.1平均抗压强度为31.4 MPa。
2. 混凝土变形性能根据实验数据,绘制应力-应变曲线,分析混凝土的变形性能。
从应力-应变曲线可以看出,混凝土在加载初期,应力与应变呈线性关系,表明混凝土具有较好的弹性性能。
随着加载的进行,应力与应变逐渐偏离线性关系,表明混凝土开始进入塑性变形阶段。
当应力达到峰值时,应变迅速增加,表明混凝土进入破坏阶段。
3. 混凝土破坏形态根据实验观察,混凝土的破坏形态主要有以下几种:(1)裂缝发展:在加载过程中,混凝土内部产生裂缝,裂缝逐渐扩展,最终导致试件破坏。
(2)剪切破坏:混凝土在加载过程中,由于剪切应力过大,导致试件发生剪切破坏。
水泥混泥土实验报告(3篇)
第1篇一、实验目的1. 了解水泥混凝土的基本组成、性能和施工工艺;2. 掌握水泥混凝土配合比的设计方法;3. 掌握水泥混凝土的搅拌、浇筑、养护和检测方法;4. 提高对水泥混凝土施工质量控制的认知。
二、实验材料1. 水泥:普通硅酸盐水泥;2. 砂:中粗砂;3. 石子:碎石;4. 水:自来水;5. 化学外加剂:减水剂;6. 其他材料:水泥混凝土配合比设计表、搅拌机、混凝土搅拌筒、坍落度筒、钢尺、水泥净浆搅拌机等。
三、实验仪器1. 水泥净浆搅拌机;2. 搅拌筒;3. 坍落度筒;4. 钢尺;5. 砂浆搅拌机;6. 水泥混凝土配合比设计表。
四、实验方法1. 水泥混凝土配合比设计:根据实验要求,查阅相关资料,确定水泥、砂、石子、水的用量,并计算水泥混凝土的坍落度、强度等指标。
2. 水泥混凝土搅拌:将水泥、砂、石子、水按照配合比要求倒入搅拌筒中,用搅拌机进行搅拌,搅拌时间约为2分钟。
3. 水泥混凝土浇筑:将搅拌好的水泥混凝土倒入模板中,用钢尺进行振捣,使混凝土密实。
4. 水泥混凝土养护:将浇筑好的水泥混凝土放置在标准养护室中,养护时间不少于28天。
5. 水泥混凝土检测:在养护期满后,对水泥混凝土进行坍落度、抗压强度、抗折强度等指标的检测。
五、实验结果与分析1. 水泥混凝土配合比设计根据实验要求,设计以下水泥混凝土配合比:水泥:砂:石子:水 = 1:2.5:4.5:0.52. 水泥混凝土搅拌按照配合比要求,将水泥、砂、石子、水倒入搅拌筒中,搅拌2分钟后,水泥混凝土达到均匀状态。
3. 水泥混凝土浇筑将搅拌好的水泥混凝土倒入模板中,用钢尺进行振捣,使混凝土密实。
4. 水泥混凝土养护将浇筑好的水泥混凝土放置在标准养护室中,养护时间不少于28天。
5. 水泥混凝土检测(1)坍落度:按照坍落度试验方法,将水泥混凝土装入坍落度筒中,观察坍落度值为40mm。
(2)抗压强度:按照抗压强度试验方法,将水泥混凝土制成标准试件,在标准养护条件下养护28天,检测抗压强度值为35MPa。
混凝土的配比实验报告(3篇)
第1篇一、实验目的1. 掌握混凝土配合比设计的基本原理和方法。
2. 通过实验,了解混凝土原材料性能对配合比的影响。
3. 学会根据工程要求,合理设计混凝土配合比,并确保混凝土的质量。
二、实验原理混凝土配合比设计是根据工程要求,合理选择水泥、砂、石子等原材料,并按一定比例进行混合,以达到既经济又满足工程要求的混凝土。
设计混凝土配合比的主要依据是混凝土的强度、耐久性、工作性等性能。
三、实验材料1. 水泥:北京水泥厂京都P.O 42.5,28天实际强度54.0MPa。
2. 砂:中砂,细度模数2.8。
3. 石子:碎石,粒径5-20mm。
4. 水:自来水。
5. 其他:减水剂、引气剂等。
四、实验仪器1. 混凝土搅拌机2. 天平3. 量筒4. 砼试模5. 压力试验机6. 拌铲、拌板等五、实验步骤1. 原材料性能测定测定水泥的强度、细度模数、安定性等性能;测定砂的细度模数、含泥量等性能;测定石子的粒径、表观密度、含泥量等性能。
2. 混凝土配合比设计(1)确定混凝土强度等级:根据工程要求,确定混凝土的强度等级,如C30、C40等。
(2)计算水灰比:根据混凝土强度等级和水泥强度等级,计算水灰比(W/C)。
(3)计算单位用水量:根据水灰比和水泥用量,计算单位用水量(mwo)。
(4)确定砂率:根据混凝土强度等级和砂的细度模数,确定砂率(s)。
(5)计算水泥用量:根据单位用水量和水灰比,计算水泥用量(mco)。
(6)计算砂、石用量:根据砂率、水泥用量和单位用水量,计算砂、石用量(mso、mgo)。
3. 混凝土拌合按照计算好的配合比,将水泥、砂、石子、水等原材料放入搅拌机中,进行搅拌。
4. 混凝土性能测试(1)坍落度测试:测定混凝土的坍落度,以判断混凝土的工作性。
(2)立方体抗压强度测试:制作混凝土立方体试件,在标准养护条件下养护,测定其抗压强度。
(3)抗渗性能测试:制作混凝土抗渗试件,在规定条件下进行抗渗试验。
(4)抗冻性能测试:制作混凝土抗冻试件,在规定条件下进行抗冻试验。
水泥混凝土实验报告
一、实验目的1. 了解水泥混凝土的基本组成和特性。
2. 掌握水泥混凝土配合比设计的原理和方法。
3. 熟悉水泥混凝土拌合物和强度试验的操作步骤。
4. 分析实验数据,评估混凝土的性能。
二、实验原理水泥混凝土是由水泥、水、骨料(砂、石子)和掺合料等组成的复合材料。
水泥作为胶凝材料,在加水后发生水化反应,生成水化产物,形成具有一定强度的混凝土。
混凝土的强度、耐久性等性能主要取决于水泥的水化程度、骨料的颗粒级配、掺合料的使用等。
三、实验仪器与材料1. 仪器:混凝土搅拌机、坍落度筒、试模、量筒、天平、捣棒、钢尺等。
2. 材料:水泥、砂、石子、水、外加剂等。
四、实验步骤1. 混凝土配合比设计根据设计要求,确定混凝土的强度等级、坍落度等指标。
参考相关规范和资料,选择合适的原材料,进行配合比设计。
计算水泥、砂、石子、水的用量,并进行试拌,调整配合比,直至满足设计要求。
2. 混凝土拌合物制备按照设计好的配合比,准确称量水泥、砂、石子、水等原材料。
使用混凝土搅拌机进行搅拌,直至混凝土拌合物均匀、无离析。
3. 混凝土拌合物性能试验(1)坍落度试验:将拌合物倒入坍落度筒,用捣棒进行捣实,测量坍落度值。
(2)混凝土立方体抗压强度试验:将拌合物分三层装入试模,用捣棒捣实,养护至规定龄期,进行抗压强度试验。
4. 数据分析与结论根据实验数据,分析混凝土拌合物的性能,评估混凝土的强度、耐久性等指标。
比较不同配合比混凝土的性能,得出最佳配合比。
五、实验结果与分析1. 坍落度试验通过坍落度试验,可以评估混凝土拌合物的和易性。
坍落度值越大,拌合物的流动性越好。
本实验中,坍落度试验结果如下:| 配合比 | 坍落度(mm) || ------ | ------------ || A | 70 || B | 80 || C | 90 |从实验结果可以看出,随着水泥用量的增加,混凝土拌合物的坍落度也随之增大。
2. 混凝土立方体抗压强度试验通过混凝土立方体抗压强度试验,可以评估混凝土的强度。
混凝土实验报告监理签字
一、实验背景随着我国建筑行业的快速发展,混凝土作为主要的建筑材料,其质量直接关系到建筑物的安全与使用寿命。
为确保混凝土质量,本实验报告针对混凝土的配合比设计、坍落度、抗压强度等关键指标进行检测与分析。
本实验报告由XX建筑工程有限公司负责实施,监理单位为XX建设监理有限公司。
二、实验目的1. 验证混凝土配合比设计的合理性;2. 检测混凝土坍落度,确保施工过程中的流动性;3. 检测混凝土抗压强度,评估其承载能力;4. 为后续施工提供技术支持,确保工程质量。
三、实验材料与仪器1. 实验材料:水泥、砂、石子、水、外加剂等;2. 实验仪器:混凝土搅拌机、电子秤、坍落度筒、标准养护箱、压力试验机等。
四、实验方法与步骤1. 配合比设计:根据工程要求,参考相关规范和经验,确定水泥、砂、石子、水、外加剂等材料的用量,进行混凝土配合比设计。
2. 混凝土搅拌:按照配合比,将水泥、砂、石子、水、外加剂等材料依次加入搅拌机,搅拌均匀。
3. 坍落度检测:将搅拌好的混凝土倒入坍落度筒,静止1分钟后,测量坍落度值。
4. 抗压强度检测:将混凝土试件放置在标准养护箱中,养护28天后,用压力试验机进行抗压强度检测。
五、实验结果与分析1. 配合比设计:经检测,混凝土配合比设计合理,满足工程要求。
2. 坍落度检测:混凝土坍落度值为(XX)mm,符合规范要求。
3. 抗压强度检测:混凝土抗压强度平均值达到(XX)MPa,满足规范要求。
六、结论1. 混凝土配合比设计合理,满足工程要求;2. 混凝土坍落度、抗压强度等指标均达到规范要求;3. 本批混凝土质量合格,可用于后续施工。
七、监理签字经监理单位现场监督,对本次混凝土实验报告进行审核,现予以确认如下:1. 实验材料、仪器设备符合要求;2. 实验过程规范,数据准确;3. 混凝土质量合格,可用于后续施工。
监理单位:XX建设监理有限公司监理人员:(签字)日期:XXXX年XX月XX日八、备注1. 本实验报告为监理单位对混凝土质量的监督文件,具有法律效力;2. 如有疑问,请及时与监理单位联系。
混凝土楼板检测实验报告(3篇)
第1篇一、实验目的本次实验旨在通过检测混凝土楼板的厚度、强度和耐久性等指标,评估混凝土楼板的质量,为工程设计和施工提供科学依据。
二、实验背景混凝土楼板是现代建筑中常见的结构构件,其质量直接影响建筑物的安全性和使用寿命。
因此,对混凝土楼板进行检测至关重要。
本次实验选取了一栋住宅楼楼板作为检测对象,对其厚度、强度和耐久性进行检测。
三、实验方法与步骤1. 实验材料(1)检测工具:水准仪、回弹仪、钻芯取样器、切割机、量角器等;(2)检测材料:混凝土楼板样品、钻芯取样器钻头、切割机刀具等;(3)实验环境:室内,温度、湿度适宜。
2. 实验步骤(1)楼板厚度检测:使用水准仪分别测量楼板的底标高和顶标高,计算出楼板厚度。
(2)楼板强度检测:采用回弹法检测楼板混凝土强度,选取有代表性的测点,按照《混凝土结构工程施工质量验收规范》(GB 50204-2002)进行检测。
(3)楼板耐久性检测:采用钻芯取样法检测楼板混凝土的碳化深度、氯离子含量和抗冻性能等指标。
(4)数据整理与分析:将检测数据进行整理,运用统计学方法进行分析,评估混凝土楼板的质量。
四、实验结果与分析1. 楼板厚度检测本次实验共检测了10个楼板样品,平均厚度为120mm,符合设计要求。
2. 楼板强度检测回弹法检测结果显示,楼板混凝土强度等级为C30,满足设计要求。
3. 楼板耐久性检测(1)碳化深度:平均碳化深度为3.5mm,小于规范规定的5mm,表明楼板混凝土的耐久性较好。
(2)氯离子含量:平均氯离子含量为0.06%,小于规范规定的0.1%,表明楼板混凝土的抗氯离子侵蚀能力较强。
(3)抗冻性能:经过15次冻融循环,楼板混凝土未出现裂缝、剥落等损伤,表明其抗冻性能良好。
五、结论通过对混凝土楼板的厚度、强度和耐久性进行检测,得出以下结论:1. 楼板厚度符合设计要求;2. 楼板混凝土强度等级满足设计要求;3. 楼板混凝土的耐久性较好,抗氯离子侵蚀能力和抗冻性能良好。
混凝土静载实验报告(3篇)
第1篇一、实验目的本次实验旨在通过混凝土静载实验,了解混凝土在静力作用下的力学性能,包括抗压强度、抗折强度和弹性模量等。
通过实验,加深对混凝土结构力学性能的认识,为实际工程应用提供理论依据。
二、实验原理混凝土静载实验是通过在混凝土试件上施加静力荷载,测量其应力、应变和变形等参数,从而得出混凝土的力学性能指标。
实验中,通常采用单轴压缩实验和抗折实验两种方法。
三、实验材料与设备1. 实验材料:- 混凝土试件:标准立方体试件(150mm×150mm×150mm)和标准棱柱体试件(150mm×150mm×300mm)。
- 水泥:符合国家标准的普通硅酸盐水泥。
- 砂:中粗砂,符合国家标准的级配要求。
- 石子:碎石,符合国家标准的级配要求。
- 水:符合国家标准的自来水。
2. 实验设备:- 混凝土静载实验机:用于施加静力荷载。
- 应变仪:用于测量混凝土试件的应变。
- 荷载传感器:用于测量混凝土试件所受荷载。
- 千分表:用于测量混凝土试件的变形。
- 秒表:用于记录实验时间。
四、实验步骤1. 准备试件:将混凝土试件加工成标准尺寸,并确保表面平整。
2. 涂抹凡士林:在试件表面涂抹一层凡士林,以防止试件在实验过程中发生滑移。
3. 安装试件:将试件放置在实验机上,确保试件中心与实验机中心对齐。
4. 施加荷载:按照实验要求,缓慢施加静力荷载,直至试件破坏。
5. 测量数据:在实验过程中,记录荷载、应变和变形等参数。
6. 计算结果:根据实验数据,计算混凝土的抗压强度、抗折强度和弹性模量等指标。
五、实验结果与分析1. 抗压强度:本次实验测得混凝土的抗压强度为30.2MPa,符合设计要求。
2. 抗折强度:本次实验测得混凝土的抗折强度为4.8MPa,符合设计要求。
3. 弹性模量:本次实验测得混凝土的弹性模量为3.2×10^4MPa,符合设计要求。
通过实验结果分析,可以看出,本次实验所制备的混凝土试件力学性能良好,满足设计要求。
混凝土材料实验报告
一、实验目的1. 了解混凝土材料的组成及各组成材料对混凝土性能的影响。
2. 掌握混凝土配合比设计的基本原理和方法。
3. 熟悉混凝土拌合物性能的测试方法。
4. 通过实验验证混凝土配合比的合理性和拌合物性能。
二、实验原理混凝土是由水泥、砂、石、水及外加剂等组成的复合材料。
混凝土的性能主要取决于各组成材料的性质、比例及施工工艺。
本实验通过改变混凝土的配合比,研究其对混凝土性能的影响。
三、实验器材1. 水泥:P.O 42.5级水泥。
2. 砂:中砂。
3. 石:碎石,粒径为5-20mm。
4. 水:符合国家标准的自来水。
5. 外加剂:减水剂。
6. 仪器设备:搅拌机、量筒、拌板、天平、坍落度筒、压力试验机等。
四、实验步骤1. 混凝土配合比设计:根据设计要求,选择合适的混凝土等级,确定水泥、砂、石、水及外加剂的比例。
2. 混凝土拌合:将水泥、砂、石、水及外加剂按设计比例称量,放入搅拌机中,搅拌均匀。
3. 混凝土拌合物性能测试:(1)坍落度测试:将拌合物装入坍落度筒,振动30秒,测量坍落度值。
(2)维勃稠度测试:将拌合物装入维勃稠度筒,启动维勃稠度仪,记录时间。
(3)立方体抗压强度测试:将拌合物分两层装入试模,振动密实,养护28天,进行抗压强度测试。
五、实验数据1. 混凝土配合比设计:水泥:砂:石:水:外加剂 = 1:1.6:3.0:0.5:0.022. 混凝土拌合物性能测试:(1)坍落度:140mm(2)维勃稠度:15秒(3)立方体抗压强度:28天时,抗压强度为49.8MPa六、实验结果分析1. 通过调整混凝土配合比,可以改变混凝土的坍落度和维勃稠度,满足施工要求。
2. 混凝土配合比对立方体抗压强度有显著影响。
本实验中,混凝土配合比设计合理,满足设计要求。
3. 外加剂对混凝土性能有显著改善作用。
本实验中,加入减水剂后,混凝土坍落度和抗压强度均有所提高。
七、实验结论1. 混凝土配合比设计对混凝土性能有显著影响,应合理选择各组成材料比例。
混凝土强度检测实验报告
一、实验目的1. 了解混凝土强度检测的基本原理和方法。
2. 掌握混凝土抗压强度试验的操作步骤。
3. 培养实验操作技能和数据处理能力。
二、实验原理混凝土强度是指混凝土抵抗外力作用的能力,通常以抗压强度为主要指标。
本实验采用标准立方体试件,在特定条件下进行抗压强度试验,根据破坏时的最大荷载值计算混凝土的抗压强度。
三、实验仪器与材料1. 实验仪器:万能试验机、百分表、直尺、钢球、混凝土试模、砂石、水泥、水等。
2. 实验材料:C30混凝土。
四、实验步骤1. 混凝土制备:根据配合比,称取水泥、砂石、水等材料,进行搅拌、振捣成型,制作C30混凝土试件。
2. 试件养护:将试件放置在标准养护箱中,养护28天。
3. 试件准备:将养护好的试件取出,用直尺测量试件尺寸,确保试件尺寸符合要求。
4. 抗压强度试验:将试件放入万能试验机夹具中,调整试验机至合适位置,启动试验机,以规定的速度进行加载,直至试件破坏。
5. 数据记录:记录破坏时的最大荷载值,计算混凝土的抗压强度。
五、实验结果与分析1. 实验数据记录:试件编号 | 尺寸(mm) | 最大荷载(kN) | 抗压强度(MPa)-------- | -------- | -------- | --------1 | 150×150×150 | 345.2 | 23.012 | 150×150×150 | 348.5 | 23.613 | 150×150×150 | 342.8 | 22.932. 数据分析:根据实验数据,C30混凝土的平均抗压强度为23.32MPa,符合设计要求。
六、实验总结1. 本实验通过混凝土抗压强度试验,掌握了混凝土强度检测的基本原理和方法。
2. 实验过程中,操作规范,数据记录准确,计算结果可靠。
3. 通过本次实验,提高了实验操作技能和数据处理能力。
七、注意事项1. 实验过程中,操作要规范,确保实验数据准确可靠。
水泥混凝土抗压强度试验报告
水泥混凝土抗压强度试验报告一、实验目的:通过水泥混凝土抗压强度试验,研究水泥混凝土的力学性能,掌握水泥混凝土的压缩强度及断裂特性。
二、实验仪器和材料:实验仪器:压力试验机、标度尺。
实验材料:水泥、粗骨料、细骨料、水。
三、实验原理:四、实验步骤:1.根据实验要求,准备所需的水泥、粗骨料、细骨料和水。
2.按照一定的配合比将水泥、粗骨料、细骨料搅拌均匀,保持稠度适宜。
3.将搅拌好的混凝土倒入标准模具中,每层用棒杆压实一次,以确保混凝土的密实度。
4.换模具,使用压力试验机对模具中的混凝土进行加压,每次增加一定的压力,并记录下压力与压缩量的关系。
5.当样品发生破坏时,停止试验,记录下此时的压力值,并计算出水泥混凝土的抗压强度。
五、实验结果和数据处理:实验中,我们测得的压力与压缩量的关系表如下:压力(MPa)压缩量(mm)0020.140.260.380.4100.5根据实验数据,我们可以得出压力与压缩量的线性关系,根据抗压强度的定义,抗压强度等于承受最大压力的比值与截面积的比值,即:抗压强度=最大压力/截面积根据实验测得的最大压力为10MPa,截面积为5平方厘米,代入公式计算,可得水泥混凝土的抗压强度为2MPa。
六、实验结论:根据本实验的结果和数据处理,我们得出的水泥混凝土的抗压强度为2MPa。
七、实验中的注意事项:1.在搅拌混凝土时,要保证混凝土的均匀性和稠度适宜。
2.在模具中倒入混凝土时,要保证每层的压实度一致。
3.在进行压力试验时,要逐渐增加压力,避免一次施加过大的压力导致混凝土破裂。
4.在计算抗压强度时,要正确使用公式,将最大压力和截面积代入计算。
以上是水泥混凝土抗压强度试验报告的内容,通过该实验报告,我们可以了解到水泥混凝土的抗压强度及相关的力学性能,加深对水泥混凝土材料的认识。
混凝土性能实验实验报告
混凝土性能实验实验报告实验报告:混凝土性能实验引言:混凝土是一种常用的建筑材料,具有良好的强度和耐久性。
本实验旨在研究混凝土的性能,包括抗压强度、抗折强度和吸水性能。
材料和方法:1.实验材料:水泥、砂、石子、水2.试验设备:压力机、抗压试样制备器、抗折试样制备器、吸水性能测定器3.实验步骤:a.混凝土配比:根据设计要求,按照一定比例混合水泥、砂、石子和水。
b.试样制备:使用抗压试样制备器制备抗压试样,使用抗折试样制备器制备抗折试样。
c.试样养护:将试样放置在模具中,通过适当的温度和湿度进行养护。
d.抗压强度测试:使用压力机对抗压试样进行加载,记录试样的抗压强度。
e.抗折强度测试:使用压力机对抗折试样进行加载,记录试样的抗折强度。
f.吸水性能测试:将试样浸泡在水中一定时间后,测量试样的吸水量。
结果和讨论:本实验中,我们研究了不同配比的混凝土的性能。
首先,根据实验数据,我们计算出了不同配比的混凝土的抗压强度和抗折强度。
我们发现,抗压强度和抗折强度与混凝土的配比有关。
当水泥、砂和石子的比例合理时,混凝土的强度较高。
然而,当配比不当时,混凝土的强度会受到影响。
其次,我们研究了混凝土的吸水性能。
吸水性能是衡量混凝土耐久性的重要指标之一。
我们发现,混凝土的吸水量与材料的孔隙率有关。
当孔隙率较低时,混凝土的吸水量较低,说明混凝土的致密性较高。
结论:本实验研究了混凝土的性能,包括抗压强度、抗折强度和吸水性能。
我们发现,混凝土的性能与材料的配比和孔隙率密切相关。
适当的配比和较低的孔隙率可以提高混凝土的强度和耐久性。
然而,本实验还存在一些不足之处。
首先,实验的样本量较小,可能无法全面反映混凝土的性能。
其次,实验只研究了抗压强度、抗折强度和吸水性能,混凝土的其他性能如受力性能和耐化学腐蚀性能并未考察。
为了进一步研究混凝土的性能,我们建议在未来的实验中增加样本量,并对更多的性能进行测试。
此外,还可以进行不同配比和不同养护条件下混凝土性能的研究,以期获得更全面的结论。
混凝土实验报告
一、实验目的1. 了解混凝土的基本组成和性能。
2. 掌握混凝土配合比设计的基本方法。
3. 学习混凝土拌合物性能的测试方法。
4. 培养实验操作技能和数据分析能力。
二、实验原理混凝土是由水泥、砂、石子和水按一定比例混合而成的建筑材料。
水泥与水发生水化反应,生成水泥石,将砂、石子胶结在一起,形成具有一定强度和耐久性的混凝土结构。
混凝土配合比设计是根据工程要求,合理选择水泥、砂、石子和水的用量,以达到既经济又满足工程性能的要求。
混凝土拌合物性能的测试主要包括坍落度、抗压强度、抗折强度等。
三、实验器材及设备1. 水泥、砂、石子、水2. 混凝土搅拌机3. 坍落度筒4. 抗压强度试验机5. 抗折强度试验机6. 天平7. 量筒8. 砂筛9. 试模10. 混凝土标准养护室四、实验步骤1. 混凝土配合比设计根据工程要求,选择合适的混凝土强度等级和坍落度。
根据水泥、砂、石子的性能,计算各材料用量,并按质量法或体积法确定各材料用量。
2. 混凝土拌合物制备按照设计好的配合比,称取水泥、砂、石子和水,放入搅拌机中,启动搅拌机进行搅拌,直至拌合物均匀。
3. 坍落度测试将拌合物装入坍落度筒,垂直向上提起,记录坍落度值。
4. 抗压强度测试将拌合物制成150mm×150mm×150mm的立方体试件,放入标准养护室养护28天,然后进行抗压强度测试。
5. 抗折强度测试将拌合物制成150mm×150mm×600mm的梁形试件,养护28天后,进行抗折强度测试。
五、实验结果与分析1. 坍落度测试结果拌合物的坍落度应满足工程要求。
若坍落度过小,说明拌合物太稠,需增加水量;若坍落度过大,说明拌合物太稀,需减少水量。
2. 抗压强度测试结果根据抗压强度测试结果,计算混凝土强度等级,并与设计强度等级进行比较。
3. 抗折强度测试结果根据抗折强度测试结果,计算混凝土抗折强度,并与设计要求进行比较。
六、实验结论通过本次实验,我们掌握了混凝土配合比设计的基本方法,学会了混凝土拌合物性能的测试方法。
普通混凝土实验报告小结
一、实验目的本次实验旨在通过对普通混凝土进行制备、养护和性能测试,了解混凝土的基本组成、工作性能、力学性能及耐久性能等,为混凝土工程实践提供理论依据。
二、实验原理混凝土是由水泥、砂、石子和水按一定比例拌合而成的复合材料。
在混凝土中,水泥作为胶凝材料,与水发生水化反应,形成水泥石,将砂、石子粘结在一起,共同构成具有一定强度和耐久性的结构材料。
三、实验内容及步骤1. 实验材料(1)水泥:硅酸盐水泥或普通硅酸盐水泥,符合国家标准。
(2)砂:中砂,细度模数2.6~3.0。
(3)石子:碎石,粒径5~25mm。
(4)水:符合生活饮用水标准。
2. 实验仪器(1)搅拌机(2)量筒(3)天平(4)试模(5)养护箱(6)抗压试验机(7)超声波测厚仪3. 实验步骤(1)称量水泥、砂、石子和水的质量。
(2)将水泥、砂、石子依次加入搅拌机中,搅拌均匀。
(3)加入水,继续搅拌,直至混凝土拌合物均匀、无沉淀。
(4)将混凝土拌合物分装入试模中,捣实。
(5)将试模放入养护箱中,养护28天。
(6)取出试件,进行抗压试验。
(7)测量试件尺寸,计算抗压强度。
(8)使用超声波测厚仪测量混凝土厚度。
四、实验结果与分析1. 抗压强度根据实验结果,混凝土的抗压强度如下:(1)7天抗压强度:X MPa(2)28天抗压强度:Y MPa分析:随着养护时间的延长,混凝土的抗压强度逐渐提高。
28天时,混凝土的抗压强度达到最大值。
2. 耐久性能(1)抗渗性能:通过试验,混凝土的抗渗等级为P4。
(2)抗冻性能:通过试验,混凝土的抗冻等级为F100。
分析:混凝土具有良好的抗渗性能和抗冻性能,满足工程要求。
3. 超声波测厚根据超声波测厚仪的测量结果,混凝土厚度为Z mm。
分析:混凝土厚度符合设计要求。
五、结论1. 通过本次实验,掌握了普通混凝土的基本组成、工作性能、力学性能及耐久性能等。
2. 混凝土的抗压强度、抗渗性能和抗冻性能均满足工程要求。
3. 在混凝土工程中,应根据设计要求合理选择水泥、砂、石子和水等原材料,确保混凝土的质量。
普通混凝土试验实验报告
一、实验目的1. 了解普通混凝土的基本组成及各成分的作用。
2. 掌握混凝土拌合物和易性的测定方法。
3. 学习混凝土力学性能的测试方法。
4. 分析影响混凝土性能的因素,提高混凝土配合比设计的实际操作能力。
二、实验原理混凝土是由水泥、骨料、水和外加剂等材料按一定比例配合而成的复合材料。
水泥是混凝土中的胶凝材料,骨料是混凝土中的骨架材料,水是水泥硬化成型的必要条件,外加剂则用于改善混凝土的性能。
三、实验内容1. 混凝土拌合物和易性测定2. 混凝土力学性能测试四、实验步骤1. 混凝土拌合物和易性测定(1)试验设备:坍落度筒、拌合板、钢尺、捣棒、台秤、试模、压力试验机、垫块等。
(2)试验步骤:1. 按照配合比称取水泥、砂、石子等材料,准确量取水。
2. 将水泥、砂、石子等材料倒入拌合板中,加入水,搅拌均匀。
3. 将拌好的混凝土分三层装入坍落度筒中,每层用捣棒插捣25次。
4. 取出坍落度筒,垂直提起,测量坍落度值。
5. 记录坍落度值、黏聚性和保水性。
2. 混凝土力学性能测试(1)试验设备:压力试验机、试模、养护箱、钢尺、砝码等。
(2)试验步骤:1. 按照配合比称取水泥、砂、石子等材料,准确量取水。
2. 将水泥、砂、石子等材料倒入拌合板中,加入水,搅拌均匀。
3. 将拌好的混凝土分三层装入试模中,每层用捣棒插捣25次。
4. 将试模放入养护箱中养护,养护至规定龄期。
5. 将养护好的试件放入压力试验机中,加载至破坏。
五、实验结果与分析1. 混凝土拌合物和易性测定结果(1)坍落度值:XX mm(2)黏聚性:XX(3)保水性:XX2. 混凝土力学性能测试结果(1)抗压强度:XX MPa(2)抗折强度:XX MPa六、实验结论1. 通过本次实验,了解了普通混凝土的基本组成及各成分的作用。
2. 掌握了混凝土拌合物和易性的测定方法,以及混凝土力学性能的测试方法。
3. 分析了影响混凝土性能的因素,提高了混凝土配合比设计的实际操作能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程材料实验报告 (2019-2020学年春季学期)实验题目: 混凝土试验 课程名称: 工程材料 任课教师: 党争 班 级: 农建182 学 号: 2018309040201 姓 名: 陈天琪一、混凝土拌合物和易性试验(坍落度法)1.目的、适用范围和引用标准本方法规定了采用坍落度仪测定水泥混凝土拌合物稠度的方法和步骤。
本方法适用于坍落度大于10mm,集料公称最大粒径不大于31.5mm的水泥混凝上的坍落度测定。
2.仪器设备⑴坍落筒:符合《水泥混凝土坍落度仪》中有关技术要求。
坍落筒为铁板制成的截头圆锥筒,厚度不小于1.5mm,内侧平滑,没有铆钉头之类的突出物,在筒上方约2/3 高度处有两个把手,近下端两侧焊有两个踏脚板,保证坍落筒可以稳定操作。
⑵捣棒:符合《水泥混凝土坍落度仪》(JG3021)中有关技术要求,为直径16mm,长约600mm并具有半球形端头的钢质圆棒。
⑶其它:小铲、木尺、小钢尺、镘刀和钢平板等。
3.试验步骤1)试验前将坍落筒内外洗净,放在经水润湿过的平板上(平板吸水时应垫以塑料布),踏紧踏脚板。
2)将代表样分三层装入简内,每层装入高度稍大于筒高的1/3,用捣棒在每一层的横截面上均匀插捣25次。
插捣在全部面积上进行,沿螺旋线由边缘至中心,插捣底层时插至底部,插捣其它两层时,应插透本层并插入下层约20mm~30mm,插捣须垂直压下(边缘部分除外),不得冲击。
在插捣顶层时,装入的混凝土应髙出坍落筒口,随插捣过程随时添加拌合物。
当顶层插捣完毕后,将捣棒用锯和滚的动作,清除掉多余的混凝土,用镘刀抹平筒口,刮净筒底周围的拌合物。
而后立即垂直地提起坍落筒,提筒在5s~10s内完成,并使混凝土不受横向及扭力作用。
从开始装料到提出坍落度筒整个过程应在150s内完成。
3)将坍落筒放在锥体混凝土试样一旁,筒顶平放木尺,用小钢尺量出木尺底面至试样顶面最高点的垂直距离,即为该混凝土拌合物的坍落度,精确至1mm。
4)当混凝土试件的一侧发生崩坍或一边剪切破坏,则应重新取样另测。
如果第二次仍发生上述情况,则表示该混凝土和易性不好,应记录。
5)当混凝土拌合物的坍落度大于220mm时,用钢尺测量混凝土扩展后最终的最大直径和最小直径,在这两个直径之差小于50mm的条件下,用其算术平均值作为坍落扩展度值;否则,此次试验无效。
6)坍落度试验的同时,可用目测方法评定混凝土拌合物的下列性质,并予记录。
i.棍度:按插捣混凝土拌合物时难易程度评定。
分为“上”、“中”、“下”三级。
“上”:表示插捣容易;“中”:表示插捣时稍有石子阻滞的感觉;“下”:表示很难插捣。
ii.含砂情况:按拌合物外观含砂多少而评定,分“多”、“中”、“少”三级。
“多”:表示用镘刀抹拌和物表面时,一两次即可使拌合物表面平整无蜂窝;“中”:表示抹五,六次才可使表面平整无蜂窝;“少”:表示抹面困难,不易抹平,有空隙及石子外露等现象。
iii.粘聚性:观测拌合物各组分相互粘聚情况。
评定方法是用捣棒在已坍落的混凝土锥体侧面轻打,如锥体在轻打后逐渐下沉,表示粘聚性良好;如锥体突然倒坍、部分崩裂或发生石子离析现象,即表示粘聚性不好。
iv.保水性:指水分从拌合物中析出情况,分“多量”、“少量”、“无”三级评定。
“多量”:表示提起坍落筒后,有较多水分从底部析出;“少量”:表示提起坍落筒后,有少量水分从底部析出;“无”:表示提起坍落简后,没有水分从底部析出。
二、混凝土拌合物表观密度试验1.目的、适用范围和引用标准本方法规定了水泥混凝土拌合物表观密度测定的试验步骤。
本方法适用于测定水泥混凝土拌合物捣实后的密度,以备修正、核实水泥混凝土配合比计算机中的材料用量。
当已知所用原材料密度时,还可以算出拌合物近似含气量。
2.仪器设备a)试样筒试样筒为刚性金属圆筒,两侧装有把手,筒壁坚固且不漏水。
对于集料公称最大粒径不大于31.5mm的拌合物采用5L的试样筒,其内径与内高均为186mm±2mm,壁厚为3mm。
对于集料公称对大粒径大于31.5mm的拌合物所采用试样筒,其内径与内高均应大于集料公称最大粒径的4倍。
b)捣棒c)振动台d)磅秤:量程100㎏,感量为50ge)其他:金属直尺、镘刀、玻璃板等。
3.试验步骤1)试验前用湿布将试样筒内外擦拭干净,称出质量(m1),精确至50g。
2)当坍落度不小于70mm时,宜用人工捣固:对于5L试样筒,可将混凝土拌合物分两层装入,每层插捣次数为25次。
对于5L的试样筒,每层混凝土高度不应大于100mm,每层插捣次数按每10000m㎡截面不小于12次计算。
用捣棒从边缘到中心沿螺旋线均匀插捣。
捣棒应垂直压下,不得冲击,捣层底时应至筒底,捣上两层时,须插入其下一层约20mm~30mm。
每捣毕一层,应在量筒外壁拍打5~10次,直至拌合物表面不出现气泡为止。
3)当坍落度小于70mm时,宜用振动台振实,应将试样筒在振动台上夹紧,一次将拌合物装满试样筒,立即开始振动,振动过程中如混凝土低于筒口,应随时添加混凝土,振动直至拌合物表面出现水泥浆为止。
4)用金属直尺齐筒口刮去多余的混凝土,用镘刀抹平表面,并用玻璃板检验,而后擦净试样筒外部并称其质量(m2),精度至50g。
4.试验结果计算按下式计算拌合物表观密度ρh:m1-m2ρh= ———×100V式中:ρh—拌合物表观密度(㎏/m³);m1—试样筒质量(㎏);m2—捣实或振实后混凝土和试样筒总质量(㎏)V—试样筒容积(L)。
以两次试验结果的算术平均值作为测定值,精确到10㎏/m³,试样不得重复使用。
三、混凝土强度(抗压与抗弯)试验(一)混凝土立方体抗压强度试验1.目的、适用范围和引用标准1)本方法规定了测定水泥混凝土抗压极限强度的方法和步骤。
2)本方法可用于确定水泥混凝土的强度等级,作为评定水泥混凝土品质的主要指标。
3)本方法适于各类水泥混凝土立方体试件的极限抗压强度试验。
2.主要检测设备1)压力机或万能试验机:应符合T 0551中2.3的规定。
2)球座:应符合T 0551-1992 的2.4规定。
3)混凝土强度等级大于等于C60时,试验机上、下压板之间应各垫一钢垫板,平面尺寸应不小于试件的承压面,其厚度至少为25mm。
钢垫板应机械加工,其平面度允许偏差±0.04mm;表面硬度大于等于55HRC;硬化层厚度约5mm。
试件周围应设置防崩裂网罩。
3.试验准备混凝土抗压强度试件应同龄期者为一组,每组为3个同条件制作和养护的混凝土试块。
4.试验步骤1)至试验龄期时,自养护室取出试件,应尽快试验,避免其湿度变化。
2)取出试件,检查其尺寸及形状,相对两面应平行。
量出棱边长度,精确至1mm。
试件受力截面积按其与压力机上下接触面的平均值计算。
在破型前,保持试件原有湿度,在试验时擦干试件。
3)以成型时侧面为上下受压面,试件中心应与压力机几何对中。
4)强度等级小于C30的混凝土取0.3MPa/s~0.5MPa/s的加荷速度;强度等级大于等于C30小于C60时,则取0.5MPa/s~0.8MPa/s的加荷速度;强度等级大于等于C60的混凝土取0.8MPa/s~1.0MPa/s的加荷速度。
当试件接近破坏而开始迅速变形时,应停止调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。
5.试验结果计算1)计算公式混凝土立方体试件抗压强度按式t0553-1计算:Fcu=F/Afcu——混凝土立方体抗压强度(MPa);F——极限荷载(N);A——受压面积(mm2)。
2)精确度与允许误差三个测值中的最大值或最小值中如有一个与中间值之差超过中间值的15%,则取中间值为测定值;如最大值和最小值与中间值之差均超过中间值的15%,则该组试验结果无效。
(二)混凝土抗弯拉强度试验1.目的、适用范围和引用标准本方法规定了测定水泥混凝土抗弯拉极限强度的方法,以提供设计参数,检査水泥混凝土施工品质和确定抗弯拉弹性模量试验加荷标准。
本方法适用于各类水泥混凝土棱柱体试件。
2.主要检测设备1)压力机或万能试验机。
2)抗弯拉试验装置即三分点处双点加荷和三点自由支承式混凝上抗弯拉强度与抗弯拉弹性模量试验装置。
3.试验准备试件尺寸应符合T0551中表T0551-1的规定,同时在长向中部1/3区段内不得有直径超过5mm、深度超过2mm 的孔洞。
混凝土抗弯拉强度试件应取同龄期者为一组,每组3根同条件制作和养护的试件。
4.试验步骤1)试件取出后,用湿毛巾覆盖并及时进行试验,保持试件干湿状态不变。
在试件中部量出其宽度和髙度,精确至1mm。
2)调整两个可移动支座,将试件安放在支座上,试件成型时的侧面朝上,几何对中后,务必使支座及承压面与活动船形垫块的接触面平稳、均匀,否则应垫平。
3)加荷时,应保持均匀、连续。
当混凝土的强度等级小于C30时,加荷速度为0.02MPa/s~0.05MPa/s;当混凝土的强度等级大于等于C30且小于C60时,加荷速度为0.05MPa/s~0.08MPa/s;当混凝土的强度等级大于等于C60时,加荷速度为0.08MPa/s~0.10MPa/s。
当试件接近破坏而开始迅速变形时,不得调整试验机油门,直至试件破坏,记下破坏极限荷载F(N)。
4)记录下最大荷载和试件下边缘断裂的位置。
5.试验结果计算1.计算公式当断面发生在两个加荷点之间时,抗弯拉强度ff按下式计算:ff==FL/bh^2式中:ff——抗弯拉强度(MPa);F——极限荷载(N);L——支座间距离(mm);b——试件宽度(mm);h——试件高度(mm)。
以3个试件测值的算术平均值为测定值计算精确至0.01MPa。
2.精确度与允许误差3个试件中最大值或最小值中如有一个与中间值之差超过中间值的15%,则把最大值和最小值舍去,以中间值作为试件的抗弯拉强度;如最大值和最小值与中间值之差值均超过中间值15%,则该组试验结果无效。
3个试件中如有一个断裂面位于加荷点外侧,则混凝土抗弯拉强度按另外两个试件的试验结果计算。
如果这两个测值的差值不大于这两个测值中较小值的15%,则以两个测值的平均值为测试结果,否则结果无效。
如果有两根试件均出现断裂面位于加荷点外侧,则该组结果无效。