端粒长度检测
nhanes端粒长度变量
nhanes端粒长度变量
NHANES(National Health and Nutrition Examination Survey,全国健康与营养调查)是美国一项针对全国人口的生物医学调查项目。
在NHANES中,端粒长度变量通常是指测量端粒DNA序列的长度,这个长度可以反映细胞衰老程度和生物年龄。
端粒长度是一个重要的生物标志物,与多种疾病的发生风险相关,如心血管疾病、糖尿病、抑郁症等。
NHANES中关于端粒长度的数据主要来源于血液样本的检测。
研究者通过提取血液样本中的白细胞DNA,然后使用特定的实验方法(如实时荧光定量PCR)来测量端粒长度。
在分析端粒长度时,通常会选取一段特定的端粒序列进行检测,例如端粒重复序列(T Repeat)或端粒酶逆转录酶(telomerase reverse transcriptase,TERT)等。
通过分析NHANES中的端粒长度数据,研究者可以探讨不同人群特征(如年龄、性别、种族、教育程度等)与端粒长度之间的关系,以及端粒长度与健康状况、疾病风险之间的关联。
这些信息有助于揭示生物衰老机制,为预防和管理与衰老相关的疾病提供科学依据。
需要注意的是,端粒长度只是评估生物衰老的一个方面,不能完全代表个体的整体健康状况。
要全面了解一个人的健康状况,还需要综合考虑其他生物标志物、生活习惯、心理状态等多个方面的因素。
端粒长度检测方法
端粒长度检测方法:实时荧光定量PCR分两部分进行,分别测定端粒和内参基因RPLPO(核糖体大亚基PO 蛋白基因)的Ct值,每次反应需要设定标准曲线。
端粒(T)重复拷贝数与单拷贝基因(S)的比率,即T/S比率可以得出端粒的相对长度,而T/S比率与端粒长度成正比关系。
T/S计算公式如下:T/S= [2CT(telomeres)/2CT(single copy gene)]=2-ΔCT1基因组DNA的提取1.提取人外周血基因组DNA以试剂盒提取获得人外周血基因组DNA。
2实时荧光定量PCR测定DNA端粒长度1.引物序列端粒Tel 1:浓度675 nmol/L序列5’-GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-3’端粒Tel 2:浓度1350 nmol/L序列5’-TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA-3’RPLPO基因hRPLPO1:浓度800 nmol/L序列5’-CCCATTCTATCATCAACGGGTACAA -3’RPLPO基因hRPLPO2:浓度800 nmol/L序列5’-CAGCAAGTGG-GAAGGTGTAATCC -3’2.标准曲线制作选取同一血样基因组DNA为标准品,使用等比稀释,稀释系数为2,浓度范围为:0.25-64ng/μl,即可稀释得9个浓度梯度,分别为64,32,16,8,4,2,1,0.5,0.25 ng/μl,制作的标准曲线R2>0.98。
3.反应体系(每个样设置品三个重复)10μl反应体系gDNA 10ngMaster Mix (quantiTect SyberGreen PCR kit) Up to 10μl注:内参及样品反应体系中,Master Mix 除了引物不同外,其余成分均相同另一文献所述的反应体系25μl反应体系SYBR Premix Ex Taq (2X) 12.5μlgDNA 1.0μl (约60ng/μl) 端粒Tel 1 (内参基因hRPLPO1) 0.625μl (1μl)端粒Tel 2 (内参基因hRPLPO2) 2.25μl (1μl)dH2O Up to 25μl4. PCR反应条件95℃10 min95℃15 sec54℃ 2 min54℃检测荧光强度,35个循环72℃10min参考文献:[1]Sonia Garcı´a-Calzo´n,Adriana Moleres,Ascensio´ n Marcos et al. Telomere Length as a Biomarker for Adiposity Changesafter a Multidisciplinary Intervention in Overweight/ Obese Adolescents: The EV ASYON Study[2]吕昆,林丹,许淼等.应用实时荧光定量PCR测定牛体细胞端粒长度[3]王敏敏,杨浩,刘广义等.荧光定量PCR测定端粒长度。
荧光实时定量PCR检测端粒长度
Meia R s rhC ne i h i n esyMei l ol e Xii ig a 10 1C i . d l e ac et o n a iri d a lg , nn Q nh i 0 0 , hn c e rfQ g U v t c C e g 8 a
【 bt c】 O j t e Ra—ieqat teP Rh en pld om au m n oto e nt Me os iy t e s p sf A s at r be i e t unti C a be pi r e r etfe m rl g . t d S t—h e a l ev l m i v a s a e f s e l ee h h x r m eo
=
0 5 5, <00 ) .7 P . 1 .Co c so R a —t u tav C a da t e f i l i drpdt adii rai c al t c i ea n l in e u l i q a it eP R h av a so s it a ii dl sa be oah v me n ti s n g mpc yn a yn ts e y l e
Re l—tleq a i a v a il u nt t ePCR i ee mi ain ftlme eln t Z l ti n d tr n to o eo r e gh. HONG ig—c eg,LU Pe g—l,Jn G o—e Yn hn O n i i u n,e 1 Hih At u e ta. g ltd i
端粒长度与癌症发生的关系研究
端粒长度与癌症发生的关系研究近年来,关于癌症发生与端粒长度之间的关系引起了全世界科学家的广泛关注。
端粒(telomere)是染色体末端的一段DNA序列,起到保护染色体的作用,如同鞋带的塑料头一样。
人的端粒长度会随年龄的增长而逐渐缩短,直至不能提供足够的保护,染色体开始受损。
而这种情况在癌细胞中尤为明显,因此研究端粒长度或许有助于癌症的预防和治疗。
一、如何测量端粒长度?目前主要有两种方法用于测量端粒长度:末端粘结法(Terminal Restriction Fragment Length Polymorphism,TRFLP)和定量PCR法。
TRFLP法是通过电泳分离染色体DNA时,某些酶对端粒DNA与非端粒DNA的切割不同,产生具有特定长度的DNA条带,通过富集端粒DNA的条带直接测量端粒长度。
而定量PCR法则是在PCR扩增反应中,使用两种PCR引物同时扩增端粒长度在一定范围内的DNA片段及对应的内参(受端粒影响不强的基因)的DNA片段,并通过两者的比值计算出端粒长度。
二、端粒长度与癌症发生的关系1.癌症患者端粒长度偏短已经有研究表明,癌症患者的端粒长度普遍较短。
比如在大肠癌患者中,其非肿瘤组织中的端粒长度约为肿瘤组织中的1/3左右。
类似的结果也在多种癌症中得到了验证,包括肺癌、乳腺癌、前列腺癌等。
端粒的缩短甚至被认为是某些癌症的特征之一。
2.端粒缩短与癌症的发生有关早期的研究已经发现,人体细胞在分裂时,端粒长度会随之缩短。
而当端粒缩短到一定程度时,染色体就会进入一种被称为“端粒危机”的状态,从而导致细胞的衰老或死亡。
而据最新的研究,同时具备端粒缩短和癌症相关突变的人,其癌症风险会增加近3倍。
这表明,端粒缩短可能并不是单独的一个问题,而与癌症的发生密切相关。
3.端粒长度可以作为癌症的生物标志物由于癌症细胞具有不断分裂的特性,故其端粒长度也会不断缩短。
因此,测量血液、尿液或其他组织中的端粒长度,可以作为癌症的生物标志物。
2021长寿家系外周血白细胞端粒长度测定范文2
2021长寿家系外周血白细胞端粒长度测定范文 端粒是位于染色体末端的特殊结构,对于维持染色体的稳定具有重要作用。
端粒长度(TL)会随着细胞的分裂进行性缩短。
当 TL 缩短达到某个界限时,端粒对染色体末端的保护作用消失,进而出现细胞的复制性衰老,因此,TL 可用作细胞或个体衰老的生物学标记之一〔1〕.白细胞端粒长度( LTL)随年龄增大呈现的动态变化模式可综合反映端粒的遗传状况、修复能力、机体的炎症程度及氧化应激水平,忠实地记录细胞和机体的整个生命历程和生物学年龄,因此被认为是重要的衰老生物学标记。
目前,用体细胞进行端粒动态变化的研究多使用白细胞作为模型〔2〕.广西巴马地区因其独特的长寿现象已成为研究人类长寿与衰老的基地之一。
本研究对广西巴马地区长寿家系外周血白细胞进行相对 TL 的测定,探讨 LTL 在长寿家系内的遗传趋势及其与长寿的相关性。
1 材料与方法 1. 1 对象主要为广西巴马地区长寿家系( BLF) ,共得到1 301人,男 744 人,女 557 人,平均年龄( 55.38±28. 67)岁;另设3 个对照组,分别为本地的非长寿家系( BNLF) ,外地(广西百色地区平果县)的长寿家系( PLF)及非长寿家系( PNLF) .其中 BNLF 283 人,男 171 人,女 112 人,平均年龄( 45. 05±26. 81)岁; PLF 308 人,男 193 人,女 115 人,平均年龄( 51. 06±30. 25)岁; PNLF 482 人,男302 人,女180 人,平均年龄( 39. 65±25. 34)岁,见表 1.长寿家系定义为调查时家系中至少有 1 位≥90岁的老人,非长寿家系是与长寿家系无血缘关系且家族史中无≥90岁的老人。
研究对象均为壮族,采样前已对受试群体进行常规问诊和体检,基本属于健康群体。
1.2 标本的采集与处理抽取每个研究对象上肢肘静脉血4 ml,ACD 抗凝,冻存备用。
速溶 端粒长度
速溶端粒长度介绍在细胞的染色体末端,存在着一种特殊的结构,被称为端粒。
端粒由DNA序列和蛋白质组成,起到保护染色体稳定性的重要作用。
端粒长度是指端粒DNA序列的长度,它与细胞的衰老、癌症等疾病密切相关。
本文将从速溶端粒的定义、测量方法、与健康的关系等方面进行探讨。
速溶端粒的定义速溶端粒是指端粒的长度能够迅速缩短的现象。
正常情况下,随着细胞的分裂,端粒长度会逐渐缩短,当端粒长度达到一定程度时,细胞进入老化状态或发生凋亡。
然而,某些情况下,端粒的缩短速度会加快,导致细胞过早衰老或发生疾病。
速溶端粒的测量方法测量端粒长度是研究速溶端粒的重要手段。
目前常用的测量方法有荧光原位杂交(FISH)和定量PCR法。
荧光原位杂交(FISH)FISH是一种基于DNA探针的技术,可以用来检测端粒长度。
该方法利用荧光标记的DNA探针与端粒DNA序列特异性结合,然后通过显微镜观察荧光信号的强度和位置来测量端粒长度。
定量PCR法定量PCR法是一种通过PCR技术来测量端粒长度的方法。
该方法利用端粒特异性引物和探针,与端粒DNA序列结合进行扩增和测量。
通过计算PCR产物的数量和长度,可以得到端粒的长度信息。
速溶端粒与健康的关系速溶端粒的长度与健康状况密切相关。
以下是速溶端粒与健康的几个方面关系的探讨。
衰老速溶端粒的缩短是细胞衰老的标志之一。
随着细胞的分裂,端粒长度不断缩短,当端粒长度达到一定程度时,细胞进入老化状态。
速溶端粒的缩短速度过快会导致细胞过早衰老,加速身体的老化过程。
癌症速溶端粒的异常缩短与癌症的发生密切相关。
正常细胞的端粒长度能够保护染色体的稳定性,防止基因突变和染色体异常。
而当端粒长度过短时,染色体易发生断裂和融合,导致基因异常和癌症的发生。
心血管疾病速溶端粒的缩短与心血管疾病的风险增加有关。
研究发现,速溶端粒的长度与心血管疾病的发生率呈负相关关系,即速溶端粒越短,心血管疾病的风险越高。
这是因为端粒长度的缩短会导致血管内皮细胞的功能异常,进而引发心血管疾病。
端粒长度计算
端粒长度计算端粒长度是指染色体末端的一段DNA序列,它在细胞分裂过程中扮演着重要的角色。
在每次细胞分裂时,染色体的末端会因为DNA聚合酶的限制性作用而变短,这就是端粒缩短现象。
端粒缩短与细胞衰老、癌症等疾病密切相关,因此,研究端粒长度具有重要意义。
近年来,科学家们通过多种方法研究了端粒长度的变化与各种疾病之间的关系。
其中,最常用的测量方法是端粒酶链反应(PCR)。
这种方法的原理是利用PCR扩增端粒DNA的序列,并通过比较扩增产物的长度来推测端粒的长度。
通过大量的实验证明,端粒长度的变化与人类的寿命密切相关。
研究表明,年龄越大,端粒长度越短,这与细胞衰老现象一致。
此外,一些遗传疾病也与端粒长度的变化有关,比如白血病、肺癌等。
通过测量端粒长度,可以预测疾病的发展趋势,为临床治疗提供重要的参考依据。
除了遗传疾病外,一些环境因素也会影响端粒长度的变化。
例如,慢性压力、不健康的生活方式、环境污染等都会导致端粒缩短。
因此,保持健康的生活方式,减少压力,避免不良环境的影响,对于保持端粒长度的稳定具有重要意义。
尽管目前对于端粒长度的研究已经取得了一些重要的突破,但仍然有很多问题有待解决。
例如,如何延长端粒长度,从而延缓细胞衰老和疾病的发展,是一个热门的研究方向。
此外,如何准确测量端粒长度、端粒缩短的机制等也是未来研究的重点。
端粒长度的研究在生物医学领域中具有重要的意义。
通过研究端粒长度的变化,可以揭示细胞衰老和疾病发展的机制,为临床治疗提供新的思路和方法。
随着科学技术的进步,相信在不久的将来,端粒长度的研究将取得更加重要的突破,为人类的健康和长寿贡献更多的力量。
数字pcr 端粒长度
数字pcr 端粒长度
端粒是染色体末端的一种结构,它对维持染色体的稳定性和细胞分裂的控制起着重要作用。
数字PCR端粒长度是一种通过数字PCR技术测量端粒长度的方法,可以在3小时内测量出单个端粒的绝对长度。
这种方法由新加坡国立大学Lih Feng Cheow领导的研究团队开发,被称为“STAR”(Single Telomere Absolute-Length Rapid),即单端粒绝对长度快速测定法。
它通过将单个端粒分子分配到微流控芯片中的数千个纳米孔中,然后使用数字PCR仪器进行即时PCR 扩增,每个纳米孔中PCR扩增的动力学反应了端粒重复数,从而与端粒分子的长度相关。
研究数据表明,这种新颖的高通量数字PCR方法准确、灵敏,并且可以进一步帮助测量在癌细胞中发现的染色体外端粒重复序列(ECTR)。
因此,这种方法有望为年龄相关疾病和癌症的诊断和治疗提供关键的端粒信息。
端粒长度测量方法
端粒长度测量方法:DNA印迹法(Southern blot, SB)SB已广泛应用于分析DNA和端粒结构. 用限制性核酸内切酶Hin fⅠ或Rsa Ⅰ消化DNA, 然后琼脂糖电泳分离不同大小的片段, 转移到硝酸纤维或尼龙膜上. 用32P同位素或生物素、碱性磷酸酯酶标记的端粒特异探针与其杂交(CCCATT)n. 末端限制酶切片段(TRF)通过光密度计定量测量. 选用Hin fⅠ或Rsa Ⅰ是因为这两种酶能频繁的切断DNA, 使亚端粒区域变得尽可能小. 用于SB分析的DNA应该是没有被打碎和纯度较高的, 但是因为DNA的高分子量、高黏度使得这点较难保证. TRF法得到的数据除代表所有染色体端粒的长度外, 还包括部分亚端粒区长度. 因此TRF法不能提供端粒的实际长度.杂交保护分析法(hybridization protection assay,HPA) HPA需要制备基因组DNA、细胞或组织溶胞产物同吖啶酯(AE)标记端粒的探针进行杂交, 检测发光强度, 确定端粒在Alu序列中比例. 研究表明, Alu序列中比例为0.01的端粒大约与2 kb的TRF法测量的端粒长度对应. HPA不需要完整的或没有修剪的DNA, 但是, 推荐使用下限为10 ng修剪过的DNA. 纯化的细胞DNA或至少含有1000个细胞的组织溶胞产物都能用于测量. 虽然HPA不包括亚端粒序列, 但是HPA法没有给出详细的细胞或染色体水平的端粒信息,也不能直接测定端粒长度.荧光原位杂交(FISH)FISH直接将寡核苷酸探针标记在端粒序列上. 标准的FISH包括制作分裂中期的染色体以及DNA变性, 与异硫氰酸荧光素(FITC)或Cy3标记的寡核苷酸探针杂交, 用DAPI或PI复染, 最后用荧光显微镜检测信号. FISH方法被广泛地应用于特定基因的细胞遗传学研究. FISH自身的特点使其适合于测定端粒长度, 如小的端粒探针可增加进入细胞的渗入度, 而且单链探针不需要退火.几种改良的FISH: 用FISH方法进行的端粒定量被称作Q-FISH[14-15](Quantitative-FISH). Lansdorpet al用核酸肽(PNA)寡核苷酸探针(PNAFISH)代替寡核苷酸探针改良了Q-FISH法. 因为带电的脱氧核糖酸盐主链被肽链连接的不带电N-(2-氨基乙基)-甘氨酸主链替代, PNA探针的复式结构远比DNA/DNA或DNA/RNA的稳定.结合FISH和免疫染色(TELI-FISH)的方法可以测量用甲醛固定,石蜡包埋的人组织样本的端粒,同时还可以鉴别细胞种类. 在TELI-FISH中只需用很少的细胞, 这种方法可以忽略不同细胞种类而直接比较正常和癌变细胞的端粒长度. Perneret al发明了端粒/着丝粒-FISH(T/C-FISH)测量每个单独的染色体臂的端粒长度的方法, 2号染色体着丝粒作内参. 荧光强度的比率经过计算同TRF法有很好的相关性. Yan et al 在染色质/DNA纤维制备中应用了Fiber-FISH法. 端粒的特异PNA Green探针和1q亚端粒的特异Red探针在染色质纤维上同时杂交, 已知的1q亚端粒探针大小为100 kb. 因为解压缩的染色质的可变伸缩性使得纤维杂交的时候显色长度变得可变. 然而, 目的序列同亚端粒探针有相似的伸缩程度. 因此, 用已知大小的亚端粒探针作对照对判断DNA纤维解压缩的程度起很重要的作用. 在检测淋巴母细胞系1q时, 端粒和亚端粒排列在纤维上的信号范围分别在0.9 μm-2.9 μm和13.8-29 μm之间. 这意味着根据纤维的不同伸展程度杂交到纤维上的探针可见长度为3.4-7.2kb/μm(平均5.5 kb/μm) .流式细胞计量-荧光原位杂交(Flow-FISH) Flow-FISH包括6个基本步骤: 细胞分离, DNA变性并与PNA探针杂交, 洗去多余探针, 复染后用流式细胞计量术采集和分析.来自不同细胞系和临床样本的骨髓、血液淋巴结、经过检测的扁桃体的端粒长度值同TRF法有很好的相关性. 同Q-FISH相反, Flow-FISH可以分析周期中和非周期中的细胞端粒, 整个操作只需1d. 此外, 不同的细胞亚群能够同时处理, 这对于分析较难纯化的细胞是很有用的. Flow-FISH法测定端粒长度在研究有核血细胞在正常个体和病态个体的血液病时有很高的实用性.Flow-FISH同时分析端粒长度和细胞表型的技术难度很高, 因为只有很少的带有合适发射光谱的荧光染料能承受DNA变性和PNA杂交的条件. Baerlocher et al运用Hydra 96孔微型分注器测量端粒长度, 他可以定量差异很小(0.5kb)的端粒片段, 而且只用很少的细胞(1000个).当同时测量复杂样品时, 这种自动化操作尽显优势.寡核苷酸引物原位DNA合成法(PRINS) 寡核苷酸引物(CCCTAA)7与分裂中期或分裂间期的同源染色体退火、杂交, 加入热稳定DNA聚合酶和荧光标记的核苷酸后引物开始延伸,最终通过荧光显微镜分析荧光信号.许多位点的引物同时扩增保证了充足的荧光信号得以检测,但是不均匀的引物退火可能导致端粒长度测量不充分. 一些用于增加标记和退火功效的改良, 双脱氧核苷酸的参与可以通过减少染色体被随机打断的非相关DNA的扩增而使更多特异端粒序列被标记. 最近, Yan et al用双链PRINS法, 即(TTAGGG)7和(CCCTAA)7两个引物标记端粒DNA的正链和反链.两个方向的标记使产物的信号得以加强, 标记功效增加到78%至95%.定量PCR以前认为用寡核苷酸引物TTAGGG和CCCTAA进行的PCR反应不可能用于测量端粒, 因为引物自身之间可能发生杂交.但是如果引物被加以修饰, 6个重复碱基中包括两个错配碱基和4个连续配对碱基, 这样两个引物便不会互相杂交. 在Q-PCR中端粒(T)重复拷贝的比例同单个拷贝的基因(S)的比例是确定的. T/S的比例同端粒平均长度成正比关系,端粒长度可根据T/S率测定.单个端粒长度分析(STELA)STELA是在单个染色体水平上基于PCR的端粒测量方法.第1步是“telorette”(在与端粒G悬突不配对的20个核苷酸后有7个同源的TTAGGG接头)的退火.第2步是将“telorette”连接到富C链5末端.此后用识别telorette尾巴的teltail 引物同亚端粒上游引物进行PCR扩增.在研究这个区域的多态现象时, 上游引物可以是特异的等位基因. STELA最先被用于分析人类X染色体短臂. 最近对秀丽隐杆线虫的端粒和沃纳综合征的成纤维细胞的端粒的研究表明, 在单个染色体水平上STELA的分析有很高的可靠性.STELA的PCR扩增具有高度的端粒特异性, 用STELA测量人类成纤维细胞的XpYp端粒长度始终比TRF的平均值小, 且这两者成线性关系, 说明STELA没有包括亚端粒长度.。
端粒检测技术简介-金
端粒长度检测方法简介
端粒限制性片段(TRF) 定量荧光原位杂交(Q-FISH) 流式荧光原位杂交(Flow FISH) 定量聚合酶链式反应(Q-PCR) 单个端粒长度分析(STELA)
TRF检测法(Terminal Restriction Fragmentation)
TRF检测法原理
1、限制性内切酶消化DNA 2、琼脂糖凝胶电泳 3、转膜固定 4、同位素标记探针杂交 5、信号收集
TRF检测法(Terminal Restriction Fragmentation)
TRF检测法缺点 1、只能得到端粒的平均长度,无染色体个异性 2、对起始DNA的数量、质量要求高
qPCR检测法
qPCR检测法原理
端粒长度检测技术简介
——产品研发部
端粒简介
端粒 :是位于真核细胞染色体末端富含鸟嘌呤的 DNA重复序列,能维持染色体的稳定和DNA的完整复 制。防止染色体的融合、重组和降解。人类端粒DNA 的排序方式为(TTAGGG)n,重复次数2000次左右, 长度5-15kb。细胞每分裂一次,端粒就缩短50100bp。因此,端粒被看作是“生命的时钟”。
市场调研分析
各个公司情况: 1、缺少大数据库,无法推生物学年龄 2、qPCR检测法+推算年龄,价格较贵 3、准确度均有待提升
Thank You
ΔCt(待测样)=Ct(靶基因,待测样)-Ct(参照基因,待测样) ΔCt(校准品)=Ct(靶基因,校准品)-Ct(参照基因,校准品) ΔΔCt=ΔCt(待测样)-ΔCt线绘制
TRF检测法(Terminal Restriction Fragmentation)
qPCR检测法缺点 1、受DNA量、反应条件影响较大,重复性不好 2、相对定量,需要大量样本,绘制标准曲线
端粒长度检测试剂盒
【产品规格】TL50 50 次/盒【产品说明】端粒(Telomeres):是真核生物线性染色体末端的非编码串联重复性(TTAGGG)n阵列,端粒长度的变化,与衰老、癌症、或神经退行性等多种疾病相关。
定量PCR法是检测端粒长度的经典技术,用时短,操作简单,结果准确,适用于批量样本检测。
本产品试剂盒采用双色荧光qPCR(SYRBgreen+VIC)检测端粒相对长度,检测对象为血液、口腔拭子或细胞DNA。
该试剂盒具有以下特点。
1. 稳定:全程闭管操作,无交叉污染。
2. 可靠:端粒与内参单管检测,减少孔间干扰。
内参基因为多拷贝,与端粒量差降低。
3. 方便:操作简单,无需电泳步骤。
4. 定量:△CT 值,可定量检测端粒相对长度。
【运输及保存条件】低温冷冻运输,-20℃保存,有效期 1 年,冻融以后,4℃保存,有效期4周。
【产品组分】注:本试剂盒提供试剂,使用前请上下轻柔颠倒十次混匀,后低速离心、小心开启。
避免起泡。
【操作步骤】1. 样品质控使用商业化DNA抽提试剂盒提取血液、细胞或组织DNA,DNA纯度A260/A280≈1.8,检测样品浓度标化为15~20ng/µL,上样4µL。
注:标准品浓度已标化为15~20ng/µL,上样4µL。
样品及标准品浓度过高或过低会影响扩增效率,对实验造成干扰,测量结果误差较大。
2. qPCR反应体系及条件反应体系以20µL为例PCR仪设置以 ABI 7500为例,其他型号定量PCR仪应通过标准品进行参数校正或咨询专业技术人员。
【基线设置】内参基线设定:以标准品基线设定内参基线,将内参的基线设定为6~15个循环。
端粒基线设定:以标准品基线设定端粒基线,将端粒的基线设定为3~15个循环。
【阈值设置】内参阈值设定:以标准品CT值设定内参扩增曲线阈值,将内参的CT 值定为21±1。
端粒阈值设定:以标准品CT值设定端粒扩增曲线阈值,将端粒的CT 值定为13±1 。
自己翻译的一篇QPCR测端粒长度的论文
自己翻译的一篇QPCR测端粒长度的论文前段时间接到老板给的任务,让我探索一下端粒长度的测量。
我本来推荐用Southern来测,后来由于缺少实验仪器,就重新选择了QPCR法来测,我之前从来没有做过QPCR所以看文献总觉的一知半解,懂得不够彻底,所以静下心来花了一个星期仔仔细细的看了一篇文献,顺带翻译整理出来了。
想着发到论坛上来,说不定能帮到需要的同学翻译的不好,请多多指教。
英文原文在附件中,不需要叮当就可以下载。
--------------------------------------------------------------------------------------------------------------------------关于成年人健康与衰老的流行病学研究(GERA)队列中的100000个受试者的端粒长度的测量和信息学自动化分析摘要Kaiser Permanente地区的基因、环境和健康研究计划(RPGEH)包括成年人健康与衰老的流行病学研究(GERA)队列中的110266个人的唾液DNA提取样本。
由于其与衰老的关系,端粒长度的测量被认为是发展这些主题的重要的生物标记物。
为了在短时期内分析这个大群体的相对端粒长度,我们开发了一个全新的高通量机器人系统用来进行端粒长度测量和信息学分析。
检测样本以随机的方式与对照样本一起运行三次。
作为质量控制的一部分,我们规定了样本内变异率并采用阈值来消除测量偏差。
在106902份样本的分析结果中,105539份(98.7%)通过了所有的质控检测。
正如预期的那样,端粒长度总体上表现出随着年龄的增长而下降,并且性别不同下降不同。
尽管在75岁以前,端粒与年龄表现出负相关,但在超过75岁以后,年龄与更长的端粒呈正相关,预示着在75岁以上的个体中,更长的端粒与更多的生存年数有关。
此外,虽然女性通常比男性拥有更长的端粒,但这种差异仅对50以上的人才有意义。
端粒检测介绍
近些年,在分子生物学领域,全世界的眼光都聚焦到了一种新的血液检测方法。
通过这个方法可以告知人们生物学年龄、衰老进度、重大疾病风险及影响,以此提供长寿或健康的信息。
这个检查方法,检测的就是位于人类染色体两端叫做“端粒”的重要分子结构。
众所周知,细胞是人体各组织、各器官结构和功能的基本单位。
细胞的发育、生长和死亡每时每刻都在体内进行着:老迈的细胞死去,新生的细胞又占据了原有的位置。
这种新陈代谢是我们保持活力、生命得以延续的基础。
然而,新一代细胞的产生并不是无穷无尽的,随着分化新细胞的能力越来越弱直至停止,个体的衰老与死亡也就如期而至。
长期以来,科学家们一直试图揭开衰老的秘密:为什么人类细胞不能无限分裂下去?到底有什么力量在制约着它?而与此同时,疯狂的癌细胞却又能突破这个限制,获得“永生”,其中道理何在呢?端粒的发现以及对其功能的研究为我们初步解开了人类衰老的谜团。
在人类细胞核内共有23对染色体,染色体是是决定我们生老病死的遗传物质。
简单地说,端粒就是染色体末端的“保护使者”,保护染色体被“磨损”掉。
也有人将端粒比作鞋带末端的塑料套,一方面保护“鞋带”(DNA)本身不被降解,另一方面也可防止染色体相互融合。
一旦端粒被耗尽,染色体也就无法保持稳定,细胞也将走向死亡。
所以,端粒的长短,往往代表细胞分裂潜力的大小:端粒越短表明细胞年纪越老,剩余的分裂次数有限;端粒越长,则意味着细胞的活力越强。
端粒检测的发展细胞每分裂一次,端粒就变短一点。
最终,端粒会变得很短,以至于细胞不能再继续分裂,从而进入衰老或死亡的状态。
科学家认为,端粒是一个人老化速度的最重要和准确的分子指标,它会随着人们年龄的增长而缩短。
多项研究表明,那些细胞中有较短端粒的人更容易患像癌症、心脏病和老年痴呆症(阿尔兹海默症)之类的疾病,甚至会较早死亡。
小鼠实验则表明,延长端粒能够增加寿命的长度。
抓住这一点,近年来全球很多实验室和生物技术公司纷纷开始提供端粒长度的检查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
©2002Oxford University Press Nucleic Acids Research,2002,Vol.30,No.10e47Telomere measurement by quantitative PCRRichard M.Cawthon*Department of Human Genetics,University of Utah,15N2030E,Room2100,Salt Lake City,UT84112,USA Received January4,2002;Revised and Accepted March23,2002ABSTRACTIt has long been presumed impossible to measure telomeres in vertebrate DNA by PCR amplification with oligonucleotide primers designed to hybridize to the TTAGGG and CCCTAA repeats,because only primer dimer-derived products are expected.Here we present a primer pair that eliminates this problem,allowing simple and rapid measurement of telomeres in a closed tube,fluorescence-based assay.This assay will facili-tate investigations of the biology of telomeres and the roles they play in the molecular pathophysiology of diseases and aging.INTRODUCTIONThe traditional method of measuring telomere length in samples of total human genomic DNA determines a mean terminal restriction fragment(TRF)length(1).The method requires large amounts of DNA(0.5–5µg/individual)and time (3–5days).Furthermore,the relative mean TRF lengths of individuals can vary by as much as5%depending on the particular restriction enzymes used,suggesting the existence of subtelomeric restriction site polymorphisms and/or subtelomeric length polymorphisms that may confound the identification of primary factors accounting for inter-individual variation in the mean length of the true telomeric repeat sequence.More recently,methods have been developed that allow multiple samples to be compared for their relative content of just the telomeric hexamer repeat itself(2–5).However,none of these methods is as simple and as amenable to rapid high throughput processing of large numbers of samples as the method presented below.Our strategy for determining relative telomere lengths by quantitative PCR was to measure,for each DNA sample,the factor by which the sample differed from a reference DNA sample in its ratio of telomere repeat copy number to single copy gene copy number.This ratio should be proportional to the average telomere length.The quantity of telomere repeats in each experimental sample was measured as the level of dilution of an arbitrarily chosen reference DNA sample that would make the experimental and reference samples equivalent with regard to the number of cycles of PCR needed to generate a given amount of telomere PCR product during the exponential phase of PCR amplification.Similarly,the relative quantity of the single copy gene in each experimental sample was expressed as the level of dilution of the reference DNA sample needed to match it to the experimental sample with regard to the number of cycles of PCR needed to generate a given amount of single copy gene PCR product during the exponen-tial phase of the PCR.For each experimental sample the ratio of these dilution factors is the relative telomere to single copy gene(T/S)ratio.Thus T/S=1when the unknown DNA is identical to the reference DNA in its ratio of telomere repeat copy number to single copy gene copy number.The reference DNA sample(to which all of the experimental samples in a given study are compared)can be from a single individual or it can be a pooled sample from multiple individuals.The T/S ratio of one individual relative to the T/S ratio of another should correspond to the relative telomere lengths of their DNA. MATERIALS AND METHODSResearch subjectsGenomic DNA was extracted directly from blood samples by standard procedures.The samples used to compare quantitative PCR versus Southern blot approaches to telomere measurement were donated by95individuals(47females and48males,age range5–94years)from Utah families that are part of the Centre pour les Etudes du Polymorphisme Humaine(CEPH) collection used world wide to build the human genetic linkage map(6).Purified DNA samples were diluted in96-well microtiter source plates to∼1.75ng/µl in10mM Tris–HCl,0.1mM EDTA,pH7.5(TE–4,final volume300µl/well),heated to 95°C for5min in a thermal cycler,quick chilled by transfer to an ice/water bath for5min,centrifuged briefly at730g,sealed with adhesive aluminum foil and stored at4°C until the time of assay.Quantitative PCRReal time kinetic quantitative PCR determines,for each sample well,the C t,i.e.the fractional cycle number at which the well’s accumulating fluorescence crosses a set threshold that is several standard deviations above baseline fluorescence (7).A plot of C t versus log(amount of input target DNA)is linear,allowing simple relative quantitation of unknowns by comparison to a standard curve derived from amplification,in the same plate,of serial dilutions of a reference DNA sample. For this study,telomere(T)PCRs and single copy gene(S) PCRs were always performed in separate96-well plates. Repeated measures of the T/S ratio in the same DNA sample gave the lowest variability when the sample well position (i.e.row and column coordinates)for T PCR on the first plate matched its well position for S PCR on the second plate.Two master mixes of PCR reagents were prepared,one with the T primer pair,the other with the S primer pair.Thirty microliters of T master mix was added to each sample well and*Tel:+18015855520;Fax:+18015817796;Email:rcawthon@standard curve well of the first plate and30µl of S master mix was added to each sample well and standard curve well of the second plate.For each individual in whom the T/S ratio was assayed,three identical20µl aliquots of the DNA sample (35ng/aliquot)were added to plate1and another three aliquots were added to the same well positions in plate2.For each standard curve,one reference DNA sample was diluted serially in TE–4by∼1.68-fold per dilution to produce five concentrations of DNA ranging from0.63to5ng/µl,which were then distributed in20µl aliquots to the standard curve wells on each plate.The plates were then sealed with a transparent adhesive cover, centrifuged briefly at730g and stored at4°C in the dark until the PCR was performed(0–3days later).The composition of T and S PCRs were identical except for the oligonucleotide primers.The final concentrations of reagents in the PCR were150nM6-ROX and0.2×Sybr Green I (Molecular Probes),15mM Tris–HCl pH8.0,50mM KCl, 2mM MgCl2,0.2mM each dNTP,5mM DTT,1%DMSO and 1.25U AmpliTaq Gold DNA polymerase(Applied Biosys-tems).The final telomere primer concentrations were:tel1, 270nM;tel2,900nM.The final36B4(single copy gene) primer concentrations were:36B4u,300nM;36B4d,500nM. The primer sequences(written5′→3′)were:tel1,GGTTTTT-GAGGGTGAGGGTGAGGGTGAGGGTGAGGGT;tel2, TCCCGACTATCCCTATCCCTATCCCTATCCCTATCC-CTA;36B4u,CAGCAAGTGGGAAGGTGTAATCC;36B4d, CCCATTCTATCATCAACGGGTACAA.[The36B4gene, which encodes acidic ribosomal phosphoprotein PO,is located on chromosome12(8).]All PCRs were performed on the Prism7700Sequence Detection System(Applied Biosytems,Foster City,CA),a thermal cycler equipped to excite and read emissions from fluorescent molecules during each cycle of the PCR.The thermal cycling profile for both amplicons began with a95°C incubation for10min to activate the AmpliTaq Gold DNA polymerase.For telomere PCR,there followed18cycles of 95°C for15s,54°C for2min.For36B4PCR,there followed 30cycles of95°C for15s,58°C for1min.ABI’s SDS v.1.7 software was then used to generate the standard curve for each plate and to determine the dilution factors of standards corre-sponding to the T and S amounts in each sample.Relative T/S ratios will reflect relative length differences in telomeric DNA only if the number of copies of S per cell that are effectively PCR-amplified is the same in all individuals being studied.To test whether PCR with the36B4primers met this requirement,we determined,by quantitative PCR,the relative ratio of36B4gene copies toβ-globin gene copies in the experimental DNAs versus the reference DNA.The36B4 PCR was as described above;the conditions forβ-globin PCR were exactly as for36B4,except thatβ-globin primers(HBG1, GCTTCTGACACAACTGTGTTCACTAGC;and HBG2, CACCAACTTCATCCACGTTCACC;both at a final concen-tration of400nM)were used instead of36B4primers.The relative ratio(36B4/β-globin)for all experimental DNAs in comparison with the reference DNA was~1.0(average=1.0; range=0.97–1.08),as expected,indicating that equal copy numbers of the36B4gene per cell were amplified in all DNA samples(data not shown).Determination of mean TRF lengthMean TRF lengths were determined as described by Slagboom et al.(9)with minor modifications.Approximately0.5µg of purified whole blood DNA was digested to completion with Hae III restriction endonuclease.Digested samples were then mixed with DNA size standards(phageλDNA digested with Hin dIII and a1kb ladder ranging from1to10kb),electro-phoresed through agarose gels and blotted to a nylon membrane.Blots were hybridized with a32P-end-labeled oligo-nucleotide,(TTAGGG)7,washed to remove non-specifically bound probe,exposed to a phosphor plate for1–5days and scanned with a PhosphorImager(Molecular Dynamics).Blots were then stripped of the telomere probe,hybridized with a mixture of two radiolabeled oligos,one for the1kb ladder,the other specific for the23kbλHin dIII fragment,washed, exposed to a phosphor plate and scanned.The size standard images and telomere smear images were then superimposed to locate the positions of the size intervals within the telomere smears.Mean TRF length was then calculated(10)as mean TRF length=Σ(OD i)/Σ(OD i/L i),where OD i is total radioactivity above background in interval i and L i is the average length of i in base pairs.This entire procedure was performed twice,i.e.the two mean TRF length values determined on each individual were obtained from two independent experiments.RESULTSPrimer designFigure1shows why the oligonucleotide primer pair designed for this study should specifically amplify telomeric hexamer repeats without generating primer dimer-derived products. Each primer is designed to allow DNA polymerase to extend from its3′-end when it is hybridized to telomere hexamer repeats but not when it is hybridized to the other primer.Note also that the last six bases on the5′-end of each primer cannot base pair with the telomere sequence when the rest of the primer is optimally hybridized.The complements of these 5′-sequences are generated at the3′-ends of all products that are completed in each cycle of the PCR,thereby blocking those 3′-ends from initiating DNA synthesis in the middle of telomere amplification products in subsequent cycles. Agarose gel electrophoresis of the telomere PCR product In the presence of35ng human DNA,telomere PCR product was detectable by Sybr Green I staining in the ABI Prism7700 Sequence Detection System beginning around nine cycles of PCR.After22cycles of telomere PCR,the product was visualized by agarose gel electrophoresis,ethidium bromide staining and UV transillumination as a smear beginning with greatest inten-sity at the smallest predicted possible size,76bp(the sum of the lengths of the two primers),and progressively fading to background at∼500bp(Fig.2).Note that products of the same length as the telomeres are not expected with this assay;rather, primarily the shortest possible product(76bp)is expected,at a copy number proportional to the number of sites available for primer binding in cycle1of the PCR(and,therefore,proportional to total telomere length).When the genomic DNA template was omitted from the telomere PCR and when Escherichia coli DNA(a genome without telomeres)was substituted for human DNA,no product was detectable out to22cycles of PCR(Fig.2).Any autosomal single copy gene can serve as the basis for normalizing the telomere quantitative PCR signal.We chose the 36B4gene,because it has already been validated for gene dosage studies (8).In the presence of 35ng of human DNA,30cycles of 36B4PCR yielded only the expected 74bp product.This single copy gene PCR yielded no product when genomicDNA was omitted from the PCR and when E.coli DNA was substituted for human DNA.Reproducibility of T/S ratio measurementsTo test the reproducibility of the T/S ratio from well to well spatially across the 96-well array,35ng of a singleindividual’s–template hybridizations,every sixth base is mismatched,however,the last five bases at the 3′-end of the primers are perfectly matched to complementary bases in the template.Addition of bases by DNA polymerase begins at the 3′-ends of the annealed primers and proceeds in the direction of the large arrows.(B )Annealing of primers to each other.The strongest possible hybridizations of the primers to each other involve a repeated pattern of six bases containing four consecutive paired bases followed by two mismatched bases,an example of which is shown here.Note that the 3′-terminal base of each primer cannot form a stable base pair with the base opposite it,thereby blocking addition of bases by DNApolymerase.Figure 2.Agarose gel electrophoresis following PCR with the tel 1and tel 2primers.PCR was as described in Materials and Methods,except that 22cycles of PCR were performed instead of 18cycles.Eight microliters of reaction product were then loaded into each lane of a 4%(Nusieve 3:1)agarose gel and electro-phoresis carried out at ∼2.5V/cm in 45mM Tris–borate,1mM EDTA with ethidium bromide present at a concentration of 0.5µg/ml.The gel was then transillu-minated with UV light and digital photography was performed with the Stratagene EagleEye nes 1,2,8and 9,size standards.For lane 3the template for PCR was 35ng of total human genomic DNA.The remaining samples differed from the lane 3sample as follows:lane 4,no primers;lane 5,no polymerase;lane 6,E.coli genomic DNA as template instead of human genomic DNA;lane 7,no template.The bottom of the smear in lane 3was estimated to contain a 76bp product,based on a comparison of its mobility with the mobilities of the size standards in a plot of log(number of base pairs)versus distance migrated from the origin.DNA sample was added to all 96wells of each of two plates and the PCRs carried out as above.Since the amount of the PCR product approximately doubles in each cycle of the PCR,the T/S ratio is approximately [2C t (telomeres)/2C t (36B4)]–1=2–∆C t .The average ∆C t was –9.05,i.e.the single copy gene PCR needs about nine more cycles of PCR than the telomere PCR in order to produce as much fluorescent signal as the telomere PCR;the standard deviation of ∆C t was 1.48%.The relative T/S ratio (T/S of one sample relative to the T/S of anothersample)is .Using this formula,a relative T/S ratio for each of the 96wells was determined,as the T/S of the well relative to the mean T/S for all 96wells.The standard deviation of this relative T/S ratio (reflecting the well-to-well variation in T/S across the 96-well plate)was 9.4%.To test the reproducibility of T/S quantitation at the same well position in pairs of T and S PCR plates over time,five pairs of T/S PCRs on the same DNA sample were carried out at each of three different well positions.Wells with a serially diluted reference DNA were included on each plate so that relative quantities of T and S could be determined from standard curves.The standard deviation for the T/S ratio for the five paired PCRs done at each well position was deter-mined.The average of the standard deviations at the three well positions was 6.9%.Correlation between mean TRF lengths and relative T/S ratiosRelative T/S ratios in DNA samples from 95individuals (47females and 48males,age range 5–94years;6)were measured by this assay by the standard curve method (see standard curves,Fig.3)and compared with relative mean TRF lengths in the same samples (Fig.4)measured by traditional Southernblot methods (9).Figure 5shows the strong correlation between these two very different approaches to measuring telomeres:by linear regression analysis the correlation coefficient,r 2,for the relationship of T/S ratio to TRF length was 0.677and the P value was 1.4915×10–24.For the triplicate measurements of relative T/S ratios in these 95samples,the proportion of the total variation attributable to experimental error (1–r 2,where r 2is the correlation coefficient)was 13.1%,and for the duplicate measurements of mean TRF length it was 3.4%.The coefficient of variation (average standard deviation)for the relative T/S ratios was 5.8%.Assuming a normal distribution for relative T/S ratios in repeated measurements of the same sample,samples differing in average telomere length by as little as 11.4%(1.96×SD)should be distinguishable by this method at the 95%confidence level.DISCUSSIONThe correlation between relative T/S ratios measured by quanti-tative PCR and relative TRF lengths measured by the traditional Southern blot approach in these 95genomic DNA samples (Fig.5)strongly supports the conclusion that the new PCR method does indeed measure relative telomere lengths.Individuals that have the same mean length of terminal hexamer repeat array may nevertheless have very different mean TRF lengths,due to restriction site polymorphisms and/or length polymorphisms in the subtelomeric regions that determine the length of the subtelomeric portion of the TRFs.Early studies showed that the mean length of this subtelomeric portion of the TRFs in unrelated individuals ranged from 2.5to 6kb (reviewed in 11,p.958).In our dataset we estimate the average value for the mean length of the subtelomeric portion of the TRFs to be ∼4.2kb,based on the value of the y -intercept in Figure 5(where T/S goes to 0);furthermore,we estimate the mean length of this non-telomeric DNA in the TRFs to vary by up to 2kb between individuals,based on the range of mean TRF lengths we observed in individuals sharing nearly the same T/S ratio (see Fig.5).Similarly,in comparing TRF length measurements with telomeric DNA measurements by quantitative fluorescence in situ hybridization (Q-FISH)with a fluorescein-labeled peptide nucleic acid (CCCTAA)3probe,Hultdin et al .(12)estimated the mean length of the subtelo-meric portion of the TRFs to be 3.2kb,and they observed at least a 2kb variation in the mean TRF lengths of individuals sharing nearly the same level of Q-FISH telomere signal (12)(Fig.4).Furthermore,we have found that the value measured for the difference in mean TRF length between two DNA samples can be greatly affected by the choice of restriction enzyme(s)used to release the terminal restriction fragments;for example,a 590bp mean TRF length difference between two siblings following complete digestion with a combination of Rsa I +Hin fI decreased to only a 170bp difference when Hae III was used instead (R.M.Cawthon,unpublished observations).Therefore,investigators aiming to identify primary factors accounting for inter-individual variation in the mean length of the true telomeric repeat sequence may do well to avoid measuring TRF lengths and focus instead on methods that determine the relative quantities of the telomeric hexamer repeats per se .2∆C t 1∆C t 2–()–2∆∆C t–=tvalues of the standard curves.Circles,single copy gene 36B4;triangles,tel-omere.The methods published to date for the relative quantitation of telomeric DNA per se in cell-free DNA preparations all normalize the telomere signal to another cellular DNA signal of high copy number,either centromeric alphoid DNA (3,4)or Alu repetitive DNA (5).However,the level of inter-individual variation in the copy number of centromeric alphoid DNA and Alu DNA sequences per cell is not known;if such variation is significant,then differences between individuals in relative telomere lengths measured by these methods may be quite inaccurate.By normalizing the quantity of telomere repeats to the quantity of a single copy gene,the PCR method of telomere measurement presented here avoids this problem.In conclusion,we have demonstrated measurement of rela-tive average telomere lengths by quantitative PCR in a closed tube,fluorescence-based assay,using a carefully designed pair of oligonucleotide primers.In this assay the telomere signal is normalized to the signal from a single copy gene to generate a T/S ratio.The resolution of the assay (detecting differences >∼11.4%)should be adequate for many genetic and epidemi-ological studies,since T/S values vary ∼2.5fold among age-and sex-matched individuals (data not shown).The assay is simple,rapid and readily scalable to achieve a high throughput of samples.It should prove useful in the investigation of the biology of telomeres and the roles they play in the molecular pathophysiology of multiple diseases and aging.ACKNOWLEDGEMENTSI thank Mark Leppert for access to the Utah CEPH DNA samples,Richard Kerber and Ken Smith for guidance with statistical analysis and Robert Weiss,Jeff Stevens,Shannon Odelberg,Hilary Coon and Elizabeth O’Brien for helpful discussions.This work was supported by the Allied Signal Award for Research on Aging and by NIH grants K01AG00767,R29CA69421and AG13478.REFERENCES1.Allshire,R.C.,Dempster,M.and Hastie,N.D.(1989)Human telomeres contain at least three types of G-rich repeat distributed non-randomly.Nucleic Acids Res.,17,4611–4627.nsdorp,P.M.,Verwoerd,N.P.,van de Rijke,F.M.,Dragowska,V.,Little,M.T.,Dirks,R.W.,Raap,A.K.and Tanke,H.J.(1996)Heterogeneity in telomere length of human chromosomes.Hum.Mol.Genet.,5,685–691.3.Bryant,J.E.,Hutchings,K.G.,Moyzis,R.K.and Griffith,J.K.(1997)Measurement of telomeric DNA content in human tissues.Biotechniques ,23,476–478,480,482,passim.Figure 4.Determination of mean terminal restriction fragment lengths in human DNA samples spiked with DNA size standards.The size standards,a 1kb ladder ranging from 1to 10kb and Hin dIII-digested phage λDNA,were added to each individual’s DNA sample after complete restriction enzyme digestion of the human genomic DNA and heat inactivation of the restriction enzyme.(A )Southern blot hybridized with a 32P-end-labeled (TTAGGG)7oligonucleotide probe.(B )The same blot after stripping the telomere repeat probe and rehybridizing with a mixture of two radiolabeled oligonucleotides,one that binds all components of the 1kb ladder,the other specific for the 23.13kb λHin dIII fragment.(C )A grid image of the standard ladders of (B),generated using ImageQuaNT software tools (Molecular Dynamics),was superimposed on the image of the telomere smears of (A)to locate the positions of the size intervals within thesmears.Rand mean TRF lengths determined by Southern blot analysis in DNA samples prepared directly from blood draws on 95individuals.All relative T/S ratios plotted here have values ≥1.0,because the initial T/S ratios determined using the standard curves have all been normalized to the lowest T/S ratio (0.69)observed among the samples.The equation for the linear regression line best fitting the data is shown.4.Norwood,D.and Dimitrov,D.S.(1998)Sensitive method for measuringtelomere lengths by quantifying telomeric DNA content of whole cells.Biotechniques,25,1040–1045.5.Nakamura,Y.,Hirose,M.,Matsuo,H.,Tsuyama,N.,Kamisango,K.andIde,T.(1999)Simple,rapid,quantitative and sensitive detection oftelomere repeats in cell lysate by a hybridization protection assay.Clin.Chem.,45,1718–1724.6.White,R.,Leppert,M.,Bishop,D.T.,Barker,D.,Berkowitz,J.,Brown,C.,Callahan,P.,Holm,T.and Jerominski,L.(1985)Construction of linkage maps with DNA markers for human chromosomes.Nature,313,101–105.7.Higuchi,R.,Fockler,C.,Dollinger,G.and Watson,R.(1993)Kinetic PCRanalysis:real-time monitoring of DNA amplification reactions.Biotechnology,11,1026–1030.8.Boulay,J.L.,Reuter,J.,Ritschard,R.,Terracciano,L.,Herrmann,R.andRochlitz,C.(1999)Gene dosage by quantitative real-time PCR.Biotechniques,27,228–230,232.9.Slagboom,P.E.,Droog,S.and Boomsma,D.I.(1994)Geneticdetermination of telomere size in humans:a twin study of three agegroups.Am.J.Hum.Genet.,55,876–882.10.Harley,C.B.,Futcher,A.B.and Greider,C.W.(1990)Telomeres shortenduring ageing of human fibroblasts.Nature,345,458–460.11.Levy,M.Z.,Allsopp,R.C.,Futcher,A.B.,Greider,C.W.and Harley,C.B.(1992)Telomere end-replication problem and cell aging.J.Mol.Biol., 225,951–960.12.Hultdin,M.,Gronlund,E.,Norrback,K.,Eriksson-Lindstrom,E.,Just,T.and Roos,G.(1998)Telomere analysis by fluorescence in situhybridization and flow cytometry.Nucleic Acids Res.,26,3651–3656.。