磁通量的变化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 磁通量Φ:①物理意义:某时刻穿过磁场中某个面的磁感线条数,磁感线越密的地方,也就是穿过单位面积的磁感线条数越多的地方,磁感应强度B越大,因此,B越大,S越大,穿过这个面的磁感线条数就越多,磁通量就越大。
②大小计算:Φ=BS⊥或φ=SB⊥
Φ=B·S,S为与B垂直的面积,不垂直时,取S在与B垂直方向上的投影,
我们称之为“有效面积”。
如图所示,线圈平面与水平方向成θ角,磁感线竖直向下,设磁感应强度为B,
线圈面积为S,把面积S投影投影到与磁场垂直的方向即水平方向,则S⊥=Scosθ,故φ=BS⊥=BScosθ。
把磁感应强度B分解为平行于线圈平面的分量B∥和垂直与线圈平面的分量B⊥,B∥不穿过线圈,且B⊥=Bcosθ,
故φ=B⊥S=BScosθ。
如果磁场范围有限,如图所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,
一半在磁场外,当线框以bc边为轴转动时,如果转动的角度小于60度,面积S在垂直与
磁感线方向且在磁场中的投影不变,这时“有效面积”为S/2,磁通量φ=BS/2.
如果磁场范围有限,如图示,当线圈包含全部磁场时,面积再扩大,磁通量扔不变,还是φ=BS.
③磁通量是标量,但有正负之分,正负仅表示穿入或穿出某面,而且是人为规定。
穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁通量抵消以后
所剩余的磁通量。若磁感线沿相反方向穿过同一平面,且正向穿过它的磁通量为φ1,反向穿过它的磁通量为φ2,则穿过该平面的磁通量等于磁通量的代数和,即φ1-φ2.
○4多匝线圈的磁通量:穿过某一线圈的磁通量是由穿过该面的磁感线条数的多少决定的,与线圈匝数无关,只要n匝线圈的面积相同,放置情况也相同,则通过n匝线圈与通过单匝线圈的磁通量相同,即Φ≠NBS
2.磁通量变化量ΔΦ:①物理意义:穿过某个面的磁通量的差值
②大小计算:ΔΦ=Φ2-Φ1要首先规定正方向
③与磁场垂直的平面,开始时和转过180°时穿过平面的磁通量是不同的,一正一负,|ΔΦ|=2BS而不是零
磁通量发生变化的四种情形
①磁感应强度B不变,有效面积S变化,则△φ=φt-φ0=B▪△S。
如图所示,闭合回路的一部分导体切割磁感线,此时穿过abcd面
的磁通量的变化量可用此公式计算。
②磁感应强度B变化,磁感线穿过的有效面积S不变,则△φ=φt-φ0=△B▪S。如图(8)所示,通电直导线下边有一个矩形线框,若使线框逐渐远离(平动)通电导线,此时穿过线框的磁通量的变化量可用此公式计算。
③线圈平面与磁场方向的夹角θ发生变化时,线圈在垂直与磁场方向的投影面积S⊥=Ssinθ发生变化,从而引起穿过线圈的磁通量发生变化,即B、S不变,θ变化。此时可由△φ=φt-φ0=BS(sinθ1-sinθ2)计算并判断磁通量的变化。如图所示,当线框以ab为轴顺时针转动时,此时穿过abcd面的磁通量的变化量可由此公式计算。○4若磁感应强度B和回路面积S同时发生变化,则△φ=φt-φ0≠△B▪△S.如图所示,若导线CD向右滑动,回路面积从S1变到S2,磁感应强度B从变到,则回路中的磁通量的变化量△φ=B2S2- B1S1
1、(1)利用磁场产生电流的现象,叫做电磁感应现象。(2)由电磁感应现象产生的电流,叫做感应电流。
2、产生感应电流的条件 a.闭合回路 b. 穿过闭合回路的磁通量发生变化
3、产生感应电流的方法:(1)磁铁运动(2)闭合电路一部分运动(3)磁场强度B变化或有效面积S变化
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。
“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的主要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
1、楞次定律
(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。
(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。(3)“阻碍”的含义.
①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”)
②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引起感应电流时,感应电流的磁场方向与原磁场方向相反,其作用仅仅使原磁通量的增加变慢了,但磁通量仍在增加,不影响磁通量最终的增加量;当由于原磁通量的减少而引起感应电流时,感应电流的磁场方向与原磁场方向相同,其作用仅仅使原磁通量的减少变慢了,但磁通量仍在减少,不影响磁通量最终的减少量。即感应电流的磁场延缓了原磁通量的变化,而不能使原磁通量停止变化,该变化多少磁通量最后还是变化多少磁通量。
③“阻碍”不意味着“相反”. 在理解楞次定律时,不能把“阻碍”作用认为感应电流产生磁场的方向与原磁场的方向相反。事实上,它们可能同向,也可能反向。(“增反减同”)
(4)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在客服这种阻碍的过程中,其他形式的能转化成电能。
(5)“阻碍”的形式. 感应电流的效果总是要反抗(或阻碍)引起感应电流的原因
(1)就磁通量而言,感应电流的磁场总是阻碍原磁场磁通量的变化.(“增反减同”)
(2)就电流而言,感应电流的磁场阻碍原电流的变化,即原电流增大时,感应电流磁场方向与原电流磁场方向相反;原电流减小时,感应电流磁场方向与原电流磁场方向相同. (“增反减同”)
(3)就相对运动而言,由于相对运动导致的电磁感应现象,感应电流的效果阻碍相对运动.(“来拒去留”)(4)就闭合电路的面积而言,电磁感应应致使回路面积有变化趋势时,则面积收缩或扩张是为了阻碍回路磁通量的变化.(“增缩减扩”)
(6)适用范围:一切电磁感应现象. (7)研究对象:整个回路.
(8)使用楞次定律的步骤:
①明确(引起感应电流的)原磁场的方向.
②明确穿过闭合电路的磁通量(指合磁通量)是增加还是减少.
③根据楞次定律确定感应电流的磁场方向.