高中数学必修四任意角和弧度制
《任意角和弧度制》教案
《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。
高中数学必修4《三角函数》知识点与易错点归纳
高中数学必修4《三角函数》知识点与易错点归纳知识点(一)任意角和弧度制1.与θ终边相同的角的集合是 ;第一或第三象限角的集合是 ;x 轴上的角的集合是 ;2.若α是锐角,则πα-是第 象限角;πα+是第 象限角;2πα-是第 象限角;α-是第 象限角;32πα-是第 象限角;2πα+是第 象限角。
3.180°=π;1°= 弧度; 1弧度= ;圆心角α弧度数的绝对值||α= ;扇形面积公式S = 。
4.角ααcos 2=-,则2α角是 象限角。
知识点二.任意角的三角函数1.任意角的三角函数的定义:设α是任意一个角,(,)P x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin α= ,cos α= ,tan α= 。
2.如图,三角函数线:正弦线是 、余弦线是 、正切线是 ;4.已知角α的终边经过点(3,4)P -,则sin tan αα+的值为 ; 5.函数sin cos tan |sin ||cos ||tan |y αααααα=++的值域是 ; 6.sin cos θθ<⇔ ;sin cos θθ>⇔ 。
知识点三.同角三角函数的基本关系式及诱导公式1.平方关系:22sin cos αα+= ;商数关系:tan α= ;2.已知tan 2α=,则ααααcos sin cos 3sin +-= ;sin cos αα⋅= ;4.1419costan()34ππ+-的值为 ; 5.化简23sin (180)cos(360)sin(270)cos (180)cos(90)tan(180)αααααα+⋅-⋅-=--⋅+⋅+ 。
yTA xα B SO M P知识点四.正弦、余弦、正切公式及倍角公式1.基本公式及变式()()22222sin sin cos cos sin sin 22sin cos 1sin 2(sin cos )cos cos cos sin sin cos2cos sin 2cos 112sin t αβαβαβαβαβαααααααβαβαβααααα==±=±−−−→=⇒±=±±=−−−→=-=-=-↓↓令令 ()222tan tan 2tan 1+cos21cos2an tan 2cos sin 1tan tan 1tan 22αβααααβααααβα±-±=→=- = ,=变式:1tantan tan tan()(1tan tan),tan()1tan4απαβαβαβαα++=+⋅-⋅=+-;sin cos ),sin 2sin(cos 2sin()436πππθθθθθθθθθ±=±±=±±=±2.4411111212cos sin ππ-= ;sin163sin 223sin 253sin313+= ; 3.在ABC ∆中,53sin ,cos 135A B ==,则cos C = ; 4.在直角ABC ∆中,sin sin A B ⋅的最大值为 ;5.已知等腰三角形的一个底角的正弦值为13,则这个三角形的顶角的余弦值是 。
必修4-1.1-任意角和弧度制PPT课件
正半轴。
➢角的终边落在第几象限,就说这个角是第几 象限的角(包含第一、 二、三、 四象限角)
➢角的终边落在哪坐标轴上,就说这个角是 哪坐标轴上角(包含x,y正负半轴上的角)
.
7
2.象限角和坐标轴上角
终边
终边
y
x
o
始边
终边
终边 是第一象限角
是 第 二 象 限 角 是 第 三 象 限 角 是 第 四 象 限 角
1.{β| β=k∙1800 ,k∈Z} {β| β=kπ ,k∈Z}
2.{β| β=k∙900 ,k∈Z}
{β| β=k∙
2
,k∈Z}
3.{β| k ∙ <β<2kπ
3600 +
<β<k∙ 3600+900 ,k∈Z}
,k∈Z}
={β| β=900+(2K+1)1800 ,K∈Z} ={β| β=900+1800 的奇数倍}
.
11
所以 终边落在y轴上的角的集合为
S=S1∪S2 ={β| β=900+1800 的偶数倍} ∪{β| β=900+1800 的奇数倍} ={β| β=900+1800 的整数倍} ={β| β=900+K∙1800 ,K∈Z}
现状生活中:体操、跳水、滑冰、 转体720度的高难度动作,直体后空 翻转体900度及以上的旋转 时钟的时针、分针转动和调准时间 时顺时针、逆时针拨转角度 主从动轮转动角 车的轮子的转动角 风车,风扇叶片等转动
.
4
思考:这些旋转形成的角该如何表示和区分?
引入新的角定义:
定义2:平面内一条射线绕着端点从一个位 置旋转到另一个位置所成的图形.射线OA、 OB分别是角的始边和终边,端点O为角的 顶点。
[高中数学必修4]第一章 基本初等函数(Ⅱ)
22
2
必修四
用公式α =l求圆心角时,应注意其结果是圆心角的弧度数.这个公式在物理学上计算角
r
速度时经常用到,因此要熟练掌握它及其变形后的另外两种形式:l=α ²r 和 r= l(α ≠0).
α
运用这两个变形公式时,如果已知的角以度为单位,则应先把它化成弧度后再计算.可以
看出,这些公式各有各的用处.
切线上,其位置不随 的变化而变化;从图中可以看出,当 的终边在 y 轴上时,角 的
正切不存在;我们规定三角函数线的正方向与 x 轴(或 y 轴)正方向相同.
3. 同角三角函数的基本关系式
(1)基本关系
平方关系: sin2 cos2 1. 商数关系: sin tan .
cos 公式变形: cos tan sin;sin cos .
2
减区间是
(
2k , 3
2k )(k
Z)
.
2
2
8
必修四
对于函数 f (x) ,如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,都有 f (x T ) f (x) ,那么函数 f (x) 就叫做周期函数.非零常数 T 叫做这个函数的周期.如果 周期函数 f (x) 的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f (x) 的最小
1.1 任意角和弧度制 课件(34张PPT) 高中数学必修4(人教版A版)
圆心角为30°时
圆心角为60° 时
结论:圆心角不变则比值不变
比值的大小只与角度大小有关, 我们可以利用这个比值来度量 角,这就是度量角的另外一种 单位制——弧度制。
弧度制的定义
定义:长度等于半径 长的圆弧所对的圆心 角叫做弧度的角,用 符号1 rad表示,读 作1弧度。这种以弧 度为单位来度量角的 制度叫做弧度制。
3、终边相同的角
一般地,所有与角α 终边相同的角,连同角 α 在内,可构成一个集合
S { | k 360 , k Z}
0
即任一与角α终边相同的角,都可以表示成角α与 整数个周角的和. 注意:1 、α是任意的角(可以是正的,可以 是负的,也可以是0o) 2、k取整数
例l、在0°~360°范围内,找出与下列各角终 边相同的角,并判定它们是第几象限角: ①480° ② -150° ③ 665° ④-950° 解:① 480°=120°+1×360° 与120°的角终边相同,是第二象限角 ② -150°=210°+(-1)×360° 与210°的角终边相同,是第三象限角 ③ 665°=305°+360° 与305°的角终边相同,是第四象限角 ④ -950° =130°+(-3)×360° 与130°的角终边相同,是第二象限角
B' R B O A r L A'
l
即时问答:下列四个图中的圆心角的弧度数 分别是多少?
问题:
(1)若弧是一个半圆,圆心角所对的 弧度数是多少?若是一个圆呢?
(2)正角的弧度数是什么数?负角呢? 零角呢?角的正负由什么决定?
角度制与弧度制不同之处
1.定义方式不同:弧度制是以“弧度”为单 位的度量角的单位制,角度制是以“度”为 单位来度量角的单位制;1°≠1 弧度; 2. 进位制不同:弧度制是十进制,而角度 制是六十进制.
高中数学必修四任意角与弧度制知识点汇总
任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。
注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。
例1、若13590<<<αβ,求βα-和βα+的范围。
(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。
可以将角分为正角、零角和负角。
正角:按照逆时针方向转定的角。
零角:没有发生任何旋转的角。
负角:按照顺时针方向旋转的角。
例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。
角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。
例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。
例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。
高二数学必修4知识点:任意角和弧度制
高二数学必修 4 知识点:随意角和弧度制在中国古代把数学叫算术,又称算学,最后才改为数学。
小编准备了高二数学必修 4 知识点,希望你喜爱。
1.随意角(1)角的分类:①按旋转方向不一样分为正角、负角、零角.②按终边地点不一样分为象限角和轴线角.(2)终边同样的角:终边与角同样的角可写成+k360(kZ).(3)弧度制:① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角 .②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=, l 是以角作为圆心角时所对圆弧的长,r 为半径 .③用弧度做单位来胸怀角的制度叫做弧度制.比值与所取的r 的大小没关,仅与角的大小相关.④弧度与角度的换算:360 弧度 ;180 弧度 .⑤弧长公式: l=||r ,扇形面积公式:S 扇形 =lr=||r2.2.随意角的三角函数(1)随意角的三角函数定义:设是一个随意角,角的终边与单位圆交于点P(x, y) ,那么角的正弦、余弦、正切分别是:sin =y ,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数 .(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 .3.三角函数线察看内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的察看内容。
随机察看也是不行少的,是相当风趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边察看,一边发问,兴趣很浓。
我供给的察看对象,注意形象传神,色彩鲜亮,大小适中,指引少儿多角度多层面地进行察看,保证每个少儿看获得,看得清。
看得清才能说得正确。
在察看过程中指导。
我注意帮助少儿学习正确的察看方法,即按次序察看和抓住事物的不一样特点重点察看,察看与说话相联合,在察看中累积词汇,理解词汇,如一次我抓住机遇,指引少儿察看雷雨,雷雨前天空急巨变化,乌云密布,我问少儿乌云是什么样子的,有的孩子说:乌云像海洋的波涛。
人教版高二数学必修四《任意角和弧度制》评课稿
人教版高二数学必修四《任意角和弧度制》评课稿一、引言《任意角和弧度制》是人教版高中数学必修四教材中的一章内容。
本评课稿旨在对该章节进行全面的评价,并提出一些建议与改进之处。
二、教材内容概述《任意角和弧度制》是高中数学中的重要概念之一。
本章主要介绍了任意角的概念,介绍了弧度制以及角度和弧度之间的相互转化等内容。
该章节主要内容包括: 1. 角的概念与表示方式; 2. 角的度量单位:弧度制; 3. 角度与弧度的转换; 4. 弧长与角度的关系; 5. 三角函数中的角度单位转换。
三、教学目标分析1.知识目标:–掌握任意角的概念和表示方式;–理解角的度量单位弧度制;–能够进行角度与弧度的相互转换;–理解弧长与角度的关系;–了解三角函数中的角度单位转换。
2.能力目标:–能够正确使用各种符号表示角度大小;–能够灵活运用弧度制进行角度单位转换;–能够运用所学知识解决实际问题。
3.情感目标:–培养学生对数学的兴趣和好奇心;–增强学生解决问题的能力;–培养学生对数学的认真态度和严谨思维。
四、教学重点和难点分析1.教学重点:–任意角的概念和表示方式;–弧度制的概念及其应用。
2.教学难点:–角度与弧度的相互转换;–弧长与角度的关系的理解。
五、教学方法1.演绎法:通过具体例子引导学生从观察实例中归纳出规律。
2.归纳法:通过总结归纳的方式帮助学生理解概念和定理。
3.实践活动法:通过实际问题解决的活动,培养学生的动手能力和创新思维能力。
4.讨论法:通过小组讨论、互动交流的方式激发学生思考和独立思维能力。
六、教学流程1.导入:通过展示一些实际生活中的角度,引起学生的兴趣,激发他们对该内容的探索欲望。
2.概念讲解:介绍任意角的概念和表示方式,引导学生认识角度的度量单位。
3.弧度制讲解:引导学生理解弧度制的定义,并通过具体例子说明弧度与角度的转换方法。
4.练习与讨论:提供多种角度单位转换的练习题,通过小组合作和全班讨论的方式,帮助学生巩固所学知识。
1.1_任意角与弧度制
(3)
990 15 ( 3) 360 89 45 是第一象限角
990 15的角与89 45的角终边相同,
RTX3:
如何判断一个给定角所在象限?
只需把它们写成:k 360 (0 360 ) 即可
k 180 120 (k Z ) 2
是第二或第四象限角 2
变:判断 2是第几象限角呢?
课堂练习:
1.一角为30°,其终边按逆时针方向旋转 三周后的 角度数为____,若按顺时针方向旋转呢? 2.在0度到360度范围内,找出与下列各角终边相同 的角,并分别判断它们是哪个象限的角? ① -55º ② 395º8′ ③ 1563º
( 3 )角 的 终 边 在 坐 标 轴 上 , 就 说 这 个 角 不 属 于 任 何 象 限.
RTX2:
锐角是第几象限的角?第一象限的角都是锐角吗? 直角和钝角呢?小于90°的角是锐角吗?
锐角是第一象限角 直角不是象限角 第一象限的角不都是锐角 钝角是第二象限角
小于90°的角不都是锐角
集体探究学习活动2
第二象限的角表示为
{|k360+90<<k360+180,(kZ)}
第三象限的角表示为
{|k3,(kZ)}
第四象限的角表示为
{|k360+270<<k360+360,(kZ)} 或{|k36090<<k360,(kZ)}
( 2 )范 围 都 在 : 0 0 ~ 3 6 0 0.
实际使用中的角 :既要知道旋转量,又要知道旋 转 方 向.
集体探究学习活动1
1.任意角的概念是什么? 2.角是怎样分类的?
必修四数学 第1讲教师版 任意角和弧度制及任意角的三角函数
课题:任意角和弧度制及任意角的三角函数个性化教学辅导教案第1讲 任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕其端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角和零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算①1°=π180rad ;②1 rad =⎝⎛⎭⎫180π°弧长公式 弧长l =|α|r 扇形面积公式 S =12lr =12|α|r 23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫作α的正弦函数, 记作sin α=yx 叫作α的余弦函数,记作cos α=xyx叫作α的正切函数, 记作tan α=yx各象限符号Ⅰ+ + + Ⅱ + - - Ⅲ - - + Ⅳ-+-三角函 数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线1.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=yx.2.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况. 3.(1)三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.1.(必修4 P 5练习T 4改编)已知角的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,则-2 017°6′8″的终边落在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B.∵-2 017°6′8″=142°53′52″-6×360°, 142°53′52″是第二象限角,故选B.2.(必修4 P 15练习T 6改编)若θ满足sin θ<0,cos θ>0,则θ的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D.由sin θ<0,θ的终边可能位于第三象限或第四象限,也可能与y 轴的非正半轴重合,cos θ>0,θ的终边可能位于第一象限,也可能位于第四象限,也可能与x 轴的非负半轴重合,故θ在第四象限.3.(必修4 P 15练习T 2改编)已知θ的终边过点P (12,-5),则cos θ的值为( )A.1213B .-513C .-125D .-512解析:选A.x =12,y =-5,∴r =x 2+y 2=13, ∴cos θ=x r =1213.4.(必修4 P 15练习T 3改编)下列结果及其表示正确的有____________(填上所有正确的序号). ①sin 90°+cos 90°=1;②cos π+tan π=1;③sin 270°+tan 2π=1;④cos 0°+tan 0°=1.解析:sin 90°+cos 90°=1+0=1;cos π+tan π=-1+0=-1;sin 270°+tan 2π=-1+0=-1;cos 0°+tan 0°=1+0=1.所以正确的是①④.答案:①④5.(必修4 P 10A 组T 10改编)扇形弧长为20 cm ,中心角为100°,则该扇形的面积为________cm 2. 解析:由弧长公式l =|α|r ,得 r =20100π180=36π, ∴S 扇形=12lr =12×20×36π=360π.答案:360π象限角与终边相同的角(1)[判断三角函数值的符号]若α是第二象限的角,则下列结论一定成立的是( ) A .sin α2>0B .cos α2>0C .tan α2>0D .sin α2cos α2<0(2)[与α终边相同的角]与2 017°的终边相同,且在[0°,360°)内的角是________. [解析] (1)∵π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,故选C.(2)∵2 017°=217°+5×360°,∴在[0°,360°)内终边与2 017°的终边相同的角是217°. [答案] (1)C (2)217°(1)表示区间角的三个步骤:①先按逆时针方向找到区域的起始和终止边界;②按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间; ③起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.(2)确定kα,αk (k ∈N *)的终边位置时,先用终边相同角的形式表示出角α的范围,再写出kα或αk 的范围,然后根据k的可能取值讨论确定kα或αk的终边所在位置.1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3B .π6C .-π3D .-π6解析:选C.将表的分针拨快应按顺时针方向旋转,为负角.故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16,即为-16×2π=-π3.2.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B.由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.故选B.3.设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4·180°+45°,k ∈Z ,那么( ) A .M =N B .M ⊆N C .N ⊆MD .M ∩N =∅解析:选B.法一:由于M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎨⎧⎭⎬⎫x |x =k 4·180°+45°,k ∈Z ={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N ,故选B.法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.三角函数的定义已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( ) A .-45B .-35C .35D .45[解析] 设P ()t ,2t ()t ≠0为角θ终边上任意一点,则cos θ=t 5|t |. 当t >0时,cos θ=55;当t <0时,cos θ=-55. 因此cos 2θ=2cos 2θ-1=25-1=-35.[答案] B用定义法求三角函数值的两种情况:①已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;②已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义求解.1.设角α终边上一点P (-4a ,3a )(a <0),则sin α的值为( ) A.35B .-35C .45D .-45解析:选B.设点P 与原点间的距离为r , ∵P (-4a ,3a ),a <0,∴r =(-4a )2+(3a )2=|5a |=-5a . ∴sin α=3a r =-35.2.如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α的值为( )A.45B .-45C.35D .-35解析:选D.因为点A 的纵坐标y A =45,且点A 在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.扇形的弧长与面积已知扇形的圆心角是α ,半径为R ,弧长为l ,面积为S . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? [解] (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25, 此时l =10(cm),α=2 rad.弧度制下有关弧长、扇形面积问题的解题策略:①明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角);②求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量; ③周长L 为定值,当圆心角α=2弧度时,扇形面积S 取得最大值S max =L 216.1.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( ) A .40π cm 2 B .80π cm 2 C .40 cm 2D .80 cm 2解析:选B.∵72°=2π5,∴S 扇形=12αr 2=12×2π5×202=80π(cm 2). 2.已知扇形的周长为10,面积为4,则扇形的圆心角的弧度数是( ) A.14B .12C .1D .2解析:选B.设圆心角是θ,半径是r ,则⎩⎪⎨⎪⎧2r +rθ=10,12θ·r 2=4,解得⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍去). ∴扇形的圆心角为12.3.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,则弦AB 的长为( ) A .2sin 1 B .2cos 1 C .sin 1 D .cos 1解析:选A.设圆的半径为 r cm ,弧长为l cm , 则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr=2.如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad. ∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm).一、选择题1.(必修4 P 21A 组T 4(1)改编)a sin 0°+b cos 90°+c tan 180°等于( ) A .a +b -c B .a -b +c C .a +bD .0解析:选D.原式=a ×0+b ×0+c ×0=0.故选D.答案: 3 三、解答题6.(必修4 P 10A 组T 6改编)已知x ∈R ,求使sin x >cos x 成立的x 的取值范围.解:在[0,2π)区间内,当x ∈⎝⎛⎭⎫π4,5π4时,sin x >cos x ,∴使sin x >cos x 成立的x 的取值范围是⎝⎛⎭⎫2k π+π4,2k π+5π4,k ∈Z .一、选择题1.已知角α的终边经过点(4,-3),则cos α=( ) A.45B .35C .-35D .-45[导学号35950243] 解析:选A.由三角函数的定义知cos α=442+(-3)2=45. 2.若cos θ=35,sin θ=-45,则角θ的终边所在直线的方程为( )A .3x +4y =0B .4x +3y =0C .3x -4y =0D .4x -3y =0[导学号35950244] 解析:选B.依题意,得tan θ=sin θcos θ=-43,因此所求直线的斜率是-43,其方程是y =-43x ,即4x +3y =0,故选B.3.已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[导学号35950245] 解析:选B.因为点P 在第三象限,所以⎩⎪⎨⎪⎧tan α<0,cos α<0,所以α的终边在第二象限,故选B.4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3][导学号35950246] 解析:选A.由cos α≤0,sin α>0,可知角α的终边落在第二象限或y 轴的正半轴上,所以⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3. 5.已知角α的终边上一点坐标为⎝⎛⎭⎫sin 5π6,cos 5π6,则角α的最小正值为( ) A.5π6B .5π3C.11π6 D .2π3[导学号35950247] 解析:选B.因为sin 5π6=sin ⎝⎛⎭⎫π-π6=sin π6=12, cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32, 所以点⎝⎛⎭⎫sin 5π6,cos 5π6在第四象限. 又因为tan α=cos 5π6sin 5π6=-3=tan ⎝⎛⎭⎫2π-π3=tan 5π3,所以角α的最小正值为5π3.故选B. 6.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1或4B .1C .4D .8[导学号35950248] 解析:选A.设半径为r ,弧长为l ,则⎩⎪⎨⎪⎧2r +l =6,12rl =2.解得⎩⎪⎨⎪⎧r =2l =2或⎩⎪⎨⎪⎧r =1,l =4.故扇形的圆心角的弧度数为α=l r=1或4. 7.若角α和β的终边关于y 轴对称,则必有( )A .α+β=π2B .α+β=⎝⎛⎭⎫2k +12π(k ∈Z ) C .α+β=2k π(k ∈Z )D .α+β=(2k +1)π,(k ∈Z )[导学号35950249] 解析:选D.如图所示,设0<α′<π,0<β ′<π,分别是和α,β终边相同的角,则由α′和β ′的终边关于y 轴对称,可得α′+β′=π,由终边相同角可得α+β=(2k +1)π(k ∈Z ).8.已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( )A .1B . 2 C.3D .2[导学号35950250] 解析:选D.∵t >0,∴tan α=t 2+1t =t +1t≥2,当且仅当t =1时等号成立.故选D. 9.已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内,α的取值范围是( )A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4B .⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2 D .⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π[导学号35950251] 解析:选B.由已知得sin α-cos α>0,tan α>0,故在[0,2π]内α∈⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.故选B.10.已知角α的顶点在原点,始边与x 轴非负半轴重合,点P (-4m ,3m )(m >0)是角α终边上一点,则2sin α+cos α=( )A.35B .45 C.25 D .-45[导学号35950252] 解析:选C.由已知可求得r =5m ,所以sin α=35,cos α=-45,所以2sin α+cos α=25.故选C. 11.已知角θ的终边上有一点M (3,m ),且sin θ+cos θ=-15,则m =( ) A .4B .14C .-14D .-4[导学号35950253] 解析:选D.由题意得sin θ=m m 2+9,cos θ=3m 2+9,所以m m 2+9+3m 2+9=-15,即m +3m 2+9=-15,解得m =-4. 12.如图,在Rt △PBO 中,∠PBO =90°,以O 为圆心,OB 为半径作圆弧交OP 于A 点,若弧AB 等分△PBO 的面积,且∠AOB =α,则( )A .tan α=αB .tan α=2αC .sin α=2cos αD .2sin α=cos α[导学号35950254] 解析:选B.设扇形的半径为r ,则扇形的面积为12αr 2,在Rt △PBO 中,PB =r tan α,△PBO 的面积为12r ×r tan α,由题意得12r ×r tan α=2×12αr 2,∴tan α=2α,故选B. 二、填空题13.已知角θ的顶点为坐标原点,始边为x 轴非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. [导学号35950255] 解析:因为P (4,y )是角θ终边上一点,由三角函数的定义知sin θ=y 16+y 2,又sin θ=-255,∴y 16+y2=-255,解得y =-8. 答案:-814.已知集合A =⎩⎨⎧⎭⎬⎫x |k π+π3≤x <k π+π2,k ∈Z ,B ={}x |4-x 2≥0,则A ∩B =________. [导学号35950256] 解析:如图所示,集合A 表示终边落在阴影部分的角的集合(不包括y 轴)B ={x |4-x 2≥0}={x |-2≤x ≤2},而π3<2<23π,-2π3<-2<-π2, ∴A ∩B =⎩⎨⎧x ⎪⎪⎭⎬⎫-2≤x <-π2或π3≤x <π2. 答案:⎩⎨⎧x ⎪⎪⎭⎬⎫-2≤x <-π2或π3≤x <π2 15.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到点B ,则点B 的坐标为________.[导学号35950257] 解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 的坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).答案:(-1,3)16.圆的一段弧长等于该圆外切正三角形的边长,则这段弧所对圆心角的弧度数是________.[导学号35950258] 解析:设圆的半径为r ,则它外切正三角形的边长为23r ,所以这段弧所对的圆心角的弧度数为α=23r r=2 3.。
必修四 任意角和弧度制 课时练习 含答案
必修四§1.1任意角和弧度制第一课时:§1.1.1任意角1. 下列命题中正确的是( )A .终边在y 轴非负半轴上的角是直角B .第二象限角一定是钝角C .第四象限角一定是负角 D.若β=α+k·360°(k∈Z),则α与β终边相同2.将-885化为360k α+⋅ (0360α≤<k ,∈Z )的形式是 ( ) A.-165(2)360+-⨯ B.195(3)360+-⨯ C.195(2)360+-⨯ D.165(3)360+-⨯3.在[360°,1440°]中与-21°16′终边相同的角有( )A .1个B .2个C .3个D .4个4.终边落在X 轴上的角的集合是( )A.{ α|α=k ·360°,K ∈Z }B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }5.角α=45°+k·180°,k∈Z的终边落在 ( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限6.设,,,,那么( ) A .B C A B .B A C C .D (A ∩C) D .C ∩D=B7.下列各组角中终边相同的是( )A. +90与Z B.与ZC. +30与+30Z D.与+60Z 8.若角和的终边关于y 轴对称,则有 ( ) A. B.Z C.Z D.Zo {90A =小于的角}{B =锐角}{C =第一象限的角}00{900}D =小于而不小于的角180k ⋅90k ⋅k ,∈(21)180k +⋅(41)180k ±⋅k ,∈180k ⋅360k ⋅k ,∈60k ⋅180k ⋅k ,∈αβ90αβ+=90αβ+=360k +⋅k ,∈360k αβ+=⋅k ,∈180αβ+=360k +⋅k ,∈9.若β是第四象限角,则180β-是第 象限角。
高中数学 必修四 1.1.1任意角和弧度制
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.
高中数学必修四主要内容
第一章 三角函数1.1 任意角和弧度制角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.角的分类:象限角的概念:①定义:假设将角顶点及原点重合,角的始边及x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.终边一样的角的表示:所有及角α终边一样的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ,k ∈Z},即任一及角α终边一样的角,都可以表示成角α及整个周角的和.我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略.弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl角度及弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360;180;1801()57.305718rad ;180( )nn.弧长公式l l r r弧长等于弧所对应的圆心角(的弧度数)的绝对值及半径的积.正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角1.2 任意角的三角函数三角函数的定义: 诱导公式)Z (tan )2tan()Z (cos )2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ有向线段:坐标轴是规定了方向的直线,那么及之平行的线段亦可规定方向。
规定:及坐标轴方向一致时为正,及坐标方向相反时为负。
三角函数线的定义:设任意角α的顶点在原点O ,始边及x 轴非负半轴重合,终边及单位圆相交及点P (,)x y , 过P 作x延 长线交及点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OAα====我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
高中数学必修4知识点总结
必修4第一章三角函数一、任意角和弧度制1.任意角(1)角的概念:平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角,射线的起始位置叫做角的始边,终止位置叫做角的终边.按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角,如果射线没有作任何旋转,则形成零角.在坐标系内,使角的顶点与原点重合,角的终边与x轴的正半轴重合,则角的终边在第几象限,就说这个角是第几象限角.(2)终边相同的角:所有与α终边相同的角,连同α在内,可构成一个集合ββα{360}S k,k Z==⋅+∈(3)坐标轴上的角:2.弧度制(1)定义:长度等于半径的圆弧所对的圆心角叫做1弧度的角.(2)计算:如果半径为r的圆的圆心角α所对弧的长为l,那么角α弧度数的绝对值是=l rα其中,α的正负由角α的终边的旋转方向决定.注意:弧长公式: =l r α.扇形面积公式: 21122==S lr r α. (3)换算:360°=2π180°=π1001745180π≈=. 1801=()5730≈.π说明:①1800=π是所有换算的关键,如ππ====,18018030456644;②πmn形式的角当n =2,3,4,6时都是特殊角.二、任意角的三角函数1.任意角三角函数的定义(1)定义:设P (x , y )是角α终边上任意一点, =>OP r 0,则有sin α=y rcos α=x r tan α=yx(2)三角函数值的符号:口诀:一全二正弦,三切四余弦.注:一二三四指象限,提到的函数为正值,未提到的为负值. 2.同角三角函数的基本关系sin 2α+cos 2α=1sin tan cos αα=α三、三角函数的诱导公式1.诱导公式sin(2)sin cos(2)cos tan(2)tan +=+=+=k k k πααπααπααsin()cos 2cos()sin 2+=+=-πααπαα口诀2:函数名改变,符号看象限.四、三角函数的图象与性质1.正、余弦函数的图象2.正、余弦函数的性质(2)最值①y =sin x :当22=+x k ππ时,取得最大值1,当322=+x k ππ时,取得最小值-1. ②y =cos x :当x =2kπ时,取得最大值1,当x =2kπ+π时,取得最小值-1.(3)对称性①y =sin x :对称轴:2=+x k ππ,对称中心:(kπ , 0).②y =cos x :对称轴:x = kπ,对称中心:(,0)2+k ππ.3.正切函数的图象与性质 (1)图象如右图.(2)性质定义域:.2≠+x k ππ值域:R. 奇偶性:奇函数周期性:最小正周期为π 单调性:在(,)22-+k k ππππ上是增函数.五、y =A sin(ωx + φ)图象与性质1.图象 (1)图象变换注:x 值不需记忆,针对具体问题计算即可,但应注意五个值成等差数列. 2.性质定义域:R 值域:[,]-A A 周期:2=T πω振幅:A频率:12==f T ωπ. 相位:ωx +φ 初相:φ 单调性:将ωx +φ当成一个整体,利用y =sin x 的单调区间求出.第二章 平面向量一、平面向量基本概念(1)既有大小又有方向的量叫做向量.(2)向量可以用有向线段表示.向量AB 的大小,也就是向量AB 的长度(或称模),记作AB .长度为0的向量叫做零向量,记作0.长度等于1个单位的向量,叫做单位向量.(3)方向相同或相反的非零向量叫做平行向量,也叫共线向量. 规定:零向量与任一向量平行.长度相等且方向相同的向量叫做相等向量.2.减法(1)与a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a .零向量的相反向量仍是零向量.(2)任一向量与其相反向量的和是零向量,即a +(- a )=(- a )+a =0. (3)定义:a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.(4)已知a ,b ,在平面内任取一点O ,作=OA a ,=OB b ,则=-BA a b ,即-a b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.3.数乘(1)定义:我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. (2)运算律设λ、μ为实数,那么 ①λ(μa )=(λμ)a ; ②(λ+μ)a =λa +μa ; ③λ(a +b )=λa +λb . (3)向量共线条件a ,b 共线(a ≠0)⇔有且只有一个实数λ,使b =λa .a =xi +yj,我们把有序数对(x , y )叫做向量a 的(直角)坐标,记作a =(x , y ). (2)平面向量的坐标运算①设a =(x 1 , y 1),b =(x 2 , y 2),则有a +b =(x 1+x 2 , y 1+y 2) a -b =(x 1-x 2 , y 1-y 2) λa =(λx 1 , λy 1)②设A (x 1 , y 1),B (x 2 , y 2),则有2121(,)AB x x y y =--) ③向量共线的坐标表示设a=(x1 ,y1),b=(x2 ,y2),则有a,b共线12210x y x y⇔-=.④中点公式设A (x 1 , y 1),B (x 2 , y 2),P 为AB 中点,则对任一点O ,有 12121(),.222x x y y OP OA OB ++⎛⎫=+= ⎪⎝⎭四、平面向量的数量积1.定义:已知两个非零向量a ,b ,我们把数量|a ||b |cos θ叫做a 与b 的数量积(或内积).2.坐标表示:设a =(x 1 , y 1),b =(x 2 , y 2),则a ·b =x 1x 2+y 1y 2.3.垂直条件:设a ,b 为非零向量,则121200.a b a b x x y y ⊥⇔⋅=⇔+=第三章 三角恒等变换一、两角和与差的三角函数sin(α+β)=sin α cos β+cos α sin βsin(α-β)=sin α cos β-cos α sin βcos(α+β)=cos α cos β-sin α sin βcos(α-β)=cos α cos β+sin α sin βtan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+二、二倍角的三角函数sin2α=2sin α cos αcos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α 22tan tan21tan ααα=- 补充公式:温馨提示:最好仔细阅读后才下载使用,万分感谢!。
人教A版高中数学必修四第一章:1.1.2弧度制课件
(2) 112º30′=112.5× 180 = 8 .
“角化弧”时, 将α乘以 ;
180
2024/11/3
例2. 把
8
5
化成角度。
解:1rad=
(180 )
8 8 (180) 55
288
“弧化角”时,将α乘以
180;0
2024/11/3
填定下列特殊角的度数与弧度数的对应表
角 度
0 30
2024/11/3
复习回顾:正角:射线按逆时针方向旋
1.任意角
转形成的角 负角:射线按顺时针方向
的概念 旋转形成的角
零角:射线不作旋转形成的角
1)把角的顶点放在原点 2.象限角 2)始边重合于X轴的非负半轴
终边落在第几象限就是第几象限角
3 . 终边与 角a相同的角
2024/11/3 S={β|β=α+k·360°,k∈Z}
2024/11/3
证明:由公式 =得rl l=αR
而圆心角为n°的扇形的弧长公式和面积公
式分别是 l n R , S n R2
180
360
R nR 得: n 180 n
180
180
代入面积公式,得 S 1 R2 S 1 lR
2
2
2024/11/第5题做在书上
2024/11/3
P5练习1、2、3、4、5
角度制
在平面几何中研究角的度量,当 时是用度做单位来度量角,如下图:
1°的角
O
2024/11/3
在角度制下,当把两个带着度、分、秒 各单位的角相加、相减时,由于运算进制非 十进制,总给我们带来不少困难.那么我们 能否重新选择角单位,使在该单位制下两角 的加、减运算与常规的十进制加减法一样去 做呢?
必修4第一章任意角的概念与弧度制,三角函数定义
角的概念的推广一、考点突破1. 掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义;2. 掌握所有与α角终边相同的角(包括α角)的表示方法;3. 体会运动变化观点,深刻理解推广后的角的概念。
二、重难点提示重点:掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
难点:终边相同的角、第几象限角的表示。
1. 角的概念的推广:一条射线由原来位置OA,绕着它的端点O 点,可以向两个方向旋转:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转时,也看作一个角,叫零角。
这样就形成了任意大小的角。
2. 记法与运算: (1)记法:射线OA 绕O 点旋转到OB 所成的角记作∠AOB ; 射线OB 绕O 点旋转到OA 所成的角记作∠BOA ; (2)运算:各角和的旋转量等于各角旋转量的和:射线OA 绕点O 旋转到OB ,又从OB 旋转到OC ,得到∠AOC ,这个过程可表示成角的运算:∠AOC=∠AOB+∠BOC 。
3. 终边相同的角:与α终边相同的角的集合:},360|{Z k k ∈︒⨯+=αββ。
4. 象限角:角的顶点与坐标原点重合,始边与x 轴正半轴重合,此时终边在第几象限,则称这个角是第几象限角。
例题1 射线OA 绕点A 顺时针旋转80°到OB ,再逆时针旋转300°到OC ,再顺时针旋转100°到OD 位置,求AOD ∠的大小。
思路分析:利用正负角的概念结合角的运算求解。
答案:解:AOD ∠=AOB ∠+BOC ∠+COD ∠=︒=︒-+︒+︒-120)100(300)80(。
例题2 在 0~360之间,找出下列终边相同的角,并判定它们是第几象限角: (1)︒-150;(2)︒650;(3)'︒-15950。
思路分析:把负角逆时针旋转一周或者几周,即可得到 0~ 360之间的角,把超过 360 的角顺时针旋转一周或者几周,即可得到 0~ 360之间的角。