2014年石家庄质检二文科数学试题及答案
(完整word版)2014年(全国卷II)(含答案)高考文科数学,推荐文档
2014年普通高等学校招生全国统一考试(2新课标H 卷)数学(文)试题一、选择题( 本大题共12题, 共计60分)1.已知集合A { 2,0,2}, B {x|x 2 x 20},则 A n B=()A. B. 2 C. {0}D. { 2}2.1 3i (1 i)A.1 2iB. 1 2iC. 1 2iD. 1 2i3.函数f (x)在x X o 处导数存在,若p: f(X o ) 0 : q:x X o 是f (x)的极值点,贝U( )A • p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件 4. 设向量 a,b 满足 a b J T0 , a b 76,则 a b=() A. 1 B. 2 C. 3 D. 55.等差数列{a n }的公差是2,若a 2,a 4,a 8成等比数列,贝U {a n }的前n 项和S n()1 (表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,贝U 切削的部分的体积A. n(n 1)B. n(n 1)C.咛D n(n 1)26.如图,网格纸上正方形小格的边长为27 D.1与原来毛坯体积的比值为( )7•正三棱柱ABC ABQ i 的底面边长为2,侧棱长为.3 , D 为BC 中点,则三棱锥A BQ® 的体积为A.3B.32C.128•执行右面的程序框图,如果输入的 x ,t 均为2, 则输出的S (A.4B.5C.6D. 7x 3y 3 0,10•设F 为抛物线C:y 2+3x 的焦点,过F 且倾斜角为是( )A 迈3B.6C.12D.7,311若函数f xkx Inx 在区间1,单调递增, 则k 的取值范围是()A., 2B., 1C. 2,D. 1,AB ()12.设点 M x o ,1,若在圆 O:x 2+y 2 1上存在点N ,使得 OMNx y 19.设x , y 满足约束条件x y 10,0,则z x 2y 的最大值为(A.8B.7C.2D.130的直线交C 于A, B 两点,则 45,则x o 的取值范围二、填空题:本大题共4小题,每小题5分.13•甲,乙两名运动员各自等可能地从红、白、蓝 3种颜色的运动服中选择1种,则他们 选择相同颜色运动服的概率为 ________ .14.函数 f(x) sin(x ) 2sin cosx 的最大值为 __________________ . 15•偶函数y f(x)的图像关于直线x 2对称,f(3)3,则f( 1)= __________ .116. ----------------------------------数列{a n }满足 a n 1 __________ ,a 8 2,则 &1 a n三、解答题:17. (本小题满分12分)四边形ABCD 的内角A 与C 互补,AB 1, BC 3, CD DA 2 . (1) 求 C 和 BD ; (2) 求四边形ABCD 的面积.A.[ -1,1]B. c.D. T-718. (本小题满分12分)如图,四棱锥P ABCD中,底面ABCD为矩形,PA 平面ABCD,E是PD的中点.(1)证明:PB〃平面AEC ;(2)设AP 1,AD 3,三棱锥P ABD的体积V求A到平面PBC的距离.19. (本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲輻门1-乙邯门3594404 4S97J1224566777X9976653321)0i 6«1 f 23 4 6昌E98K77766555554443J321007001134496655200S12334563222090 H 45610000(1) 分别估计该市的市民对甲、乙两部门评分的中位数;(2) 分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3) 根据茎叶图分析该市的市民对甲、乙两部门的评价.2 2设F I,F2分别是椭圆C:冷每1(a b 0)的左右焦点,M是C上一点且MF2与x轴a b垂直,直线MF i与C的另一个交点为N.3(1) 若直线MN的斜率为上,求C的离心率;4(2) 若直线MN在y轴上的截距为2,且|MN | 5| F i N |,求a,b.21.(本小题满分12分)已知函数f (x) x3 3X2 ax 2,曲线y f (x)在点(0,2)处的切线与x轴交点的横坐标为2.(1)求 a ;(2)证明:当k 1时,曲线y f (x)与直线y kx 2只有一个交点.20.(本小题满分12分)如图,P是eO外一点,PA是切线,A为切点,割线PBC与eO相交于B,C , PC 2PA , D为PC的中点,AD的延长线交eO于点E.证明:(1)BE EC ;2(2) AD DE 2PB2在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos , [0,].2(1)求C得参数方程;(2)设点D在C 上, C在D处的切线与直线l : y ,3x 2垂直,根据(1)中你得到的参数方程,确定D的坐标•23.(本小题满分10分)选修4-4:坐标系与参数方程24.(本小题满分10分)选修4-5:不等式选讲1设函数 f (x) |x | | x a | (a 0)a(1)证明:f(x) 2 ;(2)若f (3)5,求a的取值范围.2014年普通高等学校招生全国统一考试(2新课标U卷)1. B【解析】试题分析:由已知得,B 2, -1 ,故AI B 2,选B. 考点:集合的运算. 2. B【解析】试题分析:由已知得, S (1 3i)(1D1 2i ,选B.1 i (1 i)(1 i) 2考点:复数的运算. 3. C【解析】试题分析:若x X o 是函数f(x)的极值点,则f (X o ) 0 ;若f (X o ) 0,则X X o 不一定是 极值点,例如f (X ) X 3,当X 0时,f (0)0,但X 0不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4. A【解析】r 2 r r r 2r 2 r r r 2r r试题分析:由已知得, a 2a b b10, a 2a b b 6,两式相减得,4a b4,r r 故 a b 1.考点:向量的数量积运算. 5. A【解析】试题分析:由已知得,a 42 a 2 a 8,又因为{a n }是公差为2的等差数列,故(a 22d)2 a ? (a ? 6d),@ 4)2a ? (a ?12),解得 a ? 4,所以务 a ? (n 2)d 2n ,故 S n n(a1 an) n(n 1).2【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6. C【解析】试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体. 其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为 224 32 2 34而圆柱形毛坯体积为 32 6参考答案:数学(文)试题参考答案102754 ,故切削部分体积为20 ,从而切削的部分的体积与原来毛坯体积的比值为54 考点:三视图.7. C【解析】试题分析:如下图所示,连接AD,因为ABC是正三角形,且D为BC中点,则AD BC,又因为BB i 面ABC ,故BB i AD ,且BB i I BC B ,所以AD 面BCC i B i ,所以AD 是 三棱锥 A B 1DC 1 的高,所以 V A ^DS -S B ^DC . AD - ,3 -、3 1 .33考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8. D【解析】试题分析:输入x 2,t 2,在程序执行过程中,M,S,k 的值依次为M 1,S 3,k 1 ;M 2,S 5,k2 ;M 2,S 7,k3,程序结束,输出S 7 .考点:程序框图. 9. B【解析】试题分析:画出可行域,如图所示,将目标函数 z x 2y 变形为y lx -,当Z 取到2 2最大值时,直线y lx Z 的纵截距最大,故只需将直线 ylx 经过可行域,尽可能2 2 2平移到过A 点时,Z 取到最大值.10. C【解析】试题分析:由题意,得F (― ,0).又因为k tan300 -—,故直线AB 的方程为y —3 (x ―),43 3 4与抛物线y 2=3x 联立,得16x 2 168x 90,设A(x 1, y 1), B(x 2,y 2),由抛物线定义得,x 1 x 2 p3—12,选 C.21、抛物线的标准方程; 11. D【解析】x y 1 0x 3y 3 0,得A(3,2),所以ZmaxAB168 16 考点: 2、抛物线1 1 试题分析:f '(x ) k —,由已知得f '(x ) 0在x 1, 恒成立,故k —,因为x 1 ,xx所以0 1 1,故k 的取值范围是1,•x【考点】利用导数判断函数的单调性. 12. A【解析】试题分析:依题意,直线 MN 与圆0有公共点即可,即圆心0到直线MN 的距离小于等于1 即可,过0作OA MN,垂足为 A ,在Rt OMA 中,因为 OMA 45°,故 0A| OM|sin45° 亍|0M | 1,所以 0M 迈,则 J x °2 1 V2,解得 1 x 0 1 .【解析】试题分析:甲,乙两名运动员各自等可能地从红、 白、蓝3种颜色的运动服中选择1种有 9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白, 蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有 3种不同的结果,即 (红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为 P --.9 3考点:古典概型的概率计算公式. 14. 1 【解析】 试 题分 析: 由 已 知 得13.13sin( x)f (x) sin xcos cosxs in 2cos xs in sin xcos cosxs in1,故函数f(x) sin(x ) 2sin cosx的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15. 3【解析】试题分析:因为y f (x)的图像关于直线x 2对称,故f (3) f (1) 3,又因为y f(x)是偶函数,故f( 1)f(1) 3.考点:1、函数图象的对称性;2、函数的奇偶性.三、解答题(17) 解:(I )由题设及余弦定理得B D 2BC 2 CD 22BC CD cosC=13 12cosC①B D 22 2AB DA2AB DA cos A5 4cosC .②1._由①,②得 cosC —,故 C 600, BD 。
河北省石家庄市2014届高中毕业班3月复习教学质量检测(二)数学理试题(扫描版,WORD标准答案)
河北省石家庄市2014届高中毕业班3月复习教学质量检测(二)数学理试题(扫描版,WORD答案)————————————————————————————————作者:————————————————————————————————日期:22014年石家庄市高中毕业班复习教学质量检测(二) 高三数学(理科答案) 2014.3一、选择题:1-5.CDCBD 6-10. DACBD 11-12BA 二、填空题:13. ____-160_________ 14. - 3 . 15. 9316. 5235 .三、解答题: (解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分) 17. 解:由已知得15CD =,120ACD ∠=︒,30ADC ∠=︒,∴30CAD ∠=︒, 在中△ACD ,由正弦定理得15sin 30sin120AD=︒︒,…………2分 ∴153AD =;……………………………………………4分75BDC ∠=︒,45BCD ∠=︒,∴60CBD ∠=︒,在中△BCD ,由正弦定理得,15sin 60sin 45BD=︒︒,……………6分 ∴56BD =;……………………………………8分 在ABD △中,45ADB ∠=︒,由余弦定理得222202cos (153)(56)215356cos 45AB AD BD AD BD ADB=+-⋅∠=+-⋅⋅∠……………10分515=故两小岛间的距离为515海里.…………………………………12分 18. 解:(Ⅰ)由已知,100位顾客中购物款不低于100元的顾客有4010060%n +=⨯,20n =;………………………………………………2分()1002030201020m =-+++=.……………………………………3分该商场每日应准备纪念品的数量大约为 6050003000100⨯=件.……………4分 (Ⅱ)由(Ⅰ)可知1人购物获得纪念品的频率即为概率6031005p ==……………………5分 故4人购物获得纪念品的人数ξ服从二项分布34,5B ξ⎛⎫ ⎪⎝⎭()04043216055625P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()13143296155625P C ξ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()222432216255625P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()313432216355625P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()4443281455625P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭ ξ的分布列为 ξ 01234P16625 96625 216625 216625 81625……………………11分(此部分可按ξ的取值,细化为1分,1分的给分)ξ数学期望为16962162168112012346256256256256255E ξ=⨯+⨯+⨯+⨯+⨯= 或由312455E ξ=⨯=.…………………………………………12分 19.解:(Ⅰ)不妨设AB AC AP ===1,又︒=∠120BAC ,∴在△ABC 中,3120cos 11211222=︒⨯⨯-+=BC ,∴3=BC ,则13BN BC ==33,…………………………………1分 所以ABBNBC AB =,又ABC NBA ∠=∠,∴ABC NBA ∽△△, 且NBA △也为等腰三角形.……………………………………………3分(法一)取AB 中点Q ,连接MQ 、NQ ,∴AB NQ ⊥,PA MQ ∥ ∵⊥PA 面ABC ,∴AB PA ⊥,∴AB MQ ⊥,…………5分 所以AB ⊥平面MNQ , 又MN ⊂平面MNQ∴AB ⊥M N …………………………………6分Q(法二)︒=∠30BAN ,则︒=︒-︒=∠9030120NAC ,以A 为坐标原点,AN 的方向为x 轴正方向,建立如图所示的空间直角坐标系 可得)0,0,0(A ,)0,21,23(-B ,)21,41,43(-M , )0,0,33(N ,…………………………………4分 ∴)0,21,23(-=AB ,)21,41,123(-=MN 则0=⋅MN AB ,所以AB MN ⊥.…………6分 (ⅡⅠ)同(Ⅰ)法二建立空间直角坐标系,可知)1,0,0(P ,)0,1,0(C ,面PAN 的法向量可取为)0,1,0(=AC ,…………………………………8分设面ANM 的法向量为(,,)x y z =m ,311(,,)442AM =-,3(,0,0)3AN =,则00AM AN ⎧⋅=⎨⋅=⎩m m 即3110442303x y z x ⎧-+=⎪⎪⎨⎪=⎪⎩可取(0,2,1)=m ,………………10分 ∴AC m ,cos =255m AC m AC⋅=⋅, 故二面角M AN P --的余弦值为255.…………………12分 20.解:(Ⅰ)设动圆圆心坐标为(,)C x y ,根据题意得222(2)4x y y +-=+,……………………2分化简得24x y =. …………………………………4分 (Ⅱ)解法一:设直线PQ 的方程为y kx b =+,由24x y y kx bìï=ïíï=+ïî消去y 得2440x kx b --= xzy设1122(,),(,)P x y Q x y ,则121244x x k x x bì+=ïïíï=-ïî,且21616k b D =+……………6分以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即2111124y x x x =- 同理过点Q 的切线的方程为2221124y x x x =- 设两条切线的交点为(,)A A A x y 在直线20x y --=上,12x x ¹Q ,解得1212224A A x x x k x x y b ì+ïï==ïïïíïï==-ïïïî,即(2,)A k b - 则:220k b +-=,即22b k =-…………………………………8分 代入222161616323216(1)160k b k k k D =+=+-=-+>22212||1||41PQ k x x k k b \=+-=++(2,)A k b -到直线PQ 的距离为22|22|1k b d k +=+………………………10分322221||4||4()2APQS PQ d k b kb k b D \=?+?=+3322224(22)4[(1)1]k k k =-+=-+\当1k =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0). …………12分解法二:设00(,)A x y 在直线20x y --=上,点1122(,),(,)P x y Q x y 在抛物线24x y =上, 则以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即1112y x x y =- 同理以点Q 为切点的方程为2212y x x y =-………………………………6分 设两条切线的均过点00(,)A x y ,则010101011212y x x y y x x y ìïï=-ïïíïï=-ïïïî,\点,P Q 的坐标均满足方程0012y xx y =-,即直线PQ 的方程为:0012y x x y =-……………8分 代入抛物线方程24x y =消去y 可得:200240x x x y -+=22201200011||1||141644PQ x x x x x y \=+-=+- 00(,)A x y 到直线PQ 的距离为200201|2|2114x y d x -=+…………………………10分 32222000000111|||4|4(4)222APQS PQ d x y x y x y D \=?-?=-33222200011(48)[(2)4]22x x x =-+=-+ \当02x =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0).…………12分21. 解:(1)'()xf x e a =-.①当1a ≤时,'()0x f x e a =-≥对0x ∀≥恒成立,即()f x 在(0,)+∞为单调递增函数; 又(0)0f =,即()(0)0f x f ≥=对0x ∀≥恒成立.…………………………1分 ②当1a >时,令'()0f x =,得ln 0x a =>. 当(0,ln )x a ∈ 时,'()0f x <,()f x 单调递减; 当(ln ,)x a ∈+∞ 时,'()0f x >,()f x 单调递增. 若()0f x ≥对任意0x ≥恒成立,则只需ln min ()(ln )ln 1ln 10a f x f a e a a a a a ==--=--≥…………………………3分又()ln 1(1)g a a a a a =-->,'()1ln 1ln 0g a a a =--=-<,即()g a 在区间(1,)+∞上单调递减;又注意到(1)0g =。
河北省石家庄市2014-2015学年高二下学期期末考试数学(文科)试卷及答案(高清扫描版
2015 年第二学期高二文科答案一、 1-5CCAAB 6-10BDCCD 11-12AC二、填空13.i14. ab15. 33.2 米 16. ①②③三、解答17.假 z a bi ( 数 a, b 不全 0) 足等式,因此 (a 2b 2 )2 (a bi )2( a bi) i ,⋯⋯⋯⋯⋯⋯⋯3分22abibai ,依据复数相等的条件可得:2b 2 b,⋯⋯⋯⋯⋯⋯⋯7分即 2b2aba解得b1b 01i 足条件 . ⋯⋯⋯⋯⋯⋯⋯10分2或(舍),因此存在复数 z a 0a218.( I )均匀油耗低于 8 均匀油耗低于 8升 /百公里升 /百公里使用增添 24 16 40 未使用增添1228 40364480⋯⋯⋯⋯⋯⋯5分( II )将数据代入公式K 280 (24 28 12 16)2 7.273 6.635 ,⋯⋯⋯⋯⋯⋯9分36 44 40 40有 99 的掌握 “均匀油耗与能否使用 燃油增添 相关”. ⋯⋯⋯⋯⋯⋯ 12 分19.( I )求得 x8.5, y 81,因此获得以下表格:x x0.40.20 0.2 0.4 yy75237⋯⋯⋯⋯⋯⋯2分?( 0.4) 7 (0.2 5) 0 0.2 ( 3)0.4 ( 7)18 , ⋯⋯⋯⋯⋯⋯5分代入公式 b( 0.4) 2 ( 0.2) 202(0.2) 2 (0.4) 2又 ???y b x234 ,因此日 量对于 价的回 直 方程分a y 18 x 234 , ⋯⋯⋯7( II )依据( I )求得的回 直 方程可得利z ( x 4) ( 18x234)18x 2 306x 93618( x 8.5)2 364.5 , ⋯⋯⋯10 分因此 价定8.5 元 每日的利 最大. ⋯⋯⋯12 分20. ( 1)几何 明解:( I )由弦切角定理可得EAB ACB ,⋯⋯⋯⋯⋯⋯ 3 分又因 点 B 均分弧 AC , CAB ACBEAB CAB , AB 均分 CAE .⋯⋯⋯⋯⋯⋯ 6 分( II )因 点 B 均分弧 AC ,因此 BC AB 5 ,因此 CE 9 ,由弦切 定理可得 EA 2 EB EC 36 ,因此 EA 6 ,⋯⋯⋯⋯⋯⋯ 9分又因EAB ∽ ECA ,ABBEAB AE15 .⋯⋯⋯⋯⋯⋯⋯⋯1 2 分CA,解得 ACBE2AE( 2)坐 系和参数方程解:( I )依据cos61 得:( 3 cos1sin )1, ⋯⋯⋯⋯⋯⋯3分22由xcos 3x y 2 0 ; ⋯⋯⋯⋯⋯⋯5分ysin 得( II )由勾股定理可得弦心距dr 2 ( l ) 21 ,⋯⋯⋯⋯⋯⋯7分2 2由 的参数方程可得x 2 ( y a)21 , ⋯⋯⋯⋯⋯⋯9分因此 心 (0, a) 到直 l的距离|3 0 a 2 | | a 2 | 1 ,( 3) 21222解得 a 1或 3.⋯⋯⋯⋯⋯⋯12分( 3)不等式 (I )由已知不等式的解集可得1,3 是方程 x 2bx c 0 的两根,由根与系数的关系可得b1 3 c1 3 , ⋯⋯⋯⋯⋯⋯3分b 2 ,故 f (x) x 2 2x3 , ⋯⋯⋯⋯⋯⋯5分c 3( II )当 x2,2 , f ( x) 4,5 , ⋯⋯⋯⋯⋯⋯7分不等式 形f x2t 3 ,要使对于 x 的不等式 f x 2t 3 有解,只要fxmax2t 3 , ⋯⋯⋯⋯⋯⋯10分即2t 3 5,解得1 t 4 . ⋯⋯⋯⋯⋯⋯12分21.( 1)几何明解:( I)∵ OC=OD ,∴∠ OCD=∠ ODC ,∴∠ OCA=∠ ODB ,∵∠ BOD=∠ A,∴△ OBD ∽△ AOC.⋯⋯⋯⋯⋯⋯ 3 分∴BD OD,OC AC∵ OC=OD=6, AC=4,∴BD 6,∴BD= 9.⋯⋯⋯⋯⋯⋯⋯6分6 4(II )明:∵ OC=OE, CE⊥ OD.∴∠ COD=∠ BOD =∠ A.⋯⋯⋯⋯⋯⋯ 9 分∴∠ AOD=180o–∠ A–∠ODC= 180o–∠COD –∠OCD= ∠ ADO.∴AD=AO ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分( 2)坐系和参数方程解:( I)曲 C 的极坐方程是sin 22cos,化 2 sin22cos,可得曲C 2的直角坐方程y =2x.⋯⋯⋯⋯⋯⋯5分x 3t m21(II)把2( t 参数),代入方程:23t 2m 0,⋯⋯7分1y=2x 化:ty4t2上述方程的两根分t1t243⋯⋯⋯⋯⋯⋯9分t1, t2,可得t 28mt1由点 P 是段 AB 的三均分点,可得t12t2,代入上述方程解得 m12 ,0 ,因此点P的坐(12, 0).⋯⋯⋯⋯⋯⋯12分( 3)不等式解:( I)由不等式可得f(x) =|x-2|+|x a| ≥|(x 2)( x a) |=|a 2|,⋯⋯⋯⋯⋯⋯3分再由不等式 f( x)≥a 在 R 上恒建立,可得 |a 2| ≥a,⋯⋯⋯⋯⋯⋯5分∴a 2≥a,或 a 2≤ a,解得 a≤1,故 a 的最大 1.⋯⋯⋯⋯⋯⋯7分( II )∵正数 x, y, z足 x+y =1,∴ 14=( x+y)(14) 1 4y4x52y4x9 ,⋯⋯⋯⋯⋯⋯10分x y x y x y x y当且当y4x 即x1, y2,等号建立,∴14的最小9.⋯⋯⋯⋯⋯⋯12分x y33x y22.( I )几何明解:明:(I)接BE,OE,∵AB 是直径,∴∠ AEB=90°,∵∠ ABC=90° =∠ AEB ,∠ A= ∠ A ,∴△ AEB ∽△ ABC ,∴∠ ABE= ∠ C,∵ BE ⊥ AC , DBC 的中点,∴ DE=BD=DC ,⋯⋯⋯⋯⋯⋯3分∴∠ DEC= ∠ DCE= ∠ ABE= ∠ BEO ,∠ DBE= ∠ DEB ,∴∠ BEO+ ∠DEB= ∠DCE+ ∠CBE=90°,∴∠ OEE=90°,∴ DE 是 O 的切.⋯⋯⋯⋯⋯⋯6分( II )明:∵ O、D 分 AB 、 BC 的中点,∴ DM=OD OM=(AC AB ),⋯⋯⋯⋯⋯⋯8分∴ DM?AC+DM?AB=DM? ( AC+AB )=(AC AB )?( AC+AB ) =( AC 2AB 2)2= BC =DE?BC .∴ DE?BC=DM?AC+DM?AB . ⋯⋯⋯⋯⋯⋯12分( 2)坐 系和参数方程解:( I )依据 称关系可得 A,B 所 的极角分3和2, ⋯⋯⋯⋯⋯⋯23分代入极坐 方程可得A,B 的极坐 ( 3,) 和( 3, 2) ⋯⋯⋯⋯⋯⋯4分3 3( II ) A,B 所 的极角分,,3因此OA 12sin, OB2 2sin()3AB因OAB 内接于 C,由正弦定理2R 得: AB 3 ,⋯⋯⋯⋯⋯⋯6分sin AOB因此周l 2sin2sin() 3 3sin3cos3 2 3 sin() 3 , ⋯⋯⋯⋯10 分36由 意知(0,2) ,6( , 5 ), l (2 3,3 3] ,36 6因此周 的取 范 是 (2 3,3 3] .⋯⋯⋯⋯⋯⋯12 分( 3)不等式 解:(1)由 x12 5 得 x 13 ,3 x 13 ,不等式的解集x 2 x4⋯⋯⋯⋯⋯⋯⋯⋯5分(2) 因 随意 x 1 R ,都有 x 2 R ,使得 f ( x 1) g ( x 2 ) 建立,因此 { y | y f ( x)} { y | yg (x)} , ⋯⋯⋯⋯⋯⋯ 7 分又 f ( x)2x a 2x 3 | (2 x a) (2 x 3) | | a3| , ⋯⋯⋯⋯⋯⋯ 9 分g( x) | x1| 2 2,因此 | a3| 2 ,解得 a1 或 a 5 ,因此 数 a 的取 范 a1 或 a 5 . ⋯⋯⋯⋯⋯⋯⋯⋯12 分。
2014年高考文科数学全国卷2及答案解析
数学试卷 第1页(共15页) 数学试卷 第2页(共15页) 数学试卷 第3页(共15页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i=1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b|=|a -b|a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D.28.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8B .7C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( ) A.3B .6C .12 D.11.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]-C .[D .[第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= . 16.数列{}n a 满足111n na a +=-,82a =,则1a = . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,AD =P ABD -的体积4V =,求A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共15页) 数学试卷 第5页(共15页) 数学试卷 第6页(共15页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a=++->.数学试卷 第7页(共15页) 数学试卷 第8页(共15页) 数学试卷 第9页(共15页)(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围. {2}A B =,选由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。
石家庄市届高中毕业班月复习教学质量检测(二)数学文试题(版,WORD答案)
2014年石家庄市高中毕业班复习教学质量检测(二)高三数学(文科答案) 一、 选择题:1-5CCDCA 6-10DACCB 11-12DC二、 填空题:13. 6 14. - 15. 9(2,2015)_______三、解答题:(解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分)17.解:(1)由正弦定理得(2sin sin )cos sin cos 0,C A B B A --= ……………………………………2分2sin cos sin()0,sin (2cos 1)0C B A B C B ∴-+=∴-=…………4分1sin 0,cos ,23C B B π≠∴=∴=……………………………………6分(2)22222cos ()22cos b a c ac B a c ac ac B =+-=+--…………………………8分7,13,3b ac B π=+== 40ac ∴=………………………………10分1sin 2S ac B ∴==12分18. 解:(Ⅰ)由已知,100位顾客中购物款不低于100元的顾客有103010060%n ++=⨯,20n =;…………………………………2分()1002030201020m =-+++=.……………………3分 该商场每日应准备纪念品的数量大约为 6050003000100⨯=.………………5分 (II )设购物款为a 元当[50,100)a ∈时,顾客有500020%=1000⨯人, 当[100,150)a ∈时,顾客有500030%=1500⨯人, 当[150,200)a ∈时,顾客有500020%=1000⨯人,当[200,)a ∈+∞时,顾客有500010%=500⨯人,…………………………7分 所以估计日均让利为756%1000+1258%150017510%100030500⨯⨯⨯⨯+⨯⨯+⨯…………10分52000=元……………12分19. 解:(1)取AB 中点Q ,连接MQ 、NQ , ∵AN=BN ∴AB NQ ⊥, ……………2分 ∵⊥PA 面ABC ,∴AB PA ⊥,又PA MQ ∥ ∴AB MQ ⊥,………………4分所以AB ⊥平面MNQ ,又MN ⊂平面MNQ ∴AB ⊥M N ………………6分(2)设点P 到平面NMA 的距离为h , ∵M 为PB 的中点,∴PAM △S =4121PAB =△S 又AB NQ ⊥,PA NQ ⊥,∴B PA NQ 面⊥,∵︒=∠30ABC ∴63=NQ ……………………………7分 又3322=+=MQ NQ MN ,33=AN ,22=AM , ……………………………………………………………………………9分 可得△NMA 边AM 上的高为1230, ∴241512302221=⋅⋅=NMA S △………………10分 由PAM N NMA P V V --= 得 =⋅⋅h S NMA △31NQ S PAM ⋅⋅△31∴55=h ……………………12分 20.解:(Ⅰ)设动圆圆心坐标为(,)C x y ,根据题意得222(2)4x yy ,……………………2分化简得24x y . …………4分Q(Ⅱ)解法一:设直线PQ 的方程为y kx b ,由24x y ykxb消去y 得2440xkx b设1122(,),(,)P x y Q x y ,则121244x x k x x b,且21616k b ……………6分 以点P 为切点的切线的斜率为1112y x ,其切线方程为1111()2y y x x x即2111124yx x x 同理过点Q 的切线的方程为2221124yx x x 设两条切线的交点为(,)A A A x y 在直线20xy 上,12x x ,解得1212224AAx x x kx x y b ,即(2,)A k b则:220k b ,即22bk ……………………………………8分代入222161616323216(1)160k bk kk22212||1||41PQ k x x k k b(2,)A k b 到直线PQ 的距离为22dk…………………………10分322221||4||4()2APQSPQ d kb kbkb3322224(22)4[(1)1]kkk当1k时,APQS最小,其最小值为4,此时点A 的坐标为(2,0). …………12分解法二:设00(,)A x y 在直线20xy 上,点1122(,),(,)P x y Q x y 在抛物线24x y 上,则以点P 为切点的切线的斜率为1112y x ,其切线方程为1111()2y y x x x即1112yx x y同理以点Q 为切点的方程为2212yx x y …………………………6分设两条切线的均过点00(,)A x y ,则1011011212y x x y y x x y ,点,P Q 的坐标均满足方程012y xx y ,即直线PQ 的方程为:0012yx x y ……………8分代入抛物线方程24x y 消去y 可得:200240x x xy22201200011||1||141644PQ x x x x x y00(,)A x y 到直线PQ的距离为20021|2|21x y dx ………………10分 3222200000111|||4|4(4)222APQSPQ d x y x y x y33222200011(48)[(2)4]22x x x当02x 时,APQS最小,其最小值为4,此时点A 的坐标为(2,0).…………12分21.解:(Ⅰ)依题意1(),f x a x '=+1()202f a '=+=,则2,a =-………………2分 经检验,2a =-满足题意.…………………4分(Ⅱ)由(Ⅰ)知()ln 22,f x x x =-+则2()ln ,F x x x x λ=--2121'()21x x F x x x xλλ--=---=.………………………6分令2()21t x x x λ=--。
2014年石家庄质检一文科数学试题及答案
2014年石家庄市高中毕业班教学质量检测(一)高三数学(文科答案)一、选择题:本大题共12小题,每小题5分.1-5 DBDCB 6-10 BDBAA 11-12 BB二、填空题:本大题共4小题,每小题5分,共20分.13 . 200 __ 14. 23π 15.131216.223n n -+ 三、解答题:本大题共6小题,共70分.17 .解:(Ⅰ)()sin(4)cos(4)44sin(4)sin(4)44f x x x x x ππππ=++-=+++2sin(4)4x π=+,………………………3分 所以()f x 的最大值是2.………………………5分 (Ⅰ)令442x k πππ+=+()k ∈Z ,…………………7分 则416k x ππ=+()k z ∈,………………9分 而直线x m =是函()y f x =的对称轴,所以416k m ππ=+()k ∈Z ………10分 18. 解:(Ⅰ)设等差数列{}n a 的公差为0≠d .因为346S a =+,所以63223311++=⨯+d a d a . ① 因为1413,,a a a 成等比数列,所以2111(12)(3)a a d a d +=+. ② ……2分由①,②可得:13,2a d ==. ……………………………………4分所以21n a n =+. ……………………………………6分 (Ⅱ)由题意1212+=+n n b ,设数列}{n b 的前n 项和为n T ,122+=n n c ,)(422*121)1(21N n c c n n n n ∈==++++,所以数列}{n c 为以8为首项,以4为公比的等比数列……9分 所以18(14)48.143n n n T n n +--=+=+- ……………………………………12分 19.答案:(1)各组的频率分别是0.1,0.2,0.3,0.2,0.1,0.1所以图中各组的纵坐标分别是0.01,0.02,0.03,0.02,0.01,0.01……………………5分(2)设A 表示事件:年龄在[)55,65[)65,75的被调查者中各随机选取1人进行追踪调查,两人中至少有一人赞成“车辆限行”.则A 表示事件:年龄在[)55,65[)65,75的被调查者中各随机选取1人进行追踪调查,两人都不赞成“车辆限行”。
2014年石家庄两次、保定两次模拟试题精选(带答案)
2014年石家庄两次、保定两次模拟试题精选(带答案)2014年石家庄两次模拟、保定两次模拟试题精选一、选择题:(本大题共12小题。
每小题5分)1.(石家庄一模2)设不等式xx -2≤0的解集为M ,函数|)|1lg()(xx f -=的定义域为N ,则M ∩=N ()A .]0,1(-B .)1,0[C .)1,0(D .]1,0[ 2.(保定二模3)若)(1Ra iia ∈-+是纯虚数,则=-+|1|i i a () A .i B .1 C .2 D .23.(石家庄二模4)命题p 为:抛物线y x 42=的焦点坐标为)1,0(;命题q 为:“3=a ”是“直线02=+y ax 与直线332=-y x 垂直”的充要条件.则以下结论正确的是( )A .p 或 q 为真命题B .p 且q 为假命题C .p 且 q ?为真命题D .p ?或q 为假命题4.(保定二模8)已知数列}{n a 中,251=a ,)(7441*+∈-=N na a n n ,若其前n 项和为n S ,则n S 的最大值为()A .15 B .750 C .4765 D .27055.(石家庄一模7)执行下边的程序框图,若输出的结果是3,则可输入的实数x 值得个数为()A.1 B. 2 C. 3 D.4 6.(保定二模7)设变量x ,y 满足不等式组≤≤≤+≤101200y y x则y x 32+的最大值为()A .1B .10C .41D .50 7. (石家庄一模8)三棱锥ABC S -的及其三视图中的正视图和侧视图如图所示,则棱SB 的长().24 C .388.(石家庄一模9)在ABC ?中,角C B A ,,的对边分别为c b a ,,,且满足C ac A c cos 3sin =,则B A sin sin +的最大值是()A .1B .2C .3D .39.(石家庄二模10)已知向量 a ,b 满足:2a · b=a 2b 2,|a|+|b|=2,则a 与b 25-=的夹角θ的最小值是() A .3π B .4π C .32π D .6π错误!未找到引用源。
2013-2014学年河北省石家庄市高二(下)期末数学试卷(文科)
2013-2014学年河北省石家庄市高二(下)期末数学试卷(文科)一、选择题:共12小题,每小题5分,共60分.1.(5分)(2014春•石家庄期末)已知集合A={x|1<x<4},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2)D.(1,2]2.(5分)(2014春•石家庄期末)“x=1”是“x2﹣3x+2=0”的()条件.A.充分不必要B.必要不充分C.充要 D.既不充分也不必要3.(5分)(2014春•石家庄期末)已知命题p:∀x∈R,2x>0,则()A.B.¬p:∀x∈R,2x<0C.D.¬p:∀x∈R,2x≤04.(5分)(2014•安达市校级三模)设f(x)=ax3+3x2+2,若f′(﹣1)=4,则a的值等于()A.B.C.D.5.(5分)(2015•芝罘区模拟)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a6.(5分)(2014春•石家庄期末)甲、乙、丙三名同学站成一排,甲站在中间的概率是()A.B.C.D.7.(5分)(2014春•石家庄期末)已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是()A.B.C.D.8.(5分)(2014春•南阳期末)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.B.C.D.9.(5分)(2010•天津)函数f(x)=2x+3x的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)10.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.111.(5分)(2004•天津)若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a等于()A.B.C.D.12.(5分)(2012•韶关二模)设a=22.5,b=2.50,c=,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2014春•石家庄期末)已知f(x)=x2+x+1,f(2x)=.14.(5分)(2014春•石家庄期末)在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为.15.(5分)(2014春•石家庄期末)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为.16.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=.三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤.17.(10分)(2013•福建)已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.18.(12分)(2013•金川区校级一模)以下茎叶图记录了甲组3名同学寒假假期中去图书馆A学习的次数和乙组4名同学寒假假期中去图书馆B学习的次数.乙组记录中有一个数据模糊,无法确认,在图中以x表示.(1)如果x=7,求乙组同学去图书馆学习次数的平均数和方差;(2)如果x=9,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.19.(12分)(2014春•石家庄期末)20名学生某次数学考试成绩(单位:分)的频数分布直方图如图所示.(Ⅰ)求频数直方图中a的值;(Ⅱ)分别球出成绩落在[50,60)与[60,70)中的学生人数.20.(12分)(2012•重庆)已知函数f(x)=ax3+bx+c在点x=2处取得极值c﹣16.(Ⅰ)求a,b的值;(Ⅱ)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值.21.(12分)(2014春•石家庄期末)一个车间为了规定工时定额,需要确定加工零件所花费(Ⅰ)请画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(Ⅲ)现需生产20件此零件,预测需用多长时间?(注:用最小二乘法求线性回归方程系数公式=,=﹣)22.(12分)(2014春•石家庄期末)2013年11月12日中国共产党第十八届中央委员会第三次全体会议在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.参考公式:K2=,其中n=a+b+c+d.2013-2014学年河北省石家庄市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:共12小题,每小题5分,共60分.1.(5分)(2014春•石家庄期末)已知集合A={x|1<x<4},B={x|x≤2},则A∩B=()A.(0,1)B.(0,2]C.(1,2)D.(1,2]【解答】解:∵A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}=(1,2].故选D2.(5分)(2014春•石家庄期末)“x=1”是“x2﹣3x+2=0”的()条件.A.充分不必要B.必要不充分C.充要 D.既不充分也不必要【解答】解:由x=1,则12﹣3×1+2=0,即x2﹣3x+2=0成立,反之,由x2﹣3x+2=0,得:x=1,或x=2.所以,“x=1”是“x2﹣3x+2=0”的充分不必要条件.故选A.3.(5分)(2014春•石家庄期末)已知命题p:∀x∈R,2x>0,则()A.B.¬p:∀x∈R,2x<0C.D.¬p:∀x∈R,2x≤0【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:∀x∈R,2x>0,的否定是:.故选:C.4.(5分)(2014•安达市校级三模)设f(x)=ax3+3x2+2,若f′(﹣1)=4,则a的值等于()A.B.C.D.【解答】解:f′(x)=3ax2+6x,∴f′(﹣1)=3a﹣6=4,∴a=故选D.5.(5分)(2015•芝罘区模拟)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.b>c>a C.c>a>b D.c>b>a【解答】解:由已知得:a=(15+17+14+10+15+17+17+16+14+12)=14.7;b==15;c=17,∴c>b>a.故选:D.6.(5分)(2014春•石家庄期末)甲、乙、丙三名同学站成一排,甲站在中间的概率是()A.B.C.D.【解答】解:甲、乙、丙三名同学站成一排,共有=6种排法,其中甲站在中间的排法有以下两种:乙甲丙、丙甲乙.因此甲站在中间的概率P=.故选C.7.(5分)(2014春•石家庄期末)已知函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象是()A.B.C.D.【解答】解:∵a>b>c,且a+b+c=0,得a>0,且c<0,∴f(0)=c<0,∴函数y=ax2+bx+c的图象开口向上,与y轴的交点在y轴的负半轴上,故选D.【点评】本题考查二次函数的图象特征,由二次函数的二次项的系数符号确定开口方向,由c值确定图象与y轴的交点的位置.8.(5分)(2014春•南阳期末)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.B.C.D.【解答】解:由题意知本题是一个古典概型,∵从五个数中随机抽取2个不同的数有C52种不同的结果,而这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,由古典概型公式得到P===,故选B.9.(5分)(2010•天津)函数f(x)=2x+3x的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【解答】解:由,以及及零点定理知,f(x)的零点在区间(﹣1,0)上,故选B.【点评】本题主要考查函数零点的概念与零点定理的应用,属于容易题.10.(5分)(2012•广东)执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.1【解答】解:如图所示的循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i﹣1)∴输入n的值为6时,输出s的值s=1×3×5=15.故选C.11.(5分)(2004•天津)若函数f(x)=log a x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a等于()A.B.C.D.【解答】解:∵0<a<1,∴f(x)=log a x是减函数.∴log a a=3•log a2a.∴log a2a=.∴1+log a2=.∴log a2=﹣.∴a=.故选A12.(5分)(2012•韶关二模)设a=22.5,b=2.50,c=,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【解答】解:∵a=22.5>20=1,b=2.50=1,,∴a>b>c.故选C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2014春•石家庄期末)已知f(x)=x2+x+1,f(2x)=4x2+2x+1.【解答】解:∵f(x)=x2+x+1,∴f(2x)=(2x)2+2x+1=4x2+2x+1.故答案为:4x2+2x+1.14.(5分)(2014春•石家庄期末)在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为.【解答】解:在区间[﹣2,3]上随机选取一个数X,则﹣2≤X≤3,则X≤1的概率P==,故答案为:.15.(5分)(2014春•石家庄期末)某学校高中部组织赴美游学活动,其中高一240人,高二260人,高三300人,现需按年级抽样分配参加名额40人,高二参加人数为13.【解答】解:∵高一240人,高二260人,高三300人,∴按年级抽样分配参加名额40人,高二参加人数为,故答案为:13.16.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.【解答】解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,第2次判断并循环n=3,s=9,a=7,第3次判断退出循环,输出S=9.故答案为:9.三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤.17.(10分)(2013•福建)已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.【解答】解:函数f(x)的定义域为(0,+∞),.(1)当a=2时,f(x)=x﹣2lnx,,因而f(1)=1,f′(1)=﹣1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),即x+y﹣2=0(2)由,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.18.(12分)(2013•金川区校级一模)以下茎叶图记录了甲组3名同学寒假假期中去图书馆A学习的次数和乙组4名同学寒假假期中去图书馆B学习的次数.乙组记录中有一个数据模糊,无法确认,在图中以x表示.(1)如果x=7,求乙组同学去图书馆学习次数的平均数和方差;(2)如果x=9,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.【解答】解:(1)如果x=7,则乙组同学去图书馆学习次数的平均数为=9,方差为S2==3.5.(2)如果x=9,则所有的基本事件共有=15个,满足这两名同学的去图书馆学习次数大于20的基本事件有:(9,12),(11,12),(12,9),(12,9),(12,12),共有5个,故两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率为=.19.(12分)(2014春•石家庄期末)20名学生某次数学考试成绩(单位:分)的频数分布直方图如图所示.(Ⅰ)求频数直方图中a的值;(Ⅱ)分别球出成绩落在[50,60)与[60,70)中的学生人数.【解答】解:(I)由频率分布直方图得:(2a+3a+7a+6a+2a)×10=1⇒a=0.005;(II)成绩落在[50,60)与[60,70)的频率分布为0.01×10+0.015×10=0.25,∴成绩落在[50,60)与[60,70)中的学生人数为20×0.25=5(人).20.(12分)(2012•重庆)已知函数f(x)=ax3+bx+c在点x=2处取得极值c﹣16.(Ⅰ)求a,b的值;(Ⅱ)若f(x)有极大值28,求f(x)在[﹣3,3]上的最小值.【解答】解:(Ⅰ)由题f(x)=ax3+bx+c,可得f′(x)=3ax2+b,又函数在点x=2处取得极值c﹣16∴,即,化简得解得a=1,b=﹣12(II)由(I)知f(x)=x3﹣12x+c,f′(x)=3x2﹣12=3(x+2)(x﹣2)令f′(x)=3x2﹣12=3(x+2)(x﹣2)=0,解得x1=﹣2,x2=2当x∈(﹣∞,﹣2)时,f′(x)>0,故f(x)在∈(﹣∞,﹣2)上为增函数;当x∈(﹣2,2)时,f′(x)<0,故f(x)在(﹣2,2)上为减函数;当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数;由此可知f(x)在x1=﹣2处取得极大值f(﹣2)=16+c,f(x)在x2=2处取得极小值f(2)=c﹣16,由题设条件知16+c=28得,c=12此时f(﹣3)=9+c=21,f(3)=﹣9+c=3,f(2)=﹣16+c=﹣4因此f(x)在[﹣3,3]上的最小值f(2)=﹣421.(12分)(2014春•石家庄期末)一个车间为了规定工时定额,需要确定加工零件所花费(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(Ⅲ)现需生产20件此零件,预测需用多长时间?(注:用最小二乘法求线性回归方程系数公式=,=﹣)【解答】解:(I)描点作图:(II)=2.5,=4.5,∴==2,=4.5﹣2×2.5=﹣0.5,∴回归直线方程为:y=2x﹣0.5;(III)当x=20时,y=2×20﹣0.5=39.5(小时).22.(12分)(2014春•石家庄期末)2013年11月12日中国共产党第十八届中央委员会第三次全体会议在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.参考公式:K2=,其中n=a+b+c+d.(2)假设是否会俄语与性别无关,然后由已知数据可求得k2进行判断.由已知数据可求得K2=≈1.1575<2.706.所以在犯错的概率不超过0.10的前提下不能判断会俄语与性别有关.第11页(共11页)。
石家庄市2014-2015学年度高二第二学期期末考试数学(文科)试卷及答案
2015年第二学期高二文科答案一、选择题1-5CCAAB 6-10BDCCD 11-12AC二、填空题13.i 14.a b < 15. 33.2米 16.①②③三、解答题17.假设z a bi =+(实数,a b 不全为0)满足等式,所以22()()a bi a bi i -+=-⋅, …………………3分即222b abi b ai -=+,根据复数相等的条件可得:222b b ab a ⎧=⎨-=⎩,…………………7分 解得120b a ⎧=⎪⎨⎪=⎩或00b a =⎧⎨=⎩(舍),所以存在复数12z i =满足条件. …………………10分 18.(I )………………5分(II )将数据代入公式2280(24281216)7.273 6.63536444040K ⨯⨯-⨯=≈>⨯⨯⨯,………………9分 有99﹪的把握认为“平均油耗与是否使用该燃油添加剂有关”. ………………12分19.(I )求得8.5,81x y ==,所以得到如下表格:x x - 0.4-0.2- 0 0.2 0.4 y y -7 5 2- 3- 7-………………2分 代入公式22222(0.4)7(0.25)00.2(3)0.4(7)ˆ18(0.4)(0.2)0(0.2)(0.4)b -⨯+-⨯++⨯-+⨯-==--+-+++,………………5分 又ˆˆ234ay b x =-⋅=,所以日销量关于单价的回归直线方程为ˆ18234y x =-+,………7分 (II )根据(I )求得的回归直线方程可得利润22(4)(18234)1830693618(8.5)364.5z x x x x x =-⋅-+=-+-=--+,………10分所以单价定为8.5元时每天的利润最大. ………12分20. (1)几何证明解:(I )由弦切角定理可得EAB ACB ∠=∠,………………3分又因为点B 平分弧AC ,CAB ACB ∠=∠EAB CAB ∴∠=∠,∴AB 平分CAE ∠.………………6分(II )因为点B 平分弧AC ,所以5BC AB ==,所以9CE =,由弦切线定理可得236EA EB EC =⋅=,所以6EA =,………………9分又因为EAB ∆∽ECA ∆,AB BE CA AE ∴=,解得152AB AE AC BE ⋅==.……………………12分 (2)坐标系和参数方程解:(I )根据cos 16πρθ⎛⎫-= ⎪⎝⎭得:1sin )12ρθθ+=,………………3分 由cos sin x y ρθρθ=⎧⎨=⎩20y +-=;………………5分(II)由勾股定理可得弦心距12d ==,………………7分 由圆的参数方程可得22()1x y a +-=,………………9分所以圆心(0,)a 到直线l|2|122a -==, 解得1a =或3. ………………12分(3)不等式选讲(I )由已知不等式的解集可得1,3-是方程20x bx c ++=的两根,由根与系数的关系可得1313b c -=-+⎧⎨=-⨯⎩,………………3分23b c =-⎧∴⎨=-⎩,故2()23f x x x =--,………………5分 (II )当[]2,2x ∈-时,[]()4,5f x ∈-,………………7分不等式变形为()23f x t ≥-,要使关于x 的不等式()23f x t ≥-有解,只需()max 23f x t ≥-,………………10分 即235t -≤,解得14t -≤≤.………………12分21. (1)几何证明解:(I )∵OC =OD ,∴∠OCD =∠ODC ,∴∠OCA =∠ODB ,∵∠BOD =∠A ,∴△OBD ∽△AOC .………………3分 ∴ACOD OC BD =,∵OC =OD =6,AC =4,∴466=BD ,∴BD=9.…………………6分 (II )证明:∵OC =OE ,CE ⊥OD .∴∠COD =∠BOD =∠A .………………9分∴∠AOD =180º–∠A –∠ODC=180º–∠COD –∠OCD=∠ADO .∴AD =AO ……………………12分(2)坐标系和参数方程解:(I )曲线C 的极坐标方程是2sin 2cos ρθθ=,化为22sin 2cos ρθρθ=,可得曲线C 的直角坐标方程为y 2=2x .………………5分 (II)把12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入方程: y 2=2x化为:21204t m -=,……7分 设上述方程的两根分别为12,t t,可得12128t t t t m ⎧+=⎪⎨⋅=-⎪⎩9分 由点P 是线段AB 的三等分点,可得122t t =-,代入上述方程组解得12m =,经验证0∆>,所以点P 的坐标为(12,0).………………12分(3)不等式选讲解:(I )由绝对值不等式可得 f (x )=|x -2|+|x ﹣a |≥|(x ﹣2)﹣(x ﹣a )|=|a ﹣2|,………………3分再由不等式f (x )≥a 在R 上恒成立,可得|a ﹣2|≥a ,………………5分∴a ﹣2≥a ,或a ﹣2≤﹣a ,解得a ≤1,故a 的最大值为1.………………7分(II )∵正数x ,y ,z 满足x +y =1, ∴14x y +=(x +y )(14x y +)41459y x x y =+++≥+=,………………10分 当且仅当4y x x y =即12,33x y ==时,等号成立,∴14x y +的最小值为9.………………12分 22.(I )几何证明解: 证明:(I )连接BE ,OE ,∵AB 是直径,∴∠AEB=90°,∵∠ABC=90°=∠AEB ,∠A=∠A ,∴△AEB ∽△ABC ,∴∠ABE=∠C ,∵BE ⊥AC ,D 为BC 的中点,∴DE=BD=DC ,………………3分∴∠DEC=∠DCE=∠ABE=∠BEO ,∠DBE=∠DEB ,∴∠BEO+∠DEB=∠DCE+∠CBE=90°, ∴∠OEE=90°,∴DE 是圆O 的切线.………………6分(II )证明:∵O 、D 分别为AB 、BC 的中点,∴DM=OD ﹣OM=(AC ﹣AB ),………………8分∴DM•AC+DM•AB=DM•(AC+AB )=(AC ﹣AB )•(AC+AB )=(AC 2﹣AB 2) =BC 2=DE•BC .∴DE•BC=DM•AC+DM•AB .………………12分(2)坐标系和参数方程解:(I )根据对称关系可得A ,B 所对应的极角分别为233ππ和,………………2分 代入极坐标方程可得A ,B 的极坐标为π3,)3和2π3,)3………………4分 (II )设A ,B 所对应的极角分别为,3πθθ+,所以12sin OA ρθ==,22sin()3OB πρθ==+因为OAB ∆内接于圆C ,由正弦定理2sin AB R AOB=∠得:AB =………………6分所以周长2sin 2sin()3sin )36l ππθθθθθ=++==++…………10分由题意知2(0,)3πθ∈ ,5(,),666l πππθ∴+∈∴∈,所以周长的取值范围是.………………12分(3)不等式选讲解:(1)由125x -+<得13x -<,313x ∴-<-<,不等式的解集为{}24x x -<<……………………5分(2)因为任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,所以{|()}{|()}y y f x y y g x =⊆=,………………7分 又()223|(2)(23)||3|f x x a x x a x a =-++≥--+=+,………………9分()|1|22g x x =-+≥,所以|3|2a +≥,解得1a ≥-或5a ≤-,所以实数a 的取值范围为1a ≥-或5a ≤-.……………………12分。
2014石家庄质检二数学(文)试题及参考答案
[0,50)
[50,100)
[100,150)
[150,200)
[200,+∞)
顾客人数
m
20
30
n
10
统计结果显示100位顾客中购物款不低于100元的顾客占60%,据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).(注:视频率为概率)
2014年石家庄市高中毕业班复习教学质量检测(二)
高三数学(文科)
第I卷(选择题,共60分)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项符合题意的)
1.已知点P(,-)在角的终边上,且∈[0,2),则的值为
A.B.C.D.
2.已知M={0, 1, 2, 3, 4},N={1, 3, 5, 7},P=M∩N,则集合P的子集个数为
.……………………3分
该商场每日应准备纪念品的数量大约为 .………………5分
(II)设购物款为 元
当 时,顾客有 人,
当 时,顾客有 人,
当 时,顾客有 人,
当 时,顾客有 人,…………………………7分
所以估计日均让利为
…………10分
元……………12分
19.解:(1)取AB中点Q,连接MQ、NQ,
∵AN=BN∴ ,……………2分
∵ 面 ,∴ ,又
∴ ,………………4分
所以AB⊥平面MNQ,又MN 平面MNQ
∴AB⊥MN………………6分
(2)设点P到平面NMA的距离为h,
∵ 为 的中点,∴ =
又 , ,∴ ,
∵ ∴ ……………………………7分
【恒心】2014年石家庄市高中毕业班第一次模拟考试数学(文科)试题参考答案
2014年石家庄市高中毕业班第一次模拟考试数学文科答案一、选择题:A 卷答案:1-5 CBBAC 6-10 CCBDB 11-12AD B 卷答案:1-5 DBBAD 6-10 DDBCB 11-12AC 二、填空题:13.1(0,)16-14.15.14π 16. 三、解答题:(解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分)17解:(Ⅰ)设等比数列{}n a 的公比为q ,由已知得21251232a q a q ìï=ïíï=ïî,,……………2分又∵10a >,0q >,解得112a q ì=ïïíï=ïî,, ………………3分∴12n n a -=;…………………5分(Ⅱ)由2n S n =得,()211n S n -=-,∴当2n …时,121n n n b S S n -=-=-,………………7分当1n =时,11b =符合上式,∴21n b n =-,(n Î*N )……………8分,∴()1212n n na b n -?- ,()12113252212n n T n -=+??+- L ,()()2312123252232212n n n T n n -=???+-?- L ,………………10分两式相减得 ()()()21122222122323n nnn T n n --=++++--?--?L ,∴()2323n n T n =-+.……………………12分18.证明:(Ⅰ)由题意得:1A B ⊥面ABC ,∴1A B AC⊥, ------2分又AB AC ⊥,1AB A B B =∴AC ⊥面1AB B, ------3分∵AC ⊂面1A AC, ∴平面1A AC ⊥平面1AB B; ------5分 (Ⅱ)在三棱锥ABC P -中,因为AB AC ⊥,所以底面ABC 是等腰直角三角形,又因为点P 到底面的距离B A h 1==2,所以34213131=⋅⋅⋅=⋅=∆-h AB AC h S V ABC ABC P . ------6分由(Ⅰ)可知AC ⊥面1AB B,因为点P 在11B C 的中点,所以点P 到平面B B AA 11距离2h 等于点1C 到平面B B AA 11的距离的一半,即12=h .------8分341223131312121111=⋅⋅⋅=⋅⋅=⋅=-h B A AB h S V B B AA B B AA P 四边形, ------10分所以三棱锥ABC P - 与四棱锥111A B AA P -的体积之比为1:1. ------12分19. 解:(Ⅰ)东城区的平均分较高. (结论正确即给分)……………………5分 (Ⅱ)从两个区域各选一个优秀厂家,则所有的基本事件共15种,………………7分满足得分差距不超过5的事件(88,85)(88,85)(89,85)(89,94)(89,94)(93,94)(93,94)(94,,94)(94,,94)共9种.……………10分 所以满足条件的概率为35.………………12分 20.解:(Ⅰ)依题意23==a c e , 过焦点F与长轴垂直的直线x=c与椭圆12222=+by a x联立解答弦长为a b 22=1,……………2分所以椭圆的方程1422=+y x .………………4分(Ⅱ)设P (1,t )3210t t k PA =+-=,直线)2(3:+=x ty l PA ,联立得:22(2),3 1.4t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 即()0361616942222=-+++t x t x t ,可知2216362,49M t x t --=+所以2218849M t x t -=+,则222188,4912.49M M t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩……………………6分同理得到22282,414.41N N t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩………………8分由椭圆的对称性可知这样的定点在x 轴,不妨设这个定点为Q ()0,m ,………………10-分又m t t t t k MQ -+-+=948189412222 , m t t t t k NQ -+-+=1428144222 , NQ MQ k k =,()28326240m t m --+=,4m =.……………12分21.解:(Ⅰ)若0a =,()ln 1f x x x x =-+,'()ln f x x ='(0,1),()0,()x f x f x ∈<为减函数,'(1,),()0,()x f x f x ∈+∞>为增函数.………………4分(Ⅱ)ln (1)(1)0,x x x ax a ---+<在()1,+∞恒成立.01若0a =, ()ln 1f x x x x =-+,'()ln f x x =,'(1,),()0,()x f x f x ∈+∞>∴为增函数. ()(1)0f x f ∴>=, 即()0f x <不成立;0a ∴=不成立.……………………6分021x > ,(1)(1)ln 0,x ax a x x --+-<在()1,+∞恒成立,不妨设(1)(1)()ln ,x ax a h x x x --+=-,()1,x ∈+∞()2'221(1)1()x ax a ax x a h x x x -+---+=-=-,()1,x ∈+∞………………8分'121()0,1,ah x x x a -===, 若0a <,则211a x a -=<,1x >,'()0h x >,()h x 为增函数,()h x >(1)0h =(不合题意);若102a <<, 1(1,)a x a -∈,'()0h x >,()h x 为增函数,()h x >(1)0h =(不合题意); 若12a ≥,(1,)x ∈+∞,'()0h x <,()h x 为减函数,()h x <(1)0h =(符合题意).…………11分综上所述若1x >时,()0f x <恒成立,则12a ≥.………………12分22.解:(Ⅰ)连接AB ,在EA 的延长线上取点F ,如图①所示. ∵AE 是⊙O 1的切线,切点为A , ∴∠F AC =∠ABC,.……………1分 ∵∠F AC =∠DAE ,∴∠ABC =∠DAE ,∵∠ABC 是⊙O 2内接四边形ABED 的外角, ∴∠ABC =∠ADE ,……………2分 ∴∠DAE =∠ADE .………………3分 ∴EA =ED ,∵EC EB EA ∙=2, ∴EC EB ED∙=2.………………5分(Ⅱ)当点D 与点A 重合时,直线CA 与⊙O 2只有一个公共点, 所以直线CA 与⊙O 2相切.……………6分 如图②所示,由弦切角定理知:︒⨯=∠=∠∠=∠∠=∠∠=∠18021ABE ABC MAEPAC ABE MAE ABC PAC 因又∴AC 与AE 分别为⊙O 1和⊙O 2的直径.…………8分 ∴由切割线定理知:EA 2=BE ·CE ,而CB =2,BE =6,CE=8 ∴EA 2=6×8=48,AE =34.故⊙O 2的直径为34.………………10分 23.解: (Ⅰ)θρcos = ,…………………2分.…………………4分(Ⅱ)设P (ααsin 2,cos 2),)0,21(2C2PC ===图(2)Eϑρρcos 2=41212222=+⎪⎭⎫ ⎝⎛-=+y x xy x…………………6分1cos ,2α∴=,2min 2PC =,…………………8分min PQ =.……………………10分 24.解:(Ⅰ)当a=1时,()21f x x x x=-+-≥2x ≥当时,解得3x ≥;当21<<x 时,解得1≤x ,∴无解1x ≤当时,解得1x ≤;……………………………3分综上可得到解集}31{≥≤x x x 或.……………………5分(Ⅱ)依题意, ,()3x f x ∀∈≥R 对都有,则()()3222)(≥-=---≥-+-=a a ax ax a ax ax x f ,……………8分232351(a a a a -≥-≤-∴≥≤-或或舍)5a ∴≥…………………10分。
2014石家庄质检二数学理WORD解析版
2014年石家庄市高中毕业班复习教学质量检测(二) 高三数学(理科)解析版1.已知全集{}{}{}|15,1,2,3,1,2,u U x Z x A C B =∈≤≤==则A B ⋂=( )A .{}1,2B .{}1,3C .{}3D .{}1,2,3 【答案】 C【解析】{}{}{}{}|1512345,1,2,345u U x Z x C B B =∈≤≤==∴=,,,,,,{}{}1,2,3,3.A A B =∴⋂=2.已知i 为虚数单位,右图中复平面内的点A 表示复数z ,,则表示复数1zi+的点是( )。
A . MB .NC .PD .Q【答案】 D【解析】因为点A 的坐标为3,1(),所以3z i =+,所以23(3)(1)3342211(1)(1)22z i i i i i i ii i i i i ++--+--=====-+++- 所以表示复数1zi+的点的坐标为21(,-),故为点Q.3.利用计算机产生01之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为 ( )A.12 B. 14 C. 34 D. 23【答案】 C【解析】由一元二次方程20x x a -+=无实根,1140,4a a ∴∆=-<∴>,所以由几何概型可知P=34. 4.等差数列1239,,,,x x x x 的公差为1,随机变量ξ等可能的取值1239,,,,x x x x ,则方差()D ξ为 ( )A .103 B.203 C.109 D.209【答案】 B【解析】由题意可得12389559()99x x x x x x E x ξ++++=== 2222152585952222222221()[()()()()]91=[(4)(3)(2)(1)01234]916020 =(16941014916)993D x x x x x x x x ξ=-+-++-+--+-+--+++++++++++++==5.阅读如图所示的程序框图,则该算法的功能是 ( )A .计算数列{}21n -的前5项和B .计算数列{}21n -的前6项和C .计算数列{}12n -的前5项和D .计算数列{}12n -的前6项和【答案】 D【解析】依据程序01252222s =++++,所以数列的通项公式为12n n a -=,而共6项,所以选D.6.已知实数x y 、满足121,y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩如果目标函数z x y =-的最小值为-2,则实数m 的值为 ( )A. 8B. 4C. 2D. 0【答案】 A【解析】可采用特值验证方法.()11,121y y x =⎧⎨=-⎩得A ,()11,1y m x y m=⎧-⎨+=⎩得,21121,33y x m m x y m =-⎧+-⎛⎫⎨ ⎪+=⎝⎭⎩得,把三个顶点分别代入z x y =-,显然()1,1不是使目标函数z x y =-取最小值-2的点,把()1,1m -代入2x y -=-,解得0m =;把121,33m m +-⎛⎫⎪⎝⎭代入2x y -=-,解得8m =.当0m =时0x y m +==,即121,0y y x x y ≥⎧⎪≤-⎨⎪+≤⎩无公共区域,即不满足题意,所以8m =.7.已知函数()cos()sin 4f x x x π=+,则函数()f x 的图象 ( )A.关于直线8x π=对称 B.关于点2(,)84π-对称 C.最小正周期为2T π= D.在区间(0,)8π上为减函数【答案】 A【解析】2222()cos()sin (cos sin )sin (sin cos sin )4222211cos 2212=(sin 2)(sin 2cos 21)sin(2)2224244f x x x x x x x x x x x x x x ππ=+=-=---=+-=+-当8x π=时,函数()f x 取到最大值1224-,所以8x π=是函数()f x 的图象 的一条对称轴.8.点A,B,C,D 在同一个球的球面上,2,22AB BC AC ===,若四面体ABCD 体积的最大值为43,则该球的表面积为 ( ) A.163πB. 8πC. 9πD. 12π【答案】 C【解析】当四面体ABCD 体积的最大时,球心O 和顶点D 的连线OD 垂直于平面ABC ,而ABC∆为直角三角形,11142223323ABC V S h h h ∆==⋅⋅⋅⋅=∴=,即D 点到Rt ABC ∆距离为2,由球的性质可知,直线DO Rt ABC ABC ⊥∆∆于外心,即AC 的中点1O ,则1OO A ∆为直角三角形,(如图所示)设球半径为R ,()2212,2,22AO OO h R R AO r R R ∴==-=-=∴-+=解得R=32, 2234492S R πππ⎛⎫∴=== ⎪⎝⎭9.已知两定点()2,0A -和()2,0B ,动点(),P x y 在直线:3l y x =+上移动,椭圆C 以A 、B 为焦点且经过点P ,则椭圆C 的离心率的最大值为 ( )A.226 B. 426 C. 213 D. 413【答案】 B【解析】由A 、B 为焦点,可知2c =,点P 经过椭圆C 且点(),P x y 在直线:3l y x =+上移动,所以线:3l y x =+与椭圆22221x y a b +=有交点,联系方程有222213x y a b y x ⎧+=⎪⎨⎪=+⎩得()2222222690ab x a x a a b +++-=,0∆≥,即()()42222236490a a b a a b -+-≥化简得:()2222229090a b a b a b -+≥∴-+≥, 解得222222294249a b b a c a a +≥=-=-∴-≥,即21326242226262c a a e a≥∴≥∴≤==,即离心率的最大值为426. 10.定义在区间[]0,1上的函数()f x 的图像如图所示,以()()0,0A f 、()()1,1B f 、()(),C x f x 为顶点的ABC ∆的面积记为函数()S x ,则函数()S x 的导函数()S x '的大致图像为 ( )【选项】A B C D【答案】 DDOC1OA【解析】由定义在区间[]0,1上的函数()f x 的图像可知,ABC ∆的面积记为函数()S x 的单调性变化为:增、减、增、减.所以数()S x 的导函数()S x '取值为:正,负,正,负.当C 移动到线段AB 上时, ()S x '不存在,因此导数图像分成两部分. 又由导数的几何意义可知,切线斜率在每部分都是由大变小.综合上述,故选D.11.已知函数,0.()ln ,0.xa e x f x x x ⎧≤=⎨->⎩,其中e 为自然对数的底数,若关于x 的方程(())0f f x =有且只有一个实数解,则实数a 的取值范围为( ) A.(,0)-∞ B.(,0)(0,1)-∞ C.(0,1) D.(0,1)(1,)+∞【答案】 B【解析】当0a =时,已知(())0f f x =有无数解,不符合题意。
河北省石家庄市2014届高中毕业班3月复习教学质量检测(二)数学文试题-推荐下载
一次购物款(单位:元) [0,50)
返利百分比
请估计该商场日均让利多少元?
19.(本小题满分 12 分)
0
30
[50,100) [100,150) 高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技写5卷术、重保交电要护底气设装。设备置管备高4动线调、中作敷试电资,设高气料并技中课试3且术资件、卷拒中料管试绝包试调路验动含卷试敷方作线技设案,槽术技以来、术及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014-2015年石家庄市高三数学质检二答案文科
3
\ PE ? PF t1?t2 16
(Ⅰ)如图: 直线 PA 与圆 O 相切于点 A
\ ? PAB ? C
C
? APE ? CPE ………………………………………2 分
? ADE ? PAB ? APE ? AEP ? C ? CPE …………………………4 分 \ ? ADE ? AEP G是的中点
……………………………5 分
\ AF ^ ED
解法三:故四边形 ACBD 的面积为
S S△ACD S△CBD xC 2 yC ………8 分
(xC 2 yC )2 xC2 4 yC2 4xC yC
„ 2(xC2 4 yC2 ) 2 2 ,
当 xC 2 yC 时,上式取等号.所以 S 的最大值为 2 2 .……………12 分
3
3
= 3(t + 1)(t + 2).
于是,当t ? 轾 臌3, - 2 时,有 3 (t + 1)(t + 2) ? 0 ,即 f (t + 3) ? f (t ).
所以,m (t ) = f (t ) = 1 t 3 - t - 1 .………………8 分
3
综上,g (t ) = M (t ) - m (t ) = - 1 - 1 t 3 + t + 1 = - 1 t 3 + t + 2 ,
(A2,B1)(A2,B2)(A2,B3)(A2,B4)(A2,B5)(A3,B1)(A3,B2)(A3,B3)(A3,B4)
(A3,B5)(B1,B2)(B1,B3)(B1,B4)(B1,B5)(B2,B3)(B2,B4)(B2,B5)(B3,B4)
【精品】2014-2015年河北省石家庄市正定中学高二上学期数学期末试卷(文科)与答案
2014-2015学年河北省石家庄市正定中学高二(上)期末数学试卷(文科)一.选择题(本大题共12个小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)设集合M={x|x2+2x﹣15<0},N={x|x2+6x﹣7≥0},则M∩N=()A.(﹣5,1]B.[1,3)C.[﹣7,3)D.(﹣5,3)2.(5分)已知i是虚数单位,m和n都是实数,且m(1+i)=7+ni,则()A.﹣1B.1C.﹣i D.i3.(5分)已知研究x与y之间关系的一组数据如表所示,则y对x的回归直线方程=bx+a必过点()x0123y1357A.(2,2)B.(,0)C.(1,2)D.(,4)4.(5分)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6B.12C.24D.365.(5分)“实数m=﹣”是“直线l1:x+2my﹣1=0和直线l2:(3m+1)x﹣my﹣1=0”相互平行的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件6.(5分)已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A.B.C.D.7.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16B.8C.D.48.(5分)执行如图所示的程序框图,若输入x=10,则输出y的值为()A.B.4C.1D.9.(5分)若直线mx+ny=4和圆x2+y2=4没有公共点,则过点(m,n)的直线与椭圆的公共点个数为()A.至多一个B.0个C.1个D.2个10.(5分)设x,y想,满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.411.(5分)过椭圆C:+=1(a>b>0)的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若<k<,则椭圆离心率的取值范围是()A.B.C.D.12.(5分)若定义在R上的函数y=f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,1]时,f(x)=x2,函数g(x)=则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为()A.6B.7C.8D.9二.填空题:(本大题共4小题,每题5分,共20分)13.(5分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.14.(5分)在[﹣6,9]内任取一个实数m,设f(x)=﹣x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于.15.(5分)已知函数f(x)=sinx﹣xcosx,若存在x∈(0,π),使得f′(x)>λx 成立,则实数λ的取值范围是.16.(5分)(1)“数列{a n}为等比数列”是“数列{a n a n+1}为等比数列”的充分不必要条件.(2)“a=2”是“函数f(x)=|x﹣a|在区间[2,+∞)上为增函数”的充要条件.(3)已知命题p1:∃x∈R,使得x2+x+1<0;p2:∀x∈[1,2],使得x2﹣1≥0.则p1∧p2是真命题.(4)设a,b,c分别是△ABC的内角A,B,C的对边,若a=1,b=.则A=30°是B=60°的必要不充分条件.其中真命题的序号是(写出所有真命题的序号)三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知{a n}为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.(1)求数列{a n}的通项公式:(2)设b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12分)在三角形ABC中,sin2CcosC+cosC=cos2CsinC+.(1)求角C的大小;(2)若AB=2,且sinBcosA=sin2A,求△ABC的面积.19.(12分)某工厂生产A,B两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x,y看不清,统计员只记得x<y,且A,B两种元件的检测数据的平均值相等,方差也相等.(1)求表格中x与y的值;(2)从被检测的5件B种元件中任取2件,求2件都为正品的概率.20.(12分)如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=AB=2,BC=4.(Ⅰ)求证:平面PDC⊥平面PAD;(Ⅱ)在BC边上是否存在一点M,使得D点到平面PAM的距离为2,若存在,求BM的值,若不存在,请说明理由.21.(12分)已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=﹣2于点M,N.(Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O为原点,求证:∠MON为定值.22.(12分)设a∈R,函数f(x)=ax3﹣3x2.(1)若函数f(x)的图象在x=﹣1处的切线与直线y=3x平行,求a的值;(2)若a=1,求函数f(x)的极值与单调区间;(3)若函数f(x)=ax3﹣3x2的图象与直线y=﹣2有三个公共点,求a的取值范围.2014-2015学年河北省石家庄市正定中学高二(上)期末数学试卷(文科)参考答案与试题解析一.选择题(本大题共12个小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(5分)设集合M={x|x2+2x﹣15<0},N={x|x2+6x﹣7≥0},则M∩N=()A.(﹣5,1]B.[1,3)C.[﹣7,3)D.(﹣5,3)【解答】解:由M中不等式变形得:(x﹣3)(x+5)<0,解得:﹣5<x<3,即M=(﹣5,3),由N中不等式变形得:(x﹣1)(x+7)≥0,解得:x≤﹣7或x≥1,即N=(﹣∞,﹣7]∪[1,+∞),则M∩N=[1,3),故选:B.2.(5分)已知i是虚数单位,m和n都是实数,且m(1+i)=7+ni,则()A.﹣1B.1C.﹣i D.i【解答】解:由m(1+i)=7+ni,得m+mi=7+ni,即m=n=7,∴=.故选:D.3.(5分)已知研究x与y之间关系的一组数据如表所示,则y对x的回归直线方程=bx+a必过点()A.(2,2)B.(,0)C.(1,2)D.(,4)【解答】解:∵=1.5,=4,∴这组数据的样本中心点是(1.5,4)根据线性回归方程一定过样本中心点得到,线性回归方程y=a+bx所表示的直线必经过点(1.5,4)故选:D.4.(5分)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6B.12C.24D.36【解答】解:由已知的三视图可得该棱锥是以俯视图为底面的四棱锥其底面长和宽分别为3,4,棱锥的高是3故棱锥的体积V=Sh=×3×4×3=12故选:B.5.(5分)“实数m=﹣”是“直线l1:x+2my﹣1=0和直线l2:(3m+1)x﹣my﹣1=0”相互平行的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【解答】解:当m=0时,两直线分别为x=1和x=1,此时两直线重合,故m≠0,若两直线平行,则等价为,即m=﹣,则“实数m=﹣”是“直线l1:x+2my﹣1=0和直线l2:(3m+1)x﹣my﹣1=0”相互平行的充要条件,故选:A.6.(5分)已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A.B.C.D.【解答】解:抛物线y2=4x的焦点F(1,0),双曲线的方程为故选:D.7.(5分)已知各项为正的等比数列{a n}中,a4与a14的等比中项为,则2a7+a11的最小值为()A.16B.8C.D.4【解答】解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为,∴a4•a14=(2)2=8,∴a7•a11=8,∵a7>0,a11>0,∴2a 7+a11≥2=2=8.故选:B.8.(5分)执行如图所示的程序框图,若输入x=10,则输出y的值为()A.B.4C.1D.【解答】解:当输入的x值为10时,y=x﹣1=4,此时|y﹣x|=6,不满足退出循环的条件,继续执行循环,此时x=4,y=1;当x=4,y=1时,|y﹣x|=3,不满足退出循环的条件,继续执行循环,此时x=1,y=;当x=1,y=时,|y﹣x|=,不满足退出循环的条件,继续执行循环,此时x=,y=;当x=,y=时,|y﹣x|=<1,满足退出循环的条件,故输出结果为故选:A.9.(5分)若直线mx+ny=4和圆x2+y2=4没有公共点,则过点(m,n)的直线与椭圆的公共点个数为()A.至多一个B.0个C.1个D.2个【解答】解:因为直线mx+ny=4和圆x2+y2=4没有公共点,所以原点到直线mx+ny﹣4=0的距离d=>2,所以m2+n2<4,所以点P(m,n)是在以原点为圆心,2为半径的圆内的点.∵椭圆的长半轴3,短半轴为2∴圆x2+y2=4内切于椭圆∴点P是椭圆内的点∴过点P(m,n)的一条直线与椭圆的公共点数为2.故选:D.10.(5分)设x,y想,满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为()A.B.C.D.4【解答】解:由z=ax+by(a>0,b>0)得y=,作出可行域如图:∵a>0,b>0,∴直线y=的斜率为负,且截距最大时,z也最大.平移直线y=,由图象可知当y=经过点A时,直线的截距最大,此时z也最大.由,解得,即A(4,6).此时z=4a+6b=12,即=1,则+=(+)()=1+1++≥2+2=4,当且仅当=时取=号,故选:D.11.(5分)过椭圆C:+=1(a>b>0)的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若<k<,则椭圆离心率的取值范围是()A.B.C.D.【解答】解:如图所示:|AF2|=a+c,|BF2|=,∴k=tan∠BAF2=,又∵,∴,∴,∴,故选:C.12.(5分)若定义在R上的函数y=f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,1]时,f(x)=x2,函数g(x)=则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为()A.6B.7C.8D.9【解答】解:定义在R上的函数y=f(x)满足f(x+1)=﹣f(x),则f(x+2)=f[(x+1)+1]=﹣f(x+1)=﹣[﹣f(x)]=f(x),所以函数y=f(x)是以2周期的函数.在同一坐标系内画出y=f(x),y=g(x)在区间[﹣5,5]上的图象,共有8个交点,所以函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为8个故选:C.二.填空题:(本大题共4小题,每题5分,共20分)13.(5分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出25人.【解答】解:由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人故答案为:2514.(5分)在[﹣6,9]内任取一个实数m,设f(x)=﹣x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于.【解答】解:∵f(x)=﹣x2+mx+m的图象与x轴有公共点,∴△=m2+4m>0,∴m<﹣4或m>0,∴在[﹣6,9]内任取一个实数m,函数f(x)的图象与x轴有公共点的概率等于=.故答案为:.15.(5分)已知函数f(x)=sinx﹣xcosx,若存在x∈(0,π),使得f′(x)>λx 成立,则实数λ的取值范围是(﹣∞,1).【解答】解:f(x)=sinx﹣xcosx的导数为f′(x)=cosx﹣(cosx﹣xsinx)=xsinx,因为f′(x)>λx,所以xsinx>λx.当0<x<π时,λ<sinx,当0<x<π时,sinx∈(0,1],当x=时,sinx取得最大值1.即有λ<1.故答案为:(﹣∞,1).16.(5分)(1)“数列{a n}为等比数列”是“数列{a n a n+1}为等比数列”的充分不必要条件.(2)“a=2”是“函数f(x)=|x﹣a|在区间[2,+∞)上为增函数”的充要条件.(3)已知命题p1:∃x∈R,使得x2+x+1<0;p2:∀x∈[1,2],使得x2﹣1≥0.则p1∧p2是真命题.(4)设a,b,c分别是△ABC的内角A,B,C的对边,若a=1,b=.则A=30°是B=60°的必要不充分条件.其中真命题的序号是①④(写出所有真命题的序号)【解答】解:对于(1),数列{a n}为等比数列,设其公比为q,则=q2为定值,数列{a n a n+1}为等比数列,充分性成立;反之,若数列{a n a n+1}为等比数列成立,例如数列1,3,2,6,4,12,8…满足数列{a n a n+1}为等比数列,但数列{a n}不为等比数列,故“数列{a n}为等比数列”是“数列{a n a n+1}为等比数列”的充分不必要条件,故(1)正确;对于(2),例如a=1时,f(x)在区间[2,+∞)为增函数,所以)“a=2”不是“函数f(x)=|x﹣a|在区间[2,+∞)为增函数”的充要条件,故(2)不对;对于(3),由于x2+x+1=(x+)2+>0恒成立,故命题p1:∃x∈R,使得x2+x+1<0为假命题;p2:∀x∈[1,2],使得x2﹣1≥0,为证明题,故p1∧p2是假命题,即(3)错误;对于(4),设a,b,c分别是△ABC的内角A,B,C的对边,若a=1,b=.则A=30°是B=60°的必要不充分条件.因为a=1.b=,若A=30°”成立,由正弦定理=,所以sinB=,所以B=60°或120°,反之,若“B=60°”成立,由正弦定理得=,得sinA=,因为a<b,所以A=30°,所以A=30°”是“B=60°”的必要不充分条件.故(4)对;综上所述,真命题的序号是①④,故答案为:①④.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知{a n}为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.(1)求数列{a n}的通项公式:(2)设b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.【解答】解:(1)设在等比数列{a n}中,公比为q,∵a1=1,且a2,a3+a5,a4成等差数列,∴2(a3+a5)=a2+a4,∴2(q2+q4)=q+q3,解得q=,∴a n=.(2)∵,∴b n=(2n﹣1)•a n=(2n﹣1)•()n﹣1,∴,①,②①﹣②,得:﹣(2n﹣1)•=1+2[1﹣()n﹣1]﹣(2n﹣1)•()n=3﹣,∴.18.(12分)在三角形ABC中,sin2CcosC+cosC=cos2CsinC+.(1)求角C的大小;(2)若AB=2,且sinBcosA=sin2A,求△ABC的面积.【解答】解:(1)在三角形ABC中,sin2CcosC+cosC=cos2CsinC+.化简得:sinC=cosC,即sinC+cosC=,得2sin(C+)=,则sin(C+)=.故C+=或(舍),则C=.(6分)(2)因为sinBcosA=sin2A=2sinAcosA,所以cosA=0或sinB=2sinA.当cosA=0时,A=90°,则b=,==;(8分)当sinB=2sinA时,由正弦定理得b=2a.由cosC===,可知a2=.(10分)所以===.(12分)19.(12分)某工厂生产A,B两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据x,y看不清,统计员只记得x<y,且A,B两种元件的检测数据的平均值相等,方差也相等.(1)求表格中x与y的值;(2)从被检测的5件B种元件中任取2件,求2件都为正品的概率.【解答】解:(1)∵=(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y),∵=,∴x+y=17…①∵=(1+1+0.25+1+2.25)=1.1,=[4+(x﹣8)2+0.25+0.25+(y﹣8)2],∵=,∴(x﹣8)2+(y﹣8)2=1…②由①②结合x<y得:x=8,y=9.(2)记被检测的5件B种元件为:A,B,C,D,E,其中A,B,C,D为正品,从中选取的两件为(x,y)则共有=10种不同的情况,分别为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),记“抽取2件都为正品”为事件A,则事件A共包含=6种不同的情况,分别为:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),故P(A)==,即2件都为正品的概率为.20.(12分)如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=AB=2,BC=4.(Ⅰ)求证:平面PDC⊥平面PAD;(Ⅱ)在BC边上是否存在一点M,使得D点到平面PAM的距离为2,若存在,求BM的值,若不存在,请说明理由.【解答】(Ⅰ)证明:如图,∵ABCD是矩形,∴CD⊥AB,又∵PA⊥底面ABCD,且CD⊂平面ABCD,∴CD⊥PA.又∵PA∩AD=A,∴CD⊥平面PAD,又∵CD⊂平面PDC,∴平面PDC⊥平面PAD;(Ⅱ)解:假设BC边上存在一点M满足题设条件,令BM=x,∵AB=2,BC=4.且PA⊥底面ABCD,PA=2,则在Rt△ABM中,,∵PA⊥底面ABCD,∴,.又∵V P=V D﹣PAM,﹣AMD∴,解得<4.故存在点M,当BM=时,使点D到平面PAM的距离为2.21.(12分)已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=﹣2于点M,N.(Ⅰ)求抛物线方程及其焦点坐标;(Ⅱ)已知O为原点,求证:∠MON为定值.【解答】(本小题满分14分)(Ⅰ)解:将E(2,2)代入y2=2px,得p=1,所以抛物线方程为y2=2x,焦点坐标为(,0).…(3分)(Ⅱ)证明:设A(,y1),B(,y2),M(x M,y M),N(x N,y N),因为直线l不经过点E,所以直线l一定有斜率设直线l方程为y=k(x﹣2),与抛物线方程联立得到,消去x,得:ky2﹣2y﹣4k=0,则由韦达定理得:y1y2=﹣4,,…(6分)直线AE的方程为:y﹣2=,即y=,令x=﹣2,得y M=,…(9分)同理可得:,…(10分)又∵,,所以=4+y M y N=4+=4+=4+=0…(13分)所以OM⊥ON,即∠MON为定值…(14分).22.(12分)设a∈R,函数f(x)=ax3﹣3x2.(1)若函数f(x)的图象在x=﹣1处的切线与直线y=3x平行,求a的值;(2)若a=1,求函数f(x)的极值与单调区间;(3)若函数f(x)=ax3﹣3x2的图象与直线y=﹣2有三个公共点,求a的取值范围.【解答】解:f′(x)=3ax2﹣6x=3x(ax﹣2),(1)函数f(x)的图象在x=﹣1处的切线与直线y=3x平行,即有f′(﹣1)=3a+6=3,解得a=﹣1,此时,切点为(﹣1,﹣2),切线方程为y=3x+1,它与已知直线平行,符合题意.故a=﹣1;(2)a=1时,f′(x)=3x(x﹣2),当0<x<2时,f′(x)<0,当x<0,或x>2时,f′(x)>0,所以,f(x)的单调减区间为[0,2],单调增区间为(﹣∞,0)和(2,+∞);当x=2时,f(x)有极小值f(2)=﹣4,当x=0时,f(x)有极大值f(0)=0;(3)当a=0时,f(x)=﹣3x2,它与y=﹣2没有三个公共点,不符合题意,当a>0时,由f′(x)=3ax2﹣6x=3x(ax﹣2)知,f(x)在(﹣∞,0)和(,+∞)上单调递增,在(0,)上单调递减,又f(0)=0,f()=﹣,所以﹣<﹣2,即﹣<a<,又因为a>0,所以0<a<;当a<0时,由f′(x)=3x(ax﹣2)知,f(x)在(﹣∞,)和(0,+∞)上单调递减,在(0,)上单调递增,又f(0)=0,f()=﹣,所以﹣<﹣2,即﹣<a<,又因为a<0,所以﹣<a<0;综上所述,a的取值范围是(﹣,0)∪(0,).第21页(共23页)赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔第22⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = xxxxx第23页(共23页)(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。
2014-2015年河北省石家庄市高二(上)期末数学试卷(文科)及答案
2014-2015学年河北省石家庄市高二(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知抛物线的准线方程x=,则抛物线的标准方程为()A.x2=2y B.x2=﹣2y C.y2=x D.y2=﹣2x 2.(5分)为了了解某年级500名学生某次测试的体育成绩,从中抽取了30名学生的成绩进行统计分析,在这个问题中“30”是指()A.总体的个数B.个体C.样本容量D.从总体中抽取的一个样本3.(5分)若命题“p或q”和命题“非p”均为真命题,则下列说法正确的是()A.p真q真B.p真q假C.p假q假D.p假q真4.(5分)已知椭圆的方程为=1,则该椭圆的焦点坐标为()A.(0,±1)B.(0,±)C.(±1,0)D.(±,0)5.(5分)已知两个命题p和q,如果p是q的充分不必要条件,那么¬p是¬q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(5分)已知双曲线﹣y2=1的左、右焦点分别为F1、F2,在其右支上有两点A、B,若△ABF2的周长为10,则△ABF1的周长为()A.12B.16C.18D.147.(5分)为了预测某射手的射击水平,设计了如下的模拟实验,通过实验产生了20组随机数:6830 3018 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果一组随机数中恰有三个数在1,2,3,4,5,6中,表示四次射击中恰有三次击中目标的概率约为()A.25%B.20%C.30%D.50%8.(5分)已知某物体的运动路程S关于时间t的函数为S=,则该物体在t=3时的速度为()A.B.C.27D.9.(5分)在区间(0,2]里任取两个数x、y,分别作为点P的横、纵坐标,则点P到点A(﹣1,1)的距离小于的概率为()A.B.C.D.10.(5分)如图所示,程序框图(算法流程图)的输出值x为11.(5分)已知定点M(0,4),动点P在圆x2+y2=4上,则的取值范围是()A.[﹣4,12]B.[﹣12,4]C.[﹣2,14]D.[﹣14,2] 12.(5分)已知抛物线y2=8x的焦点为F,准线为l,则抛物线上满足到定点A (0,4)和准线l的距离相等的点的个数是()A.0B.1C.2D.3二、填空题(共4小题,每小题5分,满分20分)13.(5分)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.14.(5分)命题“∀x≤﹣1,x2>2x”的否定是.15.(5分)已知函数f(x)=kx﹣sinx在R上为增函数,则实数k的取值范围为.16.(5分)已知双曲线=1(a>0,b>0)左、右焦点分别为F1、F2,过其左焦点F1作x轴的垂线交双曲线于P、Q两点,连接PF2交右支于M点,若|PM|=3|MF2|,则双曲线的离心率为.三、解答题(共6小题,满分70分)17.(10分)某班50位学生期中考试数学成绩的频率分布直方图如图所示.(1)求图中x的值;(2)试估计这50名学生的平均成绩(同一组中的数据用该组区间的中点值作代表)18.(12分)某娱乐栏目有两名选手进行最后决赛,在赛前为调查甲、乙两位选手的受欢迎程度,随机地从现场选择了15位观众对两位选手进行评分,根据评分(评分越高表明越受观众欢迎),绘制茎叶图如下:(1)求观众对甲、乙两选手评分的中位数;(2)试根据茎叶图分析甲、乙两选手的受欢迎程度.19.(12分)在平面直角坐标系xOy 中,A 、B 、C 构成直角三角形,∠A=90°,斜边端点B ,C 的坐标分别为(﹣2,0)和(2,0),设斜边BC 上高线的中点为M ,求动点M 的轨迹方程.20.(12分)某地近几年粮食需求量逐年上升,如表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程=x +; (2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.(参考公式:==,=)21.(12分)已知函数f (x )=x3+ax 2+bx 图象与直线x ﹣y ﹣4=0相切于(1,f (1)) (1)求实数a ,b 的值;(2)若方程f (x )=m ﹣7x 有三个解,求实数m 的取值范围. 22.(12分)已知椭圆C :+=1(a >b >0)的离心率为,且经过(0,﹣1)(1)求该椭圆的方程;(2)设F 1,F 2分别为椭圆C 的左、右焦点,A ,B 是椭圆上的点,并在x 轴的上方,若=5,求四边形ABF 2F 1的面积.2014-2015学年河北省石家庄市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知抛物线的准线方程x=,则抛物线的标准方程为()A.x2=2y B.x2=﹣2y C.y2=x D.y2=﹣2x【解答】解:∵抛物线的准线方程x=,可知抛物线为焦点在x轴上,且开口向左的抛物线,且,则p=1.∴抛物线方程为y2=﹣2x.故选:D.2.(5分)为了了解某年级500名学生某次测试的体育成绩,从中抽取了30名学生的成绩进行统计分析,在这个问题中“30”是指()A.总体的个数B.个体C.样本容量D.从总体中抽取的一个样本【解答】解:根据题意可得,在这个问题中,30名学生的成绩是从总体中抽取的一个样本容量.故选:C.3.(5分)若命题“p或q”和命题“非p”均为真命题,则下列说法正确的是()A.p真q真B.p真q假C.p假q假D.p假q真【解答】解:∵命题“p或q”和命题“非p”均为真命题,∴p为假命题,q为真命题,故选:D.4.(5分)已知椭圆的方程为=1,则该椭圆的焦点坐标为()A.(0,±1)B.(0,±)C.(±1,0)D.(±,0)【解答】解:∵椭圆的方程为=1,∴a2=4,b2=3,∴c==1,∴该椭圆的焦点坐标为(0,±1).故选:A.5.(5分)已知两个命题p和q,如果p是q的充分不必要条件,那么¬p是¬q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵p是q的充分不必要条件,∴¬q是¬p的充分不必要条件,即¬p是¬q必要不充分条件,故选:B.6.(5分)已知双曲线﹣y2=1的左、右焦点分别为F1、F2,在其右支上有两点A、B,若△ABF2的周长为10,则△ABF1的周长为()A.12B.16C.18D.14【解答】解:双曲线﹣y2=1的a=2,△ABF2的周长为10,即为|AB|+|AF2|+|BF2|=10,由双曲线的定义可得|AF1|﹣|AF2|=2a,|BF1|﹣|BF2|=2a,即有△ABF1的周长为|AB|+|AF1|+|BF1|=|AB|+|AF2|+|BF2|+4a=10+8=18.故选:C.7.(5分)为了预测某射手的射击水平,设计了如下的模拟实验,通过实验产生了20组随机数:6830 3018 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果一组随机数中恰有三个数在1,2,3,4,5,6中,表示四次射击中恰有三次击中目标的概率约为()A.25%B.20%C.30%D.50%【解答】解:四次射击中恰有三次击中目标的随机数有2604,5725,6576,6754,所以四次射击中恰有三次击中目标的概率约为=20%.故选:B.8.(5分)已知某物体的运动路程S关于时间t的函数为S=,则该物体在t=3时的速度为()A.B.C.27D.【解答】解:∵路程S关于时间t的函数为S==,∴S′(t)=+2×+4t,∴当t=3时,S′(3)═=,故选:A.9.(5分)在区间(0,2]里任取两个数x、y,分别作为点P的横、纵坐标,则点P到点A(﹣1,1)的距离小于的概率为()A.B.C.D.【解答】解:设P(x,y),由|PA|得,即(x+1)2+(y﹣1)2<2,对应的区域为以A为圆心半径为的圆及其内部,作出对应的图象如图:则弓形区域的面积S==,则对应的概率P==,故选:D.10.(5分)如图所示,程序框图(算法流程图)的输出值x为12【解答】解:模拟执行程序框图,可得x=1满足条件x是奇数,x=2不满足条件x是奇数,x=4,不满足条件x>8,x=5满足条件x是奇数,x=6,不满足条件x>8,x=7满足条件x是奇数,x=8,不满足条件x>8,x=9满足条件x是奇数,x=10,不满足条件x是奇数,x=12,满足条件x>8,退出循环,输出x的值为12.11.(5分)已知定点M(0,4),动点P在圆x2+y2=4上,则的取值范围是()A.[﹣4,12]B.[﹣12,4]C.[﹣2,14]D.[﹣14,2]【解答】解:设P(2cosα,2sinα)(α∈[0,2π)).∴=(2cosα,2sinα﹣4)•(2cosα,2sinα)=4cos2α+4sin2α﹣8sinα=4﹣8sinα∈[﹣4,12].则的取值范围是[﹣4,12].故选:A.12.(5分)已知抛物线y2=8x的焦点为F,准线为l,则抛物线上满足到定点A (0,4)和准线l的距离相等的点的个数是()A.0B.1C.2D.3【解答】解:如图,由抛物线y2=8x,得F(2,0),又A(0,4),∴AF的垂直平分线方程为,即x=2y﹣3.联立,得y2﹣16y+24=0,△=(﹣16)2﹣4×24=160>0,∴直线y=﹣2x+4与抛物线y2=8x有两个不同的交点,即抛物线上有两点到A与焦点的距离相等,也就是抛物线上满足到定点A(0,4)和准线l的距离相等的点的个数是2.故选:C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为160.【解答】解:∵有男生560人,女生420人,∴年级共有560+420=980∵用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,∴每个个体被抽到的概率是=,∴要从男生中抽取560×=160,故答案为:16014.(5分)命题“∀x≤﹣1,x2>2x”的否定是∃x0≤﹣1,x02≤2x0.【解答】解:因为全称命题的否定是特称命题,所以命题“∀x≤﹣1,x2>2x”的否定是:∃x0≤﹣1,x02≤2x0.故答案为:∃x0≤﹣1,x02≤2x0.15.(5分)已知函数f(x)=kx﹣sinx在R上为增函数,则实数k的取值范围为[1,+∞).【解答】解:∵f(x)在R上为增函数;∴f′(x)=k﹣cosx≥0恒成立;即k≥cosx恒成立,cosx最大为1;∴k≥1;∴k的取值范围为[1,+∞).故答案为:[1,+∞).16.(5分)已知双曲线=1(a>0,b>0)左、右焦点分别为F1、F2,过其左焦点F1作x轴的垂线交双曲线于P、Q两点,连接PF2交右支于M点,若|PM|=3|MF2|,则双曲线的离心率为.【解答】解:设双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),令x=﹣c,则﹣=1,可得y=±,可设P(﹣c,),M(m,n),由|PM|=3|MF2|,可得=3,即有(m+c,n﹣)=3(c﹣m,﹣n),可得m=c,n=.即有M(c,),代入双曲线方程,可得•﹣=1,由a2+b2=c2,e=,可得e2﹣=1,解得e=.故答案为:.三、解答题(共6小题,满分70分)17.(10分)某班50位学生期中考试数学成绩的频率分布直方图如图所示.(1)求图中x的值;(2)试估计这50名学生的平均成绩(同一组中的数据用该组区间的中点值作代表)【解答】解:(1)由频率分布直方图可定(0.006×3+0.01+0.054+x)×10=1,解得x=0.018.(2)=45×0.06+55×0.06+65×0.1+75×0.54+85×0.18+95×0.06=74,故这50名学生的平均成绩为74.18.(12分)某娱乐栏目有两名选手进行最后决赛,在赛前为调查甲、乙两位选手的受欢迎程度,随机地从现场选择了15位观众对两位选手进行评分,根据评分(评分越高表明越受观众欢迎),绘制茎叶图如下:(1)求观众对甲、乙两选手评分的中位数;(2)试根据茎叶图分析甲、乙两选手的受欢迎程度.【解答】解:(1)由茎叶图知,15位观众对甲选手的评分由小到大排序,排在8位的是88,故样本中位数为88,故观众对甲选手评分的中位数估计值是88.15位观众对乙选手的评分由小到大排列,排在第8位的是84,故样本中位数为84,故观众对甲选手评分的中位数估计值是84.(2)由所给茎叶图知,对甲选手的评分的中位数高于对乙选手的评分的中位数,而且由茎叶图可以可以大致看出对甲选手的评分的标准差要小于对乙选手的评分的标准差,说明甲选手的受欢迎程度较高.19.(12分)在平面直角坐标系xOy中,A、B、C构成直角三角形,∠A=90°,斜边端点B,C的坐标分别为(﹣2,0)和(2,0),设斜边BC上高线的中点为M,求动点M的轨迹方程.【解答】解:设M(x,y),则A点的坐标为(x,2y),根据∠A=90°,可得,又B(﹣2,0),C(2,0),∴=(﹣2﹣x,2y),=(2﹣x,2y),代入,得:(﹣2﹣x,2y)•(2﹣x,2y)=(﹣2﹣x)(2﹣x)+4y2=0,化简可得:x2﹣4+4y2=0,即.又∵A,B,C构成三角形不能共线,∴y≠0,故动点M 的轨迹方程为.20.(12分)某地近几年粮食需求量逐年上升,如表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程=x+;(2)利用(1)中所求出的直线方程预测该地2015年的粮食需求量.(参考公式:==,=)【解答】解:(1)对数据处理如下:这样对应的年份和需求量之间是一个线性关系,=0,=1b==7.2.a=1,∴线性回归方程是y﹣286=7.2(x﹣2010)+1即y=7.2x﹣14185;(2)当x=2015时,y=7.2×2015﹣14185=323,即预测该地2015年的粮食需求量是323(万吨)21.(12分)已知函数f(x)=x3+ax2+bx图象与直线x﹣y﹣4=0相切于(1,f(1))(1)求实数a,b的值;(2)若方程f(x)=m﹣7x有三个解,求实数m的取值范围.【解答】附加题:解:(1)x=1代入直线方程可得f(1)=﹣3,函数f(x)=x3+ax2+bx,求导可得f′(x)=3x2+2ax+b,…(2分)根据题意可得,…(4分)解得;…(6分)(2)由(1)可得f(x)=x3+2x2﹣6x,所以方程等价于x3+2x2﹣6x=m﹣7x,即x3+2x2+x=m,令h(x)=x3+2x2+x,∴h′(x)=3x2+4x+1=(3x+1)(x+1),…(8分)令h′(x)=0,解得x=﹣或x=﹣1.当x变化时,h′(x),h(x)的变化情况如下表:…(10分)要使x3+2x2+x=m有三个解,需要,所以m的取值范围是…(12分)22.(12分)已知椭圆C:+=1(a>b>0)的离心率为,且经过(0,﹣1)(1)求该椭圆的方程;(2)设F1,F2分别为椭圆C的左、右焦点,A,B是椭圆上的点,并在x轴的上方,若=5,求四边形ABF2F1的面积.【解答】解:(I)由题意可得,,解可得,,∴b2=a2﹣c2=1,椭圆方程为:;(II)如图所示,由=5,可得F1A平行于F2B,由椭圆的对称性可知,,(C为直线F1A与椭圆的另一个交点),设直线的方程为x=my,A(x1,y1),C (x2,y2),将x=my﹣入椭圆方程有(my﹣)2+3y2=3,整理可得,,由方程的根与系数关系可得,,(1)又由,,可得y1=﹣5y2,代入(1)可得,m2=2,当m=时,可得或,当m=﹣时,由可得,A(0,﹣1),∵A,B是椭圆上的点,并在x轴的上方,故A(0,﹣1)舍去,由两点间的距离公式可得AF1=,BF2=,直线AF1和BF2间的距离为d=,所以四边形ABF1F2的面积为S=.。
2014石家庄市文科二模
2014年石家庄市高中毕业班第二次模拟考试数学文科答案一、选择题1-5 DCBAA 6-10ABADA 11-12CB 二、填空题13. __(1,2)-___. 14. 230x y -+= 15. 503(61)5- 16. 43三、解答题 17. 解:(Ⅰ)由已知的等差中项和是A c a B b cos C cos cos 得 2bcosB=acosC+ccosA ………2分 代入a=2RsinA,b=2RsinB,c=2RsinC,化简得2sinBcosB=sinAcosC+cosAsinC ,……………4分 所以2sinBcosB=sin(A+C)=sinB ,在ABC ∆中,sinB ,0≠3,21cos π==B B 所以.…………6分 (Ⅱ) 由b=3,及b 2=a 2+c 2-2accosB 得3=a 2+c 2-ac ≥ac ,当且仅当a=c 时取到等号。
所以ac ≤3……9分 所以433ABC ,433sin 21的面积的最大值为即∆≤=∆B ac s ABC …………………12分 18. 解:(Ⅰ)由频率分布直方图知,A 型节能灯的一级品的频率为0.04450.01650.3⨯+⨯= 所以生产A 型节能灯的一级品率的估计值为0.3。
…………………4分(Ⅱ)由条件知,生产B 型节能灯一个产品的利润大于0的概率当且仅当75≥k , 由频率分布直方图知,75≥k 的频率为0.96,所以生产B 型节能灯一个产品的利润大于0的概率估计值为0.96. …………………8分 生产100个B 型节能灯的平均利润为()[]4422542-41001⨯+⨯+⨯⨯=2.68(元)…………………12分 19. 解:(Ⅰ)连接BD ,在BCD ∆中,2BD AD ==,所以ABD ∆为等腰三角形,又因为点E 是线段AB 的中点, 所以,DE AB ⊥所以,DE PE ⊥又因为PE EB ⊥,所以PE ⊥平面BCDE ,因为CD ⊂平面ABCD ,所以PE CD ⊥,…………2分 因为EG 为梯形ABCD 的中位线,且CD AD ⊥,所以CD EG ⊥,又PE EG E =, 所以CD ⊥平面PEG ,…………4分 又因为CD ⊂平面P C D ,所以平面PEG ⊥平面P C D .…………5分(Ⅱ)连接PA 、AC ,易求得ACD S ∆=1PE =, 则==--ACD P PCD A V V 13ACD S PE ∆⋅33=…………7分在PED ∆中,2PD AD ==,连接EC ,则EC ED ==,在PEC ∆中2PC ==,所以PD PC =,PCD ∆为等腰三角形,在PCD ∆中,又知3=DC ,所以2PG==所以43921=⋅⋅=∆PGDCSPCD,…………10分记点A到平面PDC的距离为d,由dSVPCDPCDA⋅⋅=∆-31得131343==-PCDPCDASVd.…………12分法2:由(1)知平面PEG⊥平面PCD,且平面PEG平面PCD PG=,所以在Rt PEG∆中点E到PG的距离EM等于点E到平面PDC的距离,……7分EP EGEMPG⋅=31⨯==,……9分点A到平面PDC的距离13ADd EMEG=⋅=.…12分20. 解:(Ⅰ)设动点(,)P x y因为3tan tan4PAB PBA∠⋅∠=所以3224y yx x=+-………2分整理得221(2)43x yx+=≠±所以动点P的轨迹方程为:221(2)43x yx+=≠±………..4分(无限制减1分)(Ⅱ)设点00(,)P x y则22001(20)43x yx+=-<<设过点P的圆C的两条切线的方程是:l即()20x-<<令0x=得……………………………………6分因为直线l与圆相切,所以即所以(*)…………………………………….8分因为(将(*)式代入,).………………………………………..10分因为20x-<<所以的取值范围…………………………..12分21.解:(Ⅰ)函数()f x 定义域为(0,)+∞由21ln ()x f x x -'=,令21ln 0xx-=得ln 1x =,所以x e =。
【解析】河北省石家庄市正定中学2014-2015学年高二下学期4月月考数学(文)试卷Word版含解析
河北省石家庄市正定中学2014-2015学年高二下学期4月月考数学试卷(文科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).1.已知集合A=,集合B={y|y=sinx,x∈R},则B∩C R A=( )A.∅B.{1} C.{﹣1} D.{﹣1,1}考点:交、并、补集的混合运算.专题:集合.分析:解分式不等式求得A,根据正弦函数的值域求得B,利用补集的定义求得C R A,再根据两个集合的交集的定义求得B∩C R A.解答:解:∵集合A=={x|≤0}={x|﹣1≤x<1},集合B={y|y=sinx,x∈R}={y|﹣1≤y≤1},则C R A={x|x<﹣1,或x≥1},∴B∩C R A={1},故选:A.点评:本题主要考查分式不等式的解法,正弦函数的值域,求集合的补集,两个集合的交集的定义和求法,属于基础题.2.命题“∀x∈R,e x>x”的否定是( )A.∃x0∈R,e x<x B.∀x∈R,e x<x C.∀x∈R,e x≤x D.∃x0∈R,e x≤x考点:命题的否定.专题:计算题.分析:全称命题的否定是特称命题,全称量词“∀”改为存在量词“∃”,并同时把“e x>x”否定.解答:解:∵全称命题的否定是特称命题,∴命题“∀x∈R,e x>x”的否定是∃x0∈R,e x≤x.故选D.点评:本题主要考查了命题的否定,属于基础题之列.3.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是( )A.人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%B.人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%C.人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%D.人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%考点:众数、中位数、平均数.专题:概率与统计.分析:根据散点图中的点的分布,可以判断两个变化是否具有相关关系,根据点的单调性可以判断是正相关还是负相关,以及中位数.解答:解:由散点图可知点的分布都集中在一条直线附近,所以由此可以判断两个变量具有相关关系,而且是正相关,再由散点图中点的个数得到中位数为最中间两数的平均数,则且脂肪含量的中位数小于20%,故选:B.点评:本题主要考查利用散点图的判断变量相关关系已经线性相关性,比较基础.4.已知{a n}为等比数列,S n是它的前n项和.若,且a4与a7的等差中项为,则S5等于( )A.35 B.33 C.31 D.29考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:由,可得 4 a1•a7=a1,解得a7=.再由=,解得a4=2,利用等比数列的通项公式求出首项和公比的值,代入等比数列的前n项和公式化简求值.解答:解:由,可得4 a1•a7=a1,解得a7=.再由a4与a7的等差中项为,可得=,解得a4=2.设公比为q,则=2•q3,解得q=,故a1==16,S5==31,故选C.点评:此题考查学生掌握等比数列及等差数列的性质,灵活运用等比数列的通项公式及前n 项和公式化简求值,是一道中档题.5.实数m是[0,6]上的随机数,则关于x的方程x2﹣mx+4=0有实根的概率为( ) A.B.C.D.考点:几何概型.专题:概率与统计.分析:根据几何概型计算公式,首先求出方程有实根的m的范围,然后用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.解答:解:∵方程x2﹣mx+4=0有实根,∴判别式△=m2﹣16≥0,∴m≤﹣4或m≥4时方程有实根,∵实数m是[0,6]上的随机数,区间长度为6,[4,6]的区间长度为2,∴所求的概率为P==.故选:B.点评:本题着重考查了几何概型计算公式及其应用的知识,给出在区间上取数的事件,求相应的概率值.关键是明确事件对应的是区间长度或者是面积或者体积.6.已知点P(x,y)的坐标满足条件,那么(x+1)2+y2的取值范围为( ) A.[2,8]B.(2,8]C.[,8]D.(,8]考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,设P(x,y)、Q (﹣1,0),可得(x+1)2+y2=|QP|2表示Q、P两点距离的平方,因此运动点P并加以观察得到|QP|的最大、最小值,即可得到(x+1)2+y2的取值范围.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(1,0),B(0,2),C(1,2)设P(x,y)为区域内一个动点,定点Q(﹣1,0)则|PQ|=,因此(x+1)2+y2=|QP|2表示Q、P两点距离的平方之值∵当P与C重合时|QP|==2达到最大值,当P与Q在AB上的射影D重合量,|QP|==达到最小值∴|QP|2的最小值为,最大值为8,即(x+1)2+y2的取值范围是[,8]故选:C点评:本题给出二元一次不等式组,求(x+1)2+y2的取值范围,着重考查了两点的距离公式、二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.7.已知α是第二象限角,且sinα=,f(x)=sin2αcosx+cos2αsinx的图象关于直线x=x0对称,则tanx0=( )A.﹣B.C.﹣D.考点:三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:利用两角和的正弦化简,再由f(x)的图象关于直线x=x0对称得到.则tanx0=.由已知求得tanα后代入二倍角的正切公式得答案.解答:解:∵f(x)=sin2αcosx+cos2αsinx=sin(x+2α)的图象关于直线x=x0对称,∴,.∴tanx0=tan()=.∵α是第二象限角,且sinα=,∴cosα=﹣,tanα=.则tanx0===.故选:A.点评:本题考查三角函数中的恒等变换应用,考查了三角函数的图象和性质,属中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).( )A.B.C.D.考点:由三视图求面积、体积.专题:计算题;图表型.分析:由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可解答:解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.点评:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.9.下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于( )A.11 B.10 C.8 D.7考点:程序框图.专题:算法和程序框图.分析:根据框图的流程分输入x3<7.5时和输入x3≥7.5时两种情况,利用输出P的值求出输入x3的值.解答:解:根据框图的流程,当输入x1=6,x2=9时,不满足|x1﹣x2|=3<2,当输入x3<7.5时,满足|x3﹣x1|<|x3﹣x2|,则执行x2=x3.输出P==8.5⇒x3=11(舍去);当输入x3≥7.5时,不满足|x3﹣x1|<|x3﹣x2|,则执行x1=x3,输出P==8.5⇒x3=8.故选:C.点评:本题考查了选择结构的程序框图,根据框图的流程分类讨论是解答此类问题的常用方法.10.函数的部分图象大致是( )A.B.C.D.考点:指数函数的图像变换.专题:计算题.分析:先判断函数的奇偶性,f(﹣x)==f(x),由指数函数的性质可知f(x)>0恒成立,结合选项可判断解答:解:∵∴f(﹣x)==f(x)∴函数f(x)为偶函数由指数函数的性质可知f(x)>0恒成立结合选项可知C正确故选C点评:本题主要考查了奇偶函数的图象特征及指数函数的性质的应用,解题的关键是灵活利用函数的性质11.已知定义在R上的函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=1,则不等式f(x)<e x的解集为( )A.(﹣∞,e4)B.(e4,+∞)C.(﹣∞,0)D.(0,+∞)考点:导数的运算.专题:导数的概念及应用.分析:构造函数g(x)=(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.解答:解:设g(x)=(x∈R),则g′(x)=,∵f′(x)<f(x),∴f′(x)﹣f(x)<0∴g′(x)<0,∴y=g(x)在定义域上单调递减∵f(x)<e x∴g(x)<1又∵g(0)==1∴g(x)<g(0)∴x>0故选:D.点评:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.12.已知椭圆+y2=1,椭圆的中心为坐标原点O,点F是椭圆的右焦点,点A是椭圆短轴的一个端点,过点F的直线l与椭圆交于M、N两点,与OA所在直线交于E点,若=λ1,=λ2,则λ1+λ2=( )A.﹣10 B.10 C.﹣5 D.5考点:直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:设M(x1,y1),N(x2,y2)(x1>x2)则由=λ1,=λ2,可得λ1+λ2=+,设直线方程为y=k(x﹣2),代入椭圆方程,利用韦达定理,即可得出结论.解答:解:设M(x1,y1),N(x2,y2)(x1>x2)则∵椭圆+y2=1,∴c=2,∵=λ1,=λ2,∴λ1+λ2=+设直线方程为y=k(x﹣2),代入椭圆方程可得(1+5k2)x﹣20k2x+20k2﹣5=0,∴x1+x2=,x1x2=,∴+==﹣10,∴λ1+λ2=﹣10.故选:A.点评:本题考查向量知识的运用,考查直线与椭圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.如图,在复平面内,复数z1,z2对应的向量分别是,,则复数对应的点位于第二象限.考点:复数的代数表示法及其几何意义.专题:计算题;数形结合.分析:由图得到复数z1,z2,然后利用复数的除法运算把复数化简为a+bi(a,b∈R)的形式,则答案可求.解答:解:由图可知z1=﹣2﹣i,z2=i,则=.该复数对应的点为(﹣1,2),该点位于第二象限.故答案为二.点评:本题考查了复数的代数表示法及其几何意义,考查了复数的除法运算,是基础的概念题.14.已知抛物线y2=2px(p>0)的焦点为F,其准线与x轴相交于点K,直线l过焦点F且倾斜角为α,则点K到直线l的距离为psinα.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点和准线,可得K的坐标,设出直线l:x=cotαy+,运用点到直线的距离公式,计算即可得到.解答:解:抛物线y2=2px(p>0)的焦点为F(,0),其准线为x=﹣,则K(﹣,0),可设直线l:x=cotαy+,则点K到直线l的距离为d===psinα.故答案为:psinα.点评:本题考查抛物线的方程和性质,同时考查点到直线的距离公式的运用,属于中档题.15.直三棱柱ABC﹣A1B1C1的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.考点:球内接多面体.专题:计算题;压轴题.分析:通过已知体积求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.解答:解:在△ABC中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π点评:本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.方程+=λ(λ<0)的曲线即为函数y=f(x)的图象,对于函数y=f(x),下列命题中正确的是①②③.(请写出所有正确命题的序号)①函数y=f(x)在R上是单调递减函数;②函数y=f(x)的值域是R;③函数y=f(x)的图象不经过第一象限;④函数y=f(x)的图象关于直线y=x对称;⑤函数F(x)=4f(x)+3x至少存在一个零点.考点:命题的真假判断与应用.专题:综合题;圆锥曲线的定义、性质与方程.分析:不妨取λ=﹣1,根据x、y的正负去绝对值,将方程化简,得到相应函数在各个区间上的表达式,由此作出函数的图象,再由图象可知函数在R上单调递减,且函数的值域为R,所以①②③成立,④不正确.⑤由F(x)=4f(x)+3x=0得f(x)=﹣.因为双曲线和﹣的渐近线为y=±,即可得出结论.解答:解:不妨取λ=﹣1,对于①,当x≥0且y≥0时,方程为,此时方程不成立.当x<0且y<0时,方程为,此时y=﹣3.当x≥0且y<0时,方程为,此时y=﹣3.当x<0且y≥0时,方程为﹣,即y=3.因此作出函数的图象,如图所示由图象可知函数在R上单调递减,所以①②③成立,④不正确.⑤由F(x)=4f(x)+3x=0得f(x)=﹣.因为双曲线和﹣的渐近线为y=±,所以函数y=f(x)与直线y=﹣无公共点,因此F(x)=4f(x)+3x不存在零点,可得⑤不正确.故答案为:①②③.点评:本题给出含有绝对值的二次曲线,要我们判断并于曲线性质的几个命题的真假.着重考查了含有绝对值的函数式的化简、函数的图象与性质、直线与圆锥曲线位置关系等知识,属于难题.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.在△ABC中,AB=(1)求sinA的值;(2)求的值.考点:正弦定理;平面向量数量积的运算.专题:计算题;解三角形.分析:(1)由cosC=,0<C<π,先求出sinC的值,由正弦定理知:从而解得:sinA=.(2)由余弦定理知:cosC===,解得:AC=2或﹣(舍去),从而可求得=||•||•cosC=1×2×=.解答:解:(1)∵cosC=,0<C<π,∴sinC===,∴由正弦定理知:,即有,从而解得:sinA=.(2)由余弦定理知:cosC===从而解得:AC=2或﹣(舍去)∴=||•||•cosC=1×2×=.点评:本题主要考察了平面向量数量积的运算,正弦定理、余弦定理的应用,属于基本知识的考查.18.某校从参加2015届高三年级期2015届中考试的学生中抽出50名学生,并统计了他们的数学成绩,数学成绩分组及各组频数如下:[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.(Ⅰ)估计成绩在80分以上学生的比例;(Ⅱ)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[40,50)中的某一位同学,已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(I)先求出成绩在[80,100)的学生数,再结合题意,计算可得答案;(Ⅲ)根据题意,记成绩在[40,50)上的2名学生为a、甲,在[90,100)内的4名学生记为1、2、3、乙,列举“二帮一”的全部情况,可得其情况数目与甲乙两名同学恰好在同一小组的情况数目,由古典概型公式,计算可得答案解答:解:(Ⅰ)由频率分布表可得,成绩在[80,100)的学生数为12+4=16,则成绩在80分以上的学生的比例为P1==32%,(Ⅱ)记成绩在[40,50)上的2名学生为a、甲,在[90,100)内的4名学生记为1、2、3、乙,则选取的情况有:(1,2,a)、(1,2,甲)、(1,3,a)、(1,3,甲)、(1,乙,a)、(1,乙,甲)、(2,3,a)、(2,3,甲)、(2,乙,a)、(2,乙,甲)、(3,乙,a)、(3,乙,甲),共12种;其中甲乙两名同学恰好在同一小组的情况有3种,则甲、乙两同学恰好被安排在同一小组的概率P2==.点评:本题考查古典概型的计算与频率分布表的作法,关键是运用表中的数据,正确做出频率分布表.19.已知四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,,O为AB的中点.(Ⅰ)求证:EO⊥平面ABCD;(Ⅱ)求点D到面AEC的距离.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:综合题;空间位置关系与距离.分析:(I)连接CO,利用△AEB为等腰直角三角形,证明EO⊥AB,利用勾股定理,证明EO⊥CO,利用线面垂直的判定,可得EO⊥平面ABCD;(II)利用等体积,即V D﹣AEC=V E﹣ADC,从而可求点D到面AEC的距离.解答:(I)证明:连接CO∵∴△AEB为等腰直角三角形∵O为AB的中点,∴EO⊥AB,EO=1…又∵AB=BC,∠ABC=60°,∴△ACB是等边三角形∴,…又EC=2,∴EC2=EO2+CO2,∴EO⊥CO,∵AB∩CO=O∴EO⊥平面ABCD…(II)解:设点D到面AEC的距离为h∵∴…∵,E到面ACB的距离EO=1,V D﹣AEC=V E﹣ADC∴S△AEC•h=S△ADC•EO…∴∴点D到面AEC的距离为…点评:本题考查线面垂直,考查点到面距离的计算,解题的关键是掌握线面垂直的判定方法,考查等体积的运用,属于中档题.20.如图,已知圆E:(x+)2+y2=16,点F(,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.(Ⅰ)求动点Q的轨迹Γ的方程;(Ⅱ)已知A,B,C是轨迹Γ的三个动点,A与B关于原点对称,且|CA|=|CB|,问△ABC 的面积是否存在最小值?若存在,求出此时点C的坐标,若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)连结QF,根据题意,|QP|=|QF|,则|QE|+|QF|=|QE|+|QP|=4,可得动点Q的轨迹Γ是以E,F为焦点,长轴长为4的椭圆,即可求出动点Q的轨迹Γ的方程;(Ⅱ)分类讨论,当直线AB的斜率存在且不为0时,设斜率为k,则直线AB的直线方程为y=kx,与椭圆方程联立,求出A的坐标,同理可得点C的坐标,进而表示出△ABC的面积,利用基本不等式,即可得出结论.解答:解:(Ⅰ)连结QF,根据题意,|QP|=|QF|,则|QE|+|QF|=|QE|+|QP|=4,故动点Q的轨迹Γ是以E,F为焦点,长轴长为4的椭圆.设其方程为(a>b>0),可知a=2,,则b=1,所以点Q的轨迹Γ的方程为为.(Ⅱ)存在最小值.(ⅰ)当AB为长轴(或短轴)时,可知点C就是椭圆的上、下顶点(或左、右顶点),则.(ⅱ)当直线AB的斜率存在且不为0时,设斜率为k,则直线AB的直线方程为y=kx,设点A(x A,y A),联立方程组消去y得,,由|CA|=|CB|,知△ABC是等腰三角形,O为AB的中点,则OC⊥AB,可知直线OC的方程为,同理可得点C的坐标满足,,则,,则S△ABC=2S△OAC=|OA|×|OC|=.由于≤,所以,当且仅当1+4k2=k2+4,即k2=1时取等号.综合(ⅰ)(ⅱ),当k2=1时,△ABC的面积取最小值,此时,,即,,所以点C的坐标为,,,.点评:本题考查椭圆的定义与方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.21.已知a∈R,函数,g(x)=(lnx﹣1)e x+x(其中e为自然对数的底数).(1)求函数f(x)在区间(0,e]上的最小值;(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:计算题;压轴题.分析:(1)讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值,将f(x)的各极值与其端点的函数值比较,其中最小的一个就是最小值;(2)将曲线y=g(x)在点x=x0处的切线与y轴垂直转化成方程g'(x0)=0有实数解,只需研究导函数的最小值即可.解答:解:(1)∵,∴令f'(x)=0,得x=a.①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值.②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减,当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增,所以当x=a时,函数f(x)取得最小值lna③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x=e时,函数f(x)取得最小值..综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna;当a≥e时,函数f(x)在区间(0,e]上的最小值为.(2)∵g(x)=(lnx﹣1)e x+x,x∈(0,e],∴g'(x)=(lnx﹣1)′e x+(lnx﹣1)(e x)′+1=.由(1)可知,当a=1时,.此时f(x)在区间(0,e]上的最小值为ln1=0,即.当x0∈(0,e],,,∴.曲线y=g(x)在点x=x0处的切线与y轴垂直等价于方程g'(x0)=0有实数解.而g'(x0)>0,即方程g'(x0)=0无实数解.、故不存在x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.点评:本题主要考查了利用导数求闭区间上函数的最值,以及利用导数研究曲线上某点切线方程,属于中档题.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5.求:(Ⅰ)⊙O的半径;(Ⅱ)sin∠BAP的值.考点:与圆有关的比例线段;弦切角.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,求出BC,即可求出⊙O的半径;(Ⅱ)证明△PAB∽△PCA,求出AB,BC,即可sin∠BAP的值.解答:解:(Ⅰ)因为PA为⊙O的切线,所以PA2=PB•PC,又由PA=10,PB=5,所以PC=20,BC=20﹣5=15 ….因为BC为⊙O的直径,所以⊙O的半径为7.5.…(Ⅱ)∵PA为⊙O的切线,∴∠ACB=∠PAB,…又由∠P=∠P,∴△PAB∽△PCA,∴…设AB=k,AC=2k,∵BC为⊙O的直径,∴AB⊥AC,∴…∴sin∠BAP=sin∠ACB=…点评:本题考查了切割线定理,考查三角形相似的判断与性质的运用,解题的关键是运用切割线定理列方程求解.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=4.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P坐标.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式x=ρcosθ、y=ρsinθ,把极坐标方程化为直角坐标方程.(2)设P(cosα,sinα),则P到直线的距离为d,运用点到直线的距离公式和两角和的正弦公式以及正弦函数的值域即可得到最小值.解答:解:(1)曲线C1的参数方程为(α为参数),则由sin2α+cos2α=1化为+y2=1,曲线C2的极坐标方程为ρsin(θ+)=4,即有ρsinθcos+ρcosθsin=4,即为直线x+y﹣8=0;(2)设P(cosα,sinα),则P到直线的距离为d,则d==,则当sin()=1,此时α=2k,k为整数,P的坐标为(,),距离的最小值为=3.点评:本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属中档题.。
2014年石家庄质检二文科数学试题(扫描版)及答案
2014年石家庄市高中毕业班复习教学质量检测(二)高三数学(文科答案)一、 选择题:1-5CCDCA 6-10DACCB 11-12DC二、 填空题:13. 6 14. - 15. 9(2,2015)_______三、解答题:(解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分)17.解:(1)由正弦定理得(2sin sin )cos sin cos 0,C A B B A --=……………………………………2分2sin cos sin()0,sin (2cos 1)0C B A B C B ∴-+=∴-=…………4分1sin 0,cos ,23C B B π≠∴=∴= ……………………………………6分(2)22222cos ()22cos b a c ac B a c ac ac B =+-=+-- …………………………8分 7,13,3b a c B π=+==40ac ∴=………………………………10分 1sin 2S ac B ∴==12分18. 解:(Ⅰ)由已知,100位顾客中购物款不低于100元的顾客有103010060%n ++=⨯,20n =;…………………………………2分()1002030201020m =-+++=.……………………3分 该商场每日应准备纪念品的数量大约为 6050003000100⨯=.………………5分 (II )设购物款为a 元当[50,100)a ∈时,顾客有500020%=1000⨯人,当[100,150)a ∈时,顾客有500030%=1500⨯人,当[150,200)a ∈时,顾客有500020%=1000⨯人,当[200,)a ∈+∞时,顾客有500010%=500⨯人,…………………………7分所以估计日均让利为756%1000+1258%150017510%100030500⨯⨯⨯⨯+⨯⨯+⨯…………10分52000=元……………12分19. 解:(1)取AB 中点Q ,连接MQ 、NQ ,∵AN=BN ∴AB NQ ⊥, ……………2分∵⊥PA 面ABC ,∴AB PA ⊥,又PA MQ ∥∴AB MQ ⊥,………………4分所以AB ⊥平面MNQ ,又MN ⊂平面MNQ∴AB ⊥M N ………………6分(2)设点P 到平面NMA 的距离为h ,∵M 为PB 的中点,∴PA M △S =4121PAB =△S 又AB NQ ⊥,PA NQ ⊥,∴B PA NQ 面⊥,∵︒=∠30ABC ∴63=NQ ……………………………7分 又3322=+=MQ NQ MN ,33=AN ,22=AM , ……………………………………………………………………………9分可得△NMA 边AM 上的高为1230, ∴241512302221=⋅⋅=NMA S △………………10分 由PAM N NMA P V V --= 得=⋅⋅h S NMA △31NQ S PAM ⋅⋅△31 ∴55=h ……………………12分 20.解:(Ⅰ)设动圆圆心坐标为(,)C x y ,根据题意得=2分 化简得24x y =. …………4分(Ⅱ)解法一:设直线PQ 的方程为y kx b =+, Q由24x y y kx bìï=ïíï=+ïî消去y 得2440x kx b --= 设1122(,),(,)P x y Q x y ,则121244x x k x x bì+=ïïíï=-ïî,且21616k b D =+……………6分 以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即2111124y x x x =- 同理过点Q 的切线的方程为2221124y x x x =- 设两条切线的交点为(,)A A A x y 在直线20x y --=上,12x x ¹Q ,解得1212224A A x x x k x x y b ì+ïï==ïïïíïï==-ïïïî,即(2,)A k b - 则:220k b +-=,即22b k =-……………………………………8分代入222161616323216(1)160k b k k k D =+=+-=-+>12|||PQ x x \=-=(2,)A k b -到直线PQ的距离为2d =10分32221||4||4()2APQS PQ d k b k b D \=?+=+ 3322224(22)4[(1)1]k k k =-+=-+\当1k =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0). …………12分解法二:设00(,)A x y 在直线20x y --=上,点1122(,),(,)P x y Q x y 在抛物线24x y =上,则以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即1112y x x y =- 同理以点Q 为切点的方程为2212y x x y =-…………………………6分 设两条切线的均过点00(,)A x y ,则010*********y x x y y x x y ìïï=-ïïíïï=-ïïïî,\点,P Q 的坐标均满足方程0012y xx y =-,即直线PQ 的方程为:0012y x x y =-……………8分 代入抛物线方程24x y =消去y 可得:200240x x x y -+=12||||PQ x x \=-=00(,)A x y 到直线PQ的距离为2001|2|x y d -=………………10分32220000111|||4|(4)222APQ S PQ d x y x y D \=?-=- 33222200011(48)[(2)22x x x =-+=-+ \当02x =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0).…………12分21.解:(Ⅰ)依题意1(),f x a x '=+1()202f a '=+=,则2,a =-………………2分 经检验,2a =-满足题意.…………………4分(Ⅱ)由(Ⅰ)知()ln 22,f x x x =-+则2()ln ,F x x x x λ=--2121'()21x x F x x x xλλ--=---=.………………………6分 令2()21t x x x λ=--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学(文科答案)一、 选择题:1-5CCDCA 6-10DACCB 11-12DC二、 填空题:15(2,2015)_______三、解答题:(解答题按步骤给分,本答案只给出一或两种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分)17.解:(1)由正弦定理得(2sin sin )cos sin cos 0,C A B B A --= ……………………………………2分2sin cos sin()0,sin (2cos 1)0C B A B C B ∴-+=∴-=…………4分1sin 0,cos ,23C B B π≠∴=∴=……………………………………6分(2)22222cos ()22cos b a c ac B a c ac ac B =+-=+-- …………………………8分7,13,3b ac B π=+== 40ac ∴=………………………………10分1sin 2S ac B ∴==12分18. 解:(Ⅰ)由已知,100位顾客中购物款不低于100元的顾客有103010060%n ++=⨯,20n =;…………………………………2分()1002030201020m =-+++=.……………………3分 该商场每日应准备纪念品的数量大约为 6050003000100⨯=.………………5分 (II )设购物款为a 元当[50,100)a ∈时,顾客有500020%=1000⨯人, 当[100,150)a ∈时,顾客有500030%=1500⨯人, 当[150,200)a ∈时,顾客有500020%=1000⨯人,当[200,)a ∈+∞时,顾客有500010%=500⨯人,…………………………7分 所以估计日均让利为756%1000+1258%150017510%100030500⨯⨯⨯⨯+⨯⨯+⨯…………10分52000=元……………12分19. 解:(1)取AB 中点Q ,连接MQ 、NQ , ∵AN=BN ∴AB NQ ⊥, ……………2分 ∵⊥PA 面ABC ,∴AB PA ⊥,又PA MQ ∥ ∴AB MQ ⊥,………………4分所以AB ⊥平面MNQ ,又MN ⊂平面MNQ ∴AB ⊥M N ………………6分(2)设点P 到平面NMA 的距离为h , ∵M 为PB 的中点,∴PAM △S =4121PAB =△S 又AB NQ ⊥,PA NQ ⊥,∴B PA NQ 面⊥,∵︒=∠30ABC ∴63=NQ ……………………………7分 又3322=+=MQ NQ MN ,33=AN ,22=AM , ……………………………………………………………………………9分 可得△NMA 边AM 上的高为1230, ∴241512302221=⋅⋅=NMA S △………………10分 由PAM N NMA P V V --= 得 =⋅⋅h S N M A △31NQ S PAM ⋅⋅△31∴55=h ……………………12分 20.解:(Ⅰ)设动圆圆心坐标为(,)C x y ,根据题意得2分化简得24x y =. …………4分(Ⅱ)解法一:设直线PQ 的方程为y kx b =+,由24x y y kx bìï=ïíï=+ïî消去y 得2440x kx b --= 设1122(,),(,)P x y Q x y ,则121244x x k x x bì+=ïïíï=-ïî,且21616k b D =+……………6分 Q以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即2111124y x x x =- 同理过点Q 的切线的方程为2221124y x x x =- 设两条切线的交点为(,)A A A x y 在直线20x y --=上,12x x ¹Q ,解得1212224A A x x x k x x y b ì+ïï==ïïïíïï==-ïïïî,即(2,)A k b - 则:220k b +-=,即22b k =-……………………………………8分 代入222161616323216(1)160k b k k k D =+=+-=-+>12||||PQ x x \=-=(2,)A k b -到直线PQ的距离为2d =…………………………10分32221||4||4()2APQS PQ d k b k b D \=?+=+3322224(22)4[(1)1]k k k =-+=-+\当1k =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0). …………12分解法二:设00(,)A x y 在直线20x y --=上,点1122(,),(,)P x y Q x y 在抛物线24x y =上, 则以点P 为切点的切线的斜率为1112y x ¢=,其切线方程为1111()2y y x x x -=- 即1112y x x y =- 同理以点Q 为切点的方程为2212y x x y =-…………………………6分 设两条切线的均过点00(,)A x y ,则010*******12y x x y y x x y ìïï=-ïïíïï=-ïïïî,\点,P Q 的坐标均满足方程0012y xx y =-,即直线PQ 的方程为:0012y x x y =-……………8分 代入抛物线方程24x y =消去y 可得:200240x x x y -+=12|||PQ x x \=-=00(,)A x y 到直线PQ的距离为2001|2|x y d -=………………10分32220000111|||4|(4)222APQS PQ d x y x y D \=?--33222200011(48)[(2)4]22x x x =-+=-+ \当02x =时,APQ S D 最小,其最小值为4,此时点A 的坐标为(2,0).…………12分21.解:(Ⅰ)依题意1(),f x a x '=+1()202f a '=+=,则2,a =-………………2分 经检验,2a =-满足题意.…………………4分(Ⅱ)由(Ⅰ)知()ln 22,f x x x =-+则2()ln ,F x x x x λ=--2121'()21x x F x x x xλλ--=---=.………………………6分 令2()21t x x x λ=--。
0λ>时,180λ∴∆=+>,方程2210x x λ--=有两个异号的实根,设为120,0x x <>,10,x x >∴ 应舍去.则()F x 在2(0,)x 单调递减,在2(,)x +∞上单调递增. 且当0x →时,()F x →+∞,当x →+∞时,()F x →+∞, 所以当2x x =时,2()0,()F x F x '=取得最小值2()F x .()F x 有唯一零点,则2()0F x =.……………………8分则22()0,()0F x F x =⎧⎨'=⎩即2222222ln 0210x x x x x λλ⎧--=⎪⎨--=⎪⎩. 得222222222211()ln ln ln 02222x x F x x x x x x x λ=--=+--=--=.……………10分 又令1()ln 22x p x x =--.11'()02p x x =--<(0x >)。
故()p x 在(0,)+∞上单调递减,注意到(1)0p =。
故21x =.得1λ=.…………………12分请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. 解:(1)因为AB 为圆O 一条直径,所以BF FH ⊥,…………2分又DH BD ^,故B 、D 、F 、H 四点在以BH 为直径的圆上 所以,B 、D 、F 、H 四点共圆。
……………4分(2)因为AH 与圆B 相切于点F ,由切割线定理得 2AF AC AD =⋅,即(22AD =⋅,=4AD ,………………6分所以()1=112BD AD AC BF BD -===,又AFB ADH ∆∆ , 则DH AD BF AF=,得DH =……………8分 连接BH ,由(1)可知BH 为BDF D 的外接圆直径BH ==故BDF D的外接圆半径为2……………10分 23.解:(1)由2sin 2cos ρθθ=-,可得22sin 2cos ρρθρθ=-所以曲线C 的直角坐标方程为2222x y y x +=-,……………2分 标准方程为()()22112x y ++-=曲线C的极坐标方程化为参数方程为11x y ϕϕ⎧=-⎪⎨=⎪⎩ ()ϕ为参数………5分(2)当4p a =时,直线l的方程为22:2x y ⎧=-+⎪⎪⎨⎪=⎪⎩,化成普通方程为2y x =+……………………………7分由22222x y y x y x ⎧+=-⎨=+⎩,解得02x y =⎧⎨=⎩或20x y =-⎧⎨=⎩…………………………9分所以直线l与曲线C交点的极坐标分别为2,22k π⎛⎫+π ⎪⎝⎭,()k ∈Z ;()2,κπ+2π,()k ∈Z .………………………………10分24.解:(1)当1a =时,不等式()2f x ³可化为|1||21|2x x ++-①当12x ≥时,不等式为32x ³,解得23x ≥,故23x ≥; ②当112x -≤<时,不等式为22x - ,解得0x ≤,故10x -≤≤;③当1x <-时,不等式为32x - ,解得23x ≤-,故1x <-;……………4分综上原不等式的解集为20,3x x x ⎧⎫≤≥⎨⎬⎩⎭或………………5分(2)因为()2f x x £的解集包含1,12轾犏犏臌不等式可化为||1x a + ,………………………………7分 解得11a x a --≤≤-+,由已知得11211a a ⎧--≤⎪⎨⎪-+≥⎩,…………………………………9分解得302a -≤≤所以a 的取值范围是3,02⎡⎤-⎢⎥⎣⎦.……………………………10分。