高三上学期第四次月考(数学理)(试题及答案)
2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题
2024届甘肃省庆阳市长庆中学高三第四次学情检测试题(5月月考)数学试题 请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足2(13)(1)i z i +=+,则||z =( ) ABCD2.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,抛物线22(0)y px p =>的焦点坐标为(1,0),若e p =,则双曲线C 的渐近线方程为( )A.y = B.y =±C.y x = D.2y x =± 3.下列函数中,在区间(0,)+∞上单调递减的是( )A .12y x =B .2x y =C .12log y = xD .1y x=- 4.一个正四棱锥形骨架的底边边长为2,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )A. B .4π C. D .3π5.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .36. “幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“n 阶幻方()*3,n n ≥∈N ”是由前2n 个正整数组成的—个n 阶方阵,其各行各列及两条对角线所含的n 个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为( )A.75 B.65 C.55 D.457.函数cos()cosx xf xx x+=-在[2,2]ππ-的图象大致为A.B.C.D.8.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月份C.1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元9.已知15455,log 5,log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .c b a >> 10.已知集合{}10,1,0,12x A xB x -⎧⎫=<=-⎨⎬+⎩⎭,则A B 等于( ) A .{}11x x -<<B .{}1,0,1-C .{}1,0-D .{}0,1 11.已知复数11i z i +=-,则z 的虚部是( ) A .i B .i - C .1- D .112.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥二、填空题:本题共4小题,每小题5分,共20分。
宁夏回族自治区银川一中2023-2024学年高三上学期第四次月考理科数学试题(解析版)
银川一中2024届高三年级第四次月考数学(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{05}A xx =<<∣,104x B x x ⎧⎫+=≤⎨⎬-⎩⎭,则A B = ()A.[]1,4- B.[)1,5- C.(]0,4 D.()0,4【答案】D 【解析】【分析】由分式不等式的解法,解出集合B ,根据集合的交集运算,可得答案.【详解】由不等式104x x +≤-,则等价于()()1404x x x ⎧+-≤⎨≠⎩,解得14x -≤<,所以{}14B x x =-≤<,由{}05A x x =<<,则{}04A B x x ⋂=<<.故选:D.2.复平面上,以原点为起点,平行于虚轴的非零向量所对应的复数一定是()A.正数 B.负数C.实部不为零的虚数D.纯虚数【答案】D 【解析】【分析】根据向量的坐标写出对应复数,然后判断即可.【详解】由题意可设()()0,0OZ a a =≠,所以对应复数为()i 0a a ≠,此复数为纯虚数,故选:D.3.已知某几何体的三视图如图所示,则该几何体的体积为()A.20B.32C.203D.323所以该几何体的体积为【答案】D 【解析】【分析】先根据几何体的三视图得出该几何体的直观图,再由几何体的特征得出几何体的体积.【详解】解:如图,根据几何体的三视图可以得出该几何体是底面为矩形的四棱锥E -ABCD ,该几何体的高为EF ,且EF =4,13224433E ABCD V -=⨯⨯⨯=,故选:D.4.“不以规矩,不能成方圆”出自《孟子·离娄章句上》.“规”指圆规,“矩”指由相互垂直的长短两条直尺构成的方尺,是古人用来测量、画圆和方形图案的工具.敦煌壁画就有伏羲女娲手执规矩的记载(如图(1)).今有一块圆形木板,以“矩”量之,如图(2).若将这块圆形木板截成一块四边形形状的木板,且这块四边形木板的一个内角α满足3cos 5α=,则这块四边形木板周长的最大值为()A.20cmB.C. D.30cm【答案】D 【解析】【分析】作出图形,利用余弦定理结合基本不等式可求得这个矩形周长的最大值.【详解】由题图(2)cm =.设截得的四边形木板为ABCD ,设A α∠=,AB c =,BD a =,AD b =,BC n =,CD m =,如下图所示.由3cos 5α=且0πα<<可得4sin 5α=,在ABD △中,由正弦定理得sin aα=,解得a =在ABD △中,由余弦定理,得2222cos a b c bc α=+-.,所以,()()()()222222616168055545b c b c b c bc b c b c ++=+-=+-≥+-⨯=,即()2400b c +≤,可得020b c <+≤,当且仅当10b c ==时等号成立.在BCD △中,πBCD α∠=-,由余弦定理可得()222226802cos π5a m n mn m n mn α==+--=++()()()()22224445545m n m n m n mn m n ++=+-≥+-⨯=,即()2100m n +≤,即010m n <+≤,当且仅当5m n ==时等号成立,因此,这块四边形木板周长的最大值为30cm .故选:D.5.若13α<<,24β-<<,则αβ-的取值范围是()A.31αβ-<-<B.33αβ-<-<C.03αβ<-<D.35αβ-<-<【答案】B 【解析】【分析】利用不等式的性质求解.【详解】∵24β-<<,∴04β≤<,40β-<-≤,又13α<<,∴33αβ-<-<,故选:B.6.已知向量(1,1)a = ,(,1)b x =- 则“()a b b +⊥”是“0x =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据题意,利用向量垂直的坐标表示,列出方程求得0x =或=1x -,结合充分条件、必要条件的判定方法,即可求解.【详解】由向量(1,1)a = ,(,1)b x =-,可得(1,0)a b x +=+r r ,若()a b b +⊥,可得()(1)0a b b x x +⋅=+= ,解得0x =或=1x -,所以()a b b +⊥是0x =的必要不充分条件.故选:B.7.“莱洛三角形”是机械学家莱洛研究发现的一种曲边三角形,它在很多特殊领域发挥了超常的贡献值.“莱洛三角形”是分别以正三角形的顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形(如图所示).现以边长为4的正三角形作一个“莱洛三角形”,则此“莱洛三角形”的面积为()A.8π-B.8π-C.16π-D.16π-【答案】A 【解析】【分析】求出正三角形的面积和弓形的面积,进而求出“莱洛三角形”的面积.【详解】正三角形的面积为21π4sin 23⨯=圆弧的长度为π4π433l =⨯=,故一个弓形的面积为18π423l ⨯-=-,故“莱洛三角形”的面积为8π38π3⎛-+=- ⎝.故选:A8.若数列{}n a 满足11a =,1121n n a a +=+,则9a =()A.10121- B.9121- C.1021- D.921-【答案】B 【解析】【分析】根据题意,由递推公式可得数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,即可得到数列{}n a 的通项公式,从而得到结果.【详解】因为11a =,1121n n a a +=+,所以111121n n a a +⎛⎫+=+ ⎪⎝⎭,又1112a +=,所以数列11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列,所以112n n a +=,即121n n a =-,所以99121a =-.故选:B9.如图,圆柱的轴截面为矩形ABCD ,点M ,N 分别在上、下底面圆上,2NB AN =,2CM MD =,2AB =,3BC =,则异面直线AM 与CN 所成角的余弦值为()A.10B.4C.5D.20【答案】D 【解析】【分析】作出异面直线AM 与CN 所成角,然后通过解三角形求得所成角的余弦值.【详解】连接,,,,DM CM AN BN BM ,设BM CN P ⋂=,则P 是BM 的中点,设Q 是AB 的中点,连接PQ ,则//PQ AM ,则NPQ ∠是异面直线AM 与CN 所成角或其补角.由于 2NB AN =, 2CMDM =,所以ππ,36BAN NBA ∠=∠=,由于2AB =,而AB 是圆柱底面圆的直径,则AN BN ⊥,所以1,AN BN ==,则122AM PQ AM ====,12CN PN CN ====,而1QN =,在三角形PQN中,由余弦定理得1010313144cos 20NPQ +-+-∠==.故选:D10.已知n S 是等差数列{}n a 的前n 项和,且70a >,690a a +<则()A.数列{}n a 为递增数列B.80a <C.n S 的最大值为8SD.140S >【答案】B 【解析】【分析】由70a >且78690a a a a +=+<,所以80a <,所以公差870d a a =-<,所以17n ≤≤时0n a >,8n ≥时0n a <,逐项分析判断即可得解.【详解】由70a >且78690a a a a +=+<,所以80a <,故B 正确;所以公差870d a a =-<,数列{}n a 为递减数列,A 错误;由0d <,70a >,80a <,所以17n ≤≤,0n a >,8n ≥时,0n a <,n S 的最大值为7S ,故C 错误;114147814()7()02a a S a a +==+<,故D 错误.故选:B11.银川一中的小组合作学习模式中,每位参与的同学都是受益者,以下这道题就是小组里最关心你成长的那位同桌给你准备的:中国古代数学经典《九章算术》系统地总结了战国秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,2AD =,1ED =,若鳖臑P ADE -的外接球的体积为3,则阳马P ABCD -的外接球的表面积等于()A.15πB.16πC.17πD.18π【答案】C 【解析】【分析】因条件满足“墙角”模型,故可构建长方体模型求解外接球半径,利用公式即得.【详解】如图,因PA ⊥平面ABCE ,AD DE ⊥,故可以构造长方体ADEF PQRS -,易得:长方体ADEF PQRS -的外接球即鳖臑P ADE -的外接球,设球的半径为1R ,PA x =,由12PE R ==,且314π33R =,解得:1R =, 3.x =又因四边形ABCD 为正方形,阳马P ABCD -的外接球即以,,PA AB AD为三条两两垂直的棱组成的正四棱柱的外接球,设其半径为2R22R ==,解得:2172R =故阳马P ABCD -的外接球的表面积为2224π4π(17π.2R =⨯=故选:C.12.若曲线ln y x =与曲线22(0)y x x a x =++<有公切线,则实数a 的取值范围是()A.(ln 21,)--+∞B.[ln 21,)--+∞C.(ln 21,)-++∞D.[ln 21,)-++∞【答案】A 【解析】【分析】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,然后利用导数的几何意义表示出切线方程,则可得21212122ln 1x x x a x ⎧=+⎪⎨⎪-=-⎩,消去1x ,得222ln(22)1a x x =-+-,再构造函数,然后利用导数可求得结果.【详解】设公切线与函数()ln f x x =切于点111(,ln )(0)A x x x >,由()ln f x x =,得1()f x x '=,所以公切线的斜率为11x ,所以公切线方程为1111ln ()-=-y x x x x ,化简得111(ln 1)y x x x =⋅+-,设公切线与函数2()2(0)g x x x a x =++<切于点22222(,2)(0)B x x x a x ++<,由2()2(0)g x x x a x =++<,得()22g x x '=+,则公切线的斜率为222x +,所以公切线方程为22222(2)(22)()y x x a x x x -++=+-,化简得2222(1)y x x x a =+-+,所以21212122ln 1x x x a x ⎧=+⎪⎨⎪-=-⎩,消去1x ,得222ln(22)1a x x =-+-,由1>0x ,得210x -<<,令2()ln(22)1(10)F x x x x =-+--<<,则1()201F x x x '=-<+,所以()F x 在(1,0)-上递减,所以()(0)ln 21F x F >=--,所以由题意得ln 21a >--,即实数a 的取值范围是(ln 21,)--+∞,故选:A【点睛】关键点点睛:此题考查导数的几何意义,考查导数的计算,考查利用导数求函数的最值,解题的关键是利用导数的几何意义表示出公切线方程,考查计算能力,属于较难题.二、填空题:本大题共4小题,每小题5分,共20分.13.若实数,x y 满足约束条件4,2,4,x y x y y +≥⎧⎪-≤⎨⎪≤⎩则2z x y =-+的最大值为________.【答案】4【解析】【分析】依题意可画出可行域,并根据目标函数的几何意义求出其最大值为4.【详解】根据题意,画出可行域如下图中阴影部分所示:易知目标函数2z x y =-+可化为2y x z =+,若要求目标函数z 的最大值,即求出2y x z =+在y 轴上的最大截距即可,易知当2y x =(图中虚线所示)平移到过点A 时,截距最大,显然()0,4A ,则max 4z =,所以2z x y =-+的最大值为4.故答案为:414.已知偶函数()f x 满足()()()422f x f x f +=+,则()2022f =__________.【答案】0【解析】【分析】由偶函数的定义和赋值法,以及找出函数的周期,然后计算即可.【详解】令2x =-,则()()()2222f f f =-+,又()()22f f -=,所以()20f =,于是()()()422f x f x f +=+化为:()()4f x f x +=,所以()f x 的周期4T =,所以()()()20225054220f f f =⨯+==.故答案为:0.15.在ABC 中,已知3AB =,4AC =,3BC =,则BA AC ⋅的值为________.【答案】8-【解析】【分析】根据数量积的定义结合余弦定理运算求解.【详解】由题意可得:cos ⋅=-⋅=-⋅∠uu r uuu r uu u r uuu r uu u r uuu rBA AC AB AC AB AC A22222291698222+-+-+-=-⋅⨯=-=-=-⋅AB AC BC AB AC BC AB AC AB AC ,即8BA AC ⋅=-.故答案为:8-.16.将函数sin y x =的图象向左平移π4个单位长度,再把图象上的所有点的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()f x ,已知函数()f x 在区间π3π,24⎛⎫⎪⎝⎭上单调递增,则ω的取值范围为__________.【答案】150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】根据函数图像平移变换,写出函数()y f x =的解析式,再由函数()y f x =在区间π3π,24⎛⎫ ⎪⎝⎭上单调递增,列出不等式组求出ω的取值范围即可【详解】将函数sin y x =的图象向左平移π4个单位长度得到πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象,再将图象上每个点的横坐标变为原来的1(0)ωω>倍(纵坐标不变),得到函数()πsin 4y f x x ω⎛⎫==+⎪⎝⎭的图象, 函数()y f x =在区间π3π,24⎛⎫⎪⎝⎭上单调递增,所以3ππ242T ≥-,即ππ4ω≥,解得04ω<≤,①又πππ3ππ24444x ωωω+<+<+,所以πππ2π2423πππ2π442k k ωω⎧+≥-+⎪⎪⎨⎪+≤+⎪⎩,解得3184233k k ω-+≤≤+,②由①②可得150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦,故答案为:150,,332ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦.三、解答题:共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:17.如图,在棱长为a 的正方体1111ABCD A B C D -中,M ,N 分别是1AA ,11C D 的中点,过D ,M ,N 三点的平面与正方体的下底面1111D C B A 相交于直线l .(1)画出直线l 的位置,保留作图痕迹,不需要说明理由;(2)求三棱锥D MNA -的体积.【答案】(1)答案见解析(2)324a 【解析】【分析】(1)延长DM 与11D A 的延长线交于E ,连接NE 即为所求;(2)根据D MNA N DAM V V --=结合三棱锥的体积公式求解出结果.【小问1详解】如图所示直线NE 即为所求:依据如下:延长DM 交11D A 的延长线于E ,连接NE ,则NE 即为直线l 的位置.11E DM D A ∈ ,E DM ∴∈⊂平面DMN ,11E D A ∈⊂平面1111D C B A ,E ∴∈平面DMN ⋂平面1111D C B A ,又由题意显然有N ∈平面DMN ⋂平面1111D C B A ,EN ∴⊂平面DMN ⋂平面1111D C B A ,则NE 即为直线l 的位置.【小问2详解】因为D MNA N DAM V V --=,所以3111112332224D MNA DAMa aa V ND S a -⨯=⨯⨯=⨯⨯= .18.已知数列{}n a 是等比数列,满足13a =,424a =,数列{}nb 满足14b =,422b =,设n n nc a b =-,且{}n c 是等差数列.(1)求数列{}n a 和{}n c 的通项公式;(2)求{}n b 的通项公式和前n 项和n T .【答案】18.13·2n n a -=,2n c n =-19.1322n n b n -=⋅+-,21332322=⋅-+-n n T n n 【解析】【分析】(1)根据等差数列、等比数列定义求解;(2)先写出数列{}n b 的通项公式,再分组求和即可求解.【小问1详解】设等比数列{}n a 的公比为q ,因为13a =,34124a a q ==,所以2q =,即132n n a -=⋅,设等差数列{}n c 公差为d ,因为1111c a b =-=-,444132c a b c d =-=+=,所以1d =,即2n c n =-.【小问2详解】因为n n n c a b =-,所以n n n b a c =-,由(1)可得1322n n b n -=⋅+-,设{}n b 前n 项和为n T ,()()131242212-=⋅+++⋅⋅⋅++-++⋅⋅⋅+n n T n n 21232122n n n n -+=⋅+--21332322n n n =⋅-+-.19.为践行两会精神,关注民生问题,某市积极优化市民居住环境,进行污水排放管道建设.如图是该市的一矩形区域地块ABCD ,30m AB =,15m AD =,有关部门划定了以D 为圆心,AD 为半径的四分之一圆的地块为古树保护区.若排污管道的入口为AB 边上的点E ,出口为CD 边上的点F ,施工要求EF 与古树保护区边界相切,EF 右侧的四边形BCFE 将作为绿地保护生态区. 1.732≈,长度精确到0.1m ,面积精确到20.01m )(1)若30ADE ∠=︒,求EF 的长;(2)当入口E 在AB 上什么位置时,生态区的面积最大?最大是多少?【答案】(1)17.3m(2)AE =2255.15m 【解析】【分析】(1)根据DH HE ⊥得Rt Rt DHE DAE ≅ ,然后利用锐角三角函数求出EF 即可;(2)设ADE θ∠=,结合锐角三角函数定义可表示,AE HF ,然后表示出面积,结合二倍角公式化简,再利用基本不等式求解.【小问1详解】设切点为H ,连结DH ,如图.15DH DA == ,DA AE ⊥,DH HE ⊥,Rt Rt DHE DAE ∴≅△△;30HDE ADE HDF ∴∠=∠=∠=︒;15tan 3015tan 3017.3m EF EH HF ∴=+=︒+︒≈.【小问2详解】设ADE θ∠=,则902EDH θ∠=︒-,15tan AE θ∴=,()15tan 902HF θ︒=-.()1111515tan 1515tan 1515tan 902222ADE DHE DHF AEFD S S S S θθθ=+=⨯⨯++⨯⨯+⨯⨯︒-△△△梯形 2225111tan 31225tan 225tan 225tan 2tan 222tan 44tan θθθθθθθ⎛⎫-⎛⎫=+=+⨯=+ ⎪ ⎪⎝⎭⎝⎭22513tan 4tan 2θθ⎛⎫=+≥⎪⎝⎭,当且仅当tan 3θ=,即30θ=︒时,等号成立,30152ABCD BCFE AEFD S S S ∴=-=⨯-梯形梯形矩形,15tan AE θ∴==时,生态区即梯形BCEF 的面积最大,最大面积为2450255.15m 2-≈.20.已知向量()π2cos ,cos21,sin ,16a x x b x ⎛⎫⎛⎫=+=+- ⎪ ⎪⎝⎭⎝⎭.设函数()1,R 2f x a b x =⋅+∈ .(1)求函数()f x 的解析式及其单调递增区间;(2)将()f x 图象向左平移π4个单位长度得到()g x 图象,若方程()21g x n -=在π0,2x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解12,x x ,求实数n 的取值范围,并求()12sin2x x +的值.【答案】(1)()πsin 26f x x ⎛⎫=-⎪⎝⎭,()πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦(2)实数n的取值范围是)1,1-,()12sin22x x +=【解析】【分析】(1)利用向量数量积的坐标公式和三角恒等变换的公式化简即可;(2)利用函数的平移求出()g x 的解析式,然后利用三角函数的图像和性质求解即可.【小问1详解】由题意可知()1π1112cos sin cos212cos sin cos cos2262222f x a b x x x x x x x ⎛⎫⎛⎫=⋅+=⋅+--+=⋅+-- ⎪ ⎪ ⎪⎝⎭⎝⎭21cos211cos cos cos2=sin2cos22222x x x x x x x +=⋅+--+--1πsin2cos2sin 2226x x x ⎛⎫=-=- ⎪⎝⎭()πsin 26f x x ⎛⎫∴=- ⎪⎝⎭.由πππ2π22π,Z 262k x k k -+≤-≤+∈,可得ππππ,Z 63k x k k -+≤≤+∈,∴函数()f x 的单调增区间为()πππ,π,Z 63k k k ⎡⎤-++∈⎢⎥⎣⎦.【小问2详解】()ππππsin 2sin 24463g x f x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,πππ2π22π,Z 232k x k k -+<+<+∈ ,得5ππππ,Z 1212k x k k -+<<+∈,()πsin 23g x x ⎛⎫∴=+ ⎪⎝⎭在区间()5πππ,πZ 1212k k k ⎛⎫-++∈ ⎪⎝⎭上单调递增,同理可求得()πsin 23g x x ⎛⎫=+ ⎪⎝⎭在区间()π7ππ,πZ 1212k k k ⎛⎫++∈ ⎪⎝⎭上单调递减,且()g x 的图象关于直线ππ,Z 122k x k =+∈对称,方程()21g x n -=,即()12n g x +=,∴当π0,2x ⎡⎤∈⎢⎥⎣⎦时,方程()12n g x +=有两个不同的解12,x x ,由()g x 单调性知,()g x 在区间π0,12⎡⎤⎢⎥⎣⎦上单调递增,在区间π12π,2⎡⎤⎢⎥⎣⎦上单调递减,且()πππ0,1,,261222g g g g ⎛⎫⎛⎫⎛⎫====- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故当31122n +≤<时,方程()12n g x +=有两个不同的解12,,x x11n -≤<,实数n 的取值范围是)1,1-.又()g x 的图象关于直线π12x =对称,12π212x x +∴=,即()1212π3,sin262x x x x +=∴+=.21.已知函数()ln 1,R f x x ax a =-+∈.(1)若0x ∃>,使得()0f x ≥成立,求实数a 的取值范围;(2)证明:对任意的2222*22221223341N ,e,e 112233k k k k k+++++∈⨯⨯⨯⨯<++++ 为自然对数的底数.【答案】(1)1a ≤;(2)证明见解析.【解析】【分析】(1)变形不等式()0f x ≥,分离参数并构造函数,再求出函数的最大值即得.(2)由(1)的信息可得ln 1(1)x x x <->,令221(N )x k k k k k*+∈+=+,再利用不等式性质、对数运算、数列求和推理即得.【小问1详解】函数()ln 1f x x ax =-+,则不等式()ln 10ln 1x f x ax x a x +≥⇔≤+⇔≤,令ln 1()x g x x+=,求导得2ln ()xg x x'=-,当(0,1)x ∈时,()0g x '>,函数()g x 递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 递减,因此当1x =时,max ()1g x =,依题意,1a ≤,所以实数a 的取值范围是1a ≤.【小问2详解】由(1)知,当1x >时,()(1)g x g <,即当1x >时,ln 1x x <-,而当N k *∈时,222111111()11k k k k k k k k ++=+=+->+++,因此2211111ln 1()111k k k k k k k k ++<+--=-+++,于是222222221223341ln ln ln ln 112233k k k k +++++++++++++ 11111111(1)()()()112233411k k k <-+-+-++-=-<++ ,即有222222*********ln()1112233k k k k +++++⨯⨯⨯⨯<++++ ,所以222222*********e 112233k k k k+++++⨯⨯⨯⨯<++++ .【点睛】结论点睛:函数()y f x =的定义区间为D ,(1)若x D ∀∈,总有()m f x <成立,则min ()m f x <;(2)若x D ∀∈,总有()m f x >成立,则max ()m f x >;(3)若x D ∃∈,使得()m f x <成立,则max ()m f x <;(4)若x D ∃∈,使得()m f x >成立,则min ()m f x >.(二)选考题:共10分.请考生在第22、23题中任选一道作答.如果多做,则按所做的第一题计分.【选修4-4:坐标系与参数方程】22.在直角坐标系xOy 中,曲线C 的参数方程为33x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为()2π3θρ=∈R .(1)求C 的普通方程和直线l 的直角坐标方程;(2)若点P 是C 上的一点,求点P 到直线l 的距离的最小值.【答案】(1)C 的普通方程2212x y -=;直线l0y +=(2【解析】【分析】(1)利用消参法求C 的普通方程,根据极坐标可知直线l 表示过坐标原点O ,倾斜角为2π3的直线,进而可得斜率和直线方程;(2)设33,P t t t t ⎛⎫+- ⎪⎝⎭,利用点到直线的距离结合基本不等式运算求解.【小问1详解】因为曲线C 的参数方程为33x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),两式平方相减得22223312x y t t t t ⎛⎫⎛⎫-=+--= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程2212x y -=;又因为直线l 的极坐标方程为()2π3θρ=∈R ,表示过坐标原点O ,倾斜角为2π3的直线,可得直线l的斜率2πtan 3k ==,所以直线l的直角坐标方程y =0y +=.【小问2详解】由题意可设33,P t t t t ⎛⎫+- ⎪⎝⎭,设点33,P t t t t ⎛⎫+- ⎪⎝⎭到直线l0y +=的距离为d ,则d =当且仅当))311t t+=,即(232t=-时,等号成立,所以点P 到直线l .【选修4-5:不等式选讲】23.已知函数()22f x x x =-++.(1)求不等式()24f x x ≥+的解集;(2)若()f x 的最小值为k ,且实数,,a b c ,满足()a b c k +=,求证:22228a b c ++≥.【答案】(1)(,0]-∞(2)证明见解析【解析】【分析】(1)根据题意分<2x -、22x -≤≤和2x >三种情况解不等式,综合可得出原不等式的解集;(2)利用绝对值三角不等式可求得()f x 的最小值,再利用基本不等式可证得所证不等式成立.【小问1详解】由题意可知:2,2()224,222,2x x f x x x x x x -<-⎧⎪=-++=-≤≤⎨⎪>⎩,①当<2x -时,不等式即为224x x -≥+,解得1x ≤-,所以<2x -;②当22x -≤≤时,不等式即为424x ≥+,解得0x ≤,所以20x -≤≤;③当2x >时,不等式即为224x x ≥+,无解,即x ∈∅;综上所示:不等式()24f x x ≥+的解集为(,0]-∞.【小问2详解】由绝对值不等式的性质可得:()22(2)(2)4=-++≥--+=f x x x x x ,当且仅当22x -≤≤时,等号成立,所以()f x 取最小值4,即4k =,可得()4+=a b c ,即4ab ac +=,所以()()22222222228a b c a bac ab ac ++=+++≥+=当且仅当22224ab ac a b b c +=⎧⎪=⎨⎪=⎩,即a b c ===时,等号成立.。
广西南宁市第二中学2024-2025学年高三上学期11月月考数学试题(含解析)
南宁二中2024年11月高三月考数学(时间120分钟,共150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集,集合,则( )A. B. C. D.2.已知复数是的共轭复数,则( )A.2B.3C.D.3.已知双曲线的一条渐近线方程为,则( )A.D.34.已知实数满足,且,则下列说法正确的是( )A. B.C.D.5.天上有三颗星星,地上有四个孩子.每个孩子向一颗星星许愿,如果一颗星星只收到一个孩子的愿望,那么该愿望成真,若一颗星星收到至少两个孩子的愿望,那么向这颗星星许愿的所有孩子的愿望都无法成真,则至少有两个孩子愿望成真的概率是( )A.B. C. D.6.已知,则( )A. B. C.1 D.37.已知函数的零点在区间内,则实数的取值范围是( )U =R {}{03},1A xx B x x =≤<=>∣∣()U A B ⋃=ð{3}x x <∣{01}x x ≤<∣{}01xx ≤≤∣{}0xx ≥∣1i,z z =-z i z z -=()22210y x b b-=>y =b =13,,a b c a b c >>0a b c ++=22ab cb >222a cc a+≥a b >0ab bc +>19294923π2tan 43θ⎛⎫+=- ⎪⎝⎭sin cos2sin cos θθθθ=-1310-1013-()(02)f x kx x =<≤31,2⎛⎫⎪⎝⎭kA. B. C. D.8.已知函数在区间上是增函数,若函数在上的图象与直线有且仅有一个交点,则的范围为( )A.B.C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某科技攻关青年团队共有10人,其年龄(单位:岁)分布如下表所示,则这10个人年龄的( )年龄454036322928人数121321A.中位数是34B.众数是32C.第25百分位数是29D.平均数为34.310.如图所示,在四棱锥中,底面是边长为2的正方形,是正三角形,为线段的中点,点为底面内的动点:则下列结论正确的是()A.若,平面平面B.若,直线与平面C.若直线和异面,点不可能为底面的中心D.若平面平面,且点为底面的中心,则11.设定义在上的函数与的导函数分别为和.若,,且为奇函数,则下列说法中一定正确的是( )A.函数的图象关于点对称B.⎛ ⎝(⎫⎪⎪⎭1,12⎛⎫ ⎪⎝⎭()()2sin 0f x x ωω=>ππ,43⎡⎤-⎢⎥⎣⎦()f x π0,2⎡⎤⎢⎥⎣⎦2y =ω[)2,5[)1,5[]1,231,2⎡⎤⎢⎥⎣⎦E ABCD -ABCD CDE V M DE N ABCD BC DE ⊥CDE ⊥ABCDBC DE ⊥EA ABCD BM EN N ABCD CDE ⊥ABCD N ABCD BM EN≠R ()f x ()g x ()f x '()g x '()()42f x g x --=()()2g x f x '=-'()2f x +()f x ()2,0()()354g g +=-C.D.三、填空题:本题共3小题,每小题5分,共15分.12.已知正三角形的边长为为中点,为边上任意一点,则__________.13.已知三棱锥,二面角的大小为,当三棱锥的体积取得最大值时,其外接球的表面积为__________.14.拿破仑定理:“以任意三角形的三条边为边,向外构造三个正三角形,则这三个正三角形的中心恰为另一个正三角形的顶点.”利用该定理可为任意形状的市区科学地确定新的发展中心区位置,合理组织人流、物流,使城市土地的利用率,建筑的使用效率达到最佳,因而在城市建设规划中具有很好的应用价值.如图,设代表旧城区,新的城市发展中心分别为正,正,正的中心.现已知,则的面积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知等差数列中,.(1)令,证明:数列是等比数列;(2)求数列的前项和.16.(本小题满分15分)米接力短跑作为田径运动的重要项目,展现了一个国家短跑运动的团体最高水平.每支队伍都有自己的一个或几个明星队员,现有一支米接力短跑队,张三是其队员之一,经统计该队伍在参加的所有比赛中,张三是否上场时该队伍是否取得第一名的情况如下表.如果依据小概率值的独立性检验,可以认为队伍是否取得第一名与张三是否上场有关,则认为张三是这支队伍的明星队员.队伍是否取得第一名的情况张三是否上场取得第一名未取得第一名上场104020241()2024k g k ==-∑20241()0k f k ==∑ABC 2,O BC P BC AP AO ⋅=,3,,P ABC AC PB AB BC AB BC -==⊥=P AB C --60 P ABC -ABC V 123,,O O O ACD V ABE V BCF V 1232,30,AB ACB O O O ∠==V ABC V {}n a 5108,23a a ==732n a nb +={}n b {}n nb n n S 4100⨯4100⨯0.1α=未上场6合计24(1)完成列联表,并判断张三是否是这支队伍的明星队员.(2)米接力短跑分为一棒、二棒、三棒、四棒4个选手位置.张三可以作为一棒、二棒或四棒选手参加比赛.当他上场参加比赛时,他作为一棒、二棒、四棒选手参赛的概率分别为,相应队伍取得第一名的概率分别为.当张三上场参加比赛时,队伍取得第一名的概率为0.7.(i )求的值;(ii )当张三上场参加比赛时,在队伍取得某场比赛第一名的条件下,求张三作为四棒选手参加比赛的概率.附:.0.150.100.050.0250.0100.0012.0722.7063.8415.0246.63510.82817.(本小题满分15分)如图,在四棱锥中,为等边三角形,底面是矩形、平面平面分别为线段的中点,点在线段上(不包括端点)(1)若,求证:点四点共面;(2)若,是否存在点,使得与平面,若不存在,请说明理由.18.(本小题满分17分)已知椭圆,四点22⨯4100⨯0.5,,x y 0.7,0.8,0.3,x y ()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++αx αP ABCD -PBC V ABCD PBC ⊥,,ABCD O E ,BC PA F PB 23PF PB =,,,O D E F 22BC AB ==F EF PCD PFBF()2222:10x y E a b a b+=>>,其中恰有三点在椭圆上.(1)求的方程;(2)设是的左、右顶点,直线交于两点,直线的斜率分别为.若,证明:直线过定点.19.悬链线在建筑领域有很多应用.当悬链线自然下垂时,处于最稳定的状态,反之其倒置时也是一种稳定状态.链函数是一种特殊的悬链线函数,正链函数表达式为,相应的反链函数表达式为.(1)证明:曲线是轴对称图形,(2)若直线与函数和的图象共有三个交点,设这三个交点的横坐标分别为,证明:;(3)已知函数,其中.若对任意的恒成立,求的最大值.()()31241,1,0,1,,P P P P ⎛⎛- ⎝⎝E E A B 、E l E C D 、AC BD 、12k k 、127k k =l ()e e 2x x D x -+=()e e 2x xR x --=()()()()2222R x y D x R x Dx ⎡⎤=--⎣⎦y t =()y D x =()y R x =123,,x x x (123ln 1x x x ++>()()()2f x D x aR x b =--,a b ∈R ()4f x ≤))ln1,ln1x ⎡⎤∈⎣⎦a b +南宁二中2024年11月高三月考数学参考答案1.【答案】A 【详解】因为,所以,所以.故选:A.2.【答案】D 【详解】故选:D.3.【答案】C 【详解】因为双曲线为,所以它的渐近线方程为,因为有一条渐近线方程为,所以.故选:C.4.【答案】C 【详解】由题,,取,则,故A 错误;,故错误;,故D 错误;因为,所以,即,故C 正确.故选:C.5.【答案】C 【详解】四个孩子向三颗星星许愿,一共有种可能的许愿方式.由于四个人选三颗星星,那么至少有一颗星星被两个人选,这两个人愿望无法实现,至多只能实现两个人的愿望,所以至少有两个孩子愿望成真,只能是有两颗星星各有一个人选,一颗星星有两个人选,可以先从四个孩子中选出两个孩子,让他们共同选一颗星星,其余两个人再选另外两颗星,有种情况,所以所求概率为故选:C.6.【答案】B 【详解】由,解得,故.故选:B.{},1U B xx ==>R ∣{}U 1B x x =≤∣ð(){}U {03}1{3}A B x x x x x x ⋃=≤<⋃≤=<∣∣∣ð()i 1i i 1i 22i z z -=--+=-==()22210y x b b-=>y bx =±y =b =0,0a c ><1,0,1a b c ===-22ab cb =2522a c c a +=-B 0ab bc +=()()()220a b a b a b c a b -=+-=-->22a b >a b >4381=212432C C A 36=364819P ==πtan 12tan 41tan 3θθθ+⎛⎫+==- ⎪-⎝⎭tan 5θ=-()()()()22sin cos sin sin sin cos cos sin sin cos2sin cos sin sin cos sin cos sin cos θθθθθθθθθθθθθθθθθθθ-+-===-+---()2222sin cos sin tan tan 10cos sin tan 113θθθθθθθθ-+--===-++7.【答案】C 【详解】由,令,,要使的零点在区间内,即在内,与有交点,画出与图像,如图:当时,,此时;当时,,此时故.8.【答案】D 【详解】因为函数的图象关于原点对称,并且在区间上是增函数,所以,又,得,令,得,所以在上的图象与直线的第一个交点的横坐标为,第二个交点的横坐标为,所以,解得,综上所述,,故选:D9.【答案】BCD 【详解】对于A 、B ,把10个人的年龄由小到大排列为,这组数据的中位数为32,众数为32,故A 错误,B 正确;对于C ,由,得这组数据的第25百分位数是第3个数,为29,故正确;对于,这组数据的平均数,故D 正确.故选:BCD.10.【答案】AC 【详解】因为,所以平面,平面,所以平面平面,A 项正确;设的中点为,连接,则.平面平面,平面平面平面.()0f x kx kx ==⇒=()[]0,2g x y x ==∈()[],0,2h x kx x =∈(),(02)f x kx x =-<≤31,2⎛⎫ ⎪⎝⎭31,2x ⎛⎫∈ ⎪⎝⎭()g x ()h x ()g x ()h x 1x =()11g =1k =32x =32g ⎛⎫== ⎪⎝⎭k ==k ⎫∈⎪⎪⎭()()2sin 0f x x ωω=>ππ,43⎡⎤-⎢⎥⎣⎦2π4π323T T ≤⇒≥2π0T ωω⎧=⎪⎨⎪>⎩302ω<≤()2sin 2f x x ω==()π2π2k x k ωω=+∈Z ()f x ()0,∞+2y =π2ωπ2π2ωω+πππ2π222ωωω≤<+15ω≤<312ω≤≤28,29,29,32,32,32,36,40,40,4525%10 2.5⨯=C D 28229332362404534.310x +⨯+⨯++⨯+==,,BC CD BC DE CD DE D ⊥⊥⋂=BC ⊥CDE BC ⊂ ABCD ABCD ⊥CDE CD F EF AF 、EF CD ⊥ ABCD ⊥CDE ABCD ⋂,CDE CD EF =⊂CDE平面,设平面所成的角为,则,,故B 项错误;连接,易知平面,由确定的面即为平面,当直线和异面时,若点为底面的中心,则,又平面,则与共面,矛盾,C 项正确;连接平面平面,分别为的中点,则,又,则,D 项错误.故选:AC.11.【答案】ABD 【详解】对于A ,由为奇函数,得,即,因此函数的图象关于点对称,A 正确;由,得,则,又,于是,令,得,即,则,因此函数是周期函数,周期为4,对于B ,由,得,B 正确;对于C ,显然函数是周期为4的周期函数,,,则C 错误;对于D ,,则,D 正确.故选:EF ∴⊥ABCD EA ABCD θEAF θ∠=AF EF AE ======sin EF EA θ==BD BM ⊂BDE B M E 、、BDE BM EN N ABCD N BD ∈E ∈BDE EN BM ,FN FN ⊂ ,ABCD EF ⊥,ABCD EF FN ∴⊥F N 、CD BD 、112FN BC ==EF =2,EN BM ====BM EN ≠()2f x +()()22f x f x -+=-+()()220f x f x -++=()f x ()2,0()()2g x f x '=-'()()2g x f x a =-+()()42g x f x a -=-+()()42f x g x --=()()22f x f x a =-++1x =2a =-()()2f x f x =-()()()()()2,42f x f x f x f x f x +=-+=-+=()f x ()()22g x f x =--()()()()3512324g g f f +=-+-=-()g x ()()()()13354g g g g +=+=-()()()()2402224g g f f +=-+-=-2024411()506()506(8)4048,k k g k g k ====⨯-=-∑∑()()()()130,240f f f f +=+=2024411()506()0k k f k f k ====∑∑ABD12.【答案】3 【详解】因为三角形是正三角形,为中点,所以,所以,又正三角形的边长为2,所以,所以.13.【答案】【详解】要使棱锥体积最大,需保证到面的距离最大,故,此时,又都在面上,故面,且设外接圆半径为,则由余弦定理,所以,即,故其表面积为故答案为:14.【详解】连接,因为分别为正,正的中心,所以,又,所以,又因为,所以,由勾股定理得,即,由余弦定理,即,解得,ABCO BC AO BC ⊥AO OP ⊥ABC AO ==()223AP AO AO OP AO AO OP AO ⋅=+⋅=+⋅==40π3P ABC d max sin60d PB =⋅ PB AB ⊥,,,AB BC PB BC B PB BC ⊥⋂=PBC AB ⊥PBC 60PBC ∠=PBC V r 2222212cos603223272PC PB BC PB BC =+-⋅⋅⋅=+-⋅⋅⋅= PC=2sin60PC r ==r =22211023R r AB ⎛⎫=+= ⎪⎝⎭2404ππ3R =40π313,CO CO 12,O O ACD V ABE V 1331,,30,30CO AC CO BC O CB O CA ∠∠==== 30ACB ∠= 1390O CO ∠= 123213O O O S O ==V 132O O =2221313CO CO O O +=22224,12AC BC AC BC ⎫⎫+=+=⎪⎪⎪⎪⎭⎭2222cos30AB AC BC AC BC =+-⋅ 412BC =-⋅AC BC ⋅=所以..15.【详解】(1)证明:设等差数列的公差为,因为,所以,联立解得:,所以.所以,所以.所以数列是等比数列,首项为2,公比为2.(2)所以数列的前项和.两式相减得.16.【答案】解:(1)根据题意,可得的列联表:队伍是否取得第一名的情况张三是否上场取得第一名未取得第一名合计1sin302ABC S AC BC =⋅=V {}n a d 5108,23a a ==1148,923a d a d +=+=14,3a d =-=()43137n a n n =-+-=-73220n a n nb +==≠11222n n n n b b ++=={}n b 2nn nb n =⋅{}n nb n 23222322nn S n =+⨯+⨯+⋯⋯+⋅()2322222122n n n S n n +=+⨯+⋯⋯+-⋅+⋅212222nn n S n +-=++⋯⋯+-⋅()12212.21n n n +-=-⋅-()1122n n S n +=-⋅+22⨯上场301040未上场61420合计362460零假设:队伍是否取得第一名与张三是否上场无关;,依据小概率值的独立性检验,可以认为队伍是否取得第一名与张三是否上场有关;故张三是这支队伍的明星队员.(2)由张三上场时,作为一棒、二棒、四棒选手参赛的概率分别为,相应队伍取得第一名的概率分别为.设事件:张三作为一棒参赛,事件:张三作为二棒参赛,事件C :张三作为四棒参赛,事件D :张三上场且队伍获得第一名;则;(i )由全概率公式:,即;与联立解得:.(ii )由条件概率公式:.17【详解】(1)证明:【法1】延长,于延长线交于点,因底面是矩形,且是的中点,故,则是中点,.连,连交于点,0H ()()()()2220.1()60(3014106)4511.25 2.706362440204n ad bc x a b c d a c b d χ-⨯-⨯====>=++++⨯⨯⨯0.1α=0.5,,x y 0.7,0.8,0.3A B ()()()()()()0.5,,,0.7,0.8,0.3P A P B x P C y P DA P DB P DC ======∣∣∣()()()()()()()0.50.70.80.30.7PD P A P D A P B P D B P C P D C x y =++=⨯++=∣∣∣83 3.5x y +=0.510.5x y x y ++=⇒+=0.4,0.1x y ==()()()P DC P C D P D =∣()()()0.10.330.770P C P D C P D ⨯===∣DO AB T ABCD O BC 12OB AD ∥B AT EB ET PB F '因是中点,故,由得,,又因,故点即点,所以四点共面.【法2】因底面是矩形,故,过作直线与平行,则与也平行,故直线与共面,直线也与共面,延长与交于点,连接与直线交于点.则,因是中点,由得,于是,因是的中点,则且,由得,又因,故点即点,所以四点共面.【法3】,系数和为1,根据平面向量共线定理可知四点共面E PA 12EB PT ∥EBF TPF ''V V ∽2PF F B '='23PF PB = F 'F ,,,O D E F ABCD AD ∥BC P l AD l BC l AD l BC DE l G OG PB F ',PGE ADE PGF BOF ''V V V V ≌∽E PA PGE ADE V V ≌PG AD ∥PG BC ∥O BC PG ∥OB 2PG OB =PGF BOF ''V V ∽2PF BF '='23PF PB = F 'F ,,,O D E F ()()222121221333333333PF PB PO OB PO DA PO PA PD PO PE PD ==+=+=+-=+- ,,,O D E F(2)因为是的中点,所以,又平面平面,平面平面,平面,所以平面.取中点,连接,易知两两相互垂直,如图,分别以为轴建立空间直角坐标系,则,设平面的法向量为,则即,令,则,所以..设,则设与平面所成角为,则,解得此时或,此时18.(1)由椭圆对称性,必过,又横坐标为1,椭圆必不过,所以过三点,,PB PC O =BC PO BC ⊥PBC ⊥ABCD PBC ⋂ABCD BC =PO ⊂PBC PO ⊥ABCD AD Q OQ ,,OQ OC OP ,,OQ OC OP ,,x y z ()()()()(1,1,0,0,1,0,0,1,0,1,1,0,A B C D P --()()(0,2,0,1,0,0,0,AD CD CP ===- PCD (),,a x y z = 0,0,a CD a CP ⎧⋅=⎪⎨⋅=⎪⎩ 00x y =⎧⎪⎨-+=⎪⎩1z =y =()a = (01)PF k k PB=<<((11110,1,1,1,,2222EF PF PE k PB PA k k ⎛⎫=-=-=---=-- ⎪ ⎪⎝⎭ EF PCD θsin cos ,EF a EF a EF a θ⋅====⋅ 13k =12PF BF =23k =2PF BF=34,P P 4P 1P 234,,P P P代入椭圆方程得,解得椭圆的方程为:(2)说明:其他等价形式对应给分.依题意,点(i )若直线的斜率为0,则必有,不合题意(ii )设直线方程为与椭圆联立,整理得:,因为点是椭圆上一点,即,设直线的斜率为,所以,所以,即,因为,所以,222111314b a b ⎧=⎪⎪⎨+=⎪⎪⎩224,1a b ==⋯E 221;4x y +=()()2,0,2,0,A B -l 12k k =-l ()2,x ty n n =+≠±E 2244x y x ty n⎧+=⎨=+⎩()2224240t y nty n +++-=()()122222221222,4Δ44440,4.4tn y y t t n t n n y y t ⎧+=-⎪⎪+=-+->⎨-⎪=⎪+⎩()11,C x y 221114x y +=BC 3k 2121111322111111422444x y y y k k x x x x -⋅=⋅===+---123174k k k =-=23281k k ⋅=-()()()()()()1212122322121212122828282822222(2)y y y y y y k k x x ty n ty n t y y t n y y n ⋅===--+-+-+-++-()()()()()()()2222222222228428244222422(2)44n n t t n t n t n n t t n n n t t -++==-+-+-+--+-++()()2827141422n n n n ++===---32n =-故直线恒过定点;19.【详解】(1),令,则所以为偶函数,故曲线是轴对称图形,且关于轴对称(2)令,得,当时,在单调递减,在单调递增,所以,且当时,,当时,又恒成立,所以在上单调递增,且当时,,当时,且对任意,所以的大致图象如图所示,不妨设,由为偶函数可得,与图象有三个交点,显然,令整理得,解得或所以,即,又因为,所以.l3,02⎛⎫- ⎪⎝⎭()()()()22222e e 1e e x x x xR x y D x R x D x --⎛⎫-⎡⎤=--=- ⎪⎣⎦+⎝⎭()2e e 1e e x x x x g x --⎛⎫-=- ⎪+⎝⎭()()22e e e e 1l ,e e e e x x x x x x x x g x g x ----⎛⎫⎛⎫---=-=-= ⎪ ⎪++⎝⎭⎝⎭()g x ()()()()2222R x y D x R x D x ⎡⎤=--⎣⎦y ()e e 02x xD x --=='0x =0x >()()()0;0,0,D x x D x D x <'><'(),0∞-()0,∞+()()01D x D ≥=x ∞→-()D x ∞→+x ∞→+()D x ∞→+()e e 02x xR x -+=>'()R x R x ∞→-()R x ∞→-x ∞→+(),R x ∞→+⋅()(),x D x R x ∈>R 123x x x <<()D x 120x x +=y t =1t >()e e 1,2x x R x t --==>2e 2e 10x x -->e 1x >e 1x <(ln 1x >(3ln 1x >120x x +=(123ln 1x x x ++>+(3)设,则,所以因为单调递增,所以时,,即由即,该不等式组成立的一个必要条件为:和时同时满足,即,所以,当时等号成立;下面分析充分性:若时,显然对恒成立,从而,满足题意综上所述:的最大值为()e e 2x x R x m --==()222e e 2212x xD x m -+==+()()()2221,f x D x aR x b m am b =--=+--()e e 2x xR x --=))ln 1,ln 1x ⎡⎤∈-+⎣⎦()[]1,1R x ∈-[]1,1,m ∈-()244214f x m am b ≤⇔-≤+--≤22250230m am b m am b ⎧--+≥⎨---≤⎩1m =-1m =7117a b b a -≤--≤⎧⎨-≤-≤⎩7a b +≤4,3a b ==4,3a b ==2222222502435021023024330230m am b m m m m m am b m m m m ⎧⎧⎧--+≥--+≥-+≥⎪⎪⇔⇔⎨⎨⎨---≤---≤--≤⎪⎩⎪⎩⎩[]1,1m ∀∈-()4f x ≤a b +7.。
安徽省六安市六安第一中学2024-2025学年高三上学期第四次月考(11月)数学试题(含答案)
六安一中2025届高三年级第四次月考数学试卷时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是两个不同的平面,是两条不同的直线,下列命题不正确的是( )A.若,则B.若,则C.若,则D.若,则2.如图所示,在四棱锥中,底面是正方形,为中点,若,则( )A. B.C. D.3.某学校高二年级选择“物化生”,“物化地”和“史地政”组合的同学人数分别为240,90和120.现采用分层抽样的方法选出30位同学进行某项调查研究,则“史地政”组合中选出的同学人数为( )A.8B.12C.16D.64.已知数列的首项,则( )A.48B.80C.63D.655.已知等差数列满足,前项和为,若,则与最接近的整数是( )A.5B.4C.2D.16.已知数列满足,若对于任意都有,则实数的取值范围是(),αβ,m n m ∥,n m α⊥n α⊥,m m αβ⊥⊥α∥β,m m αβ⊥⊂αβ⊥m ∥,n ααβ⋂=m ∥nP ABCD -ABCD E PD ,,PA a PB b PC c === BE =111222a b c -+ 111222a b c -- 131222a b c -+ 113222a b c -+ {}n a 110,1n n a a a +==++8a ={}n a 131,3a a ==n n S 12111n nT S S S =+⋯+9T {}n a *712,8,2,8n n a n n a n a n -⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N *n ∈N 1n n a a +>aA. B. C. D.7.在棱长为2的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为B.存在点使得异面直线与所成角为C.存在点使得二面角的平面角为D.当时,平面截正方体所得的截面面积为8.已知一圆柱的轴截面为正方形,母线长为,在该圆柱内放置一个棱长为的正四面体,并且正四面体在该圆柱内可以任意转动,则的最大值为()A.1B.2C.D.4二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图的形状出现在南宋数学家杨辉所著的《详解九章算法∙商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,,设第层有个球,从上往下层球的总数为,则( )A. B.C. D.1,12⎛⎫⎪⎝⎭113,220⎛⎫ ⎪⎝⎭13,120⎛⎫ ⎪⎝⎭31,2⎛⎫ ⎪⎝⎭1111ABCD A B C D -M 11A C M BM AC 90 M BM AC 30 M M BD C --451114A M AC =BDM 92a a ⋯n n a n n S 34S a =132n n n a a ++-=11n n a a n +-=+1055a =10.在边长为6的菱形中,,现将沿折起到的位置,使得二面角是锐角,则三棱锥的外接球的表面积可以是( )A.B.C.D.11.对于棱长为1(单位:)的正方体容器(容器壁厚度忽略不计),下列说法正确的是( )A.底面半径为高为的圆锥形罩子(无底面)能够罩住水平放置的该正方体B.C.该正方体内能同时整体放入两个底面半径为高为的圆锥D.的圆锥三、填空题:本题共3小题,每小题5分,共15分.12.已知一组数据的平均数是1,则这组数据的中位数为__________.13.已知四棱锥平面,底面是为直角,的直角梯形,如图所示,且为的中点,则到直线的距离为__________.14.若在长方体中,.则四面体与四面体公共部分的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设三角形的内角的对边分别为且.(1)求角的大小;(2)若,求三角形的周长.16.(本小题满分15分)已知无穷等比数列的前项和为(1)求的值;ABCD π3A ∠=ABD V BD PBD V P BD C --P BCD -58π45π48π55πm 1m,1m 0.5m,0.8m 31,2,0,1,,1x -,A EBCD AE -⊥BCDE EBCD E ∠EB ∥DC 224,CD EB AE DE ====F AD F BC 1111ABCD A B C D -13,2,4AB BC AA ===11ABB C 11AC BD ABC A B C 、、a b c 、、()2sin 2AB C +=A 3,b BC =ABC {}n a n 3nn S b=+1,b a(2)设,求数列的前项和.17.(本小题满分15分)如图所示,在三棱柱中,平面,点是的中点(1)证明:;(2)求与平面所成角的正弦值.18.(本小题满分17分)如图1,在等腰梯形中,,点在以为直径的半圆上,且,将半圆沿翻折如图2.(1)求证:平面;(2)当多面体的体积为32时,求平面与平面夹角的余弦值.19.(本小题满分17分)若存在非零常数,使得数列满足,则称数列为“数列”.(1)判断数列:是否为“数列”,并说明理由;(2)若数列是首项为1的“数列”,数列是等比数列,且与满足,求的值和数列的通项公式;(3)若数列是“数列”,为数列的前项和,,证明:221,1,2,3,n n c a n n =+-= {}n c n n T 111ABC A B C -112,AC BC AB AB ===⊥ABC 1,AC AC D ⊥AC 11AC B C ⊥1A D 11BB C C ABCD AD ∥,8,4,60BC AD BC DAB ∠===,E F AD »»»AE EFFD ==AD EF ∥ABCD ABE DCF -ABE CDF t {}n a ()11231,n n a a a a a t n n +-=≥∈N {}n a ()H t 1,3,5,11,152()2H {}n a ()H t {}n b {}n a {}n b 212321log ni n n i aa a a ab ==+∑ t {}n b {}n a ()H t n S {}n a n 11,0a t >>1e n S nn n t S S -+>--六安一中2025届高三年级第四次月考数学试卷参考答案1.D2.C3.A4.C5.C6.C7.D8.D9.ACD 10.AD 11.BD 12.【答案】114.15.(1)因为为的内角,所以,因为,所以可化为:,即,即解得:,即.(另解:由;得.)(2)由三角形面积公式得代入得:,所以,故为正三角形,,周长等于16.(1)当时,,因为是等比数列,所以,又因为,所以(2)由(1)知,43,,A B C ABC V ()sin sin B C A +=21cos sin22A A -=()2sin 2A B C +=)sin 1cos A A =-sin A A =πππ4πsin ,3333A A ⎛⎫⎛⎫+=+∈ ⎪ ⎪⎝⎭⎝⎭π2π33A +=π3A =2sin 2sincos 222A A A A =⋅=πtan 226A A ==11sin ,322b c A b ⋅==1π13sin 232c ⨯⋅=a c =ABC V 3a b c ===9.2n ≥1123n n n n a S S --=-=⨯{}n a 12a =113a S b ==+1b =-123n n a -=⨯因为,且,所以是以6为首项,9为公比的等比数列,.17.解析:(1)由题意,平面平面,所以,又,且平面,所以平面,因为平面,所以.(2)法一(坐标法):由(1)知,又,所以,以为原点建立如图所示的空间直角坐标系,则,,所以,,设平面的法向量为,则,所以,从而故直线与平面法二(几何法):取中点,则,26a =2229n na a +={}2n a ()()2421321n n T a a a n ⎡⎤=+++++++-⎣⎦()291236919124n n n n n -⋅=⨯+=-+-1AB ⊥,ABC AC ⊂ABC 1AC AB ⊥1AC AC ⊥11AB AC ⊂、1111,AB C AB AC A ⋂=AC ⊥11AB C 11B C ⊂11AB C 11AC B C ⊥11AC B C ⊥BC ∥11B C AC BC ⊥C ()()()()10,0,0,2,0,0,0,2,2,0,2,0C B B A ()0,1,0D ()()()12,0,0,2,2,2,0,1,0CB BB DA ==-=()()()1110,1,02,2,22,3,2DA DA AA DA BB =+=+=+-=-11BC C C (),,n x y z =1202220n CB x n BB x y z ⎧⋅==⎪⎨⋅=-++=⎪⎩ ()0,1,1n =- 111cos ,DA n DA n DA n⋅===⋅1A D 11BB C C 11C A M CM ∥1A D记与面所成角为,则由知解得,又,所以18.(1)连由等边三角形可知分布在同一个圆周上,且,则六边形为正六边形,面面(2)在图1中连交于,则,连交于,则,故在图2中面面记面与面所成角为,则故,即面面法一(几何法):延长交于延长交于则为面与面交线且取中点,连接,则即为面与面所成角在中,,故,故面与面所成角的余弦值为法二(坐标法):以为坐标原点,所在的直线为轴,建立空间直角坐标系,则,CM 11BB C C θ1111112sin A CC B BM CC B Bd d CMCMθ--==111111A B C C C A B C V V --=11111111133B C C A A B C S d S AB ⋅=⋅1A d =CM ===sin θ=OB OC 、A B C D F E 、、、、、AE EF FD DC CB BA =====ABCDFE EF ∴∥AD ∥,BC EF ⊄ABCD,BC ⊂ABCD EF ∴∥ABCDEB AD 1O AD EB ⊥FC AD 2O AD FC ⊥AD ⊥1,EO B AD ⊥2FO CABE CDF θ1212,6sin EO B FO C EO B FO C S S ∠∠θθ====V 1221ABE DCF EO B FO C D FO CA EOB V V V V ----=++锥112121132sin 3233EO B EO B FO C S AO S EF S DO θ=⨯+⨯+⨯==V πsin 1,2θθ==AEFD ⊥ABCDAB DC 、,Q F AE D 、,P PQ ABE CDF 8,8AP AQ PD QD ====PQ M AM DM 、AMD ∠ABE CDF AMD V 8AM DM AD ===1cos 5AMD ∠==ABE CDF 151O 111,,O B O D O E ,,x y z ()()(()()(0,2,0,,0,0,,4,0,0,6,0,0,4,A B E C D F -,有令得同理可得面法向量,设面与面所成角为,故19.【详解】(1)根据”数列“的定义,则,故,因为成立,成立,不成立,所以不是”数列“.(2)由是首项为2的”数列“,则,由是等比数列,设公比为,由,则.两式作差可得,即,由是”数列“,则,对于恒成立,所以,即对于恒成立,则,即,因为解得,,又由,则,即,故所求的,数列的通项公式.(3)设函数,则,令,解得,当时,,则在区间单调递减,且,又由是”数列",即,对于恒成立,()(2,0,0,2,AB AE ==2020AB n y AE n y ⎧⋅=+=⎪⎨⋅=+=⎪⎩1,x=()1,n =CDF ()m =ABE CDF α1cos 5m n m n α⋅==⋅ ()H t 2t =11232n n a a a a a +-= 212a a -=3212a a a -=43211113542a a a a -=-⨯⨯=-≠1,3,5,11,152()2H {}n a ()H t 231,21a t a t =+=+{}n b q 212321log nn n i iaa a a ab ==+∑ 121231211log n i n n n i a a a a a a b +++==+∑ ()2112312121log log n n n n n a a a a a a b b +++=-+- ()21123121log n n n a a a a a a q ++=-+ {}n a ()H t 1123n n a a a a a t +-= 1,n n ≥∈N ()()211121log n n n a a t a q +++=--+()12121log log n n n t a t b b +++=+-1,n n ≥∈N ()()22321log 1log t a t q t a t q ⎧+-=⎪⎨+-=⎪⎩()()222(1)log 121log t t qt t t q ⎧+-=⎪⎨++-=⎪⎩0t ≠1,2t q =-=2111211,log a a a b ==+11b =12n n b -=1t =-{}n b 12n n b -=()ln 1f x x x =-+()11f x x'=-()0f x '=1x =1x >()0f x '<()ln 1f x x x =-+()1,∞+()1ln1110f =-+={}n a ()H t 1123n n a a a a a t +-= 1,n n ≥∈N因为,则,再结合,反复利用,可得对于任意的,则,即,则,即,相加可得,则,又因为在上单调递增,所以,又,所以,即,故.11,0a t >>211a a t =+>121,0,1a t a >>>1123n n a a a a a t +=+ 1,,1n n n a ≥∈>N ()()10n f a f <=ln 10n n a a -+<ln 1n n a a <-1122ln 1,ln 1,,ln 1n n a a a a a a <-<-⋯<-1212ln ln ln n n a a a a a a n +++<+++- ()12ln n n a a a S n <- ln y x =()0,x ∞∈+12en S nn a a a -< 1123n n a a a a a t +-= 1e n S nn a t -+-<1en S nn n S S t -+--<1en S nn n t S S -+>--。
湖北省荆州市沙市2024-2025学年高三上学期11月月考数学试题含答案
2024—2025学年度上学期2022级11月月考数学试卷(答案在最后)命题人:考试时间:2024年11月26日考试时间120分钟试卷满分150一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3,4A =,(){}2|log 12B x x =-≤,则A B 的元素个数为A .1B .2C .3D .42.已知复数z 在复平面内对应的点为(2,-1),则4iz z =-()A.1i+ B.3i+ C.1i- D.3i-3.等比数列{}n a 的各项均为正数,若1237a a a ++=,4322a a a =+,则789a a a ++=A .588B .448C .896D .2244.设等差数列{}n a 的前n 项和为n S ,已知774721S a =-,则3a =()A.-2B.-1C.1D.25.已知a ∈R ,函数()()e ,0,ln 1,0x a x f x x a x ⎧-≤⎪=⎨-+->⎪⎩在R 上没有零点,则实数a 的取值范围A .()0,+∞B .()1,+∞C .[){}1,0+ ∞D .(){}1,0+ ∞6.已知θ为第一象限角,且tan tan 03⎛⎫++= ⎪⎝⎭πθθ,则1cos21cos2+=-θθA .9B .3C .13D .197.已知等腰梯形的上底长为1,腰长为1,若以等腰梯形的上底所在直线为轴,旋转一周形成一个几何体,则该几何体表面积的最大值为()A. B.(2π+ C.(1π+ D.(3π8.若函数()()()sin cos 10f x x ωω=->在区间()0,2π恰有2个零点,则ω的取值范围是()A.π0,2⎛⎫ ⎪⎝⎭B.π3π,22⎛⎫ ⎪⎝⎭ C.π5π,22⎛⎫⎪⎝⎭ D.π,2⎛⎫+∞⎪⎝⎭二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()cos sin f x x x =⋅,则A .()f x 是偶函数B .()f x 的最小正周期为πC .()f x 的最大值为12D .()f x 在0,2⎡⎤⎢⎥⎣⎦π上单调递增10.记等比数列{}n a 的前n 项积为n T ,且63*,a a ∈N ,若5106T =,则36a a +的可能取值为()A.-7B.5C.6D.711.如图,圆锥SO 的底面直径和母线长均为,其轴截面为SAB △,C 为底面半圆弧AB 上一点,且2AC CB =,SM SC = λ,(01,01)SN SB =<<<<μλμ,则A .存在()0,1∈λ,使得BC AM ⊥B .当23=μ时,存在()0,1∈λ,使得//AM 平面ONCC .当13=λ,23=μ时,四面体SAMN D .当AN SC ⊥时,57=μ三、填空题:本题共3小题,每小题5分,共15分.12.已知点(),4A a 在抛物线24y x =上,F 为抛物线的焦点,直线AF 与准线相交于点B ,则线段FB 的长度为______.13.已知数列{}n a 是单调递增数列,其前n 项和为2n S An Bn =+(A ,B 为常数),写出一个有序数对(),A B =________,使得数列是等差数列.14.定义在R 上的函数()g x 满足()212y g x =+-是奇函数,则()g x 的对称中心为________;若()*123211111n n a g g g g n n n n n +⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+∈ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭N ,则数列{}n a 的通项公式为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()ln f x ax x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当1x >时,()1f x <-,求a 的取值范围;16.(15分)如图,在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin sin sin A B B Cc a b++=-.(1)求A ;(2)若3,0BC BD AB AD =⋅=,2AD = ,将ABC V 沿AD 折成直二面角B AD C '--,求直线AB '与平面B CD '所成角的正弦值.17.(15分)已知*n ∈N ,数列{}n a 前n 项和为n S ,且满足21n n S a =-;数列{}n b 满足12b =,112n nb b +=-.(1)求数列{}n a 的通项公式;(2)是否存在实数λ,使得数列1n b ⎧⎫⎨⎬-⎩⎭λ是等差数列?如果存在,求出实数λ的值;如果不存在,请说明理由;(3)求使得不等式2n n nb a ≥成立的n 的最大值.18.(17分)已知椭圆C :()222210+=>>x y a b a b点()0,1A 在C 上,直线l 与C 交于不同于A 的两点M ,N .(1)求C 的方程;(2)若0AM AN ⋅=,求AMN 面积的最大值;(3)记直线AM ,AN 的斜率分别为1k ,2k ,若12116k k =-,证明:以MN 为直径的圆过定点,并求出定点坐标.19.(本题满分17分)一般地,任何一个复数i a b +(a ,b ∈R )可以写成()cos isin r θθ+,其中r 是复数的模,θ是以x 轴非负半轴为始边,射线OZ 为终边的角,称为复数的辅角.我们规定在02θπ≤<范围内的辅角称为辅角主值,通常记作arg z ,如arg10=,arg i 2π=,()arg 13π=.发现()()()()12111222121212cos sin cos sin cos isin z z r r r r θθθθθθθθ⋅=+⋅+=+++⎡⎤⎣⎦,就是说两个复数相乘,积的模等于各复数模的积,积的辅角等于各复数辅角的和.考虑如下操作:从写有实数0,1的三张卡片中随机抽取两张,将卡片上的两个数依次作为一个复数的实部和虚部.设n 为正整数,重复n 次上述操作,可得到n 个复数,将它们的乘积记为n z .(1)写出一次操作后所有可能的复数;(2)当2n =,记n z 的取值为X ,求X 的分布列;(3)求2n z 为实数的概率n Q .11月月考数学参考答案1.【答案】C 2.【答案】B 3.【答案】B4。
2024-2025学年上海华二附中高三上学期数学月考试卷及答案(2024.09)
1华二附中2024学年第一学期高三年级数学月考2024.09一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知i 为虚数单位,复数12iz i+=,则z 的实部为________. 2.若函数()133x xf x a =⋅+为偶函数,则实a =________. 3.若事件A 、B 发生的概率分别为1()2P A =,2()3P B =,且相互独立,则()P A B =________.4.已知集合(){}2|log 1A y y x ==−,{}3|27B x x =≤,则A B =________.5.设{}n a 是等比数列,且13a =,2318a a +=,则n a =________.6.现有一球形气球,在吹气球时,气球的体积V 与直径d 的关系式为36d V π=,当2d =时,气球体积的瞬时变化率为________. 7.已知随机变量X 的分布为123111236⎛⎫⎪ ⎪ ⎪⎝⎭,且3Y aX =+,若[]2E Y =−,则实数a =________. 8.记函数()()()cos 0,0f x x =ω+ϕω><ϕ<π的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为________.9.若6(0)b ⎛> ⎝的展开式中含x 项的系数为60,则2a b +的最小值为________.10.顶点为S 的圆锥的母线长为60cm ,底面半径为25cm ,A ,B 是底面圆周上的两点,O 为底面中心,且35AOB π∠=,则在圆锥侧面上由点A 到点B 的最短路线长为____cm .(精确到0.1cm )11.已知△ABC 中,22AB BC ==,AB 边上的高与AC 边上的中线相等,则tan B =2________.12.给定公差为d 的无穷等差数列{}n a ,若存在无穷数列{}n b 满足: ①对任意正整数n ,都有1n n b a −≤②在21b b −,32b b −,…,20252024b b −中至少有1012个为正数,则d 的取值范围是________. 二、单选题(本大题共4小题,共18.0分.在每小题列出的选项中,选出符合题目的一项) 13.“1a b +>”是“33a b >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件14.如果两种证券在一段时间内收益数据的相关系数为正数,那么表明( ) A .两种证券的收益之间存在完全同向的联动关系,即同时涨或同时跌 B .两种证券的收益之间存在完全反向的联动关系,即涨或跌是相反的 C .两种证券的收益有同向变动的倾向 D .两种证券的收益有反向变动的倾向15.设0k >,若向量a 、b 、c 满足::1::3a b c k =,且2()b a c b −=−,则满足条件的k 的取值可以是( )A .1B .2C .3D .416.设1A ,1B ,1C ,1D 分别是四棱锥P ABCD −侧棱PA ,PB ,PC ,PD 上的点.给出以下两个命题,①若ABCD 是平行四边形,但不是菱形,则1111A B C D 可能是菱形;②若ABCD 不是平行四边形,则1111A B C D 可能是平行四边形.( ) A .①真②真 B .①真②假 C .①假②真 D .①假②假三、解答题(本大题共5小题,共78.0分.)17.(本小题14.0分)如图,在圆柱中,底面直径AB等于母线AD,点E在底面的圆周⊥,F是垂足.(1)求证:AF DB⊥;(2)若圆柱与三棱锥D ABE−的体积的比等于3π,求直线DE与平面ABD所成角的大小.3418.(本小题14.0分)李先生是一名上班旋,为了比较上下班的通勤时间,记录了20天个工作日内,家里到单位的上班时间以及同路线返程的下班时间(单位:分钟),如下茎叶图显示两类时间的共40个记录:(1)求出这40个通勤记录的中们数M ,并完成下列22⨯列联表:(2)根据列联表中的数据,请问上下班的通勤时间是否有显著差异?并说明理由. 附:()()()()()22n ad bc a b c d a c b d −χ=++++,()2 3.8410.05P χ≥≈.519.(本小题14.0分)如图,某城市小区有一个矩形休闲广场,20AB =米,广场的一角是半径为16米的扇形BCE 绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放,已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角NBE ∠=θ,总造价为W 元。
2024-2025学年江苏省南通市海安高级中学高三上学期9月月考数学试题及答案
江苏省海安中学2025届高三年级学习测试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的1.已知集合{}{}20,1,2,3,log 1A B xx ==≤∣,则A B ⋂=( )A.{}0,1,2B.{}1,2C.{}0,1D.{}12.命题“20,10x x x ∀>-+>”的否定为( )A.20,10x x x ∀>-+≤B.20,10x x x ∀≤-+≤C.20,10x x x ∃>-+≤D.20,10x x x ∃≤-+≤3.已知函数()21,0cos ,0x x f x x x ⎧+>=⎨≤⎩,则下列结论正确的是( )A.()f x 是偶函数B.()f x 是增函数C.()f x 是周期函数D.()f x 的值域为[)1,∞-+4.若a b >,则( )A.ln ln a b >B.0.30.3a b >C.330a b ->D.0a b ->5.已知函数()()1ln 1f x x x=+-,则()y f x =的图象大致是( )A. B.C. D.6.如图,矩形ABCD 的三个顶点A B C 、、分别在函数12,,xy y x y ===的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为()A.11,24⎛⎫⎪⎝⎭ B.11,34⎛⎫ ⎪⎝⎭ C.11,23⎛⎫ ⎪⎝⎭ D.11,33⎛⎫ ⎪⎝⎭7.已知()912160,0,log log log a b a b a b >>==+,则ab=( )C.128.已知()()5,15ln4ln3,16ln5ln4a b c ==-=-,则( )A.a c b <<B.c b a <<C.b a c <<D.a b c<<二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求、全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分9.下列函数中,在区间ππ,42⎛⎫⎪⎝⎭上单调递减的函数是( )A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.cos y x x=-C.sin2y x =D.πcos 3y x ⎛⎫=-⎪⎝⎭10.下面的结论中正确的是( )A.若22ac bc >,则a b >B.若0,0a b m >>>,则a m ab m b+>+C.若110,0,a b a b a b>>+=+,则2a b +≥D.若20a b >>,则()44322a b a b +≥-11.已知函数()cos sin2f x x x =,下列结论中正确的是( )A.()y f x =的图像关于()π,0中心对称B.()y f x =的图像关于π2x =对称C.()f xD.()f x 既是奇函数,又是周期函数三、填空题:本题共3小题,每小题5分,共15分.12.已知()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()321f x g x x x -=+-,则()()11f g +=__________.13.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为__________.14.若存在实数t ,对任意的(]0,x s ∈,不等式()()ln 210x x t t x -+---≤成立,则整数s 的最大值为__________.(参考数据:ln3 1.099,ln4 1.386≈≈)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题13分)如图1,在等腰直角三角形ABC 中,90,6,A BC D E ∠== 、分别是,AC AB 上的点,CD BE O ==为BC 的中点.将ADE 沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中AO =(1)求证:A O '⊥平面BCDE ;(2)求点B 到平面A CD '的距离.16.(本题15分)设数列{}n a 的各项均为正整数.(1)数列{}n a 满足1121212222n n n n a a a a n --++++= ,求数列{}n a 的通项公式;(2)若{}n a 是等比数列,且n a n ⎧⎫⎨⎬⎩⎭是递减数列,求公比q .17.(本题15分)已知函数()πsin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭在2π0,3⎛⎤ ⎥⎝⎦上单调递增,在2π,π3⎛⎤ ⎥⎝⎦上单调递减,设()0,0x 为曲线()y f x =的对称中心.(1)求0x 的值;(2)记ABC 的角,,A B C 对应的边分别为,,a b c ,若0cos cos ,6A x b c =+=,求BC 边上的高AD 长的最大值.18.(本题17分)已知函数()()e ln xf x x m =-+.(1)当0m =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当2m ≤时,求证()0f x >.19.(本题17分)在平面内,若直线l 将多边形分为两部分,多边形在l 两侧的顶点到直线l 的距离之和相等,则称l 为多边形的一条“等线”,已知O 为坐标原点,双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为12,,F F E 的离心率为2,点P 为E 右支上一动点,直线m 与曲线E 相切于点P ,且与E 的渐近线交于,A B 两点,当2PF x ⊥轴时,直线1y =为12PF F 的等线.(1)求E 的方程;(2)若y =是四边形12AF BF 的等线,求四边形12AF BF 的面积;(3)设13OG OP =,点G 的轨迹为曲线Γ,证明:Γ在点G 处的切线n 为12AF F 的等线江苏省海安中学2025届高三年级学习测试数学试卷答案解析人:福佑崇文阁一、单选题:本大题共8小题,每题5分,共40分在每小题提供的四个选项中,只有一项是符合题目要求的.12345678BCDCBADB二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ACACDABD三、填空题:本题共3小题,每小题5分,共15分.12.11-14.2四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.【详解】(1)解:(1)连接,,45,3OD OE B C CD BE CO BO ∠∠====== ,在COD 中,OD ==,同理得OE =,因为6BC =,所以AC AB ==所以AD A D A E AE ='==='因为AO =所以222222,A O OD A D A O OE A E '+=='+''所以,A O OD A O OE'⊥⊥'又因为0,OD OE OD ⋂=⊂平面,BCDE OE ⊂平面BCDE 所以A O '⊥平面BCDE ;(2)取DE 中点H ,则OH OB ⊥以O 为坐标原点,,,OH OB OA '所在直线分别为,,x y z 轴,建立空间直角坐标系则()(()()0,0,0,,0,3,0,1,2,0O A C D --',设平面A CD '的一个法向量为(),,n x y z =,又((),1,1,0CA CD ==' ,所以300n CA y n CD x y ⎧⋅==⎪⎨⋅=+=⎪'⎩,令1x =,则1,y z =-=,则(1,n =-,又()()0,3,0,0,6,0B CB =,所以点B 到平面A CD '16.【详解】(1)因为1121212222n n n na a a a n --++++= ,①所以当2n ≥时,1121211222n n a a a n --+++=- ,②由①-②得,12nn a =,所以2nn a =,经检验,当1n =时,12a =,符合题意,所以2nn a =(2)由题设知0q >.若1q =,则1,n n a a a n n n ⎧⎫=⎨⎬⎩⎭是递减数列,符合题意.若1q <,则当1log q n a >时,11nn a a q =<,不为正整数,不合题意.若1q >,则()()1111n n n qn n a a a n n n n +⎡⎤-+⎣⎦-=++,当1qn n >+,即11n q >-时,11n n a a n n +>+,这与n a n ⎧⎫⎨⎬⎩⎭是递减数列相矛盾,不合题意.故公比1q =.17.【详解】(1)因为()πsin 6f x x ω⎛⎫=+⎪⎝⎭在2π(0,}3上单调递增,在2π,π3⎛⎤⎥⎝⎦上单调递减,所以2π13f ⎛⎫=⎪⎝⎭且4π3T ≥,所以2πππ2π,362k k ω⋅+=+∈Z ,可知13,2k k ω=+∈Z ,又由2π4π3ω≥,可知302ω<≤,所以12ω=,故()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭,由1ππ,26x m m +=∈Z ,可得π2π3x m =-,即0π2π,3x m m =-∈Z .(2)22222201()2362cos cos 2222b c a b c bc a bc a A x bc bc bc+-+----=====,化简得2363a bc =-,因为11sin 22ABC S a AD bc A =⋅=,所以AD =,所以()22223()3()44363bc bc AD a bc ==-,又b c +≥,所以9bc ≤,当且仅当3b c ==时取等号,所以()22223()3327363436343634499()bc AD bc bc bc ==≤=-⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦,所以AD ≤,故AD.18.【详解】(1)当()()10,e ln ,e xxm f x x f x x==--'=,所以()1e 1k f '==-,而()1e f =,切线方程为()()e e 11y x -=--,即所求切线方程为()e 110x y --+=;(2)()f x 得定义域为()()1,,e xm f x x m∞='-+-+,设()()1e xg x f x x m='=-+,则()21e 0()xg x x m '=+>+,故()f x '是增函数,当x m →-时,(),f x x ∞∞→-→+'时,()f x ∞'→+,所以存在()0,x m ∞∈-+,使得001e x x m=+①,且()0,x m x ∈-时,()()0,f x f x '<单调递减,()0,x x ∞∈+时,()()0,f x f x '>单调递增,故()()0min 00()e ln xf x f x x m ==-+②,由①式得()00ln x x m =-+③,将①③两式代入②式,结合2m ≤得:min 000011()20f x x x m m m m x m x m =+=++-≥-=-≥++,当且仅当01x m =-时取等号,结合(2)式可知,此时()00e 0x f x =>,故()0f x >恒成立.19.【详解】(1)由题意知()()212,,,0,,0b P c F c F c a ⎛⎫- ⎪⎝⎭,显然点P 在直线1y =的上方,因为直线1y =为12PF F 的等线,所以222212,2,b ce c a b a a -====+,解得1a b ==,E 的方程为2213y x -=(2)设()00,P x y ,切线()00:m y y k x x -=-,代入2213y x -=得:()()()2222200000032230k xk kx y x k x y kx y -+--+-+=,故()()()22222000000243230k kx y kkx y kx y ⎡⎤-+-+-+=⎣⎦,该式可以看作关于k 的一元二次方程()22200001230x k x y k y --++=,所以000002200031113x y x y x k x y y ===-⎛⎫+- ⎪⎝⎭,即m 方程为()001*3y y x x -=当m 的斜率不存在时,也成立渐近线方程为y =,不妨设A 在B 上方,联立得A B x x ==,故02A B x x x +==,所以P 是线段AB 的中点,因为12,F F 到过O 的直线距离相等,则过O 点的等线必定满足:,A B 到该等线距离相等,且分居两侧,所以该等线必过点P ,即OP的方程为y =,由2213y y x ⎧=⎪⎨-=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩,故P .所以03A A y ====,所以03B B y ====-,所以6A B y y -=,所以1212122ABCD A B A B S F F y y y y =⋅-=-=(3)设(),G x y ,由13OG OP =,所以003,3x x y y ==,故曲线Γ的方程为()229310x y x -=>由(*)知切线为n ,也为0093133x y y x -=,即00133y y x x -=,即00310x x y y --=易知A 与2F 在n 的右侧,1F 在n 的左侧,分别记12,,F F A 到n 的距离为123,,d d d ,由(2)知000011A A x y y y x x ===--,所以3d 由01x ≥得12d d ==因为231d d d +==,所以直线n 为12AF F .等线.。
山东省威海市重点中学2024学年高三第四次月考(4月)数学试题数学试题
山东省威海市重点中学2024学年高三第四次月考(4月)数学试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知{}n a 为等差数列,若2321a a =+,4327a a =+,则5a =( ) A .1B .2C .3D .62.已知i 为虚数单位,则()2312ii i +=-( ) A .7455i + B .7455i - C .4755i + D .4755i - 3.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π4.已知函数()1ln11xf x x x+=++-且()()12f a f a ++>,则实数a 的取值范围是( ) A .11,2⎛⎫-- ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭5.已知复数,z a i a R =+∈,若||2z =,则a 的值为( ) A .1B 3C .±1D .36.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A .72种B .36种C .24种D .18种7.已知等比数列{}n a 的前n 项和为n S ,若11a =,且公比为2,则n S 与n a 的关系正确的是( ) A .41n n S a =- B .21n n S a =+ C .21n n S a =- D .43n n S a =-8.已知复数21iz i =-,则z 的虚部为( ) A .-1 B .i -C .1D .i9.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .610.设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()UM N ⋂=( )A .{}|2x x >B .{}|1x x ≥C .{}|12x x <<D .{}|2x x ≥11.函数()2cos2cos221x xf x x =+-的图象大致是( )A .B .C .D .12.已知正方体1111ABCD A B C D -的体积为V ,点M ,N 分别在棱1BB ,1CC 上,满足1AM MN ND ++最小,则四面体1AMND 的体积为( ) A .112V B .18VC .16VD .19V二、填空题:本题共4小题,每小题5分,共20分。
四川省某重点中学2015届高三上学期第四次月考 数学理 Word版含答案
高2012级高三上期第四学月考试数学试题(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合M ={1,2,3},N ={2,3,4},则( )A .M ⊆NB .N ⊆MC .M ∪N ={1,4}D .M ∩N ={2,3}2.2532()x x展开式中的常数项为( ) A .80 B .-80 C .40 D .-403. 设是公比为的等比数列,则“为递增数列”是“”的()A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A. 1 qB.C.D.65.将直线绕原点逆时针旋转,再向右平移俯视侧视图正视图个单位,所得到的直线为()A.B.C. D.6.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备着舰.如果甲、乙2机必须相邻着舰,而丙丁不能相邻着舰,那么不同的着舰方法有()种A.12 B.18 C.24 D.487.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递增 B.在区间上单调递减C.在区间上单调递减 D.在区间上单调递增8.已知函数,则y=f(x)的图像大致为()9.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为()(A)36万元(B)30.4万元(C)31.2万元(D)24万元10..已知R上的函数g(x)满足:①当时,恒成立(为函数的导函数);②对任意的都有,又函数满足:对任意的,都有成立。
2024-2025学年湖北省武汉外国语学校高三上学期10月月考数学试题及答案
武汉外国语学校2024—2025学年度上学期10月月考高三数学试卷考试时间:2024年10月9日 考试时长:120分钟 试卷满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2|230A x x x =+-≥,{}|22B x x =-≤<,则A B = ( )A. []2,1--B. [)1,2- C. []1,1- D. [)1,22. 复数2i12i-+的共轭复数是( )A. 3i 5- B. 3i 5 C. i- D. i3. 若2b a = ,=- c a b ,且c a ⊥,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π64. 已知π(0,)2αβ∈∈,则下列不等关系中不恒成立的是( )A. ()sin sin sin αβαβ+<+ B. ()sin cos cos αβαβ+<+C ()cos sin sin αβαβ+<+ D. ()cos cos cos αβαβ+<+5. 将体积为1的正四面体放置于一个正方体中,则此正方体棱长的最小值为( )A. 3B.C.D.6. 武汉外校国庆节放7天假(10月1日至10月7日),马老师、张老师、姚老师被安排到校值班,每人至少值班两天,每天安排一人值班,同一人不连续值两天班,则不同的值班方法共有( )种A. 114B. 120C. 126D. 1327. 已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩…若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A. []0,1 B. []0,2 C. []0,e D. []1,e 8. 已知函数()(),R f x f x x =-∈,()5.51f =,函数()()()1g x x f x =-⋅,若()1g x +为偶函数,则()0.5g -的值为( ).A. 3B. 2.5C. 2D. 1.5二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列关于概率统计的知识,其中说法正确的是( )A. 数据1-,0,2,4,5,6,8,9的第25百分位数是1B. 已知随机变量(),X B n p ,若()40E X =,()30D X =,则160n =C. 若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =-+上,则这组样本数据的相关系数为12-D. 若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立10. 连接抛物线上任意四点组成的四边形可能是( )A. 平行四边形B. 梯形C. 有三条边相等的四边形D. 有一组对角相等的四边形11. 设函数32()231f x x ax =-+,则( )A. 当0a =时,直线1y =是曲线()y f x =的切线B. 若()f x 有三个不同的零点123,,x x x ,则12312x x x ⋅=-⋅C. 存在,a b ,使得x b =为曲线()y f x =的对称轴D. 当02ax ≠时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点三、填空题:本题共3小题,每小题5分,共15分.12. 已知n S 是等差数列{}n a 的前n 项和,若320S =,990S =,则6S =____________.13. 已知函数()()sin ,0,2π2cos xf x x x=∈+,写出函数()f x 的单调递减区间____________.14. 掷一个质地均匀的骰子,向上的点数不小于3得2分,向上的点数小于3得1分,反复掷这个骰子,(1)恰好得3分的概率为____________;(2)恰好得n 分的概率为____________.(用与n 有关的式子作答)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC ∆的面积为3,且满足0AB AC ≤⋅≤ 设AB 和AC的夹角为θ,(1)求θ的取值范围;(2)求函数()2πcos sin 3fθθθθ⎛⎫=⋅+- ⎪⎝⎭值域.16. 如图,已知四棱锥P ABCD -,PB AD ⊥,侧面PAD 为正三角形,底面ABCD 是边长为4菱形,侧面PAD 与底面ABCD 所成的二面角为120︒.(1)求四棱锥P ABCD -的体积;(2)求二面角A PB C --的正弦值.17. 已知函数f(x)=a e x−2+ln ax (a >0)(1)当e a =时,求曲线y =f (x )在点(1,f (1))处切线方程;(2)若不等式()2f x ≥恒成立,求a 的取值范围.18. 已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率为23,且经过点52,3A ⎛⎫ ⎪⎝⎭(1)求椭圆E 的方程;(2)求12F AF ∠的角平分线所在直线l 的方程;(3)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.19. 设()f x 使定义在区间(1,)+∞上的函数,其导函数为()f x '.如果存在实数a 和函数()h x ,其中()h x 对任意的(1,)x ∈+∞都有()h x >0,使得()()()21f x h x x ax '=-+,则称函数()f x 具有性质()P a .(1)设函数()f x 2ln (1)1b x x x +=+>+,其中b 为实数① 求证:函数()f x 具有性质()P b ;② 讨论函数()f x 单调性;(2)已知函数()g x 具有性质(2)P ,给定1212,(1,),,x x x x ∈+∞<设m 为正实数,12(1)mx m x α=+-,12(1)m x mx β=-+,且1,1αβ>>,若12()()()()g g g x g x αβ-<-,求m 的取值范围.的的的的武汉外国语学校2024—2025学年度上学期10月月考高三数学试卷考试时间:2024年10月9日 考试时长:120分钟 试卷满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2|230A x x x =+-≥,{}|22B x x =-≤<,则A B = ( )A. []2,1--B. [)1,2- C. []1,1- D. [)1,2【答案】D 【解析】【分析】根据一元二次不等式求集合A ,即可得交集.【详解】由题意可得:{}(][)2|230,31,A x x x =+-≥=-∞-+∞U ,且{}|22B x x =-≤<,所以A B = [)1,2.故选:D.2. 复数2i12i-+的共轭复数是( )A. 3i 5- B. 3i5C. i -D. i【答案】D 【解析】【分析】先根据复数的除法求解,再根据共轭复数的概念求解.【详解】因为()()()()2i 12i 2i5i i 12i 12i 12i 5----===-++-,所以其共轭复数是i .故选:D.3. 若2b a = ,=- c a b ,且c a ⊥,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6【答案】B 【解析】【分析】根据向量垂直列方程,结合向量数量积的运算以及向量夹角的知识求得正确答案.【详解】因为c a ⊥,所以()22cos ,0a c a a b a a b a a b a b ⋅=⋅-=-⋅=-⋅⋅= ,由于2b a = ,所以212cos ,0,cos ,2a a a a b a b -⋅⋅== ,由于0,πa b ≤≤ ,所以π,3a b = .故选:B4. 已知ππ(0,),(0,)22αβ∈∈,则下列不等关系中不恒成立的是( )A. ()sin sin sin αβαβ+<+ B. ()sin cos cos αβαβ+<+C. ()cos sin sin αβαβ+<+ D. ()cos cos cos αβαβ+<+【答案】C 【解析】【分析】由两角和的正弦、余弦公式展开后结合不等式的性质可判断ABD ,举反例判断C .【详解】,αβ都是锐角,则sin (0,1),cos (0,1),sin (0,1),cos (0,1)ααββ∈∈∈∈,sin()sin cos cos sin sin sin αβαβαβαβ+=+<+,A 正确;sin()sin cos cos sin cos cos αβαβαβαβ+=+<+,B 正确;15αβ==︒时,cos()cos30αβ+=︒=,sin15︒====,sin sin sin15sin15αβ+=︒+︒=>C 错误;()cos cos cos sin sin cos cos cos cos cos αβαβαβαβααβ+=-<<<+,D 正确.故选:C .5. 将体积为1的正四面体放置于一个正方体中,则此正方体棱长的最小值为( )A. 3B.C.D.【答案】C 【解析】【分析】反向思考,求出边长为a 的正方体的最大内接正四面体的体积,结合条件,即可求解.【详解】反向思考,边长为a 的正方体,其最大内接正四面体的体积为33311141323a a a -⨯⨯⨯==,得到33a =,解得a =故选:C.6. 武汉外校国庆节放7天假(10月1日至10月7日),马老师、张老师、姚老师被安排到校值班,每人至少值班两天,每天安排一人值班,同一人不连续值两天班,则不同的值班方法共有( )种A. 114 B. 120 C. 126 D. 132【答案】A 【解析】【分析】依据值班3天的为分类标准,逐类解决即可.【详解】因为有三位老师值班7天,且每人至少值班两天,每天安排一人值班,同一人不连续值两天班,所以必有一人值班3天,另两人各值班2天.第一类:值班3天在(1,3,5)、(1,3,6)、(1,4,6)、(2,4,7)、(2,5,7)、(3,5,7)时,共有1113226C C C 72⨯=种不同的值班方法;第二类:值班3天在(1,3,7)、(1,5,7)时,共有11322C C 12⨯=种不同的值班方法;第三类:值班3天在(1,4,7)时,共有111322C C C 12=种不同的值班方法;第四类:值班3天在(2,4,6)时,共有1234C C 18=种不同的值班方法;综上可知三位老师在国庆节7天假期共有72121218114+++=种不同的值班方法.故选:A7. 已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩…若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A. []0,1 B. []0,2 C. []0,e D. []1,e 【答案】C 【解析】【分析】先判断0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,转化为ln xa x≤在(1,)+∞上恒成立.【详解】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a >时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立,令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故()()min g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;综上可知,a 的取值范围是[0,]e ,故选C .【点睛】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析.8. 已知函数()(),R f x f x x =-∈,()5.51f =,函数()()()1g x x f x =-⋅,若()1g x +为偶函数,则()0.5g -的值为( )A. 3B. 2.5C. 2D. 1.5【答案】D 【解析】【分析】由()1g x +为偶函数,推得()()2g x g x =-,再由()()()1g x x f x =-⋅,求得()f x 关于(1,0)对称,结合()()f x f x =-,推得(4)()f x f x -=,得到()f x 是周期为4的周期函数,根据(5.5)1f =,得到(2.5)1f =,进而求得(0.5)g -的值,得到答案.【详解】因为函数()1g x +为偶函数,可()g x 的图象关于1x =对称,所以()()2g x g x =-,由()()()1g x x f x =-⋅,可得()()()()112x f x x f x -⋅=-⋅-,即()()20f x f x +-=,所以函数()f x 关于(1,0)对称,又因为()()f x f x =-,所以()f x 是定义在R 上的偶函数,所以()()2(2)f x f x f x =--=--,所以()4[(2)2](2)[()]()f x f x f x f x f x -=--=--=-=,即(4)()f x f x -=,所以函数()f x 是周期为4的周期函数,所以(5.5)(1.54)(1.5)( 2.5)(2.5)1f f f f f =+==-==,则(0.5)(2.5)(2.51)(2.5) 1.5g g f -==-=.故选:D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列关于概率统计知识,其中说法正确的是( )A. 数据1-,0,2,4,5,6,8,9的第25百分位数是1B. 已知随机变量(),X B n p ,若()40E X =,()30D X =,则160n =C. 若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =-+上,则这组样本数据的相关系数为12-D. 若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立【答案】ABD 【解析】【分析】根据百分位数的定义计算判断A ,由二项分布的数学期望与方差公式计算可判断B ,根据相关系数的定义可判断C, 根据相互独立事件及条件概率的概率公式计算可判断D.【详解】对于选项A ,8个数据从小到大排列,由于825%2⨯=,所以第25百分位数应该是第二个与第三个的平均数0+2=12,故A 正确;对于选项B ,因为(),X B n p ,()40E X =,()30D X =,所以40(1)30np np p =⎧⎨-=⎩,解得1,1604p n ==,故B 正确;对于选项C ,因为样本点都在直线132y x =-+上,说明是负相关且线性相关性很强,所以相关系数为1-,故C 错误.的对于选项D ,由()()1P N M P N +=,可得()()1P N M P N =-,即()()()N P NM P P M =,即()()()N P NM P P M =,所以M 与N 相互独立,故D 正确;故选:ABD.10. 连接抛物线上任意四点组成的四边形可能是( )A. 平行四边形B. 梯形C. 有三条边相等的四边形D. 有一组对角相等的四边形【答案】BCD 【解析】【分析】根据题意作出相应的图形,结合抛物线的性质逐项分析判断.【详解】对于选项A :作两条平行线与抛物线均相交,根据抛物线的性质可知:截得的弦长一定不相等,所以所得的四边形不可能为平行四边形,故A 错误;对于选项C :任作一条直线垂直与抛物线的对称轴,交抛物线与,A B 两点,则OA OB =,再以A 圆心,OA 为半径作圆,该圆以抛物线必有一个异于坐标原点的交点C ,此时可得OA OB OC ==,符合题意,故C 正确;对于选项B :任作两条直线垂直与抛物线的对称轴,分别与交抛物线交于,A B 和,C D ,此时AB CD ≠,即ABCD 为梯形,故C 正确;对于选项D :如图,以AC 为直径作圆,与抛物线交于,,,A B C D ,此时90ABC ADC ∠=∠=︒,符合题意,故D 正确;故选:BCD.11 设函数32()231f x x ax =-+,则( )A. 当0a =时,直线1y =是曲线()y f x =的切线B. 若()f x 有三个不同的零点123,,x x x ,则12312x x x ⋅=-⋅C. 存在,a b ,使得x b =为曲线()y f x =的对称轴D. 当02ax ≠时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点【答案】ABD 【解析】【分析】根据曲线的切线、函数的零点、曲线的对称轴,直线和曲线的交点个数等知识对选项进行分析,从而确定正确答案.【详解】A 选项,当0a =时,()321f x x =+,令()260f x x ='=解得0x =,且()01f =,此时()f x 在0x =处的切线方程为10y -=,即1y =,正确.B 选项,()()322()231,666f x x ax f x x ax x x a '=-+=-=-,.要使()f x 有三个零点,则0a ≠,若32()231f x x ax =-+有三个不同的零点123,,x x x ,则()()()()1232f x x x x x x x =---()()32123122313123222x x x x x x x x x x x x x x x =-+++++-,通过对比系数可得1231231212x x x x x x -=⇒=-,正确.C 选项,若存在,a b ,使得x b =为曲线()y f x =的对称轴,则()()2f x f b x =-,即()()323223122321x ax b x a b x -+=---+,即3232232223162412212123x ax b b x bx x ab ab ax -=-+--+-,即()3222364330x bx b x b ab a b -+--+=,此方程不恒为零,所以不存在符合题意的,a b ,使得x b =为曲线()y f x =的对称轴,错误.D 选项,当02a x ≠时,()322()231,66f x x ax f x x ax =-+=-',则()322000000()231,66f x x ax f x x ax =-+=-',所以()f x 在0x x =处的切线方程为()()()3220000023166y x ax x ax x x --+=--,()()()2320000066231y x ax x x x ax =--+-+,由()()()232000003266231231y x ax x x x ax y x ax ⎧=--+-+⎪⎨=-+⎪⎩,消去y 得()()323220000023123166x ax x ax x ax x x -+=-++--①,由于()()()333322000002222x x x x x x x xx x -=-=-++,()()()222200003333ax ax a x x a x x x x -+=--=--+,所以①可化为()()()()()()2220000000023660x x x xx x a x x x x x ax x x -++--+---=,提公因式0x x -得()()()()22200000023660x x x xx x a x x x ax ⎡⎤-++-+--=⎣⎦,化简得()()()220000223430x x x x a x x ax ⎡⎤-+---=⎣⎦,进一步因式分解得()()2002430x x x x a -+-=,解得010234,2a x x x x -==,由于02a x ≠,所以020x a -¹,所以()0001203234630222x a a x x a x x x ----=-==≠,所以12x x ≠,所以当02a x ≠时,()f x 在0x x =处的切线与函数y =f (x )的图象有且仅有两个交点,正确.故选:ABD 【点睛】关键点点睛:D 选项的解答涉及到切线与曲线交点的个数,利用联立方程组和因式分解的方法,最终得出交点个数的结论,过程完整而严谨.三、填空题:本题共3小题,每小题5分,共15分.12. 已知n S 是等差数列{}n a 的前n 项和,若320S =,990S =,则6S =____________.【答案】50【解析】【分析】设{}n a 首项为1a ,公差为d ,后由等差数列求和公式可得答案.【详解】设{}n a 首项为1a ,公差为d ,由题,则111503320993690109a a d a d d ⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩.则6161550S a d =+=.故答案为:5013. 已知函数()()sin ,0,2π2cos x f x x x =∈+,写出函数()f x 的单调递减区间____________.【答案】2π4π33⎛⎫⎪⎝⎭,【解析】【分析】利用导数判断函数的单调性即可.【详解】()()()()222cos 2cos sin 2cos 12cos 2cos x x xx f x x x +++'==++,()0,2πx ∈,令()()22cos 102cos x f x x +'==+,即2cos 10x +=,解得2π3x =或4π3x =.当2π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,则()f x 在2π0,3⎛⎫ ⎪⎝⎭上单调递增;当2π4π,33x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则()f x 在2π4π,33⎛⎫ ⎪⎝⎭上单调递减;当4π,2π3x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,则()f x 在4π,2π3⎛⎫ ⎪⎝⎭上单调递增.综上可知,函数()f x 的单调递减区间为2π4π,33⎛⎫⎪⎝⎭.故答案为:2π4π,33⎛⎫ ⎪⎝⎭.14. 掷一个质地均匀的骰子,向上的点数不小于3得2分,向上的点数小于3得1分,反复掷这个骰子,(1)恰好得3分的概率为____________;(2)恰好得n 分的概率为____________.(用与n 有关的式子作答)【答案】 ①. 1327 ②. 13425153n -⎛⎫-⨯- ⎪⎝⎭【解析】【分析】因为一次得2分,另一次得1分或三次的1分时恰好得3分,进而利用独立重复试验的概率可求(1);令n P 表示“恰好得n 分”的概率,不出现n 分的唯一情况是得到1n -分以后再掷出一次不小于3的情况,则有1213n n P P --=,进而利用构造等比数列可求(2).【详解】(1)掷一个质地均匀的骰子,向上的点数不小于3的概率4263=,掷一个质地均匀的骰子,向上的点数小于3的概率2163=.因为一次得2分,另一次得1分或三次得1分时恰好得3分,所以恰好得3分的概率等于21023********C +C ==3332727+⎛⎫⋅⨯⋅ ⎪⎝⎭.(2)令n P 表示“恰好得n 分”的概率,不出现n 分的唯一情况是得到1n -分以后再掷出一次不小于3的情况,因为“不出现n 分”的概率是1n P -,所以“恰好得到1n -分”的概率是1n P -.因为“掷一次得2分”的概率是23,所以有1213n n P P --=,即1213n n P P -=-+,则构造等比数列{}n P λ+,设()123n n P P λλ-=-++,即13532n n P P λ--=-,则513λ-=,35λ=-,所以1323535n n P P -⎛⎫-=-- ⎪⎝⎭,又113P =,1313453515P -=-=-,所以35n P ⎧⎫-⎨⎬⎩⎭是首项为415-,公比为23-的等比数列,即13425153n n P -⎛⎫-=-⨯- ⎪⎝⎭,13425153n n P -⎛⎫=-⨯- ⎪⎝⎭.故恰好得n 分的概率为13425153n -⎛⎫-⨯- ⎪⎝⎭.故答案为:(1)1327;(2)13425153n -⎛⎫-⨯- ⎪⎝⎭.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC ∆的面积为3,且满足0AB AC ≤⋅≤ 设AB 和AC 的夹角为θ,(1)求θ的取值范围;(2)求函数()2πcos sin 3f θθθθ⎛⎫=⋅+- ⎪⎝⎭的值域.【答案】(1)ππ,62⎡⎤⎢⎥⎣⎦ (2)10,2⎡⎤⎢⎥⎣⎦【解析】【分析】(1)根据题意由三角形面积公式可得6cos 0sin θθ≤≤,继而可得tan θ≥或π2θ=,结合θ的范围即可求解;(2)利用和差公式、降幂公式、倍角公式及辅助角公式化简可得1π()sin 223f θθ⎛⎫=- ⎪⎝⎭,由(1)所求的θ的范围可得π23θ-的范围,继而即可求得值域.小问1详解】由题1sin 32ABC S bc θ∆==,【可得6sin bc θ=,又0cos AB AC bc θ≤⋅=≤ ,所以6cos 0sin θθ≤≤得到tan θ≥或π2θ=,因为()0,πθ∈,所以ππ,62θ⎡⎤∈⎢⎥⎣⎦.【小问2详解】()2πcos sin 3f θθθθ⎛⎫=⋅++ ⎪⎝⎭21cos (sin cos 2θθθθ=⋅+21sin 24θθ=+11cos 2sin 242θθ+=-1πsin 223θ⎛⎫=- ⎪⎝⎭,因为ππ,62θ⎡⎤∈⎢⎥⎣⎦,故π2π20,33θ⎡⎤-∈⎢⎥⎣⎦,故可得()10,2f θ⎡⎤∈⎢⎥⎣⎦.16. 如图,已知四棱锥P ABCD -,PB AD ⊥,侧面PAD 为正三角形,底面ABCD 是边长为4的菱形,侧面PAD 与底面ABCD 所成的二面角为120︒.(1)求四棱锥P ABCD -的体积;(2)求二面角A PB C --的正弦值.【答案】(1)(2【解析】【分析】(1)作出四棱锥P ABCD -的高,并计算出高的长度,进而计算出四棱锥P ABCD -的体积.(2)建立空间直角坐标系,利用向量法来求得二面角A PB C --的余弦值,进而计算出正弦值.【小问1详解】过点P 作PO 垂直于平面ABCD ,垂足O ,连接BO 交AD 于E ,连接PE ,因为AD ⊂平面ABCD ,PO AD ⊥,又PB AD ⊥,又,,PO PB P PO PB =⊂ 平面POB ,所以AD ⊥平面POB ,因为,PE BE ⊂平面POB ,所以AD PE ⊥,AD BE ⊥,又PA PD =,所以E 为AD 得中点,所以4BD BA ==,因为侧面PAD 与底面ABCD 所成的二面角为120︒,即有120PEB ∠=︒,所以60PEO ∠=︒,因为侧面PAD 为正三角形,所以4sin 60PE =⋅︒=sin 603PO PE =⋅︒==,所以1144333P ABCD ABCD V S PO -=⋅⋅=⋅⋅=.【小问2详解】在平面ABCD 内过点O 作OB 的垂线Ox ,依题可得,,OP OB Ox两两垂直,为以,,OP OB Ox 为z 轴,y 轴,x 轴建立空间直角坐标系,可得()A ,()0,0,3P,()B,()C -,取PB 得中点为N,则32N ⎛⎫ ⎪ ⎪⎝⎭,因为AP AB =,所以AN PB ⊥,由(1)AD ⊥平面POB ,//BC AD ,知⊥BC 平面POB ,PB ⊂平面POB ,所以BC PB ⊥,可得,BC NA 所成角即为二面角A PB C --的平面角,记为θ,求得32,2NA ⎛⎫=- ⎪ ⎪⎝⎭,()4,0,0BC =-,则cos ,NA BC NA BC NA BC ⋅===⋅则sin θ==17. 已知函数()()2e ln 0x a f x a a x-=+>(1)当e a =时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若不等式()2f x ≥恒成立,求a 的取值范围.【答案】(1)2y =(2)ea ≥【解析】【分析】(1)根据导数的几何意义,根据导数求切线的斜率,再代入点斜式方程,即可求解;(2)首先根据指对公式,变形不等式为e ln a +x−2+ln a +x−2≥ln x +e ln x ,x >0,再构造函数()e x g x x =+,结合函数的单调性,转化为不等式ln 2ln a x x +-≥恒成立,再利用参变分离,转化为函数最值问题,即可求解.【小问1详解】当e a =时,()1e e ln x f x x -=+,()01e ln e 2f =+=,()()11e ,10x f x f x-=-'=',所求切线方程为:20(1)y x -=-,即2y =;【小问2详解】()2f x ≥转化为ln 2e ln ln 2a x a x +-+-≥,可得e ln a +x−2+ln a +x−2≥ln x +e ln x ,x >0,构造函数()e x g x x =+,易得()g x 在R 单调递增,所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()0,∞+恒成立,令()ln 2h x x x =-+,()110h x x-'==,得到1x =,可得()0,1x ∈时,ℎ′(x )>0;()1,x ∞∈+时,()0h x '<,所以ℎ(x )在1x =时取最大值,所以()ln 11a h ≥=,得到e a ≥.18. 已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率为23,且经过点52,3A ⎛⎫ ⎪⎝⎭(1)求椭圆E 的方程;(2)求12F AF ∠的角平分线所在直线l 的方程;(3)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.【答案】(1)22195x y += (2)9680x y --=(3)不存在,理由见解析【解析】【分析】(1)根据椭圆经过的点的坐标以及离心率解方程组可求得椭圆E 的方程;(2)思路一:利用角平分线上的点的性质,由点到直线距离公式整理可得结论;思路二:求得椭圆在点A 处的切线方程,再由椭圆的光学性质可得平分线所在直线方程;(3)思路一:假设存在关于直线l 对称的相异的两点,联立直线与椭圆方程可得线段BC 中点52,3M ⎛⎫ ⎪⎝⎭与点A 重合,假设不成立;思路二:利用点差法求出65OM k =,联立直线方程可得点52,3M ⎛⎫ ⎪⎝⎭与点A 重合,不合题意,可得结论.【小问1详解】椭圆E 经过点52,3A ⎛⎫ ⎪⎝⎭,23e =可得222222549123a b a b c c e a ⎧⎪+=⎪⎪⎪=+⎨⎪⎪==⎪⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩因此可得椭圆E 的方程为22195x y +=;【小问2详解】由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意可知1:512100AF l x y -+=,2:2AF l x =,如下图所示:设角平分线上任意一点为P (x,y ),则51210213x y x -+=-得9680x y --=或2390x y +-=又易知其斜率为正,∴12F AF ∠的角平分线所在直线为9680x y --=思路二:椭圆在点52,3A ⎛⎫ ⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,12F AF ∠的角平分线所在直线l 的斜率为32l k =,所以12F AF ∠的角平分线所在直线34:23l y x =-,即9680x y --=【小问3详解】思路一:假设存在关于直线l 对称的相异两点B (x 1,y 1),C (x 2,y 2),设2:3BC l y x m =-+,联立2219523x y y x m ⎧+=⎪⎪⎨⎪=-+⎪⎩可得229129450x mx m -+-=,∴线段BC 中点为25,39m m M ⎛⎫⎪⎝⎭在12F AF ∠的角平分线上,即106803m m --=,解得3m =;因此52,3M ⎛⎫ ⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点B (x 1,y 1),C (x 2,y 2),线段BC 中点()00,M x y ,由点差法可得22112222195195x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,即22221212095x x y y --+=;∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,因此0065OM y k x ==,联立:96806:5AM OM l x y l y x --=⎧⎪⎨=⎪⎩可得52,3M ⎛⎫ ⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件相异的两点.19. 设()f x 使定义在区间(1,)+∞上的函数,其导函数为()f x '.如果存在实数a 和函数()h x ,其中()h x 对任意的(1,)x ∈+∞都有()h x >0,使得()()()21f x h x x ax '=-+,则称函数()f x 具有性质()P a .的(1)设函数()f x 2ln (1)1b x x x +=+>+,其中b 为实数① 求证:函数()f x 具有性质()P b ;② 讨论函数()f x 的单调性;(2)已知函数()g x 具有性质(2)P ,给定1212,(1,),,x x x x ∈+∞<设m 为正实数,12(1)mx m x α=+-,12(1)m x mx β=-+,且1,1αβ>>,若12()()()()g g g x g x αβ-<-,求m 的取值范围.【答案】(1)①证明见解析;②答案见解析(2)01m <<【解析】【分析】(1)①对()f x 求导,可得ℎ(x)=1x (x +1)2>0恒成立,即可函数()f x 具有性质()P b ;②设u (x )=x 2−bx +1(x >1),f ′(x )与()u x 符号相等,对b 讨论,可知f ′(x )符号,即可得出函数()f x 的单调区间;(2)对()g x 求导,()()()()()22211g x h x x x h x x ='=-+-,分析可知()g x '其在(1,)+∞恒成立,对m 讨论,再根据αβ,与12,x x 大关系进行讨论,验证是否满足条件,可求解m 的取值范围.【小问1详解】① ()()()()222121111b f x x bx x x x x +=-=-+'++,所以1x >,ℎ(x )=1x (x +1)2>0恒成立,则函数()f x 具有性质()P b ;② 设u (x )=x 2−bx +1(x >1),(i) 当0b -≥即0b ≤时,()0u x >,()'0f x >,故此时()f x 在区间(1,)+∞上递增;(ii) 当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()'0f x >,故此时()f x 在区间(1,)+∞上递增;当240b ∆=->即2b >时,1211x x ==<=>,,所以x ⎛∈ ⎝时,()0u x <,()0f x '<,此时()f x 在⎛ ⎝上递减;x ∞⎫∈+⎪⎪⎭时,()0u x >,()0f x '<,此时()f x 在∞⎫+⎪⎪⎭上递增.综上所述,当2b ≤时,()f x 在(1,)+∞上递增;当2b >时,()f x 在⎛ ⎝上递减,在∞⎫+⎪⎪⎭上递增.【小问2详解】由题意,()()()()()22211g x h x x x h x x ='=-+-,又()h x 对任意的,(1)x ∈+∞都有()0h x >,所以对任意的,(1)x ∈+∞都有()0g x '>,()g x 在(1,)+∞上递增. 所以12(1)mx m x α=+-,12(1)m x mx β=-+,因为()()1212,21x x m x x αβαβ+=+-=--先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<所以1212()()(),()()()g x g g x g x g g x αβ<<<<所以12()()()()g g g x g x αβ-<-满足题意当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,所以12x x αβ≤<≤所以12()()()()g g x g x g αβ≤<≤,则12()()()()g g g x g x αβ-≥-,不满足题意,舍去综上所述,01m <<。
黑龙江省海林市朝鲜族中学高三上学期月考4数学试题
高三数学第月考试题(理科)一、选择题:1.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( ).A.{1}B.{2}C.{0,1}D.{1,2}解析:∵M={0,1,2}, N={x|x2-3x+2≤0}={x|1≤x≤2},∴M∩N={0,1,2}∩{x|1≤x≤2}={1,2}.故选D.答案:D2.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面解析:直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;l∥α时,在平面α内不存在与l相交的直线,∴B错;l⊂α时,在平面α内不存在与l异面的直线,∴D错;无论以上哪种情形在平面α内都有无数条直线与l垂直.故选C.答案:C3.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当α⊥β时,平面α内的直线m不一定和平面β垂直,但当直线m垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m⊥β”的必要不充分条件.答案:B4.(-6≤a≤3)的最大值为()A.9B.C.3D.解析: 答案:B当a=-6或a=3时,=0,当-6<a<3时,3-a>0,a+6>0,故,当且仅当3-a=a+6,即a=-时等号成立.5.设向量a,b满足|a+b|=,|a-b|=,则a·b=( ).A.1B.2C.3D.5解析:∵|a+b|=,∴(a+b)2=10,即a2+b2+2a·b=10.①∵|a-b|=,∴(a-b)2=6,即a2+b2-2a·b=6.②由①②可得a·b=1.故选A. 答案: A6.(2014课标全国Ⅱ,理4)钝角三角形ABC的面积是,AB=1,BC=,则AC=( ).A.5B.C.2D.1解析:由题意知S△ABC=AB·BC·sin B,即×1×sin B,解得sin B=.∴B=45°或B=135°.当B=45°时,AC2=AB2+BC2-2AB·BC·cos B=12+()2-2×1×=1.此时AC2+AB2=BC2,△ABC为直角三角形,不符合题意;当B=135°时,AC2=AB2+BC2-2AB·BC·cos B=12+()2-2×1×=5,得AC=.符合题意.故选B.7.若等差数列{a n}的前5项和S5=25,且a2=3,则a7=()A.12B.13C.14D.15解析:由题意得S5==5a3=25,a3=5,公差d=a3-a2=2,a7=a2+5d=3+5×2=13.答案:B8.一个多面体的三视图如图所示,则该多面体的体积为( ).A. B. C.6 D.7解析:由三视图知,该多面体是由正方体割去两个角所成的图形,如图所示,则V=V正方体-2V锥体=8-2××1×1×1=.答案:A9.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( ).A.0B.1C.2D.3解析:∵y=ax-ln(x+1),∴y'=a-. ∴y'|x=0=a-1=2,得a=3. 答案:D10.设x,y满足约束条件则z=2x-y的最大值为( ).A.10B.8C.3D.2解析:线性目标函数z=2x-y满足的可行域如图所示.将直线l 0:y=2x 平行移动,当直线l 0经过点M(5,2)时,直线y=2x-z 在y 轴上的截距最小,也就是z 取最大值,此时z max =2×5-2=8. 答案:B11.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ). A .B .16πC .9πD .解析:由图知,R 2=(4-R )2+2, ∴R 2=16-8R+R 2+2,∴R=,∴S 表=4πR 2=4π×π,选A . 答案:A12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞-- D .(0,1)(1,)+∞【解析】记函数()()f x g x x =,则''2()()()xf x f x g x x-=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .【答案】A二、填空题:本大题共4小题,每小题5分.13.函数f(x)=sin (x+2φ)-2sin φcos (x+φ)的最大值为 . 解析:∵f(x)=sin (x+2φ)-2sin φcos (x+φ)=sin [(x+φ)+φ]-2sin φcos (x+φ)=sin (x+φ)cos φ+cos (x+φ)sin φ-2sin φcos (x+φ)=sin (x+φ)cos φ-cos (x+φ)sin φ=sin [(x+φ)-φ]=sin x. ∴f(x)max =1. 答案:114.设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.1/2 15.计算定积分(3x 2+sin x )d x= .解析: (3x 2+sin x )d x=(x 3-cos x )=2.答案:216.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x-1)>0,则x 的取值范围是 .解析:∵f(x)是偶函数,∴f(-x)=f(x)=f(|x|).∴f(x-1)>0可化为f(|x-1|)>f(2).又f(x)在[0,+∞)上单调递减,∴|x-1|<2,解得-2<x-1<2,即-1<x<3. 答案:(-1,3) 三、解答题:17.已知f (x )=4cos x ·cos-2.(1)求函数f (x )的最小正周期; (2)求函数f (x )在区间上的最大值和最小值.解:(1)因为f (x )=4cos x cos-2=4cos x -2=sin2x+2cos 2x-2=sin2x+cos2x-1=2sin-1.所以f (x )的最小正周期是T==π.(2)因为-≤x ≤,所以-≤2x+.于是当2x+,即x=时,f (x )取得最大值1; 当2x+=-,即x=-时,f (x )取得最小值-2.18.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a=3,cos A=,B=A+.(1)求b 的值; (2)求△ABC 的面积. 解:(1)在△ABC 中,由题意知sin A=,又因为B=A+,所以sin B=sin=cos A=.由正弦定理可得b==3.(2)由B=A+得cos B=cos=-sin A=-.由A+B+C=π,得C=π-(A+B),所以sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B=.因此△ABC的面积S=ab sin C=×3×3.19.已知数列{a n}的各项均为正数,前n项和为S n,且满足2S n=+n-4.(1)求证:{a n}为等差数列; (2)求{a n}的通项公式.(1)证明:当n=1时,有2a1=+1-4,即-2a1-3=0,解得a1=3(a1=-1舍去).当n≥2时,有2S n-1=+n-5,又2S n=+n-4,两式相减得2a n=+1,即-2a n+1=,也即(a n-1)2=,因此a n-1=a n-1或a n-1=-a n-1.若a n-1=-a n-1,则a n+a n-1=1,而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此{a n}为等差数列.(2)解:由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)=n+2,即a n=n+2.20.如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点.求证:BC1∥平面A1CD21.已知向量p=(a n,2n),向量q=(2n+1,-a n+1),n∈N*,向量p与q垂直,且a1=1.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=log2a n+1,求数列{a n·b n}的前n项和S n.解:(1)∵向量p与q垂直,∴2n+1a n-2n a n+1=0,即2n a n+1=2n+1a n.∴=2.∴{a n}是以1为首项,2为公比的等比数列.∴a n=2n-1.(2)∵b n=log2a n+1=n-1+1=n,∴a n·b n=n·2n-1.∴S n=1+2·2+3·22+4·23+…+n·2n-1.①∴2S n=1·2+2·22+3·23+…+(n-1)·2n-1+n·2n.②①--②得,-S n=1+2+22+23+24+…+2n-1-n·2n=-n·2n=(1-n)2n-1,∴S n=1+(n-1)2n.22.已知函数f(x)=ln x,函数g(x)=+af'(x).(1)求函数y=g(x)的表达式;(2)若a>0,函数y=g(x)在(0,+∞)上的最小值是2,求a的值.解:(1)因为f(x)=ln x,所以f'(x)=.所以函数y=g(x)=x+(x>0).(2)由(1)知,g(x)=x+(x>0).方法一:当a>0,x>0时,由基本不等式可知g(x)≥2,当且仅当x=时取等号.所以函数y=g(x)在(0,+∞)上的最小值是2.所以2=2,解得a=1.方法二:∵g'(x)=1-(x>0), ∴令g'(x)=0,得x=.当0<x<时,g'(x)<0;当x>时,g'(x)>0.故x=是y=g(x)的极小值点,即y=g(x)在x=处取得极小值,也是最小值,故=2,得a=1.。
四川省成都市石室中学2024-2025学年高三上学期10月月考数学试题含答案
成都石室中学2024~2025学年度上期高2025届十月考试数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置.1. 已知集合{}1,2,4A =,2{|20}B x N x x =Î+-£,则A B =U A.{}2,1,0,1,2,4-- B. {}0,1,2,4 C.{}1,2,4 D. {}12. 2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如右图,则A.盛李豪的平均射击环数超过10.6B.黄雨婷射击环数的第80百分位数为10.65C.盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D.黄雨婷射击环数的极差小于盛李豪射击环数的极差3.已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为A. b c a >> B. a b c >> C. c b a >> D. a c b >>4.已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是A.22ab cb > B.222a c c a+³ C. ||||a b > D. 0ab bc +>5.“函数2()ln(22)f x x ax =-+的值域为R”的一个充分不必要条件是A.[B.(C.()-¥+¥U D .)+¥6. 核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡. 已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过( )年.(lg 20.3010»)A. 155B.159C. 162D. 1667.若函数()y f x =的图象如图1所示,则如图2对应的函数可能是A. (12)y f x =-B. 1(1)2y f x =-C. (12)y f x =--D. 1(1)2y f x =--8. 已知函数11,0,()2221,0.x x x f x x ì+>ï=íï-£î,则方程()(3)2f x f x +-=的所有根之和为A .0 B .3C .6D .9二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。
四川省成都列五中学2024-2025学年高三上学期9月月考数学试题含答案
合题目要求.全选对的得 6 分,部分选对的得部分分,有选错的得 0 分.
9. 在下列函数中,既是偶函数又在 0,1 上单调递增的函数有( )
A. y cosx
B. y sinx
C. y 2 x
D. y x3
10. 已知函数 f x xlnx
A. 0.38
B. 0.24
C. 0.14
D. 0.5
【答案】A
【解析】
【分析】根据相互独立事件的概率乘法公式即可求解.
【详解】甲、乙两人恰好有一人投中的概率为 0.7 1 0.8 0.8 1 0.7 0.38 ,
故选:A
6. 函数 y 3x2 ax1 在区间 1, 2 上单调递增,则实数 a 的取值范围是( )
A. C160
B. C160 26
C. C150
D. C150 25
【答案】C 【解析】
【分析】根据第 6 项的二项式系数即可求解.
【详解】 x 2 10 展开式中第 6 项的二项式系数是 C150 ,
故选:C.
4.
已知函数
f
(x) 是定义在 [0, ) 上的增函数,则满足
f
(2x 1)
A. a 2
【答案】A 【解析】
B. a 4
C. a 2
D. a 4
【分析】根据复合函数单调性的性质,结合指数函数和二次函数的单调性进行求解即可.
【详解】因为函数 y 3x 是实数集上的增函数, y 3x2 ax1 在区间 1, 2 上单调递增,
所以函数 y x2 ax 1 在区间 1, 2 上单调递增,
为所有解 xn 中的最小值,因为1 2 3 2 3 22 312 ,所以 Q1 2,1 ;因为
【恒心】【好卷速递】甘肃省张掖中学2012届高三上学期第四次月考 数学理
张掖中学2011-2012学年度高三第四次月考数学试题(理科)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数111iz i-+=-+,在复平面内,z 所对应的点在 (A)第一象限(B)第二象限(C)第三象限(D)第四象限2.在等差数列{}n a 中,若4108a a +=,则此数列的前13项之和为 (A)104(B)52(C) 39(D)243.3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行的 (A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分又不必要条件4.函数()||2(0)f x x x x x =+<的反函数为(A) 1(0)x < (B) 1(0)x ≥(C) 1(0)x < (D) 1(0)x ≥5.设→→a ,b 都是非零向量,若函数()()()f x x a b a x b →→→→=+- (x ∈R )是偶函数,则必有 (A) →→a ⊥b (B)a b →→(C) ||||a b →→=(D) ||||a b →→≠6.把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 (A) 2π-=x (B) 4π-=x (C) 8π=x (D) 4π=x7. 设函数()mf x x ax =+的导函数()21f x x '=+,则数列1()f n ⎧⎫⎨⎬⎩⎭(n ∈N *)的前n 项和是 (A) n n -1 (B) n +2n +1 (C) n n +1 (D) n +1n8. 设有直线m 、n 和平面α、β.下列四个命题中,正确的是(A)若m ∥α,n ∥α,则m ∥n (B)若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βO A B C DA 1B 1C 1D 1· (C)若α⊥β,m ⊂α,则m ⊥β (D)若α⊥β,m ⊥β,m ⊄α,则m ∥α9. 若1ln ln 1(,1),ln ,(),2x xx e a x b c e -∈===,则(A) a b c >> (B) b c a >> (C) b a c >> (D) c b a >>10.已知点(0,1)A 和圆224x y +=上一动点P ,动点M 满足2MA AP =,则点M 的轨迹方程是(A) 22(3)16x y -+= (B) 22(3)16x y +-= (C) 22(3)16x y ++= (D) 22(3)16x y ++=11. 如图,已知球O 是棱长为1 的正方体1111ABCD A BCD -的内切球,则平面1ACD 截球O 的截面面积为(A)3 (B )3π (C )6(D )6π12.()f x 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '-≤,对任意正数a 、b 若a b ≤,则必有(A )()()af b bf a ≤ (B )()()bf a af b ≤ (C )()()af a f b ≤(D )()()bf b f a ≤第Ⅱ卷 非选择题 (共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的横线上(注意:在试卷上作答无效........) 13.已知13sin cos ,524ππθθθ+=≤≤,则cos 2θ= . 14.已知点(0,1)A -及直线:1l x =-,点P 是抛物线24y x =上一动点,则点P 到定点A 的距离与P 到直线l 的距离和的最小值为 .15.已知实数,x y 满足121x y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为-1,则实数m =____.16.给出下列四个命题:①已知,,a b m 都是正数,且a m ab m b+>+,则a b <;②已知a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 也成等差数列,则yc x a +的值等于2;③函数x y tan =的图象关于点()(),0,k k Z π∈对称; ④关于x 的不等式|1||3|x x m ++-≥的解集为R ,则4m ≤; 其中为真命题的序号是 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知角A 、B 、C 为ABC ∆的内角,其对边分别为a 、b 、c ,若向量(cos ,sin )22A A m →=-,(cos ,sin )22A A n →=,a =12m n →→⋅=,ABC ∆的面积S =求b c +的值.18.(本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为平行四边形,22==AD AB ,3=BD ,PD ⊥底面ABCD .(Ⅰ)证明:平面⊥PBC 平面PBD ;(Ⅱ)若1=PD ,求AP 与平面PBC 所成角的正弦值.19.(本小题满分12分)已知定点F(0,1)和直线1l :y=-1,过定点F 与直线1l 相切的动圆圆心为点C. (Ⅰ)求动点C 的轨迹方程;(Ⅱ)过点F 的直线2l 交轨迹于两点P 、Q ,交直线1l 于点R ,求RP RQ的最小值.20.(本小题满12分)已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(I)求数列{}n a 的通项公式;(Ⅱ)>.21.(本题满分12分)已知函数14341ln )(-+-=xx x x f . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)设42)(2-+-=bx x x g ,若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立,求实数b 的取值范围.22. (本题满分12分)已知双曲线:C 22221x y a b-=(0,0)a b >>与圆22:3O x y +=相切,过C 的一个焦O 相切.(Ⅰ)求双曲线C 的方程;(Ⅱ)P 是圆O 上在第一象限的点,过P 且与圆O 相切的直线l 与C 的右支交于A 、B两点,AOB ∆的面积为l 的方程.张掖中学2011—2012学年高三第四次月考数学参考答案(理科)一、选择题:(本题共12小题,每题5分,共60分) 题号1 2 3 4 5 6 7 8 9 10 11 12答案 B B C A C A C D B B D A 二、填空题:(本题有4小题,每题5分,共20分)13. 725- 14.15. 5 16. ①③④ 三、解答题:(本题有6小题,共70分,把题答在框格里) 17.(本小题满分10分)解:cos ,sin ,cos ,sin 2222A A A A m n ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭ ,且12m n ⋅=221cos sin 222A A ∴-+=, 即1cos 2A =-……………………………………4分又20,3A A ππ<<∴=.……………………….5分112sin sin 223S bc A bc π=⋅=⋅==4bc ∴=………………………………………7分由余弦定理,222222cos 12a b c bc A b c bc =+-=++=……9分2()16b c ∴+=,故4b c +=.………………10分18.(Ⅰ) 证明: ∵222BD AD AB += ∴BD AD ⊥又∵PD ⊥底面ABCD ∴AD PD ⊥又∵D BD PD =⋂∴⊥AD 平面PBD又∵AD BC //∴⊥BC 平面PBD ∵⊂BC 平面PBC∴平面⊥PBC 平面PBD ……6分(Ⅱ)如图,分别以DA 、DB 、DP 为x 轴、y 轴、z 轴建立空间直角坐标系.则)0,0,1(A ,)0,3,0(B ,)1,0,0(P ,)0,3,1(-C)1,0,1(-=,)0,0,1(-=,)1,3,0(-= 设平面PBC 的法向量为,⎪⎩⎪⎨⎧=∙=∙0BC n 解得)3,1,0(=46sin ==θ…………12分 19.解:(Ⅰ)由题设知点C 到点F 的距离等于它到1l 的距离, 所以点C 的轨迹是以F 为焦点,1l 为准线的抛物线. 即24x y = ……4分(Ⅱ)设直线2l 的方程为1y kx =+,1122(,),(,)P x y Q x y得2(,1)R k--将直线2l 的方程与抛物线方程联立消去y , 得2440x kx --=.…………8分 且12124,4x x k x x +==-∴RP RQ =112222(,1)(,1)x y x y k k++++=2214()816k k++≥当且仅当21k =时取等号.所以RP RQ的最小值为16. ……12分20.解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件 n n n S a a 22=+11212+++=+n n n S a a ,上述两式相减,得0)1)((11=--+++n n n n a a a a001>+∴>+n n n a a a ∴11n n a a +-= 所以, n n a n =-⨯+=)1(11, ………………6分(2)(1)2n n n S +=因为n ,<2)1(23222121+++⨯+⨯=++n n S S S n ; 222)1(2222121n n S n n n S S S =+=+++>++ ………12分21.解:(I )14341ln )(-+-=xx x x f )0(>x , 22243443411)(xx x x x x f --=--=' ............2分 由0>x 及0)(>'x f 得31<<x ;由0>x 及0)(<'x f 得310><<x x 或,故函数)(x f 的单调递增区间是)3,1(; 单调递减区间是),3(,)1,0(∞+...................4分(II )若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立,问题等价于max min )()(x g x f ≥,............ 5分由(I )可知,在(0,2)上,1x =是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以min 1()(1)2f x f ==-;...................6分[]2()24,1,2g x x bx x =-+-∈ 当1b <时,max ()(1)25g x g b ==-; 当12b ≤≤时,2max ()()4g x g b b ==-; 当2b >时,max ()(2)48g x g b ==-;问题等价于11252b b <⎧⎪⎨-≥-⎪⎩212142b b ≤≤⎧⎪⎨-≥-⎪⎩ 或21482b b >⎧⎪⎨-≥-⎪⎩.......11分 解得1b <或12b ≤≤或 b ∈∅ 即实数b的取值范围是,2⎛-∞ ⎝⎦...................12分 22.解:(Ⅰ)∵双曲线C 与圆O 相切,∴a = ………………2分过CO 相切,得2c =,既而1b =故双曲线C 的方程为2213x y -= ………………5分(Ⅱ)设直线l :m kx y +=,)0,0(><m k ,),(11y x A ,),(22y x B 圆心O 到直线l 的距离12+=k m d,由d =2233m k =+………6分由2213y kx m x y =+⎧⎪⎨-=⎪⎩ 得222(31)6330k x kmx m -+++= 122631km x x k +=--, 21223331m x x k +=- ……………8分1221x x k AB -⋅+==2121224)(1x x x x k -+⋅+==又AOB ∆的面积12S OP AB =⋅==10分∴AB = = 解得1-=k ,m =∴直线l 的方程为y x =-…………………12分。
2021年高三第四次月考试题 数学(理) Word版含答案
2021年高三第四次月考试题数学(理) Word版含答案数学(理科)南雅中学高三数学备课组组稿一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合则满足的集合个数是()2.是直线与直线平行的()3.若向量满足//,且,则()4.已知函数:,当时,下列选项正确的是 ( )5.已知平面外不共线的三点到α的距离都相等,则正确的结论是( )A.平面必平行于B.平面必与相交C.平面必不垂直于D.存在△的一条中位线平行于或在内6.已知抛物线上存在关于直线对称的相异两点,则等于()3 47.平面上动点满足,,,则一定有()8.在等差数列中,,,记数列的前项和为,若对恒成立,则正整数的最小值为()5 4 3 2二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上。
(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在极坐标系中,曲线的焦点的极坐标 .的平分线分别交、于点、.则的度数= .11.若存在实数使成立,求常数的取值范围。
(二)必做题(12-16题)12. 计算:= 。
13.已知某个几何体的三视图如右图所示,根据图中标出的尺寸,可得这个几何体的表面积是 。
14.桌面上有形状大小相同的白球、红球、黄球各3个,相同颜色的球不加以区分,将此9个球排成一排共有 种不同的排法。
(用数字作答) 15.定义:,其中是虚数单位,,且实数指数幂的运算性质对都适应。
若,,则 . 16.已知函数 其中,。
(1)若在的定义域内恒成立,则实数的取值范围 ;(2)在(1)的条件下,当取最小值时,在上有零点,则的最大值为 。
三、解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数,.求:(1)函数的最小值及取得最大值的自变量的集合; (2)函数的单调增区间. 高 考 资 源 网 18. (本小题满分12分) 如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,,且满足. (1)求证:; (2)求点的距离;(3)求二面角的平面角的余弦值。
四川省成都市2024-2025学年高三上学期11月期中考试数学试题含答案
成都市高2022级高三11月月考数学试题(答案在最后)总分150分时间120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若命题p :20430x x x ∃>-+>,,则命题p ⌝为()A.20430,∃>-+≥x x xB.20430,∃≤-+≤x x xC.20430,∀>-+≤x x xD.20430,∀≤-+≤x x x 【答案】C 【解析】【分析】根据存在量词命题的否定为全称量词命题,写出结论即可.【详解】命题p 是一个存在性命题,说明存在使2430x x -+>的正数x ,则它的否定是:不存在使2430x x -+>的正数x ,即对任意的正数2430x x -+>都不能成立,由以上的分析,可得p ⌝为:20430,∀>-+≤x x x ,故选:C.2.在ABC V 中,“π6A >”是“1sin 2A >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】结合正弦函数的性质由1sin 2A >,可得π5π66A <<,再根据充分条件和必要条件的定义判断即可.【详解】在ABC V 中,()0,πA ∈,由1sin 2A >,可得π5π66A <<,所以“π6A >”是“1sin 2A >”的必要不充分条件.故选:B .3.已知向量,a b的夹角为2π3,且5,4a b == ,则a 在b 方向上的投影向量为()A.38b -B.58b -C.58bD.78b- 【答案】B 【解析】【分析】根据投影向量的计算公式,结合已知条件,直接求解即可.【详解】由题可知:12π54cos 523448a b a b b b b b bb bb⎛⎫⨯⨯- ⎪⋅⎝⎭⋅=⨯=⨯=-,故a在b 方向上的投影向量为58b - .故选:B.4.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,若342n n S n T n +=+,则62102a b b +()A.11113B.3713C.11126D.3726【答案】B 【解析】【分析】计算出11113713S T =,由等差数列的性质得611116a S T b =,6621062a a b b b =+,从而得到答案.【详解】因为等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T ,满足342n n S n T n +=+,所以111131143711213S T ⨯+==+,又11161116111111()211()2a a a Sb b T b +==+,故666210662322371a a a b b b b ===+,故选:B5.遗忘曲线由德国心理学家艾宾浩斯研究发现,描述了人类大脑对新事物遗忘的规律,某同学利用信息技术拟合了“艾宾浩斯遗忘曲线”,得到记忆率y 与初次记忆经过的时间x (小时)的大致关系:0.0610.6y x =-,则记忆率为20%时经过的时间约为()(参考数据:lg 20.30≈,lg 30.48≈)A.80小时B.90小时C.100小时D.120小时【答案】C 【解析】【分析】根据题设得到0.0643x =,两边取对数求解,即可得出结果.【详解】根据题意得0.06110.65x =-,整理得到0.0643x =,两边取以10为底的对数,得到4lg 0.06lg 3x =,即2lg 2lg 30.06lg x -=,又lg 20.30,lg 30.48≈≈,所以0.60.48lg 2lg1000.06x -≈==,得到100x ≈,故选:C.6.已知圆锥的侧面展开图是一个半径为43,面积为4π3的扇形,则该圆锥的外接球的表面积为()A.256π63B.4πC.9π2D.9π【答案】A 【解析】【分析】求出圆锥的底面圆半径和高,再求出外接球的半径,由此求得圆锥的外接球的面积.【详解】设圆锥的底面圆半径为r ,则该圆锥的侧面展开图扇形弧长为2πr ,于是144π2π233r ⋅⋅=,解得1r =,该圆锥的高为73h ==,设该圆锥的外接球的半径为R ,则球心到圆锥底面圆距离||d h R =-,由球的性质知,2227)13R R -+=,解得R =所以该圆锥的外接球的面积为22564ππ63S R ==.故选:A 7.若()*n n ∈N次多项式()()1212100nn nnn n P t a ta t a t a t a a --=++⋅⋅⋅+++≠满足()cos cos n P x nx =,则称这些多项式()n P t 为切比雪夫多项式.如,由2cos 22cos 1θθ=-可得切比雪夫多项式()2221P x x =-,同理可得()3343P x x x =-.利用上述信息计算sin 54︒=()A.14+ B.14C.48 D.48【答案】A 【解析】【分析】根据切比雪夫多项式得()33cos 4cos 3cos cos3P θθθθ=-=,即可取18θ= ,结合二倍角公式以及同角关系求解.【详解】由于()33cos 4cos 3cos cos3P θθθθ=-=,cos54sin 36︒=︒,即3cos544cos 183cos182sin18cos18︒=︒-︒=︒︒,变形可得24cos 1832sin18︒-=︒,即214sin 182sin18-=︒,解可得:51sin184︒=或514-(舍),则有21cos3612sin 184+︒=-=︒,即1sin 544+︒=,故选:A8.函数()2e 12e 21x x xh x -=++,不等式()()2222h ax h ax -+≤对x ∀∈R 恒成立,则实数a 的取值范围是()A.()2,-+∞ B.(),2-∞ C.()0,2 D.[]2,0-【答案】D 【解析】【分析】令()()1f x h x =-,根据奇偶性定义判断()f x 为奇函数,再应用导数研究()f x 的单调性,进而将目标式转化为2220ax ax +-≤在R 上恒成立,求参数范围.【详解】因为()2e 122e e e 2121x x xx x xh x --=+=-+++,所以()()22222e e e e 221212121x x x x xx x x x h x h x ---⋅+-=+-++-=+=++++,令()()1f x h x =-,则()()0f x f x +-=,得()f x 为奇函数,又()()()222ln41ln4e e e e e 121e 21222x x x x x xx x x x xf x --'⎛⎫=+-=+-=+- ⎪+⎝⎭+++'',1e 2e x x +≥,当且仅当1e e xx =,即0x =时等号成立;ln4ln4ln2142222x x ≤=++,当且仅当122xx=,即0x =时等号成立;所以()0f x '>,得()f x 在R 上为增函数,因为()()()()()()22222222022h ax h ax f ax f ax f ax f ax -+≤⇔-+≤⇔-≤-,所以2220ax ax +-≤在R 上恒成立,显然0a =时满足;当0a ≠,需满足20Δ480a a a <⎧⎨=+≤⎩,解得20a -≤<,综上,[]2,0a ∈-.故选:D【点睛】关键点点睛:注意构造()()1f x h x =-,判断其奇偶性、单调性,最后将问题化为2220ax ax +-≤在R 上恒成立为关键.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设1z ,2z 为复数,且120z z ≠,则下列结论正确的是()A.1212z z z z = B.1212z z z z +=+C.若12=z z ,则2212z z = D.1212z z z z ⋅=⋅【答案】ABD 【解析】【分析】根据题意,由复数的运算,代入计算,逐一判断,即可得到结果.【详解】设1i z a b =+,2i z c d =+(,,,)a b c d ∈R ,对于选项A ,因为12(i)(i)()()i z z a b c d ac bd ad bc =++=-++,所以12z z =且12z z 1212z z z z =,故A 正确;对于选项B ,因为12()()i z z a c b d +=+++,1i z a b =-,2i z c d =-,则12()()z z a c b d i +=+-+,12()()i z z a c b d +=+-+,所以1212z z z z +=+,故B 正确;对于选项C ,若12=z z ,例如11i z =+,21i z =-,满足12z z ==,但221(1i)2i z =+=,222(1i)2i z =-=-,即2212z z ≠,故C 错误;对于选项D ,因为21(i)(i)()()i z a b c d ac bd c z ad b ⋅=++=-++,所以21()()i z ac bd a b z d c ⋅=--+,12(i)(i)()()i z z a b c d ac bd ad bc ⋅=--=--+,所以1212z z z z ⋅=⋅,故D 正确.故选:ABD.10.下列关于概率统计的知识,其中说法正确的是()A.数据1-,0,2,4,5,6,8,9的第25百分位数是1B.已知随机变量(),X B n p ,若()40E X =,()30D X =,则160n =C.若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立D.若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =-+上,则这组样本数据的相关系数为12-【答案】ABC 【解析】【分析】根据百分位数的定义计算判断A ,由二项分布的数学期望与方差公式计算可判断B ,根据相互独立事件及条件概率的概率公式计算可判断C ,根据相关系数的定义可判断D.【详解】对于选项A ,8个数据从小到大排列,由于825%2⨯=,所以第25百分位数应该是第二个与第三个的平均数0+2=12,故A 正确;对于选项B ,因为(),X B n p ~,()40E X =,()30D X =,所以40(1)30np np p =⎧⎨-=⎩,解得1,1604p n ==,故B 正确;对于选项C ,由()()1P N M P N +=,可得()()1P N M P N =-,即()()()P NM P N P M =,即()()()P NM P N P M =,所以M 与N 相互独立,故C 正确;对于选项D ,因为样本点都在直线132y x =-+上,说明是负相关且线性相关性很强,所以相关系数为1-,故D 错误.故选:ABC.11.“曼哈顿距离”是十九世纪的赫尔曼•闵可夫斯省所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点()()1122,,,A x y B x y 的曼哈顿距离()1212,d A B x x y y =-+-,则下列结论正确的是()A.若点()()1,3,2,4P Q ,则(),2d P Q =B.若对于三点,,A B C ,则“()()(),,,d A B d A C d B C +=”当且仅当“点A 在线段BC 上”C.若点M 在圆224x y +=上,点P 在直线280x y -+=上,则(),d P M 的最小值是25-D.若点M 在圆224x y +=上,点P 在直线280x y -+=上,则(),d P M 的最小值是4【答案】AD 【解析】【分析】由定义即可判断A 选项,由数形结合即可判断出B 选项,C,D 选项是求点与点的“曼哈顿距离”距离,由基本不等式转化成点到点的平面距离,借助数形结合即可得出判断.【详解】对于A 选项:由定义可知(),21432d P Q =-+-=,故A 选项正确;对于B 选项:设点()()()112233,,,,,A x y B x y C x y 则()()()121213132323,,,,d A B d A C x x y y x x y y d B C x x y y +=-+-+-+-=-+-显然,当点A 在线段BC 上时,121323121323,x x x x x x y y y y y y -+-=--+-=-,()()(),,,d A B d A C d B C ∴+=成立,如图:过点B 作BE y ⊥轴,过点C 作EE x ⊥轴,且相交于点E ,过点A 作AD BE ⊥与D ,过点A 作AF CE ⊥与F ,由图可知121213132323x x y y x x y y BD AD AF CF BE CE x x y y -+-+-+-=+++=+=-+-,显然此时点A 不在线段BC 上,故B 选项不正确;对于C ,D 选项:当0,0a b >>a b ≥+≥∴想要(),d P M 最小,点M 到直线距离最小时取得,∴过原点O 作OM ⊥直线280x y -+=交圆于M ,如图:设(),M a b ,则25452,55OMbk M a ⎛⎫==-∴- ⎪ ⎪⎝⎭设点0,0,则()00,d P M x y =+-,又 当0,ab a b =+≥①当005x +=时,由()00544,25x y d P M =+=-+004x y =++-=-②当04505y -=时,由002885x y =-=-()00,8d P M x y =+-=-又48-<- ;(),d P M ∴的最小值为:4.故C 选项错误,D 选项正确.故选:AD【点睛】思路点睛:本题考查了新概念问题,解决新概念问题首先要确定新概念的定义或公式,将其当做一种规则和要求严格按照新概念的定义要求研究,再结合所学相关知识处理即可.三、填空题:本题共3小题,每小题5分,共15分.12.6(12)(13)x x -+的展开式中,含2x 的项的系数为________.(用数字作答)【答案】99【解析】【分析】先求二项式6(13)x +的展开式的通项,再由乘法法则求出6(12)(13)x x -+的展开式中含2x 的项即可得解.【详解】由题意得6(13)x +的展开式的通项为()166C 33C rr r r rr T x x +==,所以6(12)(13)x x -+的展开式中,含2x 的项为2221112663C 23C 99x x x x -⋅=,所以展开式中含2x 的项的系数为99.故答案为:99.13.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点和上顶点分别为F 和A ,连接AF 并延长交椭圆C 于B ,若32AOB AOF S S = ,则椭圆C 的离心率为_______.【答案】3【解析】【分析】先根据面积比例关系得出点B 的横坐标,点在直线AF 上得出B 的坐标,最后应用点B 在椭圆上得出2213c a =得出离心率.【详解】因为32AOB AOF S S = ,所以132122BAOB AOF OA x S S OA c ⨯==⨯ ,所以32B x c =,设()()0,,,0A b F c ,设直线():bAF y x c c =--,点B 在直线AF 上,所以2B by =-,点B 在椭圆上,可得22229441b ca b +=,所以2213c a =,即得3c a =.故答案为:3.14.设数列{}n a 的前n 项和为21212,1,1,23n nn n a a S a a a +++===.对任意()()*22221N ,21log log n n n n S a a λ+∈++>恒成立,则λ的取值范围为______.【答案】3,2∞⎛⎫-+ ⎪⎝⎭【解析】【分析】根据递推关系可得{}1n n a a +-为等比数列,即可结合累加法求解12n n a -=,由等比求和公式得21nn S =-,即可代入不等式化简得()22212n n n λ+>-⋅,构造()2212n nn b n =-⋅,作差得数列单调性,即可求解.【详解】由21213n nn a a a +++=,得()2112n n n n a a a a +++-=-,又211a a -=,所以数列{}1n n a a +-是以2为公比,1为首项的等比数列,所以112n n n a a -+-=,则()()()1231111221112222211212n n n n n n n n n a a a a a a a a --------=-+-++-+=+++++=+=- ,进而数列{}n a 是以2为公比,1为首项的等比数列,可得122112nn n S -==--,不等式()()2222121log log n n n S a a λ+++>恒成立,即()()()2222122212nnn n n n λλ-+>⇒+>-⋅.设()2212n n n b n =-⋅,则()()()()()223211112121221221212n n n n n n n n n b b n n n n ++++-+--=-=+⋅-⋅-⋅+⋅,当1n ≥时,10n n b b +-<,为递减数列,所以()1max 12n b b ==,所以122λ+>,解得32λ>-.故答案为:3,2∞⎛⎫-+ ⎪⎝⎭.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.锐角ABC V 的内角,,A B C 所对的边分别为,,a b c ,若2cos 2b a B c +=,且a =,3b =.(1)求边c 的值;(2)求内角A 的角平分线AD 的长.【答案】(1)2c =(2)5AD =【解析】【分析】(1)根据正弦定理结合三角恒等变换运算求解可得1cos 2A =,即可利用余弦定理求解1c =或2c =,利用锐角三角形即可得2c =;(2)利用等面积法,结合三角形的面积公式即可求解.【小问1详解】因为2cos 2b a B c +=,由正弦定理可得:()sin 2sin cos 2sin 2sin 2sin cos 2cos sin B A B C A B A B A B +==+=+,即sin 2cos sin B A B =,又因为π02B <<,则sin 0B ≠,可得1cos 2A =,又因为π02A <<,所以π3A =.由余弦定理可得2222cos a b c bc A =+-,即227323cos60c c =+-⨯⨯⨯︒,则2320c c -+=,解得:1c =,或2c =,由于三角形为锐角三角形,故2220a c b +->,故220c ->,进而只取2c =,故2c =.【小问2详解】根据面积关系可得ABC ABD ACD S S S =+ ,即11123sin 602sin 303sin 30222AD AD ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得:5AD =.16.如图,在四棱锥P ABCD -中,2PD =,1AD =,PD DA ⊥,PD DC ⊥,底面ABCD 为正方形,M ,N 分别为AD ,PD 的中点.(1)求点B 到平面MNC 的距离;(2)求直线MB 与平面BNC 所成角的余弦值.【答案】(1)63(2)5【解析】【分析】(1)建立空间直角坐标系,运用向量点到平面的距离公式计算即可;(2)先求出直线与平面所成的角,可通过向量法,求出平面的法向量,再根据向量的夹角公式求出直线与平面所成角的正弦值,最后根据三角函数关系求出余弦值.【小问1详解】因为2PD =,1AD =,PD DA ⊥,PD DC ⊥,底面ABCD 为正方形,以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z 轴建立空间直角坐标系,则(0,0,0)D ,(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,2)P ,因为M ,N 分别为DA ,DP 中点,所以1(,0,0)2M ,(0,0,1)N ,则1(,0,1)2MN =- ,1(,1,0)2MC =- ,1(,1,0)2MB = ,设平面MNC 的法向量为(,,)n x y z =,由00n MN n MC ⎧⋅=⎪⎨⋅=⎪⎩ ,即102102x z x y ⎧-+=⎪⎪⎨⎪-+=⎪⎩,令2x =,则1y =,1z =,所以(2,1,1)n = ,则12111022MB n ⋅=⨯+⨯+⨯=,||n == 根据点B 到平面MNC的距离公式|63|||MB n d n ==⋅=.【小问2详解】首先设平面BNC 的法向量(,,)m a b c =,(1,1,1)BN =-- ,(1,0,0)BC =- ,由00m BN m BC ⎧⋅=⎪⎨⋅=⎪⎩,即00a b c a --+=⎧⎨-=⎩,令1c =,则0a =,1b =,所以(0,1,1)m = ,设直线MB 与平面BNC 所成角为θ,则10111012MB m ⋅=⨯+⨯+⨯=,5||2MB ==,||m == ,所以||10sin 5||||MB m MB m θ⋅== ,因为22sin cos 1θθ+=,所以cos 5θ==,则直线MB 与平面BNC 所成角的余弦值155.17.某工厂生产某款电池,在满电状态下能够持续放电时间不低于10小时的为合格品,工程师选择某台生产电池的机器进行参数调试,在调试前后,分别在其产品中随机抽取样本数据进行统计,制作了如下的22⨯列联表:产品合格不合格合计调试前451560调试后35540合计8020100(1)根据表中数据,依据0.01α=的独立性检验,能否认为参数调试与产品质量有关联;(2)现从调试前的样本中按合格和不合格,用分层随机抽样法抽取8件产品重新做参数调试,再从这8件产品中随机抽取3件做对比分析,记抽取的3件中合格的件数为X ,求X 的分布列和数学期望;(3)用样本分布的频率估计总体分布的概率,若现在随机抽取调试后的产品1000件,记其中合格的件数为Y ,求使事件“Yk =”的概率最大时k 的取值.参考公式及数据:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.α0.0250.010.0050.001x α5.0246.6357.87910.828【答案】(1)依据0.01α=的独立性检验,可认为参数调试与产品质量无关联(2)分布列见解析,数学期望为94(3)875【解析】【分析】(1)计算2χ的值,将其与0.01α=对应的小概率值比较即得;(2)先算出抽取的8件产品中的合格品与不合格品的数目,再从中抽取3件,根据合格品件数X 的可能值运用超几何分布概率计算出概率,列出分布列计算数学期望即得;(3)分析得出7(1000,8Y B ,利用二项分布概率公式得出1000100071()C ()(),0,1,,1000,88kk k P Y k k -=== 再利用作商法分析得875k =时,事件“Y k =”的概率最大.【小问1详解】零假设为0H :假设依据0.01α=的独立性检验,认为参数调试与产品质量无关联;则220.01100(4553515) 2.344 6.63580204060x χ⨯-⨯=≈<=⨯⨯⨯,故依据0.01α=的独立性检验,没有充分证据说明零假设0H 不成立,因此可认为0H 成立,即认为参数调试与产品质量无关联;【小问2详解】依题意,用分层随机抽样法抽取的8件产品中,合格产品有458660⨯=件,不合格产品有2件,而从这8件产品中随机抽取3件,其中的合格品件数X 的可能值有1,2,3.则126238C C 3(1),C 28P X ===216238C C 15(2),C 28P X ===363802C C 10(3)C 28P X ===.故X 的分布列为:X123P32815281028则15109()12328284328E X =⨯+⨯+⨯=;【小问3详解】依题意,因随机抽取调试后的产品的合格率为357408=,故7(1000,8Y B ,则1000100071()C ()(),0,1,,1000,88kkkP Y k k -=== 由1199910001000100071C (()(1)10007000788771()11C ()()88k k k kk k P Y k k k P Y k k k ++--=+--====++,故由7000711k k ->+可解得78748k <,因Z k ∈,故当0874k <≤时,()P Y k =单调递增;由7000700011k k -≤+可解得78748k ≥,即当875k ≥时,()P Y k =单调递减.故当事件“Y k =”的概率最大时,875k =.【点睛】方法点睛:(1)计算卡方值,并与小概率值比较得出结论;(2)求随机变量的分布列关键在于判断X 满足的概率模型;(3)对于二项分布中概率最大值问题,一般考虑作商后分析判断商与1的大小即得.18.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为4,渐近线方程为12y x =±.(1)求双曲线C 的标准方程;(2)双曲线的左、右顶点分别为12A A 、,过点()3,0B 作与x 轴不重合的直线l 与C 交于P Q 、两点,直线1A P 与2A Q 交于点S ,直线1AQ 与2A P 交于点T .(i )设直线1A P 的斜率为1k ,直线2A Q 的斜率为2k ,若12k k λ=,求λ的值;(ii )求2A ST 的面积的取值范围.【答案】(1)2214x y -=(2)(i )15-;(ii )2522,,933∞⎡⎫⎛⎫⋃+⎪⎢ ⎪⎪⎝⎭⎣⎭【解析】【分析】(1)根据双曲线性质计算即可;(2)设直线l 方程及P Q 、坐标,联立双曲线方程,根据韦达定理得出纵坐标和积关系,(i )利用两点斜率公式消元计算即可;(ii )联立直线方程求出S T 、坐标,并求出ST ,利用三角形面积公式及2t 范围计算即可.【小问1详解】由题意知:124,2b a a ==,解得2,1a b ==,双曲线方程为2214xy -=.【小问2详解】因为直线l 斜率不为0,设直线l 方程为3x ty =+,易知()()122,0,2,0A A -,设()()1122,,,P x y Q x y ,联立2214x y -=,得()224650t y ty -++=,则212212240Δ06454t t y y t y y t ⎧-≠⎪>⎪⎪⎨+=--⎪⎪=⎪-⎩,且()121256y y y y t =-+,(i )()()21121121212121223222325ty k y x y ty y y k x y ty y ty y y λ+--+==⋅=⋅=++++()()121121212255165525556y y y y y y y y y y -++-===--+-++;(ii )由题可得:()()2211:2,:2A Q y k x A P y k x =-=+.联立可得:()2112124410,333s k k x S k k k +⎛⎫==⇒ ⎪-⎝⎭,即()11104,332y S x ⎛⎫ ⎪ ⎪+⎝⎭,同理()22104,332y T x ⎛⎫ ⎪ ⎪+⎝⎭.()()()121212121212125101010532235535256y y y y y y ST x x ty ty t y y t y y -∴=-=-=++++-++++==,故2212A ST A S S ST x x =-= ,20t ≥且24t ≠,222,,933A STS ∞⎡⎫⎛⎫∴=∈⋃+⎪⎢ ⎪⎪⎝⎭⎣⎭ .【点睛】关键点点睛:反设直线线并设点,联立双曲线方程后得出P Q 、纵坐标的和积关系,为后面消元转化减轻计算量.19.已知定义:函数()f x 的导函数为()f x ',我们称函数()f x '的导函数()f x ''为函数()f x 的二阶导函数,如果一个连续函数()f x 在区间I 上的二阶导函数()0f x ''≥,则称()f x 为I 上的凹函数;二阶导函数()0f x ''≤,则称()f x 为I 上的凸函数.若()f x 是区间I 上的凹函数,则对任意的12,,x x n x I ∈,有不等式()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭恒成立(当且仅当12n x x x === 时等号成立).若()f x 是区间I 上的凸函数,则对任意的12,,n x x x I ∈ ,有不等式()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭恒成立(当且仅当12n x x x === 时等号成立).已知函数()1f x x x =+,π0,2x ⎛⎤∈ ⎥⎝⎦.(1)试判断()f x 在π0,2⎛⎤ ⎥⎝⎦为凹函数还是凸函数?(2)设12,x x ,L ,0n x >,2n ≥,且121n x x x +++= ,求1212111n nx x xW x x x =++++++ 的最大值;(3)已知*N a ∈,且当π0,2x ⎛⎤∈ ⎥⎝⎦,都有()()()sin sin 31cos 0x ax x f x x +-+>恒成立,求实数a 的所有可能取值.【答案】(1)凸函数(2)1n f n ⎛⎫⋅⎪⎝⎭(3){}2【解析】【分析】(1)根据凹凸函数的定义判断即可;(2)由(1)知()f x 在π0,2⎛⎤⎥⎝⎦为凸函数,根据凸函数的性质结合题意即可求解;(3)令()sin sin 3cos h x x ax x x =+-,π0,2x ⎛⎤∈ ⎥⎝⎦,则问题转化为ℎ>0在π0,2⎛⎤ ⎥⎝⎦上恒成立,对a 分类讨论,结合导数的运算研究函数的单调性即可求解.【小问1详解】()1x f x x =+,π0,2x ⎛⎤∈ ⎥⎝⎦,所以()()211f x x ='+,″()321x =-+,因为π0,2x ⎛⎤∈ ⎥⎝⎦,所以″0<,所以()f x 在π0,2⎛⎤ ⎥⎝⎦为凸函数.【小问2详解】由(1)知()1x f x x =+在π0,2⎛⎤⎥⎝⎦内为凸函数,又1212111n nx x xW x x x =++++++ ,且121n x x x +++= (12,x x ,L ,0n x >,2n ≥),所以()()()12121.nn x x x W f x f x f x n f n f n n +++⎛⎫⎛⎫=+++≤⋅=⋅ ⎪⎪⎝⎭⎝⎭所以max 1.W n f n ⎛⎫=⋅ ⎪⎝⎭【小问3详解】令()sin sin 3cos h x x ax x x =+-,π0,2x ⎛⎤∈ ⎥⎝⎦,则ℎ>0在π0,2⎛⎤ ⎥⎝⎦上恒成立,则()cos 2cos 3sin h x a ax x x x =+'-,且()02h a '=-,当1a =,πππ3ππ3πsin sin cos 204444424h ⎛⎫⎫=+-=-<⎪ ⎪⎝⎭⎝⎭,不合题意舍去;当2a =,则()sin sin23cos h x x x x x =+-,故()2cos22cos 3sin h x x x x x =-+',令()()k x h x =',则()4sin25sin 3cos 8sin cos 5sin 3cos k x x x x x x x x x x=-++=-++'5sin 5sin cos 3cos 3sin cos x x x x x x x =-+-()()5sin 1cos 3cos sin x x x x x =-+-,令()sin g x x x =-,π0,2x ⎛⎤∈ ⎥⎝⎦,则()1cos 0g x x ='->,所以()g x 在π0,2x ⎛⎤∈ ⎥⎝⎦上递增,所以sin x x >,所以()'0k x >,即()()'k x h x =在π0,2x ⎛⎤∈ ⎥⎝⎦上递增,又()020h a -'==,则ℎ′>0,所以ℎ在π0,2x ⎛⎤∈ ⎥⎝⎦上递增,又()00h =,即ℎ>0,π0,2x ⎛⎤∈ ⎥⎝⎦,符合题意;当3a ≥,令0ππ0,12x a ⎛⎤=∈ ⎥-⎝⎦,则()0001πax x x a -=-=,()00sin sin πax x =+,所以()()00000000000sin sin 3cos sin sin 3cos 3cos 0h x x ax x x x x x x x x π=+-=++-=-≤,不合题意舍去,综上,正整数a 的取值集合为{}2.【点睛】方法点睛:求解“新定义”题目,主要分如下几步:(1)对定义进行信息提取,明确新定义的名称和符号;(2)对新定义所提取的信息进行加工,探求解决方法和相近的知识点,明确它们的相同点和相似点;(3)对定义中提取的知识进行提取和转换,如果题目是新定义的运算、法则,直接按照法则计算即可;如果新定义是性质,一般要判断性质的适用性,能否利用定义的外延,可用特值排除.。
安徽省六安第一中学2022-2023学年高三上学期第四次月考数学试题含答案
六安一中2023届高三年级第四次月考数学试卷时间:120分钟满分:150分一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足13i1iz +=-(i 为虚数单位),z 是z 的共轭复数,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知空间中的两个不同的平面α,β,直线m ⊥平面β,则“αβ⊥”是“//m α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.一个水平放置的平面图形,用斜二测画法画出了它的直观图,如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.B. C.8D.4.如图,已知1111ABCD A B C D -是正方体,以下结论错误..的是()A.向量AC与向量1C D 的夹角为60°B.110AC A B ⋅= C.()2211111113A A A D A B A B ++=D.若1113A P A C =,则点P 是11AB D 的中心5.(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =() A.33B.C.D.26.过点()3,4P -作圆22:25C x y +=的切线l ,直线:40m ax y -=与切线l 平行,则切线l 与直线m 间的距离为()A.5B.2C.4D.7.如图,已知平面αβ⊥,l αβ= ,,A B 是直线l 上的两点,C D 、是平面β内的两点,且.,3,6,6DA l CB l AD AB CB ⊥⊥===,P 是平面α上的一动点,且直线PD PC 、与平面α所成角相等,则四棱锥P ABCD -体积的最大值为()A.18B.36C.24D.488.在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =.当该正四棱台的体积最大时,其外接球的表面积为(A.332πB.33πC.572π D.57π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下四个命题表述正确的是()A.若直线l 的斜率为l 的倾斜角为π3-B.三棱锥-P ABC 中,E F 、分别为PB PC 、的中点,23PG PA =,则平面EFG 将该三棱锥所分的两部分几何体的体积之比为1:5,即:1:5P EFG EFG ABC V V --=C.若直线l 过点(2,1)P -且在两坐标轴上的截距之和为0,则直线l 的方程为30x y --=D.在四面体O ABC -中,若,OA BC OB AC ⊥⊥,则OC AB⊥10.在三棱锥-P ABC 中,已知PA ⊥底面ABC ,AB BC E F ⊥,、分别是线段PB PC 、上的动点.则下列说法正确的是()A.当AE PB ⊥时,AE PC⊥B.当AF PC ⊥时,AEF △一定为直角三角形C.当//EF BC 时,平面AEF ⊥平面PABD.当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直11.已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+,其中λ,[]0,1μ∈,则下列选项正确的是()A.当12λ=时,三棱锥11A PCD -的体积为定值B.当34μ=时,1B P PD + C.当1λμ+=时,直线1A P 与平面11B D E 的交点轨迹长度为22D.当11,23λμ==时,点1B 到平面11PC D 的距离为6131312.若实数,x y 满足x -=)A.x 的最小值是0B.x 的最大值是5C.若关于y 的方程有一解,则x 的取值范围为[){}1,45D.若关于y 的方程有两解,则x 的取值范围为(4,5)三、填空题:本大题共4小题,每小题5分,共20分.13.若直线120kx y k -+-=与圆229x y +=分别交于M 、N 两点.则弦MN 长的最小值为___________.14.如图,在四面体A BCD -中,2==AC BD ,AC 与BD 所成的角为60︒,M 、N 分别为AB 、CD 的中点,则线段MN 的长为_______.15.已知ABC 的一条内角平分线所在的直线方程为y x =,两个顶点坐标分别为(1,1),(3,2)B C -,则边AC 所在的直线方程为__________.(结果用一般式表示)16.已知数列{}n a 满足:()()()1*21131n nn n a a n n ++-+-=+∈N ,若121a a ==,则数列{}n a 的前20项和20S =___________.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.如图,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的底面圆周上,G 是DP 的中点,圆柱OQ 的底面圆的半径2OA =,侧面积为,120AOP ∠=o .(1)求证:AG BD ⊥;(2)求直线PD 与平面ABD 所成角的正弦值.18.如图,P 为ABC 内的一点,BAP ∠记为α,ABP ∠记为β,且α、β在ABP 中的对边分别记为,,(2)sin cos m n m n ββ+=,π,0,3αβ⎛⎫∈ ⎪⎝⎭.(1)求APB ∠;(2)若1,2AB BP AC AP AP PC ===⊥,,求线段AP 和BC 的长.19.如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点,(1,0)(1,2)A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||MN =l 的方程;(2)圆C 上是否存在点P ,使得22||12||PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.20.已知数列{}n a 的前n 项和为n S ,且22nn n S a =-.(1)求证:2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出{}n a 的通项公式;(2)设3(2)n nn b n a +=+,求证:1231n b b b b ++++< .21.在①2AE =,②AC BD ⊥,③EAB EBA ∠=∠,这三个条件中选择一个,补充在下面问题中,并给出解答.如图,在五面体ABCDE 中,已知,,//AC BC ED AC ⊥,且22,AC BC ED DC DB =====.(1)设平面BDE 与平面ABC 的交线为l ,证明://l 平面ACDE ;(2)求证:平面ABE ⊥平面ABC ;(3)线段BC 上是否存在一点F ,使得平面AEF 与平面ABF夹角的余弦值等于43,若存在,求BFBC的值;若不存在,请说明理由.22.已知a b ∈R ,,函数()()sin ,xf x e a xg x =-=(1)求函数()y f x =在()()0,0f 处的切线方程;(2)若()y f x =和()y g x =有公共点,(i )当0a =时,求b 的取值范围;(ii )求证:22e a b +>.六安一中2023届高三年级第四次月考数学试卷时间:120分钟满分:150分一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足13i1i z +=-(i 为虚数单位),z 是z 的共轭复数,则复数z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】【分析】求出12i z =-+即得解.【详解】解:因为131i iz+=-,所以()()()()13i 1i 13i 24i 12i 1i 1i 1i 2z +++-+====-+--+,所以12z i =--在复平面内对应的点为()1,2--,在第三象限.故选:C.2.已知空间中的两个不同的平面α,β,直线m ⊥平面β,则“αβ⊥”是“//m α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B 【解析】【分析】根据直线和平面,平面和平面的位置关系,依次判断充分性和必要性得到答案.【详解】两个不同的平面α,β,直线m ⊥平面β,当αβ⊥时,m α⊂或m α ,不充分;当m α 时,αβ⊥,必要.故选:B.3.一个水平放置的平面图形,用斜二测画法画出了它的直观图,如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.B. C.8D.【答案】D 【解析】【分析】根据斜二测画法的过程将直观图还原回原图形,找到直观图中正方形的四个顶点在原图形中对应的点,用直线段连结后得到原四边形,再计算平行四边形的面积即可.【详解】还原直观图为原图形如图所示,因为2O A ''=,所以O B ''=2OA O A =''=,2OB O B =''=;所以原图形的面积为2⨯=故选:D4.如图,已知1111ABCD A B C D -是正方体,以下结论错误..的是()A.向量AC与向量1C D 的夹角为60°B.110AC A B ⋅=C.()2211111113A A A D A B A B ++= D.若1113A P A C =,则点P 是11AB D 的中心【答案】A 【解析】【分析】由1160A C D ∠=︒得向量AC 与1C D夹角,判断A ,建立如图所示的空间直角坐标系,设1AB =,得各点坐标,用空间向量法判断BCD .【详解】正方体中,11//AC AC (由1AA与1CC 平行且相等得平行四边形11ACC A ),11A C D 是正三角形,1160A C D ∠=︒,但AC 与1C D夹角等于11A C 与1C D 的夹角为120︒,A 错;以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,如图,设1AB =,则(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,1(1,1,1)B ,1(1,0,1)A ,1(0,1,1)C ,1(0,0,1)D ,1(1,1,1)AC =- ,1(0,1,1)A B =- ,110AC A B ⋅=,B 正确;111111(1,1,1)A A A D A B AC ++==-- ,221111111()33A A A D A B A B ++== ,C 正确;1111113(,,333A P A C =--= ,P 点坐标为212(,,)333(1,0,0)(1,1,1)(0,0,1)3++=,所以P 是11AB D 的重心,即中心,D 正确.故选:A .5.(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,则k =() A.33B.C.D.2【答案】C 【解析】【分析】将问题转化为半圆y =位于直线(0)y kx k =>下方的区间长度为2,由此可得2,4a b ==,求出直线与半圆的交点坐标即可求得k 的值.【详解】解:如图所示:因为y =表示以坐标原点为圆心,4为半径位于x 轴上方(含和x 轴交点)的半圆,(0)y kx k =>表示过坐标原点及第一三象限内的直线,(0)kx k ≤>的解集为区间[,]a b ,且2b a -=,即半圆位于直线下方的区间长度为2,所以2,4a b ==,所以直线与半圆的交点(2,,所以2k ==.故选:C.6.过点()3,4P -作圆22:C x y +=的切线l ,直线:40m ax y -=与切线l 平行,则切线l 与直线m 间的距离为()A.5 B.2C.4D.【答案】A 【解析】【分析】根据平行关系可假设():434al y x -=+,由直线与圆相切可知圆心到直线距离d 等于半径,由此可构造方程求得a ,利用平行直线间距离公式可求得结果.【详解】由40ax y -=得:4ay x =;//l m ,∴直线l 斜率4a k =,则():434al y x -=+,即:43160l ax y a -++=,l 与圆C 相切,∴圆心()0,0C 到直线l的距离5d ==,解得:3a =,则:34250l x y -+=,:340m x y -=,l ∴与m 之间的距离5d ==.故选:A.7.如图,已知平面αβ⊥,l αβ= ,,A B 是直线l 上的两点,C D 、是平面β内的两点,且.,3,6,6DA l CB l AD AB CB ⊥⊥===,P 是平面α上的一动点,且直线PD PC 、与平面α所成角相等,则四棱锥P ABCD -体积的最大值为()A.18B.36C.24D.48【答案】B 【解析】【分析】首先根据线面角的定义得12PA DA PB BC ==,再在平面α内,建立平面直角坐标系,则()()3030A B -,,,,设()()0P x y y >,,得出点P 的轨迹,从而确定点P 到平面ABCD距离的最大值,即可求解体积的最大值.【详解】DA l ⊥ ,αβ⊥,l αβ= ,AD β⊂AD α∴⊥,同理BC α⊥,DPA ∴∠为直线PD 与平面α所成的角,CPB ∠为直线PC 与平面α所成的角,DPA CPB ∴∠=∠,又90DAP CBP ∠=∠=︒,DAP CPB ∴~ ,3162PA DA PB BC ===,在平面α内,以AB 为x 轴,以AB 的中垂线为y 轴建立平面直角坐标系,则()()3030A B -,,,,设()()0P x y y >,,∴=,整理可得:()22516x y ++=,P ∴在α内的轨迹为()50M -,为圆心,以4为半径的上半圆,所以点P 到直线AB 距离的最大值是半径4,因为αβ⊥,l αβ= ,点P 到AB 距离就是点P 到平面ABCD 的距离即点P 到平面ABCD 距离的最大值是4,所以四棱锥P ABCD -体积的最大值()1114366436332ABCD V S =⨯⨯=⨯⨯+⨯⨯=.故选:B8.在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =.当该正四棱台的体积最大时,其外接球的表面积为()A.332πB.33πC.572π D.57π【答案】D 【解析】【分析】根据正棱台的性质,表示出棱台的高与边长之间的关系,根据棱台的体积公式,将体积函数式子表示出来,利用不等式求解最值,得到棱台的高.因为外接球的球心一定在棱台上下底面中心的连线及其延长线上,通过作图,数形结合,求出外接球的半径,得到表面积.【详解】图1设底边长为a ,原四棱锥的高为h ,如图1,1,O O 分别是上下底面的中心,连结1OO ,11O A ,OA ,根据边长关系,知该棱台的高为2h,则11112173224ABCD A B C D h a h V -==,由1AA =11AOO A为直角梯形,111124O A A B a ==,2222OA AB a ===h =,11112724ABCD A B C D a h V -==283=当且仅当22482a a =-,即4a =时等号成立,此时棱台的高为1.上底面外接圆半径111r A O ==r AO ==,设球的半径为R ,显然球心M 在1OO 所在的直线上.显然球心M 在1OO 所在的直线上.图2当棱台两底面在球心异侧时,即球心M 在线段1OO 上,如图2,设OM x =,则11O M x =-,01x <<,显然1MA MA R===,即=解得0x <,舍去.图3当棱台两底面在球心异侧时,显然球心M 在线段1O O 的延长线上,如图3,设OM x =,则11O M x =+,显然1MC MA R ====解得52x =,572R ==,此时,外接球的表面积为225744572R πππ⎛=⨯= ⎝⎭.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下四个命题表述正确的是()A.若直线l 的斜率为l 的倾斜角为π3-B.三棱锥-P ABC 中,E F 、分别为PB PC 、的中点,23PG PA =,则平面EFG 将该三棱锥所分的两部分几何体的体积之比为1:5,即:1:5P EFG EFG ABC V V --=C.若直线l 过点(2,1)P -且在两坐标轴上的截距之和为0,则直线l 的方程为30x y --=D.在四面体O ABC -中,若,OA BC OB AC ⊥⊥,则OC AB ⊥【答案】BD 【解析】【分析】根据倾斜角的定义即可判断A ;由题意可得14PEF PBC S S =△△,点G 到平面PBC 的距离是点A 到平面PBC 的距离的23,再根据棱锥的体积公式计算即可判断B ;分直线l 过原点和不过原点两种情况讨论,即可判断C ;将,,AB AC BC uu u r uuu r uu u r 分别用,,OA OB OC表示,再根据数量积的运算律及空间向量的线性运算即可判断D.【详解】解:对于A ,若直线l 的斜率为l 的倾斜角为2π3,故A 错误;对于B ,因为E F 、分别为PB PC 、的中点,所以14PEF PBC S S =△△,设点A 到平面PBC 的距离为h ,点G 到平面PBC 的距离为h ',因为23PG PA = ,所以23'=h h ,则13P ABC A PBC PBC V V S h --==,11213436P GEF G PEF PBC P ABC V V S h V ---==⋅⋅= ,则56EFG ABC P ABC P EFG P ABC V V V V ----==-,所以:1:5P EFG EFG ABC V V --=,故B 正确;对于C ,当直线l 过原点时,直线方程为12y x =-,当直线l 不过原点时,设直线方程为1x y a a+=-,则有211a a-+=-,解得3a =,所以直线方程为133x y-=,即30x y --=,综上,所求直线方程为12y x =-或30x y --=;对于D ,在四面体O ABC -中,,,AB OB OA AC OC OA BC OC OB =-=-=-,因为,OA BC OB AC ⊥⊥,所以()()0,0OA BC OA OC OB OB AC OB OC OA ⋅=⋅-=⋅=⋅-=,即,OA OC OA OB OB OC OA OB ⋅=⋅⋅=⋅ ,所以OA OC OB OC ⋅=⋅ ,即()0OA OB OC -⋅= ,所以0BA OC ⋅=,所以AB OC ⊥,故D 正确.故选:BD .10.在三棱锥-P ABC 中,已知PA ⊥底面ABC ,AB BC E F ⊥,、分别是线段PB PC 、上的动点.则下列说法正确的是()A.当AE PB ⊥时,AE PC⊥B.当AF PC ⊥时,AEF △一定为直角三角形C.当//EF BC 时,平面AEF ⊥平面PABD.当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直【答案】ACD 【解析】【分析】对A ,根据PA ⊥底面ABC 得到PA BC ⊥,结合AB BC ⊥得到BC ⊥平面PAB ,则BC AE ⊥,AE PB ⊥ ,最后利用线面垂直的判定得到⊥AE 平面BCP ,则AE PC ⊥;对B ,取点E 位于点B 处即可判断,对C ,由BC ⊥平面PAB ,//EF BC 得到EF ⊥平面PAB ,则平面AEF ⊥平面PAB ,对D ,利用反证法,假设平面AEF ⊥平面PAB ,根据面面垂直的性质定理得到线面垂直,从而得到与基本事实相矛盾的结论,所以当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直.【详解】对A 选项,PA ⊥ 底面ABC ,且BC ⊂平面ABC ,PA BC ∴⊥,AB BC ⊥ ,PA AB A = ,且,PA AB ⊂平面PAB ,BC ∴⊥平面PAB ,AE ⊂ 平面PAB ,BC AE ∴⊥,AE PB ⊥ ,BC PB B = ,且,BC PB ⊂平面BCP ,AE ∴⊥平面BCP ,PC ⊂ 平面BCP ,AE PC ∴⊥,故A 正确,对B 选项,当AF PC ⊥时,无法得出AEF △一定为直角三角形,例如E 点取点,B ABF 不是直角三角形,若90AFB ∠= ,则BF AF ⊥,又AF PC ⊥ ,BF PC F ⋂=,,BF PC ⊂平面BCP ,则AF ⊥平面BCP ,BC ⊂ 平面BCP ,则AF BC ⊥,而PA BC ⊥,AF PA A = ,,AF PA ⊂平面ACP ,则BC ⊥平面ACP ,AC ⊂ 平面ACP ,则BC AC ⊥,显然不成立,故此时90AFB ∠≠ ,若90BAF ∠= ,则AF AB ⊥,AP AB ⊥ ,AF AP A ⋂=,,AF AP ⊂平面ACP,AB ∴⊥平面ACP ,AC ⊂ 平面ACP ,AB AC ∴⊥,显然不成立,故此时90BAF ∠≠ ,若90ABF ∠= ,则BF BA ⊥,而CB BA ⊥,,BF CB ⊂平面BCP ,BF CB B = ,所以BA ⊥平面BCP ,BP ⊂ 平面BCP ,BA BP ∴⊥,显然不成立,故90ABF ∠≠ ,故B 错误,对C 选项,由A 选项证得BC ⊥平面PAB ,//EF BC Q ,EF ∴⊥平面PAB ,EF ⊂ 平面AEF ,∴平面AEF ⊥平面PAB ,故C 正确,对D 选项,在平面PAB 内,过点P 作AE 的垂线,垂足为G ,假设平面AEF ⊥平面PAB , 平面AEF ⋂平面PAB AE =,PG AE ⊥,且PG ⊂平面PAB ,PG ∴⊥平面AEF ,而若此时PC ⊥平面AEF ,这与过平面外一点作平面的垂线有且只有一条矛盾,故当PC ⊥平面AEF 时,平面AEF 与平面PAB 不可能垂直,故D 正确,故选:ACD.11.已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+,其中λ,[]0,1μ∈,则下列选项正确的是()A.当12λ=时,三棱锥11A PCD -的体积为定值B.当34μ=时,1B P PD +C.当1λμ+=时,直线1A P 与平面11B D E 的交点轨迹长度为2D.当11,23λμ==时,点1B 到平面11PC D 的距离为61313【答案】ABD 【解析】【分析】对A :由题意确定点P 的位置,利用转换顶点法求体积;对B :由题意确定点P 的位置,借助于展开图分析求解;对C :由题意确定点P 的位置,分析可得直线1A P 与平面11B D E 的交点轨迹为MN ,即可求得结果;对D :由题意确定点P 的位置,利用等积法求点到面的距离.【详解】对A :取,AB CD 的中点,M N ,连接MN ,则MN AD ,∵11A D AD ,∴MN 11A D ,MN ⊄平面11ACD ,11A D ⊂平面11ACD ,∴MN 平面11ACD ,若12λ=,则点P 在线段MN 上,∴点P 到平面11ACD 的距离相等,过N 作1NF CD ⊥,垂足为F ,∵11A D ⊥平面11CDD C ,1,CD NF ⊂平面11CDD C ,∴11111,CD A D NF A D ⊥⊥1111CD A D D ⋂=,111,CD A D ⊂平面11ACD ,∴NF ⊥平面11ACD ,故三棱锥11P ACD -的高为2NF =,∴1111122122323A PCD P A CD V V --==⨯⨯⨯⨯(定值),A 正确;对B :分别在,AD BC 上取点,M N ,使得3AM BNDM NC==,连接11,,MN A M B N ,则MN AB ,又∵AB 11A B ,∴MN 11A B ,则11,,,A B M N 四点共面,135,22BN B N ===若34μ=,则P MN ∈,故1B P ⊂平面11A B NM ,如图,将平面11A B NM 和平面CDMN 对接成一个平面时,则113B C B N NC =+=,∴11B P PD B D +≥=B 正确;对C :若1λμ+=,则P BD ∈,1A P ⊂平面1A BD ,设1111,A D D E M A B B E N ==I I ,则平面1A BD ⋂平面11B D E MN =,即直线1A P 与平面11B D E 的交点轨迹为MN ,∵1112A M A N MD BN ==,∴12233MN BD ==,故直线1A P 与平面11B D E 的交点轨迹长为223,C 错误;对D :分别在,AD BC 上取点,M N ,使得12AM BN DM NC ==,连接11,,MN MD NC ,则MN CD ,MN =CD ,∵11C D CD ,11C D =CD ,∴MN 11C D ,11MN C D =,则11MNC D 为平行四边形,又∵11C D ⊥平面11AA D D ,1MD ⊂平面11AA D D ∴111C D MD ⊥,则11MNC D 为矩形,若11,23λμ==,则点P 为MN 的中点,12133D M ==,设点1B 到平面11PC D 的距离为d ,由111111B PC D P B C D V V --=,即1111222232332d ⨯⨯⨯⨯=⨯⨯⨯⨯,解得13d=,故点1B 到平面11PC D 的距离为61313,D 正确;故选:ABD.12.若实数,x y 满足x -=)A.x 的最小值是0B.x 的最大值是5C.若关于y 的方程有一解,则x 的取值范围为[){}1,45D.若关于y 的方程有两解,则x 的取值范围为(4,5)【答案】AB 【解析】【分析】根据特殊值可判断A 项;设t =t ⎡∈⎣,原方程即为2t x -+=,将t 当成变量,设()2f t t x =-+,()g t =t ⎡∈⎣,原方程有解等价于()f t 的图象和()g t 的图象有公共点,即可利用数形结合解出.【详解】对于A 项:由已知可得,0x =≥,且当0x =时,解得0y =,符合题意,故A 项正确;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为2t x -+=.设()2f t t x =-+,()g t =t ⎡∈⎣,整理得()20t f t x +-=,t ⎡∈⎣,则()f t 的图象是斜率为2-的直线的一部分;整理可得()222t g t x +=,t ⎡∈⎣,()g t 的四分之一圆.如图,作出函数()y f t =与()y g t =的图象,则问题等价于()f t 的图象和()g t 的图象有公共点,观察图形可知,当直线与圆相切时,直线()2f t t x =-+的截距最大,此时x 有最大值,由=得5x =,故B 项正确;当直线过点(时,x =,解得1x =或0x =(舍去);当直线过点)时,x =4x =或0x =(舍去).因此,要使直线与圆有公共点,则有[]1,5x ∈,综上,[]{}1,50x ∈ ,故x 的最大值为5,最小值为0.对于C 、D 项:综上并结合图象可知,当0x =或5x =或[)1,4x ∈时,y 有一解;当[)4,5x ∈时,y 有两解.故C 、D 项错误.故选:AB .三、填空题:本大题共4小题,每小题5分,共20分.13.若直线120kx y k -+-=与圆229x y +=分别交于M 、N 两点.则弦MN 长的最小值为___________.【答案】4【解析】【分析】分析直线过定点,再由勾股定理即可求解.【详解】由圆229x y +=可得圆心()0,0O ,半径为3,直线120kx y k -+-=,即()210k x y --+=,直线过定点P (2,1),又因为22219+<,所以点在圆的内部,当圆心到直线MN 距离最大时,弦长MN 最小,此时OP MN ⊥,此时4MN ==,故答案为:4.14.如图,在四面体A BCD -中,2==AC BD ,AC 与BD 所成的角为60︒,M 、N 分别为AB 、CD 的中点,则线段MN 的长为_______.【答案】1或1【解析】【分析】取BC 的中点E ,连接EM 、EN ,求出MEN ∠的值,利用余弦定理可求得线段MN 的长.【详解】取BC 的中点E ,连接EM 、EN ,M 、E 分别为AB 、BC 的中点,//ME AC ∴且112ME AC ==,同理可得EN //BD 且112EN BD ==,MEN ∴∠为异面直线AC 与BD 所成的角或其补角,则60MEN ∠= 或120 .在MEN 中,1EM EN ==.若60MEN ∠= ,则MEN 为等边三角形,此时,1MN =;若120MEN ∠= ,由余弦定理可得MN =综上所述,1MN =故答案为:115.已知ABC 的一条内角平分线所在的直线方程为y x =,两个顶点坐标分别为(1,1),(3,2)B C -,则边AC 所在的直线方程为__________.(结果用一般式表示)【答案】3250x y --=【解析】【分析】根据题意可知,y x =是角A 的平分线,所以点B 关于角平分线的对称点B '在直线AC 上,即可求得边AC 所在的直线方程.【详解】由题意可知,直线y x =为三角形内角A 的平分线,所以,点B 关于角平分线y x =的对称点B '在直线AC 上,设(,)B a b ',即1111122b a b a -⎧=-⎪⎪+⎨+-⎪=⎪⎩,解得1,1a b ==-,所以(1,1)B '-此时直线BC '所在直线方程即为边AC 所在的直线方程,即212(3)31y x +-=--,整理得3250x y --=.故答案为:3250x y --=16.已知数列{}n a 满足:()()()1*21131n n n n a a n n ++-+-=+∈N ,若121a a ==,则数列{}n a 的前20项和20S =___________.【答案】115-【解析】【分析】分别讨论*21,n m n m m =-=∈N 、,由累加法得2122m m a a ++、的通项,即可求20S .【详解】当*21,n m m =-∈N 时,()()()2212121212111321162m m m m m m a a a a m m -+-+--+-=-=-+=-,∴()()212121212331126121216121312m m m m m a a a a a a a a m m m m m m m m ++---=-+-++-+=+-+++-++=-+=++ ∴()()2221319312912910a a a +++=⨯++++++++ ;当*2,n m m =∈N 时,()()2122222221161m m m m m m a a a a m +++-+-=-+=+,即()22261m m a a m +-=-+,∴()()222222224222612116113412m m m m m a a a a a a a a m m m m m m m m ++-=-+-++-+=-+-+++-+-+=-+=--+ ∴()()22224203129412910a a a +++=-⨯+++-⨯++++ .故()22220131924203129(129)10S a a a a a a =+++++++=⨯++++++++ ()()2229(19)31294129103201152+-⨯+++-⨯++++=-⨯+=- 故答案为:115-四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.如图,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的底面圆周上,G 是DP 的中点,圆柱OQ 的底面圆的半径2OA =,侧面积为,120AOP ∠=o.(1)求证:AG BD ⊥;(2)求直线PD 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)24【解析】【分析】(1)根据圆柱侧面积公式可求得母线长AD ,利用余弦定理可求得AP ,根据等腰三角形三线合一性质可证得AG DP ⊥;由AP BP ⊥,BP AD ⊥可证得BP ⊥平面ADP ,由线面垂直性质可得BP AG ⊥;利用线面垂直的判定和性质可证得结论;(2)取OB 中点E ,根据等腰三角形三线合一和线面垂直性质可证得PE ⊥平面ABD ,由线面角定义可知所求角为PDE ∠,根据长度关系可得结果.【小问1详解】由圆柱侧面积可知:2π4πOA AD AD ⋅⋅=⋅=,解得:AD =2OA OP ==,120AOP ∠=o,AP ∴=,AD AP ∴=,又G 为DP 中点,AG DP ∴⊥;AB 是圆O 的直径,AP BP ∴⊥;AD ⊥ 平面ABP ,BP ⊂平面ABP ,BP AD ∴⊥,又,AD AP ⊂平面ADP ,AD AP A = ,BP ∴⊥平面ADP ,AG ⊂ 平面ADP ,BP AG ∴⊥,又,BP DP ⊂平面BDP ,BP DP P = ,AG ∴⊥平面BDP ,BD ⊂Q 平面BDP ,AG BD ∴⊥.【小问2详解】取OB 中点E ,连接PE ,18060BOP AOP ∠=-∠= ,OB OP =,OBP ∴△为等边三角形,PE AB ∴⊥;AD ⊥ 平面ABP ,PE ⊂平面ABP ,PE AD ⊥∴;AB AD A =Q I ,,AB AD ⊂平面ABD ,PE ∴⊥平面ABD ,PDE ∴∠即为直线PD 与平面ABD 所成角,DP =,PE ==,2sin4PE PDE DP ∴∠==,即直线PD 与平面ABD 所成角的正弦值为4.18.如图,P 为ABC 内的一点,BAP ∠记为α,ABP ∠记为β,且α、β在ABP 中的对边分别记为,,(2)sin cos m n m n ββ+=,π,0,3αβ⎛⎫∈ ⎪⎝⎭.(1)求APB ∠;(2)若1,2AB BP AC AP AP PC ===⊥,,求线段AP 和BC 的长.【答案】(1)2π3(2)1AP =,BC =【解析】【分析】(1)首先利用正弦定理将(2)sin cos m n ββ+=化简为sin sin 3παβ⎛⎫=-⎪⎝⎭,再结合所给角的范围,即可求解.(2)利用余弦定理求出AP ,再结合AP PC ⊥150BPC ∠=︒,,利用余弦定理即可求出BC .【小问1详解】已知()2sin cos m n ββ+=,由正弦定理可得22sin sin sin cos αββββ+=,由sin 0β≠,31sin cos sin sin sin 223παββαβ⎛⎫∴=-⇒= ⎪⎝⎭,πππ,0,0,333αββ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭,,3παβ=-,233APB ππαβ+=⇒∠=.【小问2详解】在APB △中,由余弦定理得知:2222cos AB AP BP AP BP APB=+-⋅⋅∠即231+1AP AP AP =+⇒=又AP PC ⊥ ,且2AC AP PC =⇒=,又150BPC ∠=︒ ,在BPC △中,2222cos BC PB PC PB PC BPC =+-⋅⋅∠,2312BC BC =+⇒=19.如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点,(1,0)(1,2)A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||MN =l 的方程;(2)圆C 上是否存在点P ,使得22||12||PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.【答案】(1)1x =或34110x y +-=(2)存在,两个【解析】【分析】(1)根据垂径定理可得圆心到直线l 的距离为1,然后利用点到直线的距离即可求解;(2)假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,利用题干条件得到点P 也满足22(1)4x y +-=,根据两圆的位置关系即可得出结果.【小问1详解】圆22:40C x y x +-=可化为22(2)4x y -+=,圆心为(2,0),2r =,若l 的斜率不存在时,1l x =:,此时||MN =.当l 的斜率存在时,设l 的斜率为k ,则令:2(1)l y k x -=-,因为||MN =1d ==314k =⇒=-,34110x y ∴+-=所以直线l 的方程为1x =或34110x y +-=.【小问2详解】假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,222222||||(1)(0)(1)(2)12PA PB x y x y +=++-+-+-=,即22230x y y +--=,即22(1)4x y +-=,|22|22-<<+ ,22(2)4x y ∴-+=与22(1)4x y +-=相交,则点P 有两个.20.已知数列{}n a 的前n 项和为n S ,且22nn n S a =-.(1)求证:2n n a ⎧⎫⎨⎬⎩⎭是等差数列,并求出{}n a 的通项公式;(2)设3(2)n nn b n a +=+,求证:1231n b b b b ++++< .【答案】(1)证明见解析;()112n n a n -=+⋅(2)证明见解析【解析】【分析】(1)利用公式()()1112n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩得到1122n n n a a --=+,可构造等差数列并求通项.(2)求出的通项,利用裂项相消求和证明不等式.【小问1详解】因为22n n n S a =-①,所以2n ≥时,11122n n n S a ---=-②,-①②得112222n n n n n a a a --=--+,即1122n n n a a --=+,2n ≥,所以111222n n n n a a ---=,2n ≥,在①式中,令1n =,得12a =,所以数列2n n a ⎧⎫⎨⎬⎩⎭是以1为首项12为公差的等差数列.所以111(1)222n n a n n +=+-⋅=,所以()112n n a n -=+⋅.【小问2详解】)由121311(2)(1)2(1)2(2)2n n n n n b n n n n ---+==-++⋅+⋅+⋅,所以1230011211111(1()(3232424252n b b b b ++++=-+-+-+⨯⨯⨯⨯⨯ 2111111(1)2(2)2(2)2n n n n n n ---⎡⎤+-=-⎢⎥+⋅+⋅+⋅⎣⎦.因为110(2)2n n ->+⋅,所以1231n b b b b ++++< ,得证.21.在①2AE =,②AC BD ⊥,③EAB EBA ∠=∠,这三个条件中选择一个,补充在下面问题中,并给出解答.如图,在五面体ABCDE 中,已知,,//AC BC ED AC ⊥,且22,AC BC ED DC DB =====.(1)设平面BDE 与平面ABC 的交线为l ,证明://l 平面ACDE ;(2)求证:平面ABE ⊥平面ABC ;(3)线段BC 上是否存在一点F ,使得平面AEF 与平面ABF 夹角的余弦值等于43,若存在,求BF BC的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)答案见解析;(3)线段以上不存在点F ,使得平面AEF 与平面ABF 夹角的余弦值等于54343,理由见解析.【解析】【分析】(1)由线面平行的判定定理证线面平行//DE 平面ABC ,,再由线面平行的性质定理得线线平行//DE l ,从而再得证线面平行;(2)选①,取AC 中点G ,BC 中点,O AB 中点H ,连接,,EG DO OH ,由勾股定理证明AG EG ⊥,然后证明AC ⊥平面BCD ,从而得面面垂直,由面面垂直的性质定理得线面垂直,从而得线线垂直DO ⊥平面ABC ,又有OH BC ⊥,然后以O 为坐标原点,,,OD OH OB 为,,x y z 轴,可建立如图所示空间直角坐标系,用空间向量法证明面面垂直;选②,先证明平面ABC ⊥平面BCD ,然后取BC 中点O ,AB 中点H ,连接,DO OH ,证明DO ⊥平面ABC ,然后同选①,选③,取BC 中点O ,AB 中点H ,连接,,OD OH EH ,结合勾股定理证明BD DE ⊥,然后证明证明DO ⊥平面ABC ,再然后同选①;(3)设在线段BC 上存在点()()0,,011F t t -≤≤,使得平面AEF 与平面ABF 夹角的余弦值等于54343,然后由空间向量法求二面角的余弦,求解t ,有解说明存在,无解说明不存在.【小问1详解】//DE AC ,AC ⊂平面ABC ,DE ⊄平面ABC ,//DE ∴平面ABC ,又DE ⊂ 平面BDE 且平面BDE ⋂平面=ABC l ,//DE l∴又DE ⊂ 平面ACDE ,l ⊄平面ACDE ,//l ⇒平面ACDE .【小问2详解】若选①,取AC 中点G ,BC 中点,O AB 中点H ,连接,,EG DO OH ,//ED AC ,12CG AC ED ==,∴四边形EDCG 为平行四边形,EG CD ∴∥,EG ∴=112AG AC ==,2AE =,222AG EG AE ∴+=,AG EG ∴⊥,又//CD EG ,AC CD ∴⊥,又AC BC ⊥,BC CD C ⋂=,,BC CD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,BD CD = ,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.则以O 为坐标原点,,,OD OH OB 为,,x y z 轴,可建立如图所示空间直角坐标系,则()2,1,0A -,()0,1,0B,(E ,()2,2,0AB ∴=-,(1,BE =- ,DO ⊥ 平面ABC ,∴平面ABC 的一个法向量()0,0,1m = ;设平面ABE 的法向量()1111,,n x y z = ,则11111112200AB n x y BE n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令11x =,解得:11y =,10z =,()1=1,1,0∴ n ,10m n ∴⋅= ,即1m n ⊥ ,∴平面ABE ⊥与平面ABC .若选②,AC BD ^ ,AC BC ⊥,BC BD B = ,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,取BC 中点O ,AB 中点H ,连接,DO OH ,BD CD = ,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.以下同选①;若选③,取BC 中点O ,AB 中点H ,连接,,OD OH EH ,DC BD ==DO BC ∴⊥,又2BC =,DO ∴=,O H 分别为,BC AB 中点,12OH AC ∴∥,又12ED AC ∥,OH ED ∴∥,∴四边形DEHO为平行四边形,EH DO ∴==AC BC ⊥,2AC BC ==,AB ∴=,12EH AB ∴=,AE BE ∴⊥,EAB EBA ∠=∠ ,2∴==BE AE ,222BD DE BE ∴+=,BD DE ∴⊥,又//DE AC ,AC BD ∴⊥,又AC BC ⊥,BC BD B = ,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂ 平面ABC ,∴平面ABC ⊥平面BCD ,又DO BC ⊥,DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直.以下同选①;【小问3详解】设在线段BC 上存在点()()0,,011F t t -≤≤,使得平面AEF 与平面ABF夹角的余弦值等于43,由(2)得:(1,,EF t =-,(AE =- ,设平面AEF 的法向量()2222,,n x y z = ,则2222222200AE n x y EF n x ty ⎧⋅=-++=⎪⎨⋅=-+-=⎪⎩ ,令24y =,则())2221,1x t z t =+=-,())()221,1n t t ∴=+- ,∵面ABF 的法向量为(0,0,1)n = ,222cos ,43n n n n n n ⋅∴<>===⋅ ,化简得2417290t t -+=,21744291750∆=-⨯⨯=-<,方程无实数解,所以线段BC 上不存在点F ,使得平面AEF 与平面ABF 夹角的余弦值等于54343.22.已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程;(2)若()y f x =和()y g x =有公共点,(i )当0a =时,求b 的取值范围;(ii )求证:22e a b +>.【答案】(1)(1)1=-+y a x (2)(i))b ∞∈+;(ii )证明见解析【解析】【分析】(1)求出(0)f '可求切线方程;(2)(i )当0a =时,曲线()y f x =和()y g x =有公共点即为()2e ,0t s t bt t =-≥在[)0,+∞)b ∈+∞.(ii )曲线()y f x =和()y g x =有公共点即00sin e 0x a x +=,利用点到直线的距离x ≥22e >e sin x x x +,从而可得不等式成立.【小问1详解】()e cos x f x a x '=-,故(0)1f a '=-,而(0)1f =,曲线()f x 在点(0,(0))f 处的切线方程为()()101y a x =--+即()11y a x =-+.【小问2详解】(i )当0a =时,因为曲线()y f x =和()y g x =有公共点,故e x =设t =,故2x t =,故2e t bt =在[)0,+∞上有解,设()2e ,0t s t bt t =-≥,故()s t 在[)0,+∞上有零点,而()22e ,0t s t t b t '=->,若0b =,则()2e 0t s t =>恒成立,此时()s t 在[)0,+∞上无零点,若0b <,则()0s t '>在()0,+∞上恒成立,故()s t 在[)0,+∞上为增函数,而()010s =>,()()01s t s ≥=,故()s t 在[)0,+∞上无零点,故0b >,设()22e ,0t u t t b t =->,则()()2224e 0t u t t '=+>,故()u t 在()0,+∞上为增函数,而()00u b =-<,()()22e 10b u b b =->,故()u t 在()0,+∞上存在唯一零点0t ,且00t t <<时,()0u t <;0t t >时,()0u t >;故00t t <<时,()0s t '<;0t t >时,()0s t '>;所以()s t 在()00,t 上为减函数,在()0,t +∞上为增函数,故()()0min s t s t =,因为()s t 在[)0,+∞上有零点,故()00s t ≤,故200e 0t bt -≤,而2002e 0t t b -=,故220020e 2e 0t t t -≤即02t ≥,设()22e ,0t v t t t =>,则()()2224e 0t v t t '=+>,故()v t 在()0,+∞上为增函数,而2002e t b t =,故12b ≥=.(ii )因为曲线()y f x =和()y g x =有公共点,所以e sin x a x -=有解0x ,其中00x ≥,若00x =,则100a b -⨯=⨯,该式不成立,故00x >.故00sin e 0x a x +=,考虑直线00sin e 0x a x +=,表示原点与直线00sin e 0x a x +=上的动点(),a b 之间的距离,x ≥0222200e sin x a b x x +≥+,下证:对任意0x >,总有sin x x <,证明:当2x π≥时,有sin 12x x π≤<≤,故sin x x <成立.当02x π<<时,即证sin x x <,设()sin p x x x =-,则()cos 10p x x '=-≤(不恒为零),故()sin p x x x =-在[)0,+∞上为减函数,故()()00p x p <=即sin x <成立.综上,sin x x <成立.下证:当0x >时,e 1x x >+恒成立,()e 1,0x q x x x =-->,则()e 10x q x '=->,故()q x 在()0,+∞上为增函数,故()()00q x q >=即e 1x x >+恒成立.下证:22e >e sin xx x+在()0,+∞上恒成立,即证:212e sin x x x ->+,即证:2211sin x x x -+≥+,即证:2sin x x ≥,而2sin sin x x x >≥,故2sin x x ≥成立.e x >,即22e a b +>成立.【点睛】思路点睛:导数背景下零点问题,注意利用函数的单调性结合零点存在定理来处理,而多变量的不等式的成立问题,注意从几何意义取构建不等式关系,再利用分析法来证明目标不等式.。
安徽省合肥市2024-2025学年高三上学期10月月考试题 数学含答案
合肥2025届高三10月段考试卷数学(答案在最后)考生注意:1.试卷分值:150分,考试时间:120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........3.所有答案均要答在答题卡上,否则无效.考试结束后只交答题卡.一、单选题(本大题共8小题,每小题5分,共40分)1.已知集合{A x x =<,1ln 3B x x ⎧⎫=<⎨⎬⎩⎭,则A B = ()A .{x x <B .{x x <C .{0x x <<D .{0x x <<2.设a ,b 均为单位向量,则“55a b a b -=+”是“a b ⊥ ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知数列{}n a 满足()111n n a a +-=,若11a =-,则10a =()A .2B .-2C .-1D .124.已知实数a ,b ,c 满足0a b c <<<,则下列不等式中成立的是()A .11a b b a+>+B .22a b aa b b+<+C .a b b c a c<--D .ac bc>5.已知a ∈R ,2sin cos 2αα+=,则tan 2α=()A .43B .34C .43-D .34-6.10名环卫工人在一段直线公路一侧植树,每人植一棵,相邻两棵树相距15米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从(1)到(10)依次编号,为使每名环卫工人从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为()A .(1)和(10)B .(4)和(5)C .(5)和(6)D .(4)和(6)7.设0.1e1a =-,111b =,ln1.1c =,则()A .b c a <<B .c b a<<C .a b c<<D .a c b<<8.定义在R 上的奇函数()f x ,且对任意实数x 都有()302f x f x ⎛⎫--+=⎪⎝⎭,()12024e f =.若()()0f x f x '+->,则不等式()11ex f x +>的解集是()A .()3,+∞B .(),3-∞C .()1,+∞D .(),1-∞二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分)9.已知O 为坐标原点,点()1cos1,sin1P ,()2cos 2,sin 2P -,()3cos 3,sin 3P ,()1,0Q ,则()A .12OP OP = B .12QP QP =C .312OQ OP OP OP ⋅=⋅ D .123OQ OP OP OP ⋅=⋅ 10.三次函数()32f x x ax =++叙述正确的是()A .当1a =时,函数()f x 无极值点B .函数()f x 的图象关于点()0,2中心对称C .过点()0,2的切线有两条D .当a <-3时,函数()f x 有3个零点11.已知()2sin 2f x x =+,对任意的π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,使得()()123f x f x α=+成立,则下列选项中,α可能的值是()A .3π4B .4π7C .6π7D .8π7三、填空题(本大题共3小题,每小题5分,共15分)12.已知复数1+与3i 在复平面内用向量OA 和OB 表示(其中i 是虚数单位,O 为坐标原点),则OA与OB夹角为______.13.函数2x y m m =-+在(],2-∞上的最大值为4,则m 的取值范围是______.14.设a 、b 、[]0,1c ∈,则M =+______.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(13分)已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,cos sin 0a C C b c --=.(1)求角A ;(2)已知8b =,从下列三个条件中选择一个作为已知,使得ABC △存在,并求出ABC △的面积.条件①:2cos 3B =-;条件②:7a =;条件③:AC .(注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.)16.(15分)某地区上年度天然气价格为2.8元/3m ,年用气量为3m a .本年度计划将天然气单价下调到2.55元/3m 至2.75元/3m 之间.经调查测算,用户期望天然气单价为2.4元/3m ,下调单价后新增用气量和实际单价与用户的期望单价的差成反比(比例系数为k ).已知天然气的成本价为2.3元/3m .(1)写出本年度天然气价格下调后燃气公司的收益y (单位:元)关于实际单价x (单位:元/3m )的函数解析式;(收益=实际用气量×(实际单价-成本价))(2)设0.2k a =,当天然气单价最低定为多少时,仍可保证燃气公司的收益比上年度至少增加20%?17.(15分)已知函数()824x x xa f x a +⋅=⋅(a 为常数,且0a ≠,a ∈R ),且()f x 是奇函数.(1)求a 的值;(2)若[]1,2x ∀∈,都有()()20f x mf x -≥成立,求实数m 的取值范围.18.(17分)已知函数()()2ln f x x x =-(1)讨论函数()f x 的单调性;(2)求函数()f x 在()()22e ,ef 处切线方程;(3)若()f x m =有两解1x ,2x ,且12x x <,求证:2122e e x x <+<.19.(17分)(1)若干个正整数之和等于20,求这些正整数乘积的最大值.(2)①已知12,,,n a a a ⋅⋅⋅,都是正数,求证:12n a a a n++⋅⋅⋅+≥;②若干个正实数之和等于20,求这些正实数乘积的最大值.合肥2025届高三10月段考试卷·数学参考答案、提示及评分细则题号1234567891011答案DCCBBCACACABDAC一、单选题(本大题共8小题,每小题5分,共40分)1.【答案】D【解析】131ln 0e 3x x <⇒<<,∵23e 2<,∴661132e 2⎛⎫⎛⎫<⇒< ⎪ ⎪⎝⎭⎝⎭.故选D .2.【答案】C【解析】∵“55a b a b -=+ ”,∴平方得222225102510a b a b a b a b +-⋅=++⋅,即200a b ⋅= ,则0a b ⋅= ,即a b ⊥,反之也成立.故选C .3.【答案】C 【解析】因为111n n a a +=-,11a =-,所以212a =,32a =,41a =-,所以数列{}n a 的周期为3,所以101a =-.故选C .4.【答案】B【解析】对于A ,因为0a b <<,所以11a b >,所以11a b b a+<+,故A 错误;对于B ,因为0a b <<,所以()()()()222220222a b b a a b a b a b a a b b a b b a b b+-++--==<+++,故B 正确;对于C ,当2a =-,1b =-,1c =时,13b a c =-,1a b c =-,b aa cb c<--,故C 错误;对于D ,因为a b <,0c >,所以ac bc <,故D 错误.故选B .5.【答案】B【解析】102sin cos 2αα+=,则()252sin cos 2αα+=,即2254sin 4sin cos cos 2αααα++=,可得224tan 4tan 15tan 12ααα++=+,解得tan 3α=-或13.那么22tan 3tan 21tan 4ααα==-.故选B .6.【答案】C【解析】设树苗可以放置的两个最佳坑位的编号为x ,则各位同学从各自树坑前来领取树苗所走的路程总和为:1152151015S x x x =-⨯+-⨯+⋅⋅⋅+-⨯.若S 取最小值,则函数()()()()22222221210101101210y x x x x x =-+-+⋅⋅⋅+-=-+++⋅⋅⋅+也取最小值,由二次函数的性质,可得函数()2222101101210y x x =-+++⋅⋅⋅+的对称轴为 5.5x =,又∵x 为正整数,故5x =或6.故选C 7.【答案】A【解析】构造函数()1ln f x x x =+,0x >,则()211f x x x'=-,0x >,当()0f x '=时,1x =,01x <<时,()0f x '<,()f x 单调递减;1x >时,()0f x '>,()f x 单调递增.∴()f x 在1x =处取最小值()11f =,∴1ln 1x x>-,(0x >且1x ≠),∴101ln1.111111>-=,∴c b >;构造函数()1e 1ln x g x x -=--,1x >,()11ex g x x-'=-,∵1x >,1e1x ->,11x<,∴()0g x '>,()g x 在()1,+∞上递增,∴()()10g x g >=,∴ 1.11e 1ln1.1-->,即0.1e 1ln1.1->,∴a c >.故选A .8.【答案】C【解析】因为()f x 是奇函数,所以()f x '是偶函数,因为()()0f x f x '+->,所以()()0f x f x '+>,令()()e x g x f x =,()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦,()g x 在R 上单调递增.又因为()302f x f x ⎛⎫--+=⎪⎝⎭且()f x 是奇函数,所以()f x 的周期为3,()12024e f =,则()12ef =,所以()212e e e g =⨯=,则不等式()()()()111e 1e 12ex x f x f x g x g ++>⇒+>⇒+>,因为()g x 在R 上单调递增,所以12x +>,即1x >.故选C .二、多选题(本大题共3小题,每小题6分,共18分)9.【答案】AC【解析】∵()1cos1,sin1P ,()2cos 2,sin 2P -,()()()3cos 12,sin 12P ++,()1,0Q ,∴()1cos1,sin1OP = ,()2cos 2,sin 2OP =- ,()()()3cos 12,sin 12OP =++ ,()1,0OQ = ,()1cos11,sin1QP =- ,()2cos 21,sin 2QP =-- ,易知121OP OP == ,故A 正确;∵1QP = ,2QP = 12QP QP ≠ ,故B 错误;()3cos 12cos1cos 2sin1sin 2OQ OP ⋅=+=- ,12cos1cos 2sin1sin 2OP OP ⋅=-,∴312OQ OP OP OP ⋅=⋅ ,故C 正确;1cos1OQ OP ⋅= ,23cos 2cos 3sin 2sin 3cos 5cos1OP OP ⋅=-=≠,故D 错误.故选AC .10.【答案】ABD【解析】对于A :1a =,()32f x x x =++,()2310f x x '=+>,()f x 单调递增,无极值点,故A 正确;对于B :因为()()4f x f x +-=,所以函数()f x 的图象关于点()0,2中心对称,故B 正确;对于C :设切点()()1,x f x ,则切线方程为()()()111y f x f x x x '-=-,因为过点()0,2,所以()()()112f x f x x '-=-,331111223x ax x ax ---=--,解得10x =,即只有一个切点,即只有一条切线,故C 错误;对于D :()23f x x a '=+,当3a <-时,()0f x '=,x =,当,x ⎛∈-∞ ⎝时,()0f x '>,()f x 单调递增,当x ⎛∈ ⎝时,()0f x '<,()f x 单调递减,当x ⎫∈+∞⎪⎪⎭时,()0f x '>,()f x 单调递增,()f x 有极大值为20f ⎛=> ⎝,所以若函数()f x 有3个零点,()f x有极小值为20f =<,得到3a <-,故D 正确.故选ABD .11.【答案】AC【解析】∵π0,2x ⎡⎤∈⎢⎥⎣⎦,∴[]1sin 0,1x ∈,∴()[]12,4f x ∈,∵对任意的1π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎣⎦,使得()()123f x f x a =+成立,∴()2min 23f x α+≤,()2max 43f x α+≥,∴()2sin 2f x x =+,∴()2min 2sin 3x α+≤-,()2max 1sin 3x α+≥-,sin y x =在π3π,22⎡⎤⎢⎥⎣⎦上单调递减.在3π,2π2⎡⎤⎢⎥⎣⎦上单调递增.当3π4α=时,23π5π,44x α⎡⎤+∈⎢⎥⎣⎦,()2max 3π1sin sin043x α+=>>-,()2min 5π2sin sin42x α+==-23<-,故A 正确,当4π7α=时,24π15π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 15π7π12sin sin sin 14623x α+=>=->-,故B 错误,当6π7α=时,26π19π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 6π1sin sin073x α+=>>-,()2min 19πsin sin14x α+=<4π2sin 323=-<-,故C 正确,当8π7α=时,28π23π,714x α⎡⎤+∈⎢⎥⎣⎦,()2max 8π9π1sin sin sin 783x α+=<=-.故错误.故选AC .三、填空题(本大题共3小题,每小题5分,共15分)12.【答案】π6【解析】由题知(OA = ,()0,3OB =,cos ,2OA OB OA OB OA OB⋅==⋅,∴π6AOB ∠=.故本题答案为π6.13.【答案】(],2-∞【解析】当0m ≤时,函数2x y m m =-+的图象是由2xy =向上平移m 个单位后,再向下平移m 个单位,函数图象还是2xy =的图象,满足题意,当02m <≤时,函数2x y m m =-+图象是由2xy =向下平移m 个单位后,再把x 轴下方的图象对称到上方,再向上平移m 个单位,根据图象可知02m <≤满足题意,2m >时不合题意.故本题答案为(],2-∞.14.23【解析】不妨设01a b c ≤≤≤≤,则3M b a c b c a =---,()622b a c b a c b c a --≤-+-=-∴32323M b a c b c a c a =----+,当且仅当b a c b -=-,0a =,1c =,即0a =,12b =,1c =时,等号成立.23+.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解析】(1)因为cos 3sin 0a C a C b c +--=,由正弦定理得sin cos 3sin sin sin 0A C A C B C +--=.即:()sin cos 3sin sin sin 0A C A C A C C +-+-=,()3sin cos sin sin 0sin 0A C A C C C --=>3cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭,因为0πA <<,所以ππ66A -=,得π3A =;(2)选条件②:7a =.在ABC △中,由余弦定理得:2222cos a b c bc A =+-,即222π7816cos3c c =+-⋅.整理得28150c c -+=,解得3c =或5c =.当3c =时,ABC △的面积为:1sin 632ABC S bc A ==△,当c=5时,ABC △的面积为:1sin 1032ABC S bc A ==△选条件③:AC,设AC边中点为M,连接BM,则BM=,4AM=,在ABM△中,由余弦定理得2222cosBM AB AM AB AM A=+-⋅⋅,即2π21168cos3AB AB=+-⋅.整理得2450AB AB--=,解得5AB=或1AB=-(舍).所以ABC△的面积为1sin2ABCS AB AC A=⋅⋅=△.16.【解析】(1)()2.32.4ky a xx⎛⎫=+-⎪-⎝⎭,[]2.55,2.75x∈;(2)由题意可知要同时满足以下条件:()()[]0.2 2.3 1.2 2.8 2.32.42.55,2.75a a x axx⎧⎛⎫+-≥-⎪⎪-⎝⎭⎨⎪∈⎩,∴2.6 2.75x≤≤,即单价最低定为2.6元/3m.17.【解析】(1)()1122xxf xa=⨯+,因为()f x是奇函数,所以()()f x f x-=-,所以11112222x xx xa a⎛⎫⨯+=-⨯+⎪⎝⎭,所以111202xxa⎛⎫⎛⎫++=⎪⎪⎝⎭⎝⎭,所以110a+=,1a=-;(2)因为()122xxf x=-,[]1,2x∈,所以22112222x xx xm⎛⎫-≥-⎪⎝⎭,所以122xxm≥+,[]1,2x∈,令2xt=,[]1,2x∈,[]2,4t∈,由于1y tt=+在[]2,4单调递增,所以117444m≥+=.18.【解析】(1)()f x的定义域为()0,+∞,()1lnf x x'=-,当()0f x'=时,ex=,当()0,ex∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,故()f x 在区间()0,e 内为增函数,在区间()e,+∞为减函数;(2)()2e 0f =,()22e 1ln e 1f '=-=-,所以()()22e ,ef 处切线方程为:()()201e y x -=--,即2e 0x y +-=;(3)先证122e x x +>,由(1)可知:2120e e x x <<<<,要证12212e 2e x x x x +>⇔>-,也就是要证:()()()()21112e 2e f x f x f x f x <-⇔<-,令()()()2e g x f x f x =--,()0,e x ∈,则()()()2ln 2e 2ln e 2e e 0g x x x '=--≥--=,所以()g x 在区间()0,e 内单调递增,()()e 0g x g <=,即122e x x +>,再证212e x x +<,由(2)可知曲线()f x 在点()2e ,0处的切线方程为()2e x x ϕ=-,令()()()()()222ln e 3ln e m x f x x x x x x x x ϕ=-=---+=--,()2ln m x x '=-,∴()m x 在e x =处取得极大值为0,故当()0,e x ∈时,()()f x x ϕ<,()()12m f x f x ==,则()()2222e m f x x x ϕ=<=-,即22e m x +<,又10e x <<,()()111111112ln 1ln m f x x x x x x x x ==-=+->,∴2122e x x m x +<+<.19.【解析】(1)将20分成正整数1,,n x x ⋅⋅⋅之和,即120n x x =+⋅⋅⋅+,假定乘积1n p x x =⋅⋅⋅已经最大.若11x =,则将1x 与2x 合并为一个数1221x x x +=+,其和不变,乘积由122x x x =增加到21x +,说明原来的p 不是最大,不满足假设,故2i x ≥,同理()21,2,,i x i n ≥=⋅⋅⋅.将每个大于2的22i i x x =+-拆成2,2i x -之和,和不变,乘积()224i i i x x x -≤⇒≤.故所有的i x 只能取2,3,4之一,而42222=⨯=+,所以将i x 取2和3即可.如果2的个数≥3,将3个2换成两个3,这时和不变,乘积则由8变成9,故在p 中2的个数不超过2个.那只能是202333333=++++++,最大乘积为6321458⨯=;(2)①证明:先证:1ex x -≥.令()1e x f x x -=-,则()1e 1x f x -'=-,()10f '=,且()()10f x f ≥=,1-≥1,2,,i n =⋅⋅⋅,1111⋅⋅⋅⋅⋅≥,1n ≥0n ≥,∴12n a a a n++⋅⋅⋅+≥②让n 固定,设n 个正实数1,,n x x ⋅⋅⋅之和为20,120n x x n n +⋅⋅⋅+≤=,1220nn p x x x n ⎛⎫=⋅⋅⋅≤ ⎪⎝⎭,要是20nn ⎛⎫ ⎪⎝⎭最大,20ln nn ⎛⎫⎪⎝⎭最大即可,令()()20ln ln 20ln tg t t t t ⎛⎫==- ⎪⎝⎭,其中*t ∈N ,()20ln ln e g t t '=-,∴7t ≤时,()g t 单调递增,8t ≥时,()g t 单调递减,而()()()()87787ln 207ln 78ln 208ln 8ln 8ln 7200g g -=---=-⨯>,所以这些正实数乘积的最大值为7207⎛⎫⎪⎝⎭.。
贵州省贵阳市第一中学2024-2025学年高三上学期9月月考试题 数学 (解析版)
数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则( )A. B. C. D.2.下列函数在其定义域内单调递增的是( )A. B.C. D.3.已知等差数列满足,则( )A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为4,则( )A.1或2B.2或4C.2或8D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,是奇函数,则的最小值为( )A.B.C.D.7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为( ){}{}2230,1,2,3,4A xx x B =-->=∣A B ⋂={}1,2{}1,2,3{}3,4{}41y x=-2ln y x =32y x =e xy x ={}n a 376432,6a a a a +=-=1a =A ()2:20C y px p =>A A x p =()23f x -[]2,3()f x (),21xA f -B x A ∈x B ∈()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x ()h x ()f x e 2e51x ⎫⎪⎭A.B. C. D.8.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径为,且与圆相外切,则的最大值为( )A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )20242025A.B.服从两点分布C.D.10.已知函数,下列说法正确的是( )A.的定义域为,当且仅当B.的值域为,当且仅当C.的最大值为2,当且仅当D.有极值,当且仅当11.设定义在上的可导函数和的导函数分别为和,满足,且为奇函数,则下列说法正确的是( )A.B.的图象关于直线对称C.的一个周期是4D.三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安25351323221:220C x y x y +--=x y M N 2C 1C 22C M C N ⋅X ,m n X Pm n1m n +=X ()20242025E X <<()D X mn=()()214log 21f x ax ax =-+()f x R 01a <<()f x R 1a …()f x 1516a =()f x 1a <R ()f x ()g x ()f x '()g x '()()()()11,3g x f x f x g x --=''=+()1g x +()00f =()g x 2x =()f x 20251()0k g k ==∑()0,0(0x y a a =>1)a ≠顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,则的最大值为__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形中实心区域的面积为.(1)写出数列和的通项公式;(2)设,证明.16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,为线段的中点,为线段上的点.(1)若点为线段的中点,求证:平面;(2)若平面分三棱台所成两部分几何体的体积比为,求二面角的正弦值.()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩…123,,x x x 123x x x <<()()()123f x f x f x ==()()()112233x f x x f x x f x ++n n n a n b {}n a {}n b 121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <…111A B C ABC -111A B C V ABC V 111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC H BC H BC 1A B ∥1C GH 1C GH 111A B C ABC -2:511C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点的焦距为.(1)分别求和的方程;(2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D,,判断直线与圆的位置关系.18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;(ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.()2222:10,0x y M a b a b -=>>2222:12x y N m m-=M ()2,2,N M N l M ,A B N C AB CD=l 222:O x y a +=[)[)[)[)[]0,20,20,40,40,60,60,80,80,10022⨯0.01α=P P X ()E X ()P X k =k参考公式:(其中为样本容量)参考数据:0.1000.0500.0100.0052.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.(i )求的取值范围;(ii )若,证明:.()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α3sin33sin 4sin θθθ=-3cos34cos 3cos θθθ=-()323f x x ax a =-+123,,x x x 123x x x <<a 1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.2.对于A 选项,的定义域为,该函数在和上单调递增,在定义域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在上单调递增,在定义域内不单调;对于C 选项,,该函数在定义域上单调递增;对于D 选项,的定义域为,当时,;当时,,在上单调递减,在上单调递增,因此该函数在定义域内不单调,故选C.3.,故选B.4.设点,则整理得,解得或,故选C.5.的定义域为.当时,的定义域为,即.令,解得的定义域为,即.“”是“”的必要不充分条件,故选B.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=1y x=-()(),00,∞∞-⋃+(),0∞-()0,∞+2ln y x =()(),00,∞∞-⋃+(),0∞-()0,∞+32y x ==[)0,∞+e x y x =().1e xy x =+'R (),1x ∞∈--0y '<()1,x ∞∈-+0y '>x e y x ∴=(),1∞--()1,∞-+53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= ()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =()23f x - []2,323x ……()1233,x f x -∴……[]1,3[]1,3A =1213x -……()12,21xx f ∴-……[]1,2[]1,2B =,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以,即时,等号成立,C.7.设的二项展开式的通项公式为,,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.8.由题,,即圆心为,且,为的直径.与相外切,.由中线关系,有,当且仅当时,等号成立,所以的最大值为20,故选A.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;对于D 选项,令,则服从两点分布,,,正确,故选ACD.10.令,对于A 选项,的定义域为或,故A 错误;对于B 选项,的值域为在定义域内的值域为()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x xf x -=+()3e 2e xxf x -=+…3e 2e x x -=12ln 23x =min ()f x ∴=51x ⎫⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭3,4,50,2,4k =1,3,5k =223326C C 2C 5+=221:(1)(1)2C x y -+-=()11,1C ()()2,0,0,2M N MN 1C 1C 2C 12C C ∴=+=()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=…22C M C N =22C M C N ⋅()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 2024Y X =-Y ()()1D Y n n mn =-=()()()2024D X D Y D Y mn ∴=+==()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R 0,01Δ0a a >⎧⇔<⎨<⎩…()f x ()g x ⇔R,故B 正确;对于C 选项,的最大值为在定义域内的最小值为,故C 正确;对于D 选项,有极值在定义域内有极值且,故D 选项错误,故选BC.11.对于A 选项,因为为奇函数,所以,又由,可得,故A 错误;对于B 选项,由可得为常数,又由,可得,则,令,得,所以,所以的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,所以,所以,所以是一个周期为4的周期函数,,所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以,又,又是周期为4的周期函数,所以,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案144【解析】12.设切点坐标为切线方程为.将代入得,可得切点纵坐标为.13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩……()f x ()2g x ⇔()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠()1g x +()10g =()()11g x f x --=()()()101,01g f f -==-()()3f x g x '=+'()()3,f x g x C C =++()()11g x f x --=()()11g x f x --=()()131g x g x C --+-=1x =-()()221g g C --=1C =-()()()13,g x g x g x -=+2x =()1g x +()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=()f x ()1g x +()()()()10,204g g g g ==-=-()()310g g ==()g x 20251()(1)0k g k g ===∑e33e 6-(),,ln ,txt a y a a ='∴ ln x y a a x =⋅(),tt aln tta a t a ⋅=1log e,ln a t a==∴e log e t a a a ==22A 13C余元素共有种排法,故共有种不同的方案.14.设,由的函数图象知,,又,.令在上单调递增,则,的最大值为.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;数列是首项为1,公比为的等比数列,因此,.(2)证明:由(1)可得因为,所以,所以.16.(本小题满分15分)(1)证明:如图1,连接,设,连接,44A 214234A C A 144⋅⋅=()()()123f x f x f x t ===()f x 23t <…1232,ln x x x t +=-= ()()()3112233e ,2e t t x x f x x f x x f x t t =∴++=-+()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴…(]2,3()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-{}n a 11133n n n a --=⨯={}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-2114314411334n n nnn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦413n n c a <…43n n n a c a <…1AC 11AC C G O ⋂=1,HO A G三棱台,则,又,四边形为平行四边形,则.点是的中点,.又平面平面,平面.(2)解:因为平面分三棱台所成两部分几何体的体积比为,所以,即,化简得,此时点与点重合.,且都在平面,则平面,111A B C ABC -11AC ∥AC 122CG AC ==∴11AC CG 1CO OA = H BC 1BA ∴∥OH OH ⊂11,C HG A B ⊄1C HG 1A B ∴∥1C HG 1C GH 111A B C ABC -2:511127C GHC AB V V B C ABC -=-()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅+⋅V V V 12GHC ABC S S =V V H B 1190C CA BCC ∠∠== 11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC又为等腰直角三角形,则.又由(1)知,则平面,建立如图2所示的坐标系则,设平面的法向量,则令,解得,设平面的法向量,则令,解得.设二面角的平面角为,,所以,所以二面角.17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为,解得,即双曲线.因为双曲线与双曲线的离心率相同,不妨设双曲线的方程为,因为双曲线经过点,所以,解得,则双曲线的方程为.ABC V BG AC ⊥1A G ∥1CC 1A G ⊥ABC ,G xyz -()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 1B GH ()()1,,,1,1,2m a b c GB ==- 20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 11C GH B --θcos cos ,m n m n m n θ⋅=<>=== sin θ==11C GH B --N =21m =22:12y N x -=M N M 222y x λ-=M ()2,242λ-=2λ=M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为,联立消去并整理得此时可得,当时,由韦达定理得;当时,由韦达定理得,则,化简可得,由(1)可知圆,则圆心到直线的距离,所以直线与圆相切或相交.18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);在)内有(只);在)内有(只);在)内有(只);在内有(只)由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只l l ()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=()()222222Δ44220,20,2k t k tt k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <2λ=212122224,22kt t x x x x k k--+==--1λ=234342222,22kt t x x x x k k--+==--ABCD ====222t k +=22:2O x y +=O l d ====l O [)0,200.00252020010⨯⨯=[20,400.006252020025⨯⨯=[40,600.008752020035⨯⨯=[60,800.025********⨯⨯=[]80,1000.00752020030⨯⨯=10253570++=指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得.根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”,事件“小白鼠注射2次疫苗后产生抗体”.记事件发生的概率分别为,则,.所以一只小白鼠注射2次疫苗后产生抗体的概率.(ii )由题意,知随机变量,所以.又,设时,最大,所以解得,因为是整数,所以.19.(本小题满分17分)(1)若选①,证明如下:若选②,证明如下:.0H 220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯0.01α=A =B =C =,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====()1P C =-()()10.20.50.9P A P B =-⨯=0.9P =()100,0.9X B ~()1000.990E X np ==⨯=()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩089.990.9k ……0k 090k =()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,当时,恒成立,所以在上单调递增,至多有一个零点;当时,令,得;令,得令,得或所以在上单调递减,在上单调递增.有三个零点,则即解得,当时,,且,所以在上有唯一一个零点,同理所以在上有唯一一个零点.又在上有唯一一个零点,所以有三个零点,综上可知的取值范围为.(ii )证明:设,则.又,所以.此时,方程的三个根均在内,方程变形为,令,则由三倍角公式.因为,所以.()233f x x a =-'0a …()0f x '…()f x (),∞∞-+0a >()0f x '=x =()0f x '<x <<()0f x '>x <x >()f x ((),,∞∞-+()f x (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<04a <<4a +>()()()()32224(4)3445160f a a a a a a a a a +=+-++=++++>()f x )4a +()2220,g a -<-=-=-<()f x (-()f x (()f x a ()0,4()()()()321233f x x ax a x x x x x x =-+=---()212301f a x x x ==-=04a <<1a =()()()()210,130,110,230f f f f -=-<-=>=-<=>3310x x -+=()2,2-3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,所以.123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省安福中学高三上学期第四次月考
数学理
命题:彭小龙
一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有
一项是符合题目要求的.
1、已知集合M={x|y=2-x },N={y|y=2 x
∈R },则( ) A 、M N B 、M=N C 、N M D 、M ∩N= ∅ 2、已知点P (3,m )在过M (2,-1)和N (-3,4)两点的直线上,则m=( )
A 、3
B 、2
C 、1
D 、-2
3、已知A (a,0),B (3,2+a ),直线y=2
1ax 与线段AB 交于M ,若MB AM 2=,则a=( ) A 、-4 B 、2 C 、2或-4 D 、-2或4
4、已知cos(6π
α-)+sin α=354,则sin (6
7πα+)的值是( ) A 、-532 B 、532 C 、-54 D 、5
4 5、 已知2b a -=(-1,3),c =(1,3)且a ·c =3,|b |=4,则b 与c 的夹角为( )
A 、6π
B 、3
π C 、65π D 、32π 6、已知数列{a n }中a 1=1,a m =n(a n+1-a n ),则数列{a n }的通项公式a n =( ) A 、2n -1 B 、
n n 1+ C 、n 2 D 、n 7、若函数y=(3
1)|2-x|+t 的图象与x 轴有公共点,则t 的取值范围是( ) A 、-1≤x <0 B 、x ≤-1 C 、x ≥1 D 、0<x ≤1
8、函数y=sin(2x+6
π)-2的图象F 按向量a 平移到F ',F '的解析式为y=f(x),当y=f(x)为偶函数时,向量a 可以等于( )
A 、(-3π,-2)
B 、(-6π,2)
C 、(6π,-2)
D 、(3
π,2) 9、过直线y=x 上的任意一点作圆(x -5)2+(y -1)2=2的两条切线L 1、L 2,当直线L 1、L 2关于
y=x 对称时,则L 1与L 2的夹角为( )
222+-x x ⊂≠⊂≠
A 、30°
B 、45°
C 、60°
D 、90°
10、已知函数y=f(x)是定义在R 上的奇函数,且当x ∈(-∞,0)时,不等式f(x)+xf ′
(x) <0成立,若a=30.3f(30.3),b=(log π3)f (log π3
),C=(log 3 )f(log 3 ),则a 、b 、c 的大小关系是( )
A 、a >b >c
B 、c >b >a
C 、c >a >b
D 、a >c >b
11、设M 是△ABC 内一点,且·=23,∠BAC=30°,定义f(M)=(m ,n ,p)其中m 、n 、p 分别是△MBC 、△MCA 、△MAB 的面积,若f(M)=(
2
1,x ,y),则y x 41+的最小值是( ) A 、18 B 、16 C 、9 D 、8
12、若定义在R 上的减函数y=f(x),对于任意的x 、y ∈R ,不等式f(x 2-2x)≤-f (2y -y 2)成立,且函数y=f(x -1)的图象关于点(1,0)对称,则当1≤x ≤4时,Z=x+2y 的取值范围是( )
A 、[0,3]
B 、[3,12]
C 、[-2,12]
D 、[0,12]
二、填空题:本大题共4小题,每题4分,共16分.
13、已知函数⎩⎨⎧+=a x x f 32)( 在点x = 0处连续,则lim =++n n a an 2221 14、已知a =(1,1),b =(1,-1),c =(ααsin 2cos 2,)(α∈R),实数m 、n 满足c b n a m =+,
则(m-3)2 + n 2的最大值为 。
15、若函数f(x) = min }log log 3{241
x x ,+,其中min{p ,q}表示p ,q 两者之中的较小者,
则f(x)<2的解集为 。
16、关于x 的方程(x 2-1)2-|x 2-1| + k = 0,给出下列四个命题:
A 、存在实数k 使得方程恰有2个不同的实根
B 、存在实数k 使得方程恰有4个不同的
实根
C 、存在实数k 使得方程恰有5个不同的实根
D 、存在实数k 使得方程恰有8个不同的实根
(填上正确命题的序号)
17、设函数,1),n = (cosx ,3sin2x)(x∈R)
(1)求f(x)的最小正周期与单调递减区间;
(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边。
已知f(A) = 2,b=1,△ABC 的面积为
23,求C
B c b sin sin ++的值。
9191(x ≠0) (x = 0) n →∞
18、以数列{a n }的任意相邻两项为坐标的点P n (a n ,a n+1)(n∈N *) 均在一次函数y=2x+k 的图
象上,数列{b n }满足条件:b n =a n+1-a n (n∈N *,b 1≠0)
(1)求证:数列{b n }是等比数列
(2)设数列{a n }和{b n }的前n 次和分别为Sn ,T n
若S 6=T 4,S 5=-9,求k 的值。
19、设函数f(x)=-4x+b ,不等式|f(x)|<C 的解集为(-1,2)
(1)若函数g(x)=C
x a x f ++2)(是R 上的奇函数,求a 的值 (2)解不等式
)
(4x f m x +>0
20、在直角坐标系中XOY 中,以O 为圆心的圆与直线x -3y+4=0相切,
(1)求圆O 的方程
(2)圆O 与X 轴相交于A 、B 两点,圆内的动点P 使|PA |、|PO |、|PB |成等比数列,求·的取值范围。
21、已知函数f(x)= x x x +-+1)1(ln 2
2
(1)求函数f(x)的单调区间
(2)若不等式a n n ++
)11(≤e 对任意的n ∈N * 都成立(其中e 是自然对数的底数),求a 的最大值。
22、已知正项数列{a n }满足a 1=1,且a n+1=
)(1
2*N n a a n n n ∈+ (1)求数列{a n }的通项 (2)求证:2≤n n
n n n )1()12(+⋅-a n <3。