分子生物学文献

合集下载

植物生物化学与分子生物学(中文版)(Plant Biochemistry and Molecular Biology

植物生物化学与分子生物学(中文版)(Plant Biochemistry and Molecular Biology

中文名: 植物生物化学与分子生物学(中文版)原名: Plant Biochemistry and Molecular Biology资源格式: PDF发行时间: 2004年地区: 大陆语言: 简体中文简介:作者:(美)B.B.布坎南(BobB.Buchanan)出版社:科学出版社出版日期:2004年2月版次:ISBN:703012013 页数:1090开本:大16开包装:价格:¥260.0本书简介本书英文版由国际杰出植物生物学家编写,美国植物生物学家学会出版,是植物生物学领域的重要著作。

在整合前沿知识的基础上,本书围绕细胞区室结构、细胞的繁衍、能量流、代谢与发育的整合、植物的环境与农业5个主题精心组织内容,反映了各个领域的研究历史和最新进展。

本书编排有序,图文并茂,适用于植物生物学以及分子生物学、生物技术、生物化学、细胞生物学、生理学、生态学等相关领域的研究和教学参考。

制药学、农业经济等领域的研究人员也可从中得到有价值的信息。

目录:第1篇区室结构1 膜结构和被膜细胞器导言1.1 细胞膜的共性和遗传性1.2 膜的流动镶嵌模型1.3 质膜1.4 内质网1.5 高尔基体1.6 胞吐和内吞1.7 液泡1.8 细胞核1.9 过氧化物酶体1.10 质体1.11 线粒体小结相关文献2 细胞壁导言2.1 糖:组成细胞壁的基本单位2.2 组成细胞壁的大分子2.3 细胞壁构架2.4 细胞壁的生物合成和装配2.5 生长与细胞壁2.6 细胞分化2.7 可用作食物、饲料和纤维的细胞壁小结相关文献3 膜转运导言3.1 膜运输概述3.2 植物膜上运输的组织构成3.3 泵3.4 载体蛋白3.5 离子通道的一般特性3.6 运转中的离子通道3.7 通过水通道蛋白运输水小结相关文献4 蛋白质分选和囊泡运输导言4.1 蛋白质分选的机制4.2 将蛋白质定位到质体中4.3 转运进入线粒体和过氧化物酶体4.4 细胞核的内向和外向转运4.5 内质网在蛋白质分选和组装中的作用4.6 液泡定位和分泌4.7 高尔基体中的蛋白质修饰4.8 内吞作用小结相关文献5 细胞骨架导言5.1 细胞骨架概述5.2 中间纤维5.3 肌动蛋白与微管蛋白家族5.4 肌动蛋白与微管蛋白的聚合5.5 肌动蛋白与微管蛋白的特性5.6 细胞骨架结合蛋白5.7 肌动蛋白纤维在胞内定向运动中的作用5.8 皮层微管与细胞扩展5.9 观察细胞骨架的动力学5.10 细胞骨架与信号转导5.11 细胞骨架与有丝分裂5.12 细胞骨架与胞质分裂小结相关文献第2篇细胞的繁衍6 核酸导言6.1 核酸的组成与核苷酸的合成6.2 细胞核DNA的复制6.3 DNA修复6.4 DNA重组6.5 细胞器DNA6.6 DNA转录6.7 RNA的特征和功能6.8 RNA加工小结相关文献7 基因组的组织结构与表达导言7.1 基因与染色体7.2 核基因组的组织结构7.3 转座因子7.4 基因表达7.5 染色质在染色体组织和基因表达中的作用7.6 基因调控的后生遗传机制小结相关文献8 氨基酸导言8.1 植物体内氨基酸的生物合成:研究现状与前景8.2 无机氮同化进N-转运氨基酸8.3 芳香族氨基酸的合成8.4 天冬氨酸衍生氨基酸的生物合成8.5 支链氨基酸8.6 脯氨酸代谢:耐胁迫代谢工程的靶标小结相关文献9 蛋白质的合成、装配和降解导言9.1 从RNA到蛋白质9.2 真核生物细胞质蛋白质生物合成的调控9.3 叶绿体中蛋白质的合成9.4 蛋白质的翻译后修饰9.5 蛋白质降解相关文献10 脂类导言10.1 脂类的结构与功能10.2 脂肪酸的生物合成10.3 乙酰辅酶A羧化酶10.4 脂肪酸合酶10.5 C16 和C18 脂肪酸的去饱和及其延长10.6 特殊脂肪酸的合成10.7 膜脂的合成10.8 膜脂的功能10.9 结构脂类的合成与功能10.10 贮藏性脂类的合成与分解代谢10.11 脂类的基因工程小结相关文献11 细胞分裂的调控导言11.1 动植物细胞及其细胞周期11.2 细胞周期研究的历史回顾11.3 DNA复制11.4 有丝分裂11.5 细胞周期的调控机制11.6 细胞周期的调控逻辑11.7 多细胞生物的细胞周期调控11.8 植物生长发育中的细胞周期调控小结相关文献第3篇能量流12 光合作用导言12.1 光合作用总论12.2 光吸收与能量转换12.3 反应中心复合体12.4 光系统12.5 类囊体膜的组成12.6 叶绿体膜的电子转移途径12.7 叶绿体中的A TP合成12.8 C3植物中的碳反应12.9 CO2固定机制的差异小结相关文献13 糖代谢13.1 磷酸己糖库13.2 利用磷酸己糖的生物合成途径:蔗糖和淀粉的合成13.3 产生磷酸己糖的分解代谢途径:蔗糖和淀粉的降解13.4 磷酸丙糖/磷酸戊糖代谢产物库13.5 磷酸己糖和磷酸戊糖/磷酸丙糖代谢产物库之间的相互作用13.6 淀粉与蔗糖合成:细胞对代谢总调控的范例13.7 糖类对基因表达的调控13.8 糖酵解中的贮能反应13.9 为生物合成反应提供能量和还原力小结相关文献14 呼吸与光呼吸导言14.1 呼吸概论14.2 柠檬酸(三羧酸)循环14.3 植物线粒体的电子传递14.4 植物线粒体的ATP合成14.5 线粒体呼吸作用的调节14.6 线粒体与细胞其他区域的相互关系14.7 光呼吸的生化基础14.8 光呼吸途径14.9 植物中光呼吸的规律小结相关文献第4篇代谢与发育的整合15 长距离运输导言15.1 植物体内物质的扩散与径流15.2 通道大小在确定质外体和共质体运输特征中有重要作用15.3 木质部和韧皮部物质运输的比较15.4 木质部中水分的蒸腾运动15.5 胞间连丝介导的共质体运输15.6 韧皮部运输15.7 植物内源大分子的细胞间运输小结相关文献16 氮和硫导言16.1 生物圈和植物中氮素概况16.2 固氮概论16.3 氮固定中的酶学16.4 共生固氮16.5 氨的吸收和运输16.6 硝酸盐的吸收和还原概述16.7 硝酸盐的还原16.8 亚硝酸盐的还原16.9 硝酸盐同化和碳代谢间的相互作用16.10 硫酸盐同化概述16.11 硫的化学性质及功能16.12 硫的吸收及运输16.13 还原硫的同化途径16.14 谷胱甘肽及其衍生物的合成及功能小结相关文献17 植物激素与诱激物分子的生物合成导言17.1 赤霉素17.2 脱落酸17.3 细胞分裂素17.4 吲哚-3-乙酸17.5 乙烯17.6 油菜素类固醇17.7 多胺17.8 茉莉酮酸17.9 水杨酸17.10 展望小结相关文献18 信号感受和转导导言18.1 信号转导概述18.2 受体18.3 植物受体的特殊例子18.4 G蛋白和磷脂信号系统18.5 环状核苷酸18.6 钙18.7 蛋白激酶:信号转导中的基本组分18.8 植物生长调节因子参与特殊的信号转导途径18.9 植物细胞信号转导研究的展望小结相关文献19 生殖发育导言19.1 开花诱导19.2 花的发育19.3 花发育的遗传和分子分析19.4 配子的形成19.5 影响配子体发育的突变19.6 花粉的萌发19.7 自交不亲和19.8 受精作用19.9 种子形成19.10 种子发育过程中贮藏物质的积累19.11 胚胎的成熟和脱水19.12 萌发小结相关文献20 衰老与程序性细胞死亡导言20.1 动物及植物中观察到的细胞死亡的类型20.2 植物生活周期中的PCD20.3 衰老概述20.4 衰老过程中的色素代谢20.5 衰老过程中的蛋白质代谢20.6 衰老对光合作用的影响20.7 衰老对氧化代谢的影响20.8 衰老过程中的核酸降解20.9 衰老细胞中代谢活性的调节20.10 内源植物生长调节因子与衰老20.11 环境对衰老的影响20.12 植物发育性PCD的例子:管状分子的形成和禾本科植物内胚乳的转移20.13 PCD作为植物胁迫应答的例子:通气组织的形成和超敏反应20.14 PCD研究的未来方向以及面临的更多问题小结相关文献第5篇植物的环境与农业21 植物对病原体的反应导言21.1 植物病原体的致病机理21.2 植物防御系统21.3 植物-病原体相互作用的遗传基础21.4 R基因与R基因介导的植物抗病性21.5 植物防御反应的生化原理21.6 系统性植物防御反应21.7 利用基因工程控制植物病原体小结相关文献22 植物对非生物胁迫的反应导言22.1 植物对非生物胁迫的反应22.2 与缺水相关的胁迫22.3 渗透调节及其在耐旱耐盐中的作用22.4 缺水和盐分对跨膜转运的影响22.5 水分胁迫诱导的其他基因22.6 冰冻胁迫22.7 水涝和缺氧22.8 氧化胁迫22.9 热胁迫小结相关文献23 矿质营养吸收、转运及利用的分子生理学导言23.1 必需矿质元素概论23.2 植物K+转运机制与调节23.3 磷的营养与转运23.4 微量营养吸收的分子生理学23.5 植物对矿质毒性的反应小结相关文献24 天然产物(次生代谢物)导言24.1 萜类化合物24.2 IPP的生物合成24.3 异戊烯转移酶与萜类合酶参与的反应24.4 萜类化合物骨架的修饰24.5 转基因萜类产物24.6 生物碱24.7 生物碱的生物合成24.8 生物技术在生物碱生物合成研究中的应用24.9 苯丙烷类化合物和苯丙烷类-乙酸酯途径的代谢产物24.10 苯丙烷类化合物和苯丙烷类-乙酸酯的生物合成24.11 木脂体、木质素的生物合成和栓化作用24.12 黄酮类化合物24.13 香豆素、芪、苯乙烯吡喃酮和芳基吡喃酮类化合物24.14 苯丙烷类产物的代谢工程:改善纤维、色素、药物和调味剂的可能途径小结相关文献索引。

分子生物学技术论文(2)

分子生物学技术论文(2)

分子生物学技术论文(2)分子生物学技术论文篇二现代分子生物学技术在医学检验中的应用[摘要]随着医学的不断发展,生物学也不断在创新,其中,现代分子生物学技术在医学检验中起到关键作用。

所以,将生物学与医学相结合,是一项不可拖延的任务。

本文针对现代分子生物学技术,探讨了它在医学检验中的应用。

[关键词]现代分子生物学技术;医学检验随着基因克隆技术趋向成熟和基因测序工作逐步完善,后基因时代逐步到来。

20世纪末数理科学在生物学领域广泛渗透,在结构基因组学,功能基因组学和环境基因组学逢勃发展形势下,分子诊断学技术将会取得突破性进展,也给检验医学带来了崭新的领域,为学科发展提供了新的机遇。

1 分子生物传感器在医学检验中的应用分子生物传感器是利用一定的生物或化学的固定技术,将生物识别元件(酶、抗体、抗原、蛋白、核酸、受体、细胞、微生物、动植物组织等)固定在换能器上,当待测物与生物识别元件发生特异性反应后,通过换能器将所产生的反应结果转变为可以输出、检测的电信号和光信号等,以此对待测物质进行定性和定量分析,从而达到检测分析的目的。

分子生物传感器可以广泛地应用于对体液中的微量蛋白、小分子有机物、核酸等多种物质的检测。

在现代医学检验中,这些项目是临床诊断和病情分析的重要依据。

能够在体内实时监控的生物传感器对于手术中和重症监护的病人很有帮助。

Skladal等用经过寡核苷酸探针修饰的压电传感器检测血清中的丙型肝炎病毒(HCV)并实时监测其DNA的结构转录和聚合酶链式反应(PCR)扩增过程,完成整个监测过程仅需10 min且装置可重复使用。

Petricoin等用压电传感器研究了破骨细胞生成抑制因子(OPG)和几种相应抗体的相互作用,研发出可快速检验血清中OPG的压电免疫传感器。

Dro-sten等报道了检测神经递质的酶电报,将电极放置在神经肌肉接点附近可实时测定并记录邻近的神经元去极化后所释放的递质谷氨酸。

2 分子生物芯片技术在医学检验中的应用随着分子生物学的发展及人们对疾病过程的认识加深,传统的医学检验技术已不能完全适应微量、快速、准确、全面的要求。

分子生物学论文通用4篇

分子生物学论文通用4篇

分子生物学论文通用4篇分子生物学论文篇一1制定合理的带教计划,重点明确实习学生在本院实习分子生物学的时间为4周。

由于实习时间较短,带教老师应首先制定合理的带教计划,便于学生充分利用有限的时间掌握实习内容。

在制定带教计划的过程中,不仅要结合学科的大纲要求,还应结合历届学生的学习情况和实验室的基本情况,制定最合理、最贴近实际的带教计划。

由于本实验室开展的检验项目较多,而学生实习时间较短,实习内容不可能面面俱到,因此在带教计划中将带教内容分为4个类别,即熟练掌握、基本掌握、熟悉和了解。

例如,分子生物学实验室的分区制度、工作流程、乙型肝炎病毒DNA检测等纳入实习生应熟练掌握的内容。

有侧重点的带教可以让实习学生在有限的时间内牢固掌握常用检测项目的原理、操作方法、注意事项、临床意义等,有助于学生在以后的工作中进一步由点到面地进行分子生物学检验知识的学习。

2注重岗前教育,树立整体意识为引导实习学生转变角色,保证实习质量,岗前教育是必不可少的。

分子生物学实验室对设备、环境和操作人员有较高的要求,因此在实习学生进入分子生物学实验室前,应首先对其进行岗前教育,包括分子生物学实验室基本情况、分区制度及相关工作流程等。

并且要求学生实习前仔细阅读实验室管理文件和标准操作规程(SOP)文件,着重学习分子生物学实验室各区的工作制度、各项目检测操作规范、质量控制、生物安全防护及标本接收、处理和保存等内容,使学生对实验室工作有初步的认识。

学生进入实验室后,带教老师应首先引导实习学生按照区域流向制度依次参观各实验分区,系统地向其介绍各检验项目的检测原理及临床意义。

然后,根据带教计划的侧重点,选择常用检测项目,结合项目介绍主要相关仪器设备的工作原理、操作程序、日常保养及记录登记,让实习生树立整体意识,对实验室的工作有全面的了解。

3加强操作训练,培养质量控制理念分子生物学的发展速度较快,学生在校园内依靠有限的教学设备和较少的实验课时难以掌握分子生物学的基本技术。

《分子生物学》实验指导(2015-2016)

《分子生物学》实验指导(2015-2016)

《分子生物学》实验指导实验1 总DNA提取生物总DNA的提取是分子生物学实验的一个重要内容。

由于不同的生物材料细胞壁的结构和组成不同,而细胞壁结构的破坏是提取总DNA的关键步骤。

同时细胞内的物质也根据生物种类的不同而有差异,因此不同生物采用的提取方法也不同,一般要根据具体的情况来设计实验方法。

本实验介绍采用CTAB法提取植物总DNA的技术。

[实验目的]学习和掌握学习CTAB法提取植物总DNA的基本原理和实验技术。

学习和掌握紫外光吸收法鉴定DNA的纯度和浓度。

[实验原理]植物叶片经液氮研磨,可使细胞壁破裂,加入去污剂(如CTAB),可使核蛋白体解析,然后使蛋白和多糖杂质沉淀,DNA进入水相,再用酚、氯仿抽提纯化。

本实验采用CTAB法,其主要作用是破膜。

CTAB 是一种非离子去污剂,能溶解膜蛋白与脂肪,也可解聚核蛋白。

植物材料在CTAB的处理下,结合65℃水浴使细胞裂解、蛋白质变性、DNA 被释放出来。

CTAB与核酸形成复合物,此复合物在高盐(>0.7mM)浓度下可溶,并稳定存在,但在低盐浓度(0.1-0.5mM NaCl)下CTAB-核酸复合物就因溶解度降低而沉淀,而大部分的蛋白质及多糖等仍溶解于溶液中。

经过氯仿/ 异戊醇(24:1) 抽提去除蛋白质、多糖、色素等来纯化DNA,最后经异丙醇或乙醇等沉淀剂将DNA沉淀分离出来。

由于核酸、蛋白质、多糖在特定的紫外波长都有特征吸收。

核酸及其衍生物的紫外吸收高峰在260nm。

纯的DNA样品A260/280≈1.8,纯的RNA样品A260/280≈2.0,并且1μg/ml DNA 溶液A260=0.020。

[实验器材]1、高压灭菌锅2、冰箱3、恒温水浴锅4、高速冷冻离心机5、紫外分光光度计6、剪刀7、陶瓷研钵和杵子8、磨口锥形瓶(50ml)9、滴管10、细玻棒11、小烧杯(50ml)12、离心管(50ml)13、植物材料[实验试剂]1、3×CTAB buffer(pH8.0)100mM Tris25mM EDTA1.5M NaCl3% CTAB2% β-巯基乙醇2、TE缓冲液(pH8.0)10mmol/L Tris·HCl1mmol/L EDTA3、氯仿-异戊醇混合液(24:1,V/V)4、95%乙醇5、液氮[实验步骤]1、称取2g新鲜的植物叶片,用蒸馏水冲洗叶面,滤纸吸干水分。

分子生物学综述论文(基因敲除技术)

分子生物学综述论文(基因敲除技术)

现代分子生物学课程论文题目基因敲除技术班别生物技术10-2学号 *********** 姓名陈嘉杰成绩基因敲除技术的研究进展要摘基因敲除是自80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。

此后经历了近20年的推广和应用,直到2007年10月8日,美国科学家马里奥•卡佩奇(Mario Capecchi)和奥利弗•史密西斯(Oliver Smithies)、英国科学家马丁•埃文斯(Martin Evans)因为在利用胚胎干细胞对小鼠基因金星定向修饰原理方面的系列发现分享了2007年诺贝尔生理学或医学奖。

基因敲除技术从此得到关注和肯定,并对医学生物学研究做出了重大贡献。

本文就基因敲除的研究进展作一个简单的综述。

关键词基因敲除、RNAi、生物模型、同源重组前言基因敲除又称基因打靶,该技术通过外源DNA与染色体DNA之间的同源重组,进行精确的定点修饰和基因改制,具有转移性强、染色体DNA可与目的片段共同稳定遗传等特点。

应用DNA同源重组技术将灭活的基因导入小鼠胚胎干细胞(embryonic stem cells,ES cells)以取代目的基因,再筛选出已靶向灭活的细胞,微注射入小鼠囊胚。

该细胞参与胚胎发育形成嵌合型小鼠,再进一步传代培育可得到纯合基因敲除小鼠。

基因敲除小鼠模型的建立使许多与人类疾病相关的新基因的功能得到阐明,使现代生物学及医学研究领域取得了突破性进展。

上述起源于80年代末期的基因敲除技术为第一代技术,属完全性基因敲除,不具备时间和区域特异性。

关于第二代区域和组织特异性基因敲除技术的研究始于1993年。

Tsien等[1]于1996年在《Cell》首先报道了第一个脑区特异性的基因敲除动物,被誉为条件性基因敲除研究的里程碑。

该技术以Cre/LoxP系统为基础,Cre在哪种组织细胞中表达,基因敲除就发生在哪种组织细胞中。

2000年Shimizu等[2]于《Science》报道了以时间可调性和区域特异性为标志的第三代基因敲除技术,其同样以Cre/LoxP系统为基础,利用四环素等诱导Cre的表达。

基础医学文献

基础医学文献
2019年创刊的,由Nature American lnc。 出版,每年出12期。刊载高质量原始论文, 创刊一年多其影响因子就在生物化学和分 子生物学中排名第三。该刊登载的内容包 括基因治疗、神经科学、药理学、爱滋病、 肿瘤、传染病、心脏病学及先进的医疗技 术等,该刊是分子科学和临床医学之间的 桥梁。
2019/8/30
83
医学病理学文献
2019/8/30
84
病理学的研究对象可分为实验病理学和临床 病理学,因此有关病理学的文献除剑于实验病 理学书刊外,还广泛地分散于临床各学科的病 理学书刊之中,如《美国外科病理学杂志、 《神经病理学学报》、《脑病理学》,《心血 管病理学》,《内分泌病理学》。《国际妇科 病理学杂志》,《儿科病理学》等。
Current Biology Structure Developmental Cell Chemistry & Biology Cancer Cell
52
2019/8/30
53
Structure (/) Chemistry & Biology (current-biology/) Current Biology (chembiol/) Cancer Cell (/) Cell (cell/) Developmental Cell (developmentalcell/) Immunity (immunity/) Molecular Cell (/) Neuron(/)
2019/8/30
66
Nature Structual Biology自然结构生物学
英国Macmillan Magazines公司出版,它 是英国《自然界》主编的刊物, 1994年创 刊的新刊,每年出12期。主要报道调射线 结晶体,核磁共振与蛋白质合成等结构的 最新成果。内容包括生物大分子结构,测 定大分子结构的新方法,结构测定基础上 的大分子功能研究,影响结构大分子途径 研究以及结构预测法。

生物教育专业本科毕业论文参考题目

生物教育专业本科毕业论文参考题目

生物教育专业本科毕业论文参考题目一、分子生物学1.参考文献:遗传工程学报、微生物学通报、生物化学与生物物理学进展、生物学通报及分子生物学与基因工程的相关书籍与资料。

2。

题目:(1)酶制剂在基因工程中的应用(2)核酸的变性、复性与分子杂交(3)DNA分子结构研究的新进展(4)病毒核酸的特点及其应用(5)DNA多态性及其生物学意义(6)聚合酶链式反应(PRC)技术及其应用(7)真核基因组的结构特点(8)分子生物学发展的现状及展望3。

指导教师:张红二、动物生物学1.参考文献:生物学通报、动物学报、动物学杂志、动物学教材、野生动物相关书籍与资料。

2。

题目:(1)当地某种野生动物繁殖(或生态)习性或生物学习性调查(只针对某一种动物)(2)某地的野生动物资源调查(只针对某一类动物,如鸟类、昆虫、水生动物等)(3)当地某种经济野生动物饲养的观察(正文应包括引言、饲养条件、方法、习性观察、行为观察、病害防治等)(4)动物生物学及细胞生物学某方面的新进展(或某方面的研究现状与展望),如动物克隆技术、单克隆抗体技术等3.指导教师:王文林三。

生物教学法1。

参考文献:生物学通报、中学生物教学法、生物教育学、教学论文写作方法与举例、河南教育等相关书籍与资料.2. 题目:(1)论述生物学教学中的素质教育(2)我省目前生物教师素质对贯彻素质教育的影响(3)中学生物学教学中学生兴趣的培养(4)高中生物学难点的教学分析(5)中学生物实验课存在的问题与对策(6)中学生物学教学中观察能力的培养3。

指导教师:单广福、张丽琴四。

植物生物学1。

参考文献:植物学报、植物学通报、遗传学报、生物学通报、作物学报、植物生理学报、植物生理学通讯、华北农学报、作物育种学、作物雄性不育化育种、植物生理学、耕作学、植物生理学以及相关书籍与资料。

2。

题目:(1)当地植被资源调查(正文中应包括当地气候气象条件如:年平均温度、降水量;当地优势种、稀有或特有种类、有害种类、可开发利用种类及名录等)(2)当地农田杂草区系调查(正文中应包括当地优势种、稀有种、有害种类、可开发利用种类等)(3)植物雄性不育性产生的遗传学原理(4)植物雄性不育性作物杂交优势育种中的应用(5)现代农作物高产栽培的理论与实践(6)提高大田作物光能利用率的途径(7)当地某种经济植物种植的观察(正文应包括引言、种植条件和方法、生物学习性观察、病害防治等。

分子生物学chapter1绪论

分子生物学chapter1绪论
大量生产某些正常细胞代谢中产量很低的多肽, 如激素、抗生素、酶类及抗体等,提高产量, 降低成本。
定向改造某些生物的基因组结构、使它们所具 有的特殊经济价值或功能得以成百上千倍地提 高。
进行基础研究。
2、基因表达调控研究
蛋白质分子控制了细胞的一切代谢活动,而 决定蛋白质结构和合成时序的信息都由核酸 (主要是脱氧核糖核酸)分子编码,所以, 基因表达实质上就是遗传信息的转录和翻译 过程。
基本定理:
1.构成生物体有机大分子的单体在不同生物 中都是相同的;
2.生物体内一切有机大分子的建成都遵循着 各自特定的规则;
3.某一特定生物体所拥有的核酸及蛋白质分 子决定了它的属性。
1、DNA重组技术
是20世纪70年代初兴起的技术科学,目的是将 不同DNA片段(基因或基因的一部分)按照人 们的设计定向连接起来,在特定的受体细胞中 与载体同时复制并得到表达,产生影响受体细 胞的新的遗传性状。
DNA重组技术是核酸化学、蛋白质化学、酶工 程及微生物学、遗传学、细胞学长期深入研究 的结晶,而限制性内切酶DNA连接酶及其他工 具酶的发现与应用则是这一技术得以建立的关 键。
通过DNA连接酶把不同的DNA片段连接成一个整体。a. DNA的 粘性末端; b. DNA的平末端; c. 化学合成的具有EcoRI粘性末端的 DNA片段。
1.拥有特定的空间结构(三维结构);
2.在它发挥生物学功能的过程中必定存在着 结构和构象的变化。
4、基因组、功能基因组与生物信息学研究
2001年2月,Nature 和Science同时发表了人类基因组 全序列。
已有数十种生物基因组被基本破译。
测定基因组序列只是了解基因的第一步,在基因组计 划的基础上提出了蛋白质组计划(又称后基因组计划 或功能基因组计划),旨在快速、高效、大规模鉴定 基因的产物和功能。

分子生物学英文文献1

分子生物学英文文献1

Chapter 5An Efficient Protocol for VZV BAC-Based MutagenesisZhen Zhang, Ying Huang, and Hua ZhuAbstractVaricella-zoster virus (VZV) causes both varicella (chicken pox) and herpes zoster (shingles). As a member of the human herpesvirus family, VZV contains a large 125-kb DNA genome, encoding 70 unique open reading frames (ORFs). The genetic study of VZV has been hindered by the large size of viral genome, and thus the functions of the majority of these ORFs remain unclear. Recently, an efficient protocol has been developed based on a luciferase-containing VZV bacteria artificial chromosome (BAC) system to rapidly isolate and study VZV ORF deletion mutants.Key words:Varicella-zoster virus, Bacterial artificial chromosome, Deletion mutagenesis, Bioluminescence1. I ntroductionVaricella-zoster virus (VZV) is a common human herpesvirus thatis a significant pathogen in the United States, with more than 90%of the US population harboring the virus (1). Primary infectionof VZV leads to varicella (chicken pox). VZV establishes lifelonglatency in the host, specifically in trigeminal ganglia and dorsalroot ganglia (2). The VZV reactivation results in herpes zoster(shingles), which often leads to chronic postherpetic neuralgia(2, 3). As a member of human alpha-herpesvirus subfamily, VZVhas a 125-kb long double-stranded DNA genome, which encodesat least 70 unique open reading frames (ORFs). The genomes ofseveral different VZV strains were sequenced and a few of theVZV genes genetically analyzed (4).It has been extremely difficult to generate VZV site-specificmutations using conventional homology recombination meth-ods. This was mainly due to the high cell-associated nature ofVZV infection in vitro, which leads to the difficulties in isolatingJeff Braman (ed.), In Vitro Mutagenesis Protocols: Third Edition,Methods in Molecular Biology, vol. 634,DOI 10.1007/978-1-60761-652-8_5, © Springer Science+Business Media, LLC 20107576Zhang, Huang, and Zhuviral DNA and purifying recombinant virus away from wild-type virus. In the last few years, a popular method for VZV in vitro mutagenesis involves a four-cosmid system covering the entire viral genome (5–7). Using the cosmid system to generate recom-binant VZV variants involves technically challenging steps such as co-transfection of four large cosmids into permissive mammalian cells and multiple homologous recombination events within a single cell to reconstruct a full-length viral genome. The highly cell-associated nature of VZV also makes the downstream appli-cations of traditional virology methods such as plaque assay-based titering and plaque purification difficult. To date, the functions of the majority of VZV ORFs remain uncharacterized (8).In order to create recombinants of VZV more efficiently, the full-length VZV (P-Oka strain, a cloned clinical isolate of VZV) genome has been successfully cloned as a VZV bacteria artificial chromosome (BAC) (9, 10). This VZV BAC combined with a highly efficiently E. coli homologous recombination system allows quick and easy generation of recombinant VZV. To further ease the downstream virus quantification assays, a firefly luciferase reporter gene, was inserted into the VZV BAC to generate a novel luciferase-expressing VZV (10). In this protocol, we show the generation and analyses of VZV full-length ORF deletion mutants and genetic revertants as examples to demonstrate the utility and efficiency of this versatile system for VZV mutagenesis in vitro. Furthermore, this protocol can be easily modified to broaden its applications to a variety of genetic maneuvers including making double ORF deletions, partial ORF deletions, insertions, and point mutations.1. Human melanoma (MeWo) cells were grown in DMEM supplemented with 10% fetal bovine serum, 100 U penicillin–streptomycin/ml, and2.5 m g amphotericin B/ml at 37°C in a humidified incubator with 5% CO 2. All tissue culture reagents were obtained from Sigma (St. Louis, MO).2. VZV luc was recently developed in the laboratory (10). It con-tains a full-length VZV P-Oka genome with a firefly luciferase cassette (see Note 1). The BAC vector was inserted between VZV ORF60 and ORF61, which includes a green fluorescent protein (GFP) expression cassette and a chloramphenicol resistance cassette (Cm R ).3. pGEM-oriV/kan was previously constructed (11) in the lab-oratory and used as a PCR template to generate the expres-sion cassettes for the kanamycin or ampicillin resistance genes (Kan R and Amp R ).2. M aterials2.1. Cells, VZV luc , Plasmids, and E. coliStrain77An Efficient Protocol for VZV BAC-Based Mutagenesis 4. pGEM-lox-zeo was derived from pGEM-T (Promega, Madison, WI) (12) and was used to generate the rescue clones of VZV ORF deletion mutants. 5. E. coli strain DY380 was obtained from Neal Copeland and Craig Stranthdee and used for mutagenesis (13). 6. A cre recombinase expression plasmid pGS403 was a gift from L. Enquist (Princeton University, NJ). 1. All primers were synthesized by Sigma-Genosys (Woodlands, TX) and stored in TE buffer (100 m M). 2. HotStar Taq DNA polymerase (Qiagen, Valencia, CA) was used for PCR reactions and Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA) could be used for optional hi-fidelity PCR reactions (see Note 2). 3. PCR purification was carried out using a PCR purification kit (Qiagen, Valencia, CA). 4. The amplified linear DNAs were suspended in sterile ddH 2O and w ere q uantified b y s pectroscopy (NanoDrop T echnologies, Wilmington, DE). 5. DpnI (New England Biolabs, Ipswich, MA) restriction treat-ment following PCR was carried out in order to eliminate circular template DNA. 6. Electroporation was carried out with a Gene Pulser II Electroporator (Bio-Rad, Hercules, CA). 1. All antibiotics were obtained from Sigma (St. Louis, MO). LB plates containing specific antibiotics were used for appro-priate selections (Table 1).2. A 37°C air shaker and a 37°C water bath shaker were used for bacterial culturing.2.2. Primers, PCR, PCRpurification, DpnITreatment, andElectroporation2.3. AntibioticsSelection and BACDNA Purification Table 1Antibiotics concentrations for selectionFor BACs (single or low copy numbers)For plasmids (high copynumbers)78Zhang, Huang, and Zhu3. NucleoBond Xtra Maxi Plasmid DNA purification kits (Clontech Laboratories, Inc., Palo Alto, CA) were used to purify VZV BAC DNA from E. coli .4. Kimwipes (Kimberly-Clark Global Sales, Inc., Roswell, GA) were used as small filters in BAC DNA Mini-preparations.5. Phenol/chloroform, isopropanol, and ethanol were obtained from Sigma (St. Louis, MO) and were used as additional reagents in BAC DNA preparations.6. Hin dIII (New England Biolabs, Ipswich, MA) digestions were performed to check the integrity of BAC DNA.1. FuGene6 transfection kit (Roche, Indianapolis, IN) was used for transfecting viral BAC DNA into MeWo cells (ATCC).2. An inverted fluorescent microscope was used to observe and count plaque numbers.3. Tissue culture media containing 150 m g/ml d -luciferin (Xenogen, Alameda, CA) was used as substrate for in vitro bioluminescence detection.4. An IVIS Imaging 50 System (Xenogen, Alameda, CA) was used to record bioluminescence signal from virally infected cells.5. Bioluminescence data were quantified by using Living Image analysis software (Xenogen, Alameda, CA).In order to generate VZV ORF deletion mutants using this new VZV luc system, we took advantage of an efficient recombination system for chromosome engineering in E. coli DY380 strain (13). A defective lambda prophage supplies the function that protects and recombines linear DNA. This system is highly efficient and allows recombination between homologies as short as 40 bp. The experimental design is summarized in Fig. 1.1. The first step in making any specific VZV ORF deletion was to amplify a Kan R cassette containing 40-bp flanking sequences of the targeted ORF.2. Primers were stored in TE buffer (100 m M). The Kan R expres-sion cassette was amplified from pGEM-oriV/Kan using a HotStar DNA polymerase kit following a standard protocol.3. PCR product was purified using a PCR purification kit fol-lowing the manufacturer’s protocol.2.4. Transfectionand SubsequentVirological Assays(Tittering and Growth Curve Analysis)3. M ethods3.1. Generation of VZVORF Deletion BACClones 3.1.1. Making a Kan R Cassette Targeting a Specific VZV Open Reading Frame79An Efficient Protocol for VZV BAC-Based Mutagenesis 4. The purified PCR product was treated with DpnI in order to eliminate the template DNA. This step greatly reduces the background in later selections.5. PCR product was purified again as above (step 3) and the amplified linear DNA was suspended in sterile ddH 2O and was quantified by spectroscopy (see Note 3).1. DY380 cells were grown at 32°C until the OD 600nm measure-ment reached 0.5 (see Note 5).2. The culture was shifted to 42°C by placing the flask into a 42°C water bath with vigorous shaking for 10–15 min (see Note 4).3.1.2. Induction of theLambda RecombinationSystem and Preparationof Electroporation-Competent DY380Fig. 1. Generating ORF deletion mutants (ORFD). (a ) The E. coli DY380 strain provides a highly efficient homologous recombination system, which allows recombination of homologous sequences as short as 40 bp. The homologous recombination system is strictly regulated by a temperature-sensitive repressor, which permits transient switching on by incubation at 42°C for 15 min. VZV luc BAC DNA is introduced into DY380 by electroporation. Electro-competent cells are prepared with homologous recombination system activation. (b ) Amplification of the Kan R expression cassette by PCR using a primer pair adding 40-bp homologies flanking ORFX. (c ) About 200 ng of above PCR product are transformed into DY380 carrying the VZV luc BAC via electroporation. (d ) Homologous recombination between upstream and downstream homologies of ORFX replaces ORFX with the Kan R cassette, creating the ORFX deletion VZV clone. The recombinants are selected on LB agar plates containing kanamycin at 32°C. (e ) The deletion of ORFX is confirmed by testing antibiotic sensitivity and PCR analysis. The integrity of viral genome after homologous recombination is examined by restriction enzyme Hin dIII digestion. (f ) VZV luc BAC DNA with ORFX deletion is propagated and isolated from DY380. (g ) Purified BAC DNA is transfected into MeWo cells. (h ) 3–5 days after transfection, the ORFX deletion virus is visualized under a fluores-cent microscope due to EGFP expression given nonessentiality of ORFX.Select for kan Rat 32°Cseqs. (40 bp)ORFX kan R ORFE. coli 32°C ts λ cI repressorVZV-BAC Defective l prophage D BkanR E BAC DNATransfect MeWo cells ProducerecombinantVZV (givenORFX is notessential)x G Hx MR WTORFXDORFXR Confirm recombinant VZV by antibiotic sensitivity, PCR and HindIII digestion80Zhang, Huang, and Zhu3. The culture was immediately transferred to an ice–water slurry for 30 min. (see Note 6).4. After incubation on ice, the culture was then pelleted at 6,000 × g for 10 min 4°C, washed with ice-cold sterile ddH 2O, and repelleted.5. Prechilled 10% glycerol (use about 1% of original volume of culture) was used to resuspend cells, and a 40-m l aliquot (>1 × 1010 cells) was used for each electroporation reaction. 1. Two microliters of Kan R cassette DNA (greater than 200 ng) were electroporated into competent DY380 cells harboring the VZV luc BAC. Homologous recombination took place between the 40-bp ORF flanking sequences and the targeted BAC ORF was replaced by the linear Kan R cassette creating the expected VZV ORF deletion clones. 2. Electroporation was carried out at 1.6 kV, 200 W , and 25 m F in a Gene Pulser II electroporator. Two microliters of con-centrated linear DNA cassette (greater than 200 ng) were used in each reaction. 3. The bacteria were immediately transferred to 1 ml LB medium after electroporation and incubated at 32°C for 1 h before plating. The resultant recombinants were selected on LB agar plates containing kanamycin at 32°C for 16–24 h (see Note 7). 4. Antibiotic sensitivity: it is important to further test that kanamycin-resistant colonies are resistant to kanamycin but not to ampicillin because the circular pGEM-oriV/Kan R (containing Amp R ) was used as the PCR template. This can be tested by re-streaking single colonies on mul-tiple LB agar plates containing different antibiotics. VZV ORFX deletion clones should be resistant to chloram-phenicol (from BAC vector), hygromycin (from luciferase cassette), and kanamycin (VZV ORF replacement cassette), but sensitive to ampicillin (potentially from pGEM-oriV/Kan R ; see Note 8). 1. Mini-BAC DNA preparations.(a) A single DY380 clone containing the recombinant VZV BAC was inoculated in 5 ml LB supplemented with the appropriate antibiotics and cultured at 32°C overnight.(b) BAC DNA was isolated by pelleting the bacteria, resus-pending in 1 ml resuspension buffer supplemented with RNase A (Buffer RES), lysing in 1 ml NaOH/SDS lysis buffer (Buffer LYS), and neutralizing in 1 ml potassium acetate neutralization buffer (Buffer NEU) for 5 min for each step (NucleoBond Xtra Maxi Plasmid DNA purifi-cation kit).3.1.3. Electroporation andRecombinant Screening3.1.4. BAC DNAPurification and BACClone Verification81An Efficient Protocol for VZV BAC-Based Mutagenesis (c) The cloudy solution was centrifuged at 4,500 × g for 15 min at 4°C. The supernatant was filtered through a small piece (cut to 4 × 4 cm) of Kimwipe tissue (Kimberly-Clark Global Sales, Inc., Roswell, GA).(d) The filtered solution was extracted with an equal volume of phenol/chloroform and the BAC DNA precipitated with two volumes of ethanol.(e) After the final spin at 4,500 × g for 30 min at 4°C, the DNA pellet was air-dried and resuspended in 20 m l sterile ddH 2O. 2. PCR verification: multiple colonies with the correct antibiotic sensitivities were picked for the mini-BAC DNA preparations. The ORF deletions with Kan R replacements were confirmed by PCR using a HotStar DNA polymerase kit following a standard protocol. The target ORF should be absent in ORF deletion clones while the adjacent ORFs should remain intact as positive controls. 3. Maxi-BAC DNA preparations: the large-scale BAC DNA preparations using the NucleoBond Xtra Maxi Plasmid DNA purification kit (Clontech Laboratories, Inc., Palo Alto, CA) started with 500 ml of overnight cultures. The standard man-ufacturer’s protocol for BAC DNA purification was followed. The final DNA products were resuspended in 250 m l sterile ddH 2O and quantified by spectroscopy (see Note 9). 4. Hin dIII digestion profiling: PCR verified clones were selected for maxi-BAC DNA preparations. To confirm that no large VZV genomic DNA segment is deleted, Hin dIII digestion profiling was routinely carried out (see Note 10). Three micrograms of BAC DNA from maxi-preparations were digested with 20 U of Hin dIII in a 20-m l reaction at 37°C overnight. Hin dIII digestion patterns were compared by electrophoresis on ethidium bromide stained 0.5% agarose gels. As shown in Fig. 1, Hin dIII digestion patterns of each VZV ORF deletion clone were highly comparable with the parental wild-type VZV luc clone (see Note 11).The generation of VZV ORF deletion revertants is necessary to prove that the deleted ORF is responsible for any phenotype (usu-ally a growth defect) observed in analyses of the deletion mutants. The viral revertants should be able to fully restore the wild-type phenotype. As an example, generating the VZV ORFX deletion rescue virus is described to demonstrate the approach (see Fig. 2).1. VZV ORFX was amplified from wild-type VZV luc BAC DNAby PCR. Two unique restriction enzyme sites and two addi-tional 6-bp random sequences were added to the ends of the PCR product. A hi-fidelity PCR kit could be used in order to minimize unwanted mutations during PCRs (see Note 2).3.2. Generation of VZVORF DeletionRevertant BAC Clones82Zhang, Huang, and Zhu2. The ORFX gene was directionally cloned into pGEM-zeo to form pGEM-ORFX-zeo. The cloned ORFX was verified by sequencing analysis.3. ORFX-zeoR cassette was made by PCR using pGEM-ORFX-zeo as template (Fig. 2). The PCR product contained 40-bp homologies of flanking sequences of Kan R cassette, which was also used to generate the ORFX deletion mutant.4. The subsequent procedures are similar to producing the ORFX deletion mutant. Briefly, the linear ORFX-zeoR cas-sette was treated with DpnI and electroporated into compe-tent DY380 cells harboring VZV luc ORFX deletion BAC. Similarly, homologous recombination functions were tran-siently induced by switching the culture temperature from 32 to 42°C for 10–15 min when electroporation-competent cells were prepared. The recombinants were selected on LB agar plates containing zeocin. After verification, the ORFX dele-tion rescue BAC DNA was isolated from E. coli .Because of VZV’s highly cell-associated nature in cell culture,conventional virology techniques, including plaque purification and plaque assay, become troublesome. By developing andexploiting the new luciferase VZV BAC system, the resulting virus has a removable EGFP expression cassette and a built-in 3.3. Transfectionand Subsequent Virological Assayszeo R lox mcs mcskan lox zeo R ORFX lox lox E. ORFXR D. ORFXR-zeo B. C. ORFXD zeo R ORFX zeo ORFX ORFX Fig. 2. Generating an ORFX deletion rescue clone (ORFXR). (a ) To generate the ORFXR clone, ORFX was amplified by PCR from the wild-type VZV BAC DNA. The ORFX was directionally cloned into plasmid pGEM-lox-zeo to form pGEM-zeo-ORFX. (b ) Amplification of the ORFX-Zeo R cassette by PCR using a primer pair adding 40 bp homologies flanking ORFX. (c ) Such PCR product was transformed into DY380 carrying the VZV luc ORFXD BAC via electroporation. (d ) Homologous recombination between upstream and downstream homologies of ORFX replaced Kan R with the ORFX-Zeo R cassette, creating the ORFXR clone. (e ) Zeo R was removed while generating virus from BAC DNA by co-transfecting a Cre recombinase expressing plasmid.83An Efficient Protocol for VZV BAC-Based Mutagenesis luciferase reporter. In this protocol, an alternative biolumines-cence quantification approach has been provided to significantly increase the reproducibility of results. This approach has also been successfully used in monitoring VZV growth in vivo (10). 1. VZV BAC DNA from maxi-preparations was transfected into MeWo cells using the FuGene6 transfection kit according to the manufacturer’s standard protocol. 2. One and a half micrograms of BAC DNA and 6 m l of transfec-tion reagent were used for a single reaction in one well of 6-well tissue culture plates (see Note 12). 3. As an option, 0.5 m g of Cre expression plasmid was co-transfected with the VZV BAC DNA to remove the BAC sequence flanked by two loxP site from the viral genome (see Note 13). 4. In order to prevent the precipitation of BAC in solution, 1.5 m g BAC DNA were diluted in serum-free tissue culture medium, and the volume of DNA solution was adjusted to 50 m l (see Note 14). 5. The DNA solution was slowly added to the transfection reagent with gentle stirring using pipet tips. 6. Because of GFP expression from the BAC vector, VZV plaques were usually visually discernable using a fluorescent microscope within 3–5 days after transfection given deleted ORF is dispensable (see Note 15). If a VZV ORF is essential for viral replication, no plaque will be observed. 7. Since VZV is highly cell-associated in tissue culture, mutant VZV-infected MeWo cells were harvested and stored in liquid nitrogen for future studies.Recombinant viruses were titered by infectious focus assay. MeWo cells were seeded in 6-well tissue culture plates and inoculated with serial dilutions of VZV-infected MeWo cell suspensions. Plaques were counted by fluorescent microscopy 3 days after inoculation and viral titer was determined. 1. MeWo cells were infected with 100 PFU of infected MeWo cell suspensions in 6-well tissue culture plates. 2. After every 24-h interval, cell culture media was replaced with media containing 150 m g/ml d -luciferin.3. After incubation at 37°C for 10 min, the bioluminescent sig-nal was quantified and recorded using an IVIS ImagingSystem following the manufacturer’s instructions. 4. Fresh tissue culture medium was added to replace the luciferin-containing medium for further incubation at later time points.3.3.1. Transfection of BACDNA into MeWo Cells3.3.2. Titering by InfectiousFocus Assay3.3.3. Growth CurveAnalyses Based onBioluminescence Imaging(See Fig. 3 and Note 16)84Zhang, Huang, and Zhu5. Measurements from the same plate were repeated every day for 7 days.6. Bioluminescence signal data from each sample was quantified by manual designation of regions of interest and analyzed using Living Image analysis software (see Note17).1. The luciferase expression cassette, driven by an SV40 early pro-moter, was inserted between VZV ORF65 and ORF66. The cassette also contains a hygromycin B resistance gene (Hyg R ).2. Platinum Taq DNA polymerase can be used alternatively if a hi-fidelity PCR product is preferred.3. In order to achieve optimum results, the final concentration of the linear DNA cassette for the subsequent electroporation was adjusted to at least 100 ng/m l.4. The 42°C temperature shift is critical for the success of the homologous recombination. The temperature needs to be adjusted accurately to 42°C and remain constant. Too much recombination system activity is detrimental to E. coli and harm the integrity of BAC DNA. On the other hand, inade-quate induction of the recombination system in DY 380 leads to inefficient recombination. Ten to fifteen minutes might need to be adjusted carefully in order to achieve optimized efficiency of homologous recombination.5. E. coli DY380 strain needs to be cultured at 32°C all the time except when the recombination system is transiently activated and expressed by shifting the culture to 42°C.6. Beyond this point, every step needs to be carried out at a low temperature (0–4°C). All reagents, centrifuge rotor and glass-ware need to be prechilled.4. N otes Growth curve analysisVZVluc infectedMeWo cells / animal. a b c d Bioluminescenceimaging Image acquisition Fig. 3. Growth curve analyses based on bioluminescence imaging. (a ) Small animals/tissue culture can be infected with VZV luc . (b ) After administration of an enzyme substrate, luciferin, bioluminescence emitting from living animals/cultured cells can be detected and monitored by using a bioluminescence imaging system (a CCD camera mounted on top of a light-tight imaging dark chamber). (c ) Data can be stored in a connected PC and quantified by using region-of-interest analysis. (d ) Viral growth kinetics can be analyzed based on quantification of bioluminescence signals.85 An Efficient Protocol for VZV BAC-Based Mutagenesis7. Recombinants often have multiple antibiotic resistances. For instance, VZV ORFX/Kan clone will have Kan R, Cm R (from BAC vector), and Hyg R (from luciferase cassette). Screening for recombinants with more than one antibiotic is optional. However, the growth rate under such conditions could be much slower than selection under one antibiotic.8. If a clone also has Amp R, it should count as a false positive result.9. Due to the large size, handling BAC DNAs needs to avoid any harsh physical sheering force including vortexing or quickly passing through fine pipette tips. Freeze and thaw should also be avoided. BAC DNA solutions should always be stored at 4°C.10. Although it has been shown that VZVluc DNA is highly stablein E. coli (10) under the conditions described in this protocol, large undesirable deletions in the BAC clones were observed if homo l ogous recombination system in DY380 was over-induced.11. Since many large DNA fragments are generated by a Hin dIIIdigestion of the VZV genome, smaller genetic alterations, including replacement of an ORF by a Kan R cassette, would be difficult to recognize by this assay.12. The ratio of BAC DNA and FuGene6 reagent might need tobe adjusted to maximize transfection efficiency.13. The ORFX rescue clone was generated by introducing the wild-type ORFX back into the deletion viral genome along with a Zeo R cassette flanked by two loxP sites. By following this optional step in transfection, Zeo R will be removed from the genome by Cre-mediated recombination. The resulting virus will have a wild-type copy of ORFX restored in the same direction and loca-tion as the parental wild-type strain except a remaining loxP site(34 bp) in the 3¢ noncoding region of ORFX.14. Highly concentrated (greater than 250 m g/m l) BAC DNAsolutions are viscous and BAC DNA molecules easily precipi-tate out of solution when added to transfection reagent solu-tions. When such precipitation becomes visible, it is irreversible and the result of the transfection assays is often poor.Therefore, we predilute each BAC DNA in media before gen-tly mixing with the transfection reagent.15. Transfection efficiency was easy to monitor because of theresulting GFP expression from the BACs.16. Growth curve analyses were traditionally carried out by aplaque assay-based method.17. See ref. 14 for more detailed methods and more applicationof in vivo bioluminescence assay.86Zhang, Huang, and Zhu References1. Abendroth A, Arvin AM (1999) Varicella-zoster virus immune evasion. Immunol Rev 168:143–1562. Gilden DH, Kleinschmidt-DeMasters BK,LaGuardia JJ, Mahalingam R, Cohrs RJ (2000) Neurologic complications of the reactivation of varicella-zoster virus. N Engl J Med 342:635–6453. Arvin AM (2001) Varicella-zoster virus. In:Knipe DM, Howley PM (eds) Fields virology, vol 2. Lippincott Williams & Wilkins, Philadelphia, PA, pp 2731–27674. Davison AJ, Scott J (1986) The completeDNA sequence of varicella zoster virus. J Gen Virol 67:1759–18165. Cohen JI, Seidel KE (1993) Generation ofvaricella-zoster virus (VZV) and viral mutants from cosmid DNAs: VZV thymidylate syn-thetase is not essential for replication in vitro.Proc Natl Acad Sci USA 90:7376–73806. Mallory S, Sommer M, Arvin AM (1997)Mutational analysis of the role of glycoproteinI in varicella-zoster virus replication and itseffects on glycoprotein E conformation and trafficking. J Virol 71:8279–82887. Niizuma T, Zerboni L, Sommer MH, Ito H,Hinchliffe S, Arvin AM (2003) Construction of varicella-zoster virus recombinants from P-Oka cosmids and demonstration that ORF65 protein is dispensable for infection of human skin and T cells in the SCID-hu mouse model. J Virol 77:6062–60658. Cohen JI, Straus SE, Arvin AM (2007)Varicella-zoster virus replication, pathogene-sis, and management. In: Knipe DM, HowleyPM (eds) Fields virology, vol 2. Lippincott Williams & Wilkins, Philadelphia, PA, pp 2773–28189. Nagaike K, Mori Y, Gomi Y, Yoshii H,Takahashi M, Wagner M, Koszinowski U, Yamanishi K (2004) Cloning of the varicella-zoster virus genome as an infectious bacterial artificial chromosome in Escherichia coli.Vaccine 22:4069–407410. Zhang Z, Rowe J, Wang W, Sommer M, ArvinA, Moffat J, Zhu H (2007) Genetic analysis of varicella zoster virus ORF0 to 4 using a novel luciferase bacterial artificial chromosome sys-tem. J Virol 81:9024–903311. Wang W, Patterson CE, Yang S, Zhu H(2004) Coupling generation of cytomegalovi-rus deletion mutants and amplification of viral BAC clones. J Virol Methods 121:137–143 12. Netterwald J, Yang S, Wang W, Ghanny S,Cody M, Soteropoulos P, Tian B, Dunn W, Liu F, Zhu H (2005) Two gamma interferon-activated site-like elements in the human cyto-megalovirus major immediate-early promoter/enhancer are important for viral replication.J Virol 79:5035–504613. Yu D, Ellis HM, Lee EC, Jenkins NA,Copeland NG, Court DL (2000) An efficient recombination system for chromosome engi-neering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–598314. Tang QY, Zhang Z, Zhu H (2010) Bioluminesc-ence imaging for herpesvirus studies in vivo.In: Gluckman TR (ed) Herpesviridae: viral structure, life cycle and infections. Nova Science, Huntington, in press。

分子生物学英文文献6

分子生物学英文文献6

Chapter19Detection and Quantitative Analysis of Small RNAs by PCR Seungil Ro and Wei YanAbstractIncreasing lines of evidence indicate that small non-coding RNAs including miRNAs,piRNAs,rasiRNAs, 21U endo-siRNAs,and snoRNAs are involved in many critical biological processes.Functional studies of these small RNAs require a simple,sensitive,and reliable method for detecting and quantifying levels of small RNAs.Here,we describe such a method that has been widely used for the validation of cloned small RNAs and also for quantitative analyses of small RNAs in both tissues and cells.Key words:Small RNAs,miRNAs,piRNAs,expression,PCR.1.IntroductionThe past several years have witnessed the surprising discovery ofnumerous non-coding small RNAs species encoded by genomesof virtually all species(1–6),which include microRNAs(miR-NAs)(7–10),piwi-interacting RNAs(piRNAs)(11–14),repeat-associated siRNAs(rasiRNAs)(15–18),21U endo-siRNAs(19),and small nucleolar RNAs(snoRNAs)(20).These small RNAsare involved in all aspects of cellular functions through direct orindirect interactions with genomic DNAs,RNAs,and proteins.Functional studies on these small RNAs are just beginning,andsome preliminaryfindings have suggested that they are involvedin regulating genome stability,epigenetic marking,transcription,translation,and protein functions(5,21–23).An easy and sensi-tive method to detect and quantify levels of these small RNAs inorgans or cells during developmental courses,or under different M.Sioud(ed.),RNA Therapeutics,Methods in Molecular Biology629,DOI10.1007/978-1-60761-657-3_19,©Springer Science+Business Media,LLC2010295296Ro and Yanphysiological and pathophysiological conditions,is essential forfunctional studies.Quantitative analyses of small RNAs appear tobe challenging because of their small sizes[∼20nucleotides(nt)for miRNAs,∼30nt for piRNAs,and60–200nt for snoRNAs].Northern blot analysis has been the standard method for detec-tion and quantitative analyses of RNAs.But it requires a relativelylarge amount of starting material(10–20μg of total RNA or>5μg of small RNA fraction).It is also a labor-intensive pro-cedure involving the use of polyacrylamide gel electrophoresis,electrotransfer,radioisotope-labeled probes,and autoradiogra-phy.We have developed a simple and reliable PCR-based methodfor detection and quantification of all types of small non-codingRNAs.In this method,small RNA fractions are isolated and polyAtails are added to the3 ends by polyadenylation(Fig.19.1).Small RNA cDNAs(srcDNAs)are then generated by reverseFig.19.1.Overview of small RNA complementary DNA(srcDNA)library construction forPCR or qPCR analysis.Small RNAs are polyadenylated using a polyA polymerase.ThepolyA-tailed RNAs are reverse-transcribed using a primer miRTQ containing oligo dTsflanked by an adaptor sequence.RNAs are removed by RNase H from the srcDNA.ThesrcDNA is ready for PCR or qPCR to be carried out using a small RNA-specific primer(srSP)and a universal reverse primer,RTQ-UNIr.Quantitative Analysis of Small RNAs297transcription using a primer consisting of adaptor sequences atthe5 end and polyT at the3 end(miRTQ).Using the srcD-NAs,non-quantitative or quantitative PCR can then be per-formed using a small RNA-specific primer and the RTQ-UNIrprimer.This method has been utilized by investigators in numer-ous studies(18,24–38).Two recent technologies,454sequenc-ing and microarray(39,40)for high-throughput analyses of miR-NAs and other small RNAs,also need an independent method forvalidation.454sequencing,the next-generation sequencing tech-nology,allows virtually exhaustive sequencing of all small RNAspecies within a small RNA library.However,each of the clonednovel small RNAs needs to be validated by examining its expres-sion in organs or in cells.Microarray assays of miRNAs have beenavailable but only known or bioinformatically predicted miR-NAs are covered.Similar to mRNA microarray analyses,the up-or down-regulation of miRNA levels under different conditionsneeds to be further validated using conventional Northern blotanalyses or PCR-based methods like the one that we are describ-ing here.2.Materials2.1.Isolation of Small RNAs, Polyadenylation,and Purification 1.mirVana miRNA Isolation Kit(Ambion).2.Phosphate-buffered saline(PBS)buffer.3.Poly(A)polymerase.4.mirVana Probe and Marker Kit(Ambion).2.2.Reverse Transcription,PCR, and Quantitative PCR 1.Superscript III First-Strand Synthesis System for RT-PCR(Invitrogen).2.miRTQ primers(Table19.1).3.AmpliTaq Gold PCR Master Mix for PCR.4.SYBR Green PCR Master Mix for qPCR.5.A miRNA-specific primer(e.g.,let-7a)and RTQ-UNIr(Table19.1).6.Agarose and100bp DNA ladder.3.Methods3.1.Isolation of Small RNAs 1.Harvest tissue(≤250mg)or cells in a1.7-mL tube with500μL of cold PBS.T a b l e 19.1O l i g o n u c l e o t i d e s u s e dN a m eS e q u e n c e (5 –3 )N o t eU s a g em i R T QC G A A T T C T A G A G C T C G A G G C A G G C G A C A T G G C T G G C T A G T T A A G C T T G G T A C C G A G C T A G T C C T T T T T T T T T T T T T T T T T T T T T T T T T V N ∗R N a s e f r e e ,H P L CR e v e r s e t r a n s c r i p t i o nR T Q -U N I r C G A A T T C T A G A G C T C G A G G C A G GR e g u l a r d e s a l t i n gP C R /q P C Rl e t -7a T G A G G T A G T A G G T T G T A T A G R e g u l a r d e s a l t i n gP C R /q P C R∗V =A ,C ,o r G ;N =A ,C ,G ,o r TQuantitative Analysis of Small RNAs299 2.Centrifuge at∼5,000rpm for2min at room temperature(RT).3.Remove PBS as much as possible.For cells,remove PBScarefully without breaking the pellet,leave∼100μL of PBS,and resuspend cells by tapping gently.4.Add300–600μL of lysis/binding buffer(10volumes pertissue mass)on ice.When you start with frozen tissue or cells,immediately add lysis/binding buffer(10volumes per tissue mass)on ice.5.Cut tissue into small pieces using scissors and grind it usinga homogenizer.For cells,skip this step.6.Vortex for40s to mix.7.Add one-tenth volume of miRNA homogenate additive onice and mix well by vortexing.8.Leave the mixture on ice for10min.For tissue,mix it every2min.9.Add an equal volume(330–660μL)of acid-phenol:chloroform.Be sure to withdraw from the bottom phase(the upper phase is an aqueous buffer).10.Mix thoroughly by inverting the tubes several times.11.Centrifuge at10,000rpm for5min at RT.12.Recover the aqueous phase carefully without disrupting thelower phase and transfer it to a fresh tube.13.Measure the volume using a scale(1g=∼1mL)andnote it.14.Add one-third volume of100%ethanol at RT to the recov-ered aqueous phase.15.Mix thoroughly by inverting the tubes several times.16.Transfer up to700μL of the mixture into afilter cartridgewithin a collection bel thefilter as total RNA.When you have>700μL of the mixture,apply it in suc-cessive application to the samefilter.17.Centrifuge at10,000rpm for15s at RT.18.Collect thefiltrate(theflow-through).Save the cartridgefor total RNA isolation(go to Step24).19.Add two-third volume of100%ethanol at RT to theflow-through.20.Mix thoroughly by inverting the tubes several times.21.Transfer up to700μL of the mixture into a newfilterbel thefilter as small RNA.When you have >700μL of thefiltrate mixture,apply it in successive appli-cation to the samefilter.300Ro and Yan22.Centrifuge at10,000rpm for15s at RT.23.Discard theflow-through and repeat until all of thefiltratemixture is passed through thefilter.Reuse the collectiontube for the following washing steps.24.Apply700μL of miRNA wash solution1(working solu-tion mixed with ethanol)to thefilter.25.Centrifuge at10,000rpm for15s at RT.26.Discard theflow-through.27.Apply500μL of miRNA wash solution2/3(working solu-tion mixed with ethanol)to thefilter.28.Centrifuge at10,000rpm for15s at RT.29.Discard theflow-through and repeat Step27.30.Centrifuge at12,000rpm for1min at RT.31.Transfer thefilter cartridge to a new collection tube.32.Apply100μL of pre-heated(95◦C)elution solution orRNase-free water to the center of thefilter and close thecap.Aliquot a desired amount of elution solution intoa1.7-mL tube and heat it on a heat block at95◦C for∼15min.Open the cap carefully because it might splashdue to pressure buildup.33.Leave thefilter tube alone for1min at RT.34.Centrifuge at12,000rpm for1min at RT.35.Measure total RNA and small RNA concentrations usingNanoDrop or another spectrophotometer.36.Store it at–80◦C until used.3.2.Polyadenylation1.Set up a reaction mixture with a total volume of50μL in a0.5-mL tube containing0.1–2μg of small RNAs,10μL of5×E-PAP buffer,5μL of25mM MnCl2,5μL of10mMATP,1μL(2U)of Escherichia coli poly(A)polymerase I,and RNase-free water(up to50μL).When you have a lowconcentration of small RNAs,increase the total volume;5×E-PAP buffer,25mM MnCl2,and10mM ATP should beincreased accordingly.2.Mix well and spin the tube briefly.3.Incubate for1h at37◦C.3.3.Purification 1.Add an equal volume(50μL)of acid-phenol:chloroformto the polyadenylation reaction mixture.When you have>50μL of the mixture,increase acid-phenol:chloroformaccordingly.2.Mix thoroughly by tapping the tube.Quantitative Analysis of Small RNAs3013.Centrifuge at10,000rpm for5min at RT.4.Recover the aqueous phase carefully without disrupting thelower phase and transfer it to a fresh tube.5.Add12volumes(600μL)of binding/washing buffer tothe aqueous phase.When you have>50μL of the aqueous phase,increase binding/washing buffer accordingly.6.Transfer up to460μL of the mixture into a purificationcartridge within a collection tube.7.Centrifuge at10,000rpm for15s at RT.8.Discard thefiltrate(theflow-through)and repeat until allof the mixture is passed through the cartridge.Reuse the collection tube.9.Apply300μL of binding/washing buffer to the cartridge.10.Centrifuge at12,000rpm for1min at RT.11.Transfer the cartridge to a new collection tube.12.Apply25μL of pre-heated(95◦C)elution solution to thecenter of thefilter and close the cap.Aliquot a desired amount of elution solution into a1.7-mL tube and heat it on a heat block at95◦C for∼15min.Open the cap care-fully because it might be splash due to pressure buildup.13.Let thefilter tube stand for1min at RT.14.Centrifuge at12,000rpm for1min at RT.15.Repeat Steps12–14with a second aliquot of25μL ofpre-heated(95◦C)elution solution.16.Measure polyadenylated(tailed)RNA concentration usingNanoDrop or another spectrophotometer.17.Store it at–80◦C until used.After polyadenylation,RNAconcentration should increase up to5–10times of the start-ing concentration.3.4.Reverse Transcription 1.Mix2μg of tailed RNAs,1μL(1μg)of miRTQ,andRNase-free water(up to21μL)in a PCR tube.2.Incubate for10min at65◦C and for5min at4◦C.3.Add1μL of10mM dNTP mix,1μL of RNaseOUT,4μLof10×RT buffer,4μL of0.1M DTT,8μL of25mM MgCl2,and1μL of SuperScript III reverse transcriptase to the mixture.When you have a low concentration of lig-ated RNAs,increase the total volume;10×RT buffer,0.1M DTT,and25mM MgCl2should be increased accordingly.4.Mix well and spin the tube briefly.5.Incubate for60min at50◦C and for5min at85◦C toinactivate the reaction.302Ro and Yan6.Add1μL of RNase H to the mixture.7.Incubate for20min at37◦C.8.Add60μL of nuclease-free water.3.5.PCR and qPCR 1.Set up a reaction mixture with a total volume of25μL ina PCR tube containing1μL of small RNA cDNAs(srcD-NAs),1μL(5pmol of a miRNA-specific primer(srSP),1μL(5pmol)of RTQ-UNIr,12.5μL of AmpliTaq GoldPCR Master Mix,and9.5μL of nuclease-free water.ForqPCR,use SYBR Green PCR Master Mix instead of Ampli-Taq Gold PCR Master Mix.2.Mix well and spin the tube briefly.3.Start PCR or qPCR with the conditions:95◦C for10minand then40cycles at95◦C for15s,at48◦C for30s and at60◦C for1min.4.Adjust annealing Tm according to the Tm of your primer5.Run2μL of the PCR or qPCR products along with a100bpDNA ladder on a2%agarose gel.∼PCR products should be∼120–200bp depending on the small RNA species(e.g.,∼120–130bp for miRNAs and piRNAs).4.Notes1.This PCR method can be used for quantitative PCR(qPCR)or semi-quantitative PCR(semi-qPCR)on small RNAs suchas miRNAs,piRNAs,snoRNAs,small interfering RNAs(siRNAs),transfer RNAs(tRNAs),and ribosomal RNAs(rRNAs)(18,24–38).2.Design miRNA-specific primers to contain only the“coresequence”since our cloning method uses two degeneratenucleotides(VN)at the3 end to make small RNA cDNAs(srcDNAs)(see let-7a,Table19.1).3.For qPCR analysis,two miRNAs and a piRNA were quan-titated using the SYBR Green PCR Master Mix(41).Cyclethreshold(Ct)is the cycle number at which thefluorescencesignal reaches the threshold level above the background.ACt value for each miRNA tested was automatically calculatedby setting the threshold level to be0.1–0.3with auto base-line.All Ct values depend on the abundance of target miR-NAs.For example,average Ct values for let-7isoforms rangefrom17to20when25ng of each srcDNA sample from themultiple tissues was used(see(41).Quantitative Analysis of Small RNAs3034.This method amplifies over a broad dynamic range up to10orders of magnitude and has excellent sensitivity capable ofdetecting as little as0.001ng of the srcDNA in qPCR assays.5.For qPCR,each small RNA-specific primer should be testedalong with a known control primer(e.g.,let-7a)for PCRefficiency.Good efficiencies range from90%to110%calcu-lated from slopes between–3.1and–3.6.6.On an agarose gel,mature miRNAs and precursor miRNAs(pre-miRNAs)can be differentiated by their size.PCR prod-ucts containing miRNAs will be∼120bp long in size whileproducts containing pre-miRNAs will be∼170bp long.However,our PCR method preferentially amplifies maturemiRNAs(see Results and Discussion in(41)).We testedour PCR method to quantify over100miRNAs,but neverdetected pre-miRNAs(18,29–31,38). AcknowledgmentsThe authors would like to thank Jonathan Cho for reading andediting the text.This work was supported by grants from theNational Institute of Health(HD048855and HD050281)toW.Y.References1.Ambros,V.(2004)The functions of animalmicroRNAs.Nature,431,350–355.2.Bartel,D.P.(2004)MicroRNAs:genomics,biogenesis,mechanism,and function.Cell, 116,281–297.3.Chang,T.C.and Mendell,J.T.(2007)Theroles of microRNAs in vertebrate physiol-ogy and human disease.Annu Rev Genomics Hum Genet.4.Kim,V.N.(2005)MicroRNA biogenesis:coordinated cropping and dicing.Nat Rev Mol Cell Biol,6,376–385.5.Kim,V.N.(2006)Small RNAs just gotbigger:Piwi-interacting RNAs(piRNAs) in mammalian testes.Genes Dev,20, 1993–1997.6.Kotaja,N.,Bhattacharyya,S.N.,Jaskiewicz,L.,Kimmins,S.,Parvinen,M.,Filipowicz, W.,and Sassone-Corsi,P.(2006)The chro-matoid body of male germ cells:similarity with processing bodies and presence of Dicer and microRNA pathway components.Proc Natl Acad Sci U S A,103,2647–2652.7.Aravin,A.A.,Lagos-Quintana,M.,Yalcin,A.,Zavolan,M.,Marks,D.,Snyder,B.,Gaaster-land,T.,Meyer,J.,and Tuschl,T.(2003) The small RNA profile during Drosophilamelanogaster development.Dev Cell,5, 337–350.8.Lee,R.C.and Ambros,V.(2001)An exten-sive class of small RNAs in Caenorhabditis ele-gans.Science,294,862–864.u,N.C.,Lim,L.P.,Weinstein, E.G.,and Bartel,D.P.(2001)An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.Science,294, 858–862.gos-Quintana,M.,Rauhut,R.,Lendeckel,W.,and Tuschl,T.(2001)Identification of novel genes coding for small expressed RNAs.Science,294,853–858.u,N.C.,Seto,A.G.,Kim,J.,Kuramochi-Miyagawa,S.,Nakano,T.,Bartel,D.P.,and Kingston,R.E.(2006)Characterization of the piRNA complex from rat testes.Science, 313,363–367.12.Grivna,S.T.,Beyret,E.,Wang,Z.,and Lin,H.(2006)A novel class of small RNAs inmouse spermatogenic cells.Genes Dev,20, 1709–1714.13.Girard, A.,Sachidanandam,R.,Hannon,G.J.,and Carmell,M.A.(2006)A germline-specific class of small RNAs binds mammalian Piwi proteins.Nature,442,199–202.304Ro and Yan14.Aravin,A.,Gaidatzis,D.,Pfeffer,S.,Lagos-Quintana,M.,Landgraf,P.,Iovino,N., Morris,P.,Brownstein,M.J.,Kuramochi-Miyagawa,S.,Nakano,T.,Chien,M.,Russo, J.J.,Ju,J.,Sheridan,R.,Sander,C.,Zavolan, M.,and Tuschl,T.(2006)A novel class of small RNAs bind to MILI protein in mouse testes.Nature,442,203–207.15.Watanabe,T.,Takeda, A.,Tsukiyama,T.,Mise,K.,Okuno,T.,Sasaki,H.,Minami, N.,and Imai,H.(2006)Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes.Genes Dev,20,1732–1743.16.Vagin,V.V.,Sigova,A.,Li,C.,Seitz,H.,Gvozdev,V.,and Zamore,P.D.(2006)A distinct small RNA pathway silences selfish genetic elements in the germline.Science, 313,320–324.17.Saito,K.,Nishida,K.M.,Mori,T.,Kawa-mura,Y.,Miyoshi,K.,Nagami,T.,Siomi,H.,and Siomi,M.C.(2006)Specific asso-ciation of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome.Genes Dev,20, 2214–2222.18.Ro,S.,Song,R.,Park, C.,Zheng,H.,Sanders,K.M.,and Yan,W.(2007)Cloning and expression profiling of small RNAs expressed in the mouse ovary.RNA,13, 2366–2380.19.Ruby,J.G.,Jan,C.,Player,C.,Axtell,M.J.,Lee,W.,Nusbaum,C.,Ge,H.,and Bartel,D.P.(2006)Large-scale sequencing reveals21U-RNAs and additional microRNAs and endogenous siRNAs in C.elegans.Cell,127, 1193–1207.20.Terns,M.P.and Terns,R.M.(2002)Small nucleolar RNAs:versatile trans-acting molecules of ancient evolutionary origin.Gene Expr,10,17–39.21.Ouellet,D.L.,Perron,M.P.,Gobeil,L.A.,Plante,P.,and Provost,P.(2006)MicroR-NAs in gene regulation:when the smallest governs it all.J Biomed Biotechnol,2006, 69616.22.Maatouk,D.and Harfe,B.(2006)MicroR-NAs in development.ScientificWorldJournal, 6,1828–1840.23.Kim,V.N.and Nam,J.W.(2006)Genomics of microRNA.Trends Genet,22, 165–173.24.Bohnsack,M.T.,Kos,M.,and Tollervey,D.(2008)Quantitative analysis of snoRNAassociation with pre-ribosomes and release of snR30by Rok1helicase.EMBO Rep,9, 1230–1236.25.Hertel,J.,de Jong, D.,Marz,M.,Rose,D.,Tafer,H.,Tanzer, A.,Schierwater,B.,and Stadler,P.F.(2009)Non-codingRNA annotation of the genome of Tri-choplax adhaerens.Nucleic Acids Res,37, 1602–1615.26.Kim,M.,Patel,B.,Schroeder,K.E.,Raza,A.,and Dejong,J.(2008)Organization andtranscriptional output of a novel mRNA-like piRNA gene(mpiR)located on mouse chro-mosome10.RNA,14,1005–1011.27.Mishima,T.,Takizawa,T.,Luo,S.S.,Ishibashi,O.,Kawahigashi,Y.,Mizuguchi, Y.,Ishikawa,T.,Mori,M.,Kanda,T., and Goto,T.(2008)MicroRNA(miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary.Reproduction,136, 811–822.28.Papaioannou,M.D.,Pitetti,J.L.,Ro,S.,Park, C.,Aubry, F.,Schaad,O.,Vejnar,C.E.,Kuhne, F.,Descombes,P.,Zdob-nov, E.M.,McManus,M.T.,Guillou, F., Harfe,B.D.,Yan,W.,Jegou,B.,and Nef, S.(2009)Sertoli cell Dicer is essential for spermatogenesis in mice.Dev Biol,326, 250–259.29.Ro,S.,Park,C.,Sanders,K.M.,McCarrey,J.R.,and Yan,W.(2007)Cloning and expres-sion profiling of testis-expressed microRNAs.Dev Biol,311,592–602.30.Ro,S.,Park,C.,Song,R.,Nguyen,D.,Jin,J.,Sanders,K.M.,McCarrey,J.R.,and Yan, W.(2007)Cloning and expression profiling of testis-expressed piRNA-like RNAs.RNA, 13,1693–1702.31.Ro,S.,Park,C.,Young,D.,Sanders,K.M.,and Yan,W.(2007)Tissue-dependent paired expression of miRNAs.Nucleic Acids Res, 35,5944–5953.32.Siebolts,U.,Varnholt,H.,Drebber,U.,Dienes,H.P.,Wickenhauser,C.,and Oden-thal,M.(2009)Tissues from routine pathol-ogy archives are suitable for microRNA anal-yses by quantitative PCR.J Clin Pathol,62, 84–88.33.Smits,G.,Mungall,A.J.,Griffiths-Jones,S.,Smith,P.,Beury,D.,Matthews,L.,Rogers, J.,Pask, A.J.,Shaw,G.,VandeBerg,J.L., McCarrey,J.R.,Renfree,M.B.,Reik,W.,and Dunham,I.(2008)Conservation of the H19 noncoding RNA and H19-IGF2imprint-ing mechanism in therians.Nat Genet,40, 971–976.34.Song,R.,Ro,S.,Michaels,J.D.,Park,C.,McCarrey,J.R.,and Yan,W.(2009)Many X-linked microRNAs escape meiotic sex chromosome inactivation.Nat Genet,41, 488–493.Quantitative Analysis of Small RNAs30535.Wang,W.X.,Wilfred,B.R.,Baldwin,D.A.,Isett,R.B.,Ren,N.,Stromberg, A.,and Nelson,P.T.(2008)Focus on RNA iso-lation:obtaining RNA for microRNA (miRNA)expression profiling analyses of neural tissue.Biochim Biophys Acta,1779, 749–757.36.Wu,F.,Zikusoka,M.,Trindade,A.,Das-sopoulos,T.,Harris,M.L.,Bayless,T.M., Brant,S.R.,Chakravarti,S.,and Kwon, J.H.(2008)MicroRNAs are differen-tially expressed in ulcerative colitis and alter expression of macrophage inflam-matory peptide-2alpha.Gastroenterology, 135(1624–1635),e24.37.Wu,H.,Neilson,J.R.,Kumar,P.,Manocha,M.,Shankar,P.,Sharp,P.A.,and Manjunath, N.(2007)miRNA profiling of naive,effec-tor and memory CD8T cells.PLoS ONE,2, e1020.38.Yan,W.,Morozumi,K.,Zhang,J.,Ro,S.,Park, C.,and Yanagimachi,R.(2008) Birth of mice after intracytoplasmic injec-tion of single purified sperm nuclei and detection of messenger RNAs and microR-NAs in the sperm nuclei.Biol Reprod,78, 896–902.39.Guryev,V.and Cuppen,E.(2009)Next-generation sequencing approaches in genetic rodent model systems to study func-tional effects of human genetic variation.FEBS Lett.40.Li,W.and Ruan,K.(2009)MicroRNAdetection by microarray.Anal Bioanal Chem.41.Ro,S.,Park,C.,Jin,JL.,Sanders,KM.,andYan,W.(2006)A PCR-based method for detection and quantification of small RNAs.Biochem and Biophys Res Commun,351, 756–763.。

生物化学与分子生物学方向文献阅读

生物化学与分子生物学方向文献阅读

生物化学与分子生物学方向文献阅读以下是关于生物化学与分子生物学方向的一些经典文献,你可以参考阅读:1. Watson, J.D., and Crick, F.H.C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171, 737-738. (关于DNA结构的经典文章,揭示了DNA的双螺旋结构)2. Berg, J.M., Tymoczko, J.L., and Gatto, G.J. (2018). Biochemistry. (一本经典的生物化学教材,涵盖了生物化学的基本原理和分子机制)3. Lodish, H., Berk, A., Zipursky, S.L., et al. (2000). Molecular Cell Biology. (一本广泛采用的分子细胞生物学教材,涵盖了分子生物学的基本原理和细胞过程)4. Stryer, L., and Berg, J.M. (2002). Biochemistry. (另一本经典的生物化学教材,对生物化学的基本原理进行了全面介绍)5. Alberts, B., Johnson, A., Lewis, J., et al. (2014). Molecular Biology of the Cell. (一本广泛采用的细胞生物学教材,涵盖了细胞结构和功能的分子机制)6. Anfinsen, C.B., Haber, E., Sela, M., and White, F.H. (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America 47, 1309-1314. (关于蛋白质折叠和构象的经典研究,揭示了蛋白质在还原条件下如何重新折叠成具有活性的形式)7. Kornberg, A., and Pricer, W.E. (1953). The formation of α-ketoglutaric acid from isocitric acid in a bacterial enzyme system. Journal of Biological Chemistry 204, 83-90. (关于酶催化的代谢过程的经典研究,揭示了某些酶催化酶的反应机制)8. Crick, F.H.C., Barnett, L., Brenner, S., and Watts-Tobin, R.J. (1961). General nature of the genetic code for proteins. Nature 192, 1227-1232. (关于遗传密码的经典研究,揭示了DNA和蛋白质之间的翻译过程)这些文献涉及了生物化学和分子生物学中的一些重要的研究领域和基本概念,请根据你的兴趣和认知程度进行阅读。

生物文献综述范文

生物文献综述范文

生物文献综述范文生物学作为一门研究生命的科学,涉及的领域广泛且深奥。

在生物学研究领域中,文献综述是非常重要的一部分,它可以帮助我们了解当前领域的研究现状,总结前人的研究成果,指导我们未来的研究方向。

本文将对生物学领域中的文献综述进行梳理和总结,希望能够对相关领域的研究者提供一定的参考价值。

首先,我们将从生物学领域中的分子生物学文献综述开始。

分子生物学是生物学的一个重要分支,它研究生物体内分子结构与功能的关系。

在分子生物学领域的文献综述中,研究者们通常会对特定分子或者分子类别进行综合性的总结和分析,包括其结构、功能、调控机制等方面的内容。

通过文献综述,我们可以了解到当前分子生物学领域的研究热点和难点,为我们未来的研究提供指导。

其次,我们将关注生物学领域中的生态学文献综述。

生态学是研究生物与环境之间相互作用的科学,其研究对象涉及到生物个体、种群、群落乃至生态系统等多个层次。

在生态学领域的文献综述中,研究者们通常会对某一生态系统或者生态过程进行综合性的总结和分析,包括其结构、功能、稳定性等方面的内容。

通过文献综述,我们可以了解到当前生态学领域的研究进展和趋势,为我们未来的研究提供借鉴。

最后,我们将探讨生物学领域中的遗传学文献综述。

遗传学是研究遗传变异与遗传规律的科学,其研究对象涉及到基因、染色体、遗传物质等。

在遗传学领域的文献综述中,研究者们通常会对某一遗传现象或者遗传机制进行综合性的总结和分析,包括其遗传规律、分子机制、应用前景等方面的内容。

通过文献综述,我们可以了解到当前遗传学领域的研究热点和突破,为我们未来的研究提供启示。

总之,生物学领域中的文献综述对于我们了解当前研究进展、总结前人经验、指导未来研究具有重要意义。

希望本文对相关领域的研究者有所帮助,也希望生物学领域的研究能够不断取得新的突破和进展。

分子生物学论文

分子生物学论文

分子生物学论文
引言
分子生物学是研究生物体中分子结构和功能的学科。

在过去的几十年中,随着技术的进步,分子生物学在生物医学和农业领域发挥着重要作用。

本文将对分子生物学的研究进展进行讨论。

DNA序列分析
DNA序列分析是分子生物学中的重要研究领域之一。

通过对DNA序列的分析,可以揭示生物体的遗传信息,同时也可以识别出与遗传疾病相关的基因变异。

随着高通量测序技术的发展,DNA 序列分析变得更加高效和准确。

基因表达调控
基因表达调控是指通过一系列分子机制控制基因在细胞内的表达水平。

研究表明,基因表达调控异常与许多疾病的发生和发展密切相关。

分子生物学的研究者们不断探索基因表达调控的机制,以期找到治疗疾病的新方法。

蛋白质研究
蛋白质是生物体内重要的功能分子,研究蛋白质的结构和功能
对于理解生物学过程至关重要。

分子生物学的研究者们采用多种技
术手段,如蛋白质质谱和蛋白质结晶学,来研究蛋白质的结构和相
互作用。

基因工程
基因工程是利用分子生物学技术改变生物体的遗传特性。

通过
基因工程,科学家们可以开发新的药物、改良农作物、以及治疗遗
传病等。

基因工程的发展带来了许多创新和突破,同时也带来了一
系列的伦理和安全问题。

结论
分子生物学是一个快速发展的学科,其研究成果对于生物医学、农业和生态学等领域具有重要的应用价值。

通过持续的研究和创新,分子生物学必将为人类社会健康和可持续发展做出更大贡献。

参考文献
- 张三, 李四. "分子生物学研究进展." 《生物学杂志》 2020.。

分子生物学文献综述

分子生物学文献综述

分子生物学文献综述分子生物学文献综述是对分子生物学领域的研究论文、研究报告、综述文章等进行综合分析和评价,以全面了解该领域的研究现状、研究进展和发展趋势。

以下是一篇分子生物学文献综述的示例:标题:分子生物学研究进展综述摘要:本文综述了近年来分子生物学领域的研究进展,包括基因组学、蛋白质组学、代谢组学等方面的研究进展,以及这些研究在医学、农业、生态等领域的应用。

本文还讨论了分子生物学研究中存在的问题和挑战,以及未来的研究方向。

一、引言分子生物学是研究生物分子结构、功能、相互作用以及生物体遗传信息传递规律的科学。

随着科学技术的发展,分子生物学已经成为了生命科学领域的重要分支。

本文将对近年来分子生物学领域的研究进展进行综述。

二、基因组学研究进展基因组学是研究生物体基因组结构和功能的科学。

近年来,随着测序技术的发展,基因组学研究取得了重要进展。

例如,人类基因组计划的完成,为人类疾病的研究和治疗提供了重要的基础数据。

同时,基因组编辑技术的发展,如CRISPR-Cas9系统,为基因治疗和遗传疾病治疗提供了新的手段。

三、蛋白质组学研究进展蛋白质组学是研究蛋白质的表达、修饰和功能变化的科学。

近年来,蛋白质组学研究取得了重要进展。

例如,通过质谱技术对蛋白质进行定性和定量分析,可以更深入地了解蛋白质的结构和功能。

同时,蛋白质相互作用的研究也为理解生物体内复杂的信号传导网络提供了重要信息。

四、代谢组学研究进展代谢组学是研究生物体内代谢物变化的科学。

近年来,代谢组学研究取得了重要进展。

例如,通过对尿液、血液等体液的代谢物进行分析,可以了解人体健康状况和疾病发展过程。

同时,代谢组学研究也为农业、生态等领域提供了重要的基础数据。

五、应用领域分子生物学在医学、农业、生态等领域有着广泛的应用。

例如,在医学领域,通过对癌症、糖尿病等疾病的基因和蛋白质进行研究,可以为疾病的治疗和预防提供新的手段。

在农业领域,通过对农作物基因和蛋白质进行研究,可以提高农作物的产量和品质。

分子生物学综述论文(基因敲除技术)

分子生物学综述论文(基因敲除技术)

现代分子生物学课程论文题目基因敲除技术班别生物技术10-2学号 *********** 姓名陈嘉杰成绩基因敲除技术的研究进展要摘基因敲除是自80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。

此后经历了近20年的推广和应用,直到2007年10月8日,美国科学家马里奥•卡佩奇(Mario Capecchi)和奥利弗•史密西斯(Oliver Smithies)、英国科学家马丁•埃文斯(Martin Evans)因为在利用胚胎干细胞对小鼠基因金星定向修饰原理方面的系列发现分享了2007年诺贝尔生理学或医学奖。

基因敲除技术从此得到关注和肯定,并对医学生物学研究做出了重大贡献。

本文就基因敲除的研究进展作一个简单的综述。

关键词基因敲除、RNAi、生物模型、同源重组前言基因敲除又称基因打靶,该技术通过外源DNA与染色体DNA之间的同源重组,进行精确的定点修饰和基因改制,具有转移性强、染色体DNA可与目的片段共同稳定遗传等特点。

应用DNA同源重组技术将灭活的基因导入小鼠胚胎干细胞(embryonic stem cells,ES cells)以取代目的基因,再筛选出已靶向灭活的细胞,微注射入小鼠囊胚。

该细胞参与胚胎发育形成嵌合型小鼠,再进一步传代培育可得到纯合基因敲除小鼠。

基因敲除小鼠模型的建立使许多与人类疾病相关的新基因的功能得到阐明,使现代生物学及医学研究领域取得了突破性进展。

上述起源于80年代末期的基因敲除技术为第一代技术,属完全性基因敲除,不具备时间和区域特异性。

关于第二代区域和组织特异性基因敲除技术的研究始于1993年。

Tsien等[1]于1996年在《Cell》首先报道了第一个脑区特异性的基因敲除动物,被誉为条件性基因敲除研究的里程碑。

该技术以Cre/LoxP系统为基础,Cre在哪种组织细胞中表达,基因敲除就发生在哪种组织细胞中。

2000年Shimizu等[2]于《Science》报道了以时间可调性和区域特异性为标志的第三代基因敲除技术,其同样以Cre/LoxP系统为基础,利用四环素等诱导Cre的表达。

cellular and molecular life sciences 参考文献格式

cellular and molecular life sciences 参考文献格式

cellular and molecular life sciences参考文献格式标题:细胞与分子生命科学的综述引言概述:细胞与分子生命科学是一门研究生物体内细胞和分子层面的学科,涉及细胞结构、功能、分子生物学、遗传学等多个方面。

本文将从细胞结构、功能、分子生物学、遗传学和生物技术五个大点出发,详细阐述细胞与分子生命科学的相关内容。

正文内容:1. 细胞结构1.1 细胞膜结构:细胞膜是细胞的外层,由磷脂双分子层和蛋白质组成。

细胞膜的结构和功能是细胞内外物质交换的关键。

1.2 细胞器结构:细胞器是细胞内的功能区域,包括核、线粒体、内质网等。

每个细胞器都有特定的结构和功能,协同工作维持细胞的正常运作。

2. 细胞功能2.1 细胞分裂:细胞分裂是细胞生命周期中的重要过程,包括有丝分裂和无丝分裂。

细胞分裂的调控对于生物体的生长和发育至关重要。

2.2 细胞信号传导:细胞通过信号分子进行信息传递,调控细胞的生理功能。

细胞信号传导的研究有助于揭示细胞内的调控机制。

2.3 细胞凋亡:细胞凋亡是细胞自我调控的一种方式,通过程序性死亡维持组织和器官的平衡。

细胞凋亡的异常与多种疾病的发生密切相关。

3. 分子生物学3.1 DNA结构和功能:DNA是遗传信息的携带者,其双螺旋结构和碱基配对规律对于遗传信息的传递和复制具有重要意义。

3.2 RNA转录和翻译:RNA是DNA的转录产物,在蛋白质合成中起到重要作用。

RNA转录和翻译是基因表达的关键过程。

3.3 蛋白质结构和功能:蛋白质是生物体内功能最为多样的分子,其结构和功能的研究对于理解细胞活动和生物学过程具有重要意义。

4. 遗传学4.1 遗传物质的传递:遗传物质通过遗传信息的传递维持物种的遗传稳定性。

遗传物质的传递方式包括有性和无性两种。

4.2 基因调控:基因调控是遗传物质在细胞内的表达和调节过程,包括转录因子、表观遗传学等多个层面。

4.3 基因突变:基因突变是遗传信息发生变化的结果,对个体的遗传特征和疾病的发生有重要影响。

文献综述

文献综述

疾病的分子生物学研究分子生物学是从分子水平上研究生物体的结构、组成和功能的一门科学,其研究对象包括DNA蛋白质等生物大分子。

它是一门现代生物学,是生物化学与遗传学、微生物学、细胞学、生物物理学等学科相结合发展起来的前沿学科。

“分子生物学”一词最早在1945年由William Astbury在Harvey Lecture上应用。

1953年James Watson和Francis Crick首次提出DNA的双螺旋结构,标志着分子生物学的建立。

分子生物学越来越多的应用于医学,医学与时俱进的发展,本文主要探讨分子生物学在医学诊断和治疗疾病当中的应用分子诊断(molecular diagnosis)狭义上是基于核酸的诊断,即对各种DNA(RNA)样本的病原性突变的检测以便实现对疾病的检测和诊断。

随着人类基因图谱的完成,分子诊断得到了空间的机会。

随着蛋白组学的研究,分子诊断有赋予了新的外延—生物大分子。

蛋白质组学的发展,成为分子诊断的一个必不可少的工具。

分子诊断是当前的一种临床实际,从Kan 及其同事首次应用DNA 杂交实现α-地中海贫血的产前诊断,到Saiki 发明PCR 技术特别是实时荧光定量PCR 的应用,再到高通量自动化的生物芯片技术以及变性高效液相层析、SNP 分析等技术的应用;从利用分子杂交、PCR 等单一技和定性诊断发展到多项技术的联合应用和半定量、定量和多基因病分子诊断,再到基因表达产物的生物大分子的诊断;从治疗性诊断,发展到针对高危人群进行疾病基因或疾病相关基因的筛查和预防性分析评价。

分子诊断正处于学科发展的黄金时代。

而且,随着分子生物学理论和技术的继续发展,分子诊断还将出现更加辉煌的明天。

分子治疗(molecular therapy)分子治疗作为一项全新的疾病治疗手段,近20年来迅速发展,当今,分子生物已应用在各种疾病的治疗上。

1,肿瘤治疗随着对肿瘤发生发展分子机制的深入研究,包括基因治疗在内的生物治疗已经成为肿瘤综合治疗中的第四种模式。

分子生物学

分子生物学

课程名称:分子生物学学科内容:在分子水平上研究生命现象的科学。

通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。

研究细胞成分的物理、化学的性质和变化以及这些性质和变化与生命现象的关系,如遗传信息的传递,基因的结构、复制、转录、翻译、表达调控和表达产物的生理功能,以及细胞信号的转导以及光合作用、发育的分子机制、神经活动的机理、癌的发生等。

自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系(中心是分子遗传学)和蛋白质-脂质体系(即生物膜)等。

参考文献:Molecular Biology Robert f.Weaver著现代分子生物学朱玉贤李毅编译分子生物学基础杨岐生编著分子遗传学孙乃恩编著分子克隆实验指南PCR技术实验指南分子生物学基础技术学科意义:分子生物学是生物专业的基础学科之一,它针对分子层面上的研究来阐述生命现象的本质。

与生物化学息息相关。

它的研究说明生命活动的根本规律在形形色色的生物体中都是统一的。

同时,它的相关技术应用对生物技术及生物制药的发展具有深远影响。

另一方面,在应用上,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。

了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。

分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。

80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。

基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。

从基因调控的角度研究细胞癌变也已经取得不少进展。

分子生物学将为人类最终征服癌症做出重要的贡献。

在制药专业上,它将进一步帮助了解人体结构,以帮助科学的研究。

分子生物学英文文献

分子生物学英文文献

Mobile Genetic Elements 2:6, 267-271; November/December, 2012; © 2012 Landes BioscienceLETTER TO THE EDITORLETTER TO THE EDITORGAA repeats were shown to be the most unstable trinucleotide repeats in the pri-mates genome evolution by comparison of orthologous human and chimp loci.2 The instability of the GAA repeat in the first intron of the frataxin gene X25 is particu-larly well studied since it causes an inher-ited disorder, Friedreich ataxia (FRDA).3-6 I n Friedreich ataxia, once the length of the GAA repeat inside the frataxin gene (FXN GAA) reaches a certain threshold, the combined probability of its expan-sions and deletions in progeny of affected parents is about 85%.7 Deletions and con-tractions of the repeat in intergenerational transmissions can reach hundreds of base pairs.7 However, the FXN GAA repeat is much more stable in somatic cells.8 I t is relatively stable in blood, but shows some instability in dorsal root ganglia,9 which is responsible for some of the neurodegen-erative symptoms of Friedreich ataxia.5 GAA repeats were shown to be stable in FRDA fibroblasts cell lines and neuronal stem cells.10The question why the FXN GAA repeat is so much more stable in somatic cells than in intergenerational transmis-sions remains open. Recent studies in FRDA iPSCs that are closer to embryonic cells than somatic cells models, showed expansions of the GAA repeat with 100% probability.10,11 It is intriguing that all cells Complexes between two GAA repeats within DNA introduced into Cos-1 cellsMaria M. KrasilnikovaPennsylvania State University; University Park, PA USAKeywords: replication, GAA repeat, Friedreich ataxia, genome instability, chromatinCorrespondence to: Maria M. Krasilnikova; Email: muk19@ Submitted: 10/08/12; Revised: 12/09/12; Accepted: 12/10/12/10.4161/mge.23194in the iPSC cell lines that were analyzed were synchronously adding about two GAA repeats in each replication.The studies focused on the FXN GAA repeat provided many valuable insights; however, human genome contains many other GAA repeats: the human X chro-mosome, for instance, contains 44 GAA stretches with more than 100 repeats in each. About 30 GAA repeats were detected on the chromosome 4.12 GAA repeats mostly originated from the 3' end of the poly A associated with Alu elements.13I t is not known what makes repeats with the GAA motif most unstable com-pared with other trinucleotide repeats. It is possible that GAA repeats instability is caused by their ability to form non-B DNA structures. In vitro, GAA repeats can form triplexes,14,15 and sticky DNA structures.16 At the same time, hairpins 17 and paral-lel duplexes 18 have also been observed. When transcription is going through a GAA repeat, it can also form an R-loop, a DNA-RNA complex that leaves one of the complementary strands single-stranded.19 However, it is unclear whether these struc-tures indeed form in mammalian cells. If we assume that the instability of the GAA repeat is indeed associated with the struc-ture formation, it is still unclear why the structures would form in early embryo-genesis when the GAA expansion event in Friedriech ataxia is believed to occur,7 and do not form in somatic cells where the GAA repeat was shown to be more stable. I n our recent study, we hypothesize that the differences in chromatin structure are at least partially responsible for the differ-ences in the GAA repeats stability.1The propensity of GAA repeat to form a triplex structure may strongly depend on the structure of chromatin at the repeat and surrounding area.1 Consistent with other studies, we observed that formation of chromatin at an SV40-based plasmid introduced into mammalian cells occurs gradually: 8 h after transfection there are only occasional nucleosomes at the plas-mid, while by 72 h the nucleosome struc-ture is already regular.20 Our analysis of replication stalling at the repeat revealed that the repeat affects replication only in the first replication cycle, when chromatin is still at the formation stage. We believe that replication stalling at GAA is caused by a triplex structure that the GAA repeat adopts during transfection or inside the cell. In the subsequent replication cycles, replication was completely unaffected by the presence of the repeat, which is likely to be due to the inhibition of triplex for-mation by tight chromatin packaging.1Here we show the data that strengthen our previous observations and extend it to one more structure: a complex betweenWe have recently shown that GAA repeats severely impede replication elongation during the first replication cycle of transfected DNA wherein the chromatin is still at the formation stage.1 Here we extend this study by showing that two GAA repeats located within the same plasmid in the direct orientation can form complexes upon transient transfection of mammalian Cos-1 cells. However, these complexes do not form in DNA that went through several replication rounds in mammalian cells. We suggest that formation of such complexes in mammalian genomes can contribute to genomic instability.We studied replication of several SV40-based plasmids that contained two (GAA)57 repeats located at different posi-tions in Cos-1 cells (Figs. 1–3). I n each case, the cells were transiently transfected with 1 μg of each plasmid, and replication intermediates were isolated after about 30 h. This allowed us to observe replica-tion arcs that resulted from the plasmids that replicated for more than two rounds. However, some residual amount of the first replication cycle arcs can also be registered. Replication stalling at GAA repeats only occurs during the first repli-cation cycle of an SV40-based plasmid,1 hence we did not observe it in our system.For each of the plasmids, and for all patterns of restriction digests that we studied, we observed complexes between the two (GAA)57 repeats (indicated by red arrows in each of the figures). The migration of those complexes was differ-ent depending on the digest pattern, so the complexes were at different positions in 2D gel patterns, in agreement with our expectations based on their shapes.We did not observe replication stalling associated with these complexes. When this complex is formed, it migrates signifi-cantly slower on 2D gels; the replication of plasmids that contain such complexes should result in an extra replication arc originating from the complex position. However, the number of molecules that form this complex is significantly lower than the overall number of plasmids, and there may be not enough material to observe their replication.For the situation when the two GAA repeats were located in two different frag-ments upon PvuI digest (Fig. 1), we showed that the spot 3 (Fig. 1D ) (also indicated by an arrow in Fig. 1A ) con-tains both fragments: the spot hybridized to the probes corresponding to either of them (Fig. 1A and B ). However, the com-plex appears at the position that migrates slower than unreplicated plasmid in the second dimension upon AflI I I and ScaI digest when both repeats belong to the same fragment (Fig. 2). We suggest that this fragment contains a loop generated by the interaction between the two GAA repeats (Fig. 2C ) that slows it down in the second dimension, and has little effect on the mobility in the first dimension sinceThe method of two-dimensional elec-trophoresis 22,23 allowed us to analyze the replication progression through a DNA fragment containing two GAA repeats. In this method, the replication intermediates are isolated under non-denaturing condi-tions, digested by a restriction enzyme, and separated on two consecutive gel runs in perpendicular directions. The first direction runs in 0.4% agarose (that separates mostly by mass), and the second direction runs in 1% agarose (that sepa-rates by both mass and shape of a DNA molecule).two GAA stretches. Two GAA repeats has been shown to readily form complexes, such as “sticky DNA,” in vitro,16 but it is not obvious whether it can also form inside the mammalian cells. The sticky DNA requires more than one GAA stretch to form.21 We studied the interaction of two GAA repeats located within the same plas-mid, but since the human genome contains at least several hundreds of long GAA motif repeats,12,13 this structure can theoretically form in the genomic environment as well. However, more experiments are needed to detect its formation in genome.Figure 1. A complex between two (GAA)57 repeats within the same plasmid. Plasmid replication intermediates were isolated from Cos-1 cells 30 h after transient transfection. Intermediates were digested by restriction enzymes indicated in the plasmid maps, and separated by two-dimension-al neutral-neutral agarose gel electrophoresis as described previously.1 The gel was transferred to a nylon membrane and hybridized to one of the probes indicated in the plasmid maps as green lines. A position of the complex at the 2D gel pattern depends on the restriction digest of the replication intermediates (indicated by a red arrow). (A ) Two-dimensional electrophoresis of replication intermediates digested by PvuII that places each repeat within a separate fragment. The membrane was hybridized with probe 1 indicated in (C ). The names of the plasmids GAAGAA, GAACTT, etc., reflect the orientation of the GAA repeats within the plasmid (GAAGAA means that the two GAA stretches are in the direct orientation). (B ) The same membrane was stripped of probe 1, and re-hybridized with probe 2 (C ). (C ) The scheme of the plasmid that was used in the experiment in (A and B ). Two different fragments that resulted from the PvuII digest are shown in red and blue. The positions of GAA repeats are shown in black. They can be in the direct or the reverse orientations in this plasmid. (D ) The scheme of the 2D gel in (A ). Spot 1: unreplicated blue fragment, spot 2: unreplicated red fragment that appears because of the cross-contamination of probe 1 with probe 2 due to their preparation from the same plasmid with a restriction digest. Spot 3: a complex between the red and the blue fragments. Spikes 3-2 and 3-4 may result from double-stranded breaks in the plasmid during transfection that make one of the arms of the complex in spot 3 shorter.it has the same mass as the unreplicated fragment.The complexes formed only when the two GAA stretches were positioned on a plasmid as direct repeats (GAAGAA and CTTCTT in the plasmid names). The inverted repeats GAACTT and CTTGAA did not form complexes as shown in Figures 1 and 2. This is in agreement with the sticky DNA formation in supercoiled plasmids containing two GAA repeats that has been previously shown in vitro.16 In sticky DNA, the two GAA strands that are in the antiparallel orientation, and the CTT strand, form a stable complex stabilized by Mg2+-dependent reverse-Hoogsteen triads. However, the sticky DNA complex fell apart upon heating in the presence of EDTA, which removes the Mg2+ ions necessary for its stability,16 while we did not detect any changes in spot 3 upon heating the intermediates with EDTA (Fig. 3B). We suggest that in our case the complex may be different from the canonical sticky DNA. It may be based on Hoogsteen base pairing where the Mg2+ is not needed and a slightly acidic pH has a stabilizing effect.24 It has been shown that this type of structure forms within long GAA stretches in vitro even at a pH that is close to neutral.15 We also cannot exclude that the complexes are hemicatenated molecules connected at GAA repeats with Watson-Crick pairing.25The complexes between the two GAA repeats persisted only until the plasmids went through one replication round. DpnI restriction enzyme is a frequent-cutter that digests all DNA that contains strands syn-thesized in bacteria: it cleaves DNA that is methylated at GATC by dam methyl-ase, which is only present in bacteria, but not in mammalian cells. Extensive DpnI digest that we performed, cleaved the ini-tial DNA used in transfection, as well as the products of the first replication cycleA complex between the two repeats within the same fragment slow down its progres-sion in the second dimension of the 2D gel. The same plasmid as in the Figure 1 was used in this experiment, however, they were digested with different enzymes. (A) Replication intermediates were digested with AflIII and ScaI, placing both repeats within the same fragment. The complex of two GAA repeats results in a slowly migrating structure that is shown by a red arrow. (B) A map of the digest of the same plasmid as in Figure 1 with restriction enzymes ScaI and AflIII. Here both of the repeats are located within the same fragment shown in blue. (C) The scheme of the 2D gel in . Spots 1 and 2 are the same as in Figure 1D. Spot 3: a looped intermediate that resulted from the interaction of the two GAA repeats.A complex between the two GAA repeats does not form in plasmids that went through more than two replication rounds in mammaliancells. Two-dimensional gels of replication intermediates of a plasmid containing two (GAA)57 repeats were obtained as described in the Figure 1) Two-dimensional gel of replication intermediates digested by AflIII (placing the two repeats at two different fragments). A red arrow indi-cates the position of the complex between the two GAA-containing fragments. (B) The same replication intermediates were incubated at 80°C in the presence of 10 mM EDTA for 10 min; the pattern of the 2D gel did not change. (C) The same intermediates were additionally digested with10 units of DpnI for 2 h prior to loading. The spot at the position indicated by an arrow in Figure 1 A is not present in this picture. An additional spot that appeared in this pattern is likely not a part of the pattern, and is probably due to some contamination. (D) A map of the plasmid that was used inFigure 1A and B. Spot 1, unreplicated blue fragment; spot 2, unreplicated red fragment (which appeared due to contamination of probe 1 with other plasmid sequences). Spot 3, a complex between the blue and the red fragments. A very faint duplicate Y arc from replication of the second fragment originates from spot 2. The spikes originating from spot 3 can be interpreted the same way as11. Ku S, Soragni E, Campau E, Thomas EA, Altun G, Laurent LC, et al. Friedreich’s ataxia induced plu-ripotent stem cells model intergenerational GAA·TTC triplet repeat instability. Cell Stem Cell 2010; 7:631-7; PM I D:21040903; /10.1016/j.stem.2010.09.014.12. Siedlaczck I , Epplen C, Riess O, Epplen JT. Simple repetitive (GAA)n loci in the human genome. Electrophoresis 1993; 14:973-7; PM I D:7907288; /10.1002/elps.11501401155.13. Chauhan C, Dash D, Grover D, Rajamani J, MukerjiM. Origin and instability of GAA repeats: insights fromAlu elements. J Biomol Struct Dyn 2002; 20:253-63;PMID:12354077; /10.1080/07391102.2002.10506841.14. Gacy AM, Goellner GM, Spiro C, Chen X, Gupta G, Bradbury EM, et al. GAA instability in Friedreich’sAtaxia shares a common, DNA-directed and intraal-lelic mechanism with other trinucleotide diseases. MolCell 1998; 1:583-93; PMI D:9660942; http://dx.doi.org/10.1016/S1097-2765(00)80058-1.15. Potaman VN, Oussatcheva EA, Lyubchenko YL, Shlyakhtenko LS, Bidichandani SI, Ashizawa T , et al.Length-dependent structure formation in Friedreich ataxia (GAA)n*(TTC)n repeats at neutral pH. NucleicAcids Res 2004; 32:1224-31; PMID:14978261; http:///10.1093/nar/gkh274.16. Sakamoto N, Chastain PD, Parniewski P , OhshimaK, Pandolfo M, Griffith JD, et al. Sticky DNA: self-association properties of long GAA.TTC repeats inR.R.Y triplex structures from Friedreich’s ataxia. MolCell 1999; 3:465-75; PMID:10230399; http://dx.doi.org/10.1016/S1097-2765(00)80474-8.17. Heidenfelder BL, Makhov AM, Topal MD. Hairpinformation in Friedreich’s ataxia triplet repeat expansion.J Biol Chem 2003; 278:2425-31; PMI D:12441336;/10.1074/jbc.M210643200.18. LeProust EM, Pearson CE, Sinden RR, Gao X. Unexpected formation of parallel duplex in GAA and TTC trinucleotide repeats of Friedreich’s ataxia. J MolBiol 2000; 302:1063-80; PM D:11183775; http:///10.1006/jmbi.2000.4073.19. McIvor EI, Polak U, Napierala M. New insights into repeat instability: role of RNA•DNA hybrids. RNABiol 2010; 7:551-8; PMI D:20729633; http://dx.doi.org/10.4161/rna.7.5.12745.20. Chandok GS, Kapoor KK, Brick RM, Sidorova JM, Krasilnikova MM. A distinct first replication cycleof DNA introduced in mammalian cells. NucleicAcids Res 2011; 39:2103-15; PMID:21062817; http:///10.1093/nar/gkq903.21. Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells RD. Sticky DNA, a self-associated complexformed at long GAA*TTC repeats in intron 1 of thefrataxin gene, inhibits transcription. J Biol Chem2001; 276:27171-7; PMI D:11340071; http://dx.doi.org/10.1074/jbc.M101879200.22. Krasilnikova MM, Mirkin SM. Analysis of tripletrepeat replication by two-dimensional gel electro-phoresis. Methods Mol Biol 2004; 277:19-28;PMID:15201446.23. Friedman KL, Brewer BJ. Analysis of replicationintermediates by two-dimensional agarose gel elec-trophoresis. Methods Enzymol 1995; 262:613-27; PM I D:8594382; /10.1016/0076-6879(95)62048-6.24. Frank-Kamenetskii MD, Mirkin SM. T riplex DNA structures. Annu Rev Biochem 1995; 64:65-95; PM D:7574496; /10.1146/annurev.bi.64.070195.000433.25. Lucas I, Hyrien O. Hemicatenanes form upon inhibition of DNA replication. Nucleic Acids Res 2000; 28:2187-93; PM D:10773090; /10.1093/nar/28.10.2187.26. McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals. Reproduction 2003; 125:625-33; PM D:12713425; /10.1530/rep.0.1250625.because they contain one strand synthe-sized in bacteria.The replication intermediates digested with DpnI did not contain the spot 3, cor-responding to the complex between two GAA stretches (Fig. 3C ). We suggest that the absence of the complex is due to the chromatin coverage of the plasmid that accompanies replication. This is similar to our observation that GAA repeats only block replication during the first replica-tion round, until the chromatin is formed. The replication blockage that we have pre-viously observed is consistent with forma-tion of a triplex that occurs in transfected DNA only prior to nucleosome cover-age.1 Here, the complex between the two (GAA)57 repeats also occurred only with-out the chromatin structure. The absence of the complex in replicated DNA also shows that the complexes that we observe are not an artifact of the isolation and sub-sequent treatment of our intermediates, since then they would exist in at least some fraction of the replicated DNA as well.The question remains whether the non-B DNA structures can form within GAA repeats in mammalian cells since their formation requires DNA stretches that are not folded in chromatin. A win-dow when these complexes can form during development is the spermatogen-esis when the maturing sperm chromatin changes from nucleosome- to protamine-bound assembly.26 Another opportunity to form complexes comes when the chroma-tin of a sperm and an egg restructure after the fusion of the gamets.26,27 This is asso-ciated with degradation of protamines and nucleosome deposition, as the zygote DNA may lack a compact chromatin structure.28 It should be noted that the expansions in Friedreich ataxia were traced to the early divisions of the zygote.7An opportunity for the complexes to form may also exist in cancer cells. It is known that some regions of their genome are overmethylated and convert in hetero-chromatin, while other regions are under-methylated, which may promote a loose chromatin packaging.29,30It is not clear whether the two-repeats complexes would compete with triplex structure formation within each individ-ual (GAA)57 repeat. It is possible that both of them exist and contribute to overallgenomic instability. However, a separate study is necessary to determine whether these structures indeed have a biological role.Disclosure of Potential Conflicts of InterestNo potential conflicts of interest weredisclosed.Acknowledgments This study was supported by NI H grant GM087472, and research grant from Friedreich’s Ataxia Research Alliance toMMK.References 1. Chandok GS, Patel MP , Mirkin SM, Krasilnikova MM.Effects of Friedreich’s ataxia GAA repeats on DNAreplication in mammalian cells. Nucleic Acids Res2012; 40:3964-74; PM D:22262734; http://dx.doi.org/10.1093/nar/gks021.2. Kelkar YD, Tyekucheva S, Chiaromonte F , MakovaKD. The genome-wide determinants of humanand chimpanzee microsatellite evolution. GenomeRes 2008; 18:30-8; PMI D:18032720; http://dx.doi.org/10.1101/gr.7113408.3. Sharma R, Bhatti S, Gomez M, Clark RM, MurrayC, Ashizawa T, et al. The GAA triplet-repeat sequencein Friedreich ataxia shows a high level of somaticinstability in vivo, with a significant predilection forlarge contractions. Hum Mol Genet 2002; 11:2175-87; PM I D:12189170; /10.1093/hmg/11.18.2175.4. Pandolfo M. The molecular basis of Friedreichataxia. Adv Exp Med Biol 2002; 516:99-118;PM D:12611437; /10.1007/978-1-4615-0117-6_5.5. Pandolfo M. Friedreich ataxia. Arch Neurol 2008;65:1296-303; PM I D:18852343; http://dx.doi.org/10.1001/archneur.65.10.1296.6. Campuzano V, Montermini L, Moltò MD, PianeseL, Cossée M, Cavalcanti F , et al. Friedreich’s ataxia:autosomal recessive disease caused by an intronic GAAtriplet repeat expansion. Science 1996; 271:1423-7; PM ID:8596916; /10.1126/sci-ence.271.5254.1423.7. De Michele G, Cavalcanti F , Criscuolo C, Pianese L,Monticelli A, Filla A, et al. Parental gender, age at birthand expansion length influence GAA repeat intergener-ational instability in the X25 gene: pedigree studies andanalysis of sperm from patients with Friedreich’s ataxia.Hum Mol Genet 1998; 7:1901-6; PMI D:9811933; /10.1093/hmg/7.12.1901.8. De Biase I , Rasmussen A, Monticelli A, Al-MahdawiS, Pook M, Cocozza S, et al. Somatic instability of theexpanded GAA triplet-repeat sequence in Friedreich ataxia progresses throughout life. Genomics 2007;90:1-5; PMID:17498922; /10.1016/j.ygeno.2007.04.001.9. De Biase I , Rasmussen A, Endres D, Al-Mahdawi S,Monticelli A, Cocozza S, et al. Progressive GAA expan-sions in dorsal root ganglia of Friedreich’s ataxia patients.Ann Neurol 2007; 61:55-60; PMID:17262846; http:///10.1002/ana.21052.10. Du J, Campau E, Soragni E, Ku S, Puckett JW,Dervan PB, et al. Role of mismatch repair enzymesin GAA·TTC triplet-repeat expansion in Friedreichataxia induced pluripotent stem cells. J Biol Chem2012; 287:29861-72; PMID:22798143; http://dx.doi.org/10.1074/jbc.M112.391961.29. Watanabe Y, Maekawa M. Methylation of DNAin cancer. Adv Clin Chem 2010; 52:145-67; PM D:21275343; /10.1016/S0065-2423(10)52006-7.30. Kulis M, Esteller M. DNA methylation and cancer.Adv Genet 2010; 70:27-56; PMID:20920744; /10.1016/B978-0-12-380866-0.60002-2.27. Spinaci M, Seren E, Mattioli M. Maternal chromatinremodeling during maturation and after fertilization in mouse oocytes. Mol Reprod Dev 2004; 69:215-21; PM ID:15293223; /10.1002/mrd.20117.28. I mschenetzky M, Puchi M, Gutierrez S, MontecinoM. Sea urchin zygote chromatin exhibit an unfolded nucleosomal array during the first S phase. J Cell Biochem 1995; 59:161-7; PM D:8904310; /10.1002/jcb.240590205.。

揭示中国古代的分子生物学

揭示中国古代的分子生物学

揭示中国古代的分子生物学中国古代是一个富有智慧和创造力的古代文明,其丰富的科学知识和独特的哲学观念深深吸引着现代科学家。

在现代分子生物学的研究中,一些古代的医学文献和哲学理论概念被重新审视,并且揭示了中国古代的分子生物学思想。

本文将探讨中国古代的一些重要医学文献和哲学理论,探索它们在分子生物学中的意义。

1. 中医理论的分子生物学意义中医作为中国古代医学的重要组成部分,有着独特的理论体系。

其中,阴阳学说可以被看作是古代中国对生命现象的一种描述。

在分子生物学中,我们知道所有生物体都由细胞构成,细胞内存在着复杂的代谢过程。

阴阳学说提出了一个类似的观念,即所有事物都由两种互补但相互依赖的阴阳两个方面构成。

这与我们现代分子生物学对生物体内代谢过程的理解是相契合的。

此外,中医理论中还有关于经络和气血的概念。

经络理论认为人体内存在着一种复杂的纵横交错的运行系统,通过这些经络可以实现信息和能量的传递。

与此相应的,现代分子生物学研究发现细胞内存在着一种复杂的信号传递系统,通过这些信号传递途径,细胞可以实现各种生物活动的调控。

气血理论则类似于现代细胞内的代谢过程,血液的输送和气体的交换在细胞内发挥着重要的作用。

中医理论的研究对于理解人体健康和疾病机理具有重要意义。

进一步结合现代分子生物学和基因组学的技术手段,我们可以更深入地揭示中医理论背后的分子生物学机制。

2. 《内经》对分子生物学的贡献《黄帝内经》是中国古代最重要的医学经典之一,被誉为中医药的源头。

在这部经典中,出现了许多与分子生物学相关的内容。

例如,其中提到了人体的经脉、脏腑、气血等概念,并且阐述了它们之间的相互关系。

这些概念与现代分子生物学中的细胞信号传导和代谢过程密切相关。

此外,《内经》还提供了一种关于人体构成的理论,即五脏六腑。

每个脏腑都有其特定的功能和相应的经络系统。

这种理论可以与现代分子生物学中的器官和组织系统相联系。

通过比较现代分子生物学的研究结果与《内经》中的理论观点,我们可以更好地理解中国古代对人体构成和功能的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Experimental objective
1.Introduct an alien gene (SNAC1)into elite wheat cultivar to improve the tolerances of wheat cultivars to drought and salinity through genetic engineering. 2.Assays to confirm the tolerances of drought and salintity,sensitivities to ABA of transgenic wheat cultivars. 3. How SNAC1 regulate expression of genes in the transgenic wheat.
Transformation and tissue culture
An elite Chinese wheat cultivar (cv.) Yangmai12 was planted in an experimental field,seeds at 14–16 days post anthesis (DPA)were isolated as explants. Embryos were isolated from the seeds,placed onto agar plate and cultured for 5 days, Calluses were used for bombardment with a biolistic gun, Subsequent cultures and selection of transgenic calli were performed as previously described,The surviving plantlets with strong roots and shoots were vernalized at 4 ◦C for 14 days and then cultured in a growth chamber under 16/8 h day/night at 18–20◦C.
A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses
The fuction of NAC1 gene
1.Improvement of drought and salinity stress tolerance in wheat.
RT-PCR
For RT-PCR analyses of a target gene, 5 μg total RNA extracted from wheat leaves were reversely transcribed into cDNA with reverse transcriptase and an oligodT20 primer. PCR amplifications were performed with a thermal cycler using primers SSNA and NOSR. PCR consisted of 35 cycles of denaturation (94 ◦C,30 s), annealing (60 ◦C, 30 s) and extension (72 ◦C, 30 s). Wheat actin gene was co-amplified as control with primers PwactF1 and PwactR1
qRT-PCR
qRT-PCR system:
reaction containing SYBR Green I PCR Master Mix.(25μL) diluted cDNA (1:100). (10μL) forward and reverse gene-specific primers:Gene-specific primerswere designed using Primer Premier5 software.(10 pmol each of primer) primers ActinF and ActinR:Wheat actin gene was selected as an internal control and co-amplified to normalize the total amounts of cDNA present in each reaction. PCR amplification was performed in Lightcycler® 480
Vector construction
SNAC1 was amplified from a rice cDNA clone using two primers SNAnde1 and SNAsac1 . The PCR product was cloned into pAHC25 (Ubiquitin promoter-based vectors)to generate a recombinant plasmid pUbiSNAC1 for wheat transformation .
PCR, reverse-transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR)
DNA and RNA was extracted from young leaves of wheat. The selected transgenic plants were analyzed by PCR , primers S-SNA and NOSR were used to amplify a 392-bp DNA segment spanning SNAC1 gene and NOS-terminator. The PCR products were separated on 1.2% agarose gels.
2.Increased sensitivities to abscisic acid
The ABA sensitivity of the transgenic wheat plants increase,the growth of roots and shoots are significantly inhibited in the transgenic plants
Materials and methods
1.Vector construction 2.Transformation and tissue culture 3.PCR, reverse-transcription PCR (RT-PCR) and quantitative real-time PCR (qRT-PCR) 4.Southern blot analysis 5.Drought and salt tolerance assays 6.Abscisic acid (ABA) sensitivity assay 7.Experimental result
Result
Transgenic calli were selected on medium containing phosphinothricin (PPT).A total of 18 PPT-resistant T0 transgenic plantlets were generated and used for the production of T1 progenies. For T1 to T3 generations, PPT was used for the selection of transgenic plants. Two transgenic lines showed good performance under drought and salt treatment ,They were designated as A2 and A4 and used for subsequent analyses.A 392-bp SNAC1 fragment was amplified from A2 and A4 using primers S-SNA and NOSR.RT-PCR analyses confirmed the presence of SNAC1 transcripts in the two transgenic lines with the same primers , while internal control actin transcripts were present in all transgenic plants and the non-transgenic Y12 plants. Southern blot analyses revealed that the SNAC1 gene was indeed integrated into the wheat genome with different numbers of hybridization bands in the two lines, suggesting that A2 has at least one copy and A4 has at least 2 copies.
PCR Amplification program:
Following a denaturation step at 95 ◦C for 4 min, the amplification was carried out with 40 cycles at 94 ◦C for 15 s, 60 ◦C for 20 s and 72 ◦C for 20 s.The fluorescent signals were recorded at 72 ◦C for 30 s. The experiments were performed in triplicates.
相关文档
最新文档