第八章 多元函数微分学 习题课(上)
(完整版)多元函数微分学测试题及答案
第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。
(完整版)多元函数微分法及其应用习题及答案
第八章 多元函数微分法及其应用(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ∂∂∂2,xy z∂∂∂2 ,则在D 上,xy zy x z ∂∂∂=∂∂∂22。
(2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z ∂∂∂23及23y x z∂∂∂。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线⎪⎩⎪⎨⎧=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少?9.求方程1222222=++cz b y a x 所确定的函数z 的偏导数。
10.设y x ye z x 2sin 2+=,求所有二阶偏导数。
11.设()y x f z ,=是由方程y z z x ln =确定的隐函数,求xz∂∂,y z ∂∂。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由方程03=+-xy z e z确定的隐函数,求xz∂∂,y z ∂∂,y x z ∂∂∂2。
第八章 多元函数微分练习题
5、已知函数 z f (sin x, y 2 ) ,其中 f (u, v) 有二阶连续偏导数,求 z 、 2 z 。 x xy
6、设
z
xf
(x2,
xy)
其中
f
(u, v)
的二阶偏导数存在,求
z y
、
2z yx
。
7、设 z f (2x 3y, xy) 其中 f 具有二阶连续偏导数,求 2 z 。 xy
z x
三、计算题
1、设 z f (x2 , x ) ,其中 f 具有二阶连续偏导数,求 z 、 2 z 。
y
x xy
2、已知 z ln x x2 y 2 ,求 z , 2 z 。 x xy
3、求函数 z tan x 的全微分。 y
4、设 z f (x y, xy) ,且具有二阶连续的偏导数,求 z 、 2 z 。 x xy
x1 (
y0
)
A、-1
B、 0
C、 1
D、 2
8、 函数 z ( x y)2 ,则 dz x1, y0 =(
)
A、 2dx 2dy B、 2dx 2dy
C、 2dx 2dy D、 2dx 2dy
二、填空题
1、函数 z x y 的全微分 dz 2、设 u e xy sin x ,则 u
y
xy
17、设 z f (x2 y, y2 x) ,其中 f 具有二阶连续偏导数,求 2 z 。 xy
18、设
z
z(x,
y)
是由方程
z
ln
z
xy
0
确定的二元函数,求
2z x2
19、设 z yf ( y2, xy) ,其中函数 f 具有二阶连续偏导数,求 2z 。 xy
习题课多元函数微分学
下列选项正确的是( )
提示: 设
()
代入()得
D
(2006考研)
作业(4-13)
而
所以 f 在点(0,0)不可微 !
二、多元函数微分法
显示结构
隐式结构
1. 分析复合结构
自变量个数 = 变量总个数 – 方程总个数
自变量与因变量由所求对象判定
2. 正确使用求导法则
“分段用乘,分叉用加,单路全导,叉路偏导”
注意正确使用求导符号
3. 利用一阶微分形式不变性
练习题
1. 设函数 f 二阶连续可微, 求下列函数的二阶偏导数
2. P134 题12
解答提示:
第 1 题
P134 题12 设
求
提示:
①
②
利用行列式解出 du, dv :
代入①即得
求曲线在切线及法平面
(关键: 抓住切向量)
求曲面的切平面及法线 (关键: 抓住法向量)
2. 极值与最值问题
故
6. 在第一卦限内作椭球面
的切平面
使与三坐标面围成的四面体体积最小,并求此体积.
提示: 设切点为
用拉格朗日乘数法可求出
则切平面为
所指四面体体积
V 最小等价于 f ( x, y, z ) = x y z 最大,
故取拉格朗日函数
7. 设
均可微, 且
在约束条件(x, y) 0下的一个极值点,
第九章
习题课
一、 基本概念
二、多元函数微分法
三、多元函数微分法的应用
多元函数微分法
一、 基本概念
连续性
偏导数存在
方向导数存在
第八章多元函数微分学
第八章 多元函数微分学§8.1 多元函数的基本概念一、填空题:1. 设 ),其中x>y>0,则f (x+y, x-y)=_____________.2. 函数_______________________________.3. 函数z=arcsin(2x)+ 的定义域____________________. 4. 函数f (x, y)= 221sin()x y +的间断点___________________________.5. (x , y )沿任何直线趋于00(,)x y 时,f (x , y )的极限存在且相等是00(x,y)(,)x y →时f(x, y)的极限存在的_________条件。
(充分非必要,充要,必要非充分,既非充分又非必要)二、 求下列函数的极限:1.(,)lim y x y → 2.(,)(0,1)lim x y →3.2(,)(,)1lim (1)x x y x y a xy+→∞+ (a 不为0) 4.22222(,)(0,0)1cos()lim ()xyx y x y x y e →-++5.(,)(0,lim x y → 0 6.(,)(0,)11lim()sin cos x y x y x y →+ 0三、 证明下列极限不存在:1.2(,)(0,)lim x y x y x →- 02.(,)(0,)lim x y xyx y →+ 0四、 函数f(x, y)= 24242420)00x yx y x y x y ⎧+≠⎪+⎨⎪+=⎩ (() 在(0,0)点连续吗?§8.2 偏导数一、 选择题:1.x f ,y f 在00(,)x y 处均存在是f (x ,y)在该点连续的________条件。
(A) 充分; (B) 必要; (C) 充要; (D) 即不充分又不必要。
2.设z= f (x ,y),则00(,)z x y x∂∂=( )。
(完整版)高等数学(同济版)多元函数微分学练习题册.doc
(完整版)高等数学(同济版)多元函数微分学练习题册.doc第八章多元函数微分法及其应用第一作一、填空:1. 函数 z ln(1 2 )y x23x y 的定义域为x12. 函数 f (x, y, z) arccosz的定义域为y 2x 23. 设 f ( x, y) x 2 y 2 , (x) cos x, ( x) sin x, 则f [ (x), (x)].sin xy .4. lim xx 0二、(): 1. 函数1的所有断点是 :sin x sin y(A) x=y=2n π( n=1,2,3,?);(B) x=y=n π (n=1,2,3, ?) ; (C) x=y=m π (m=0, ±1,± 2,? );(D) x=n π ,y=m π (n=0, ± 1,± 2,?,m=0,± 1,± 2,? )。
答:()sin 2( x 2 y 2 , x 2y 22. 函数 f (x, y)x 2 y 2在点( 0, 0):2 ,x 2 y 2( A )无定;(B )无极限;( C )有极限但不;( D )。
答:()三、求 lim2xy 4 .x 0 xyya四、明极限 limx 2 y 22 不存在。
2 2xx y ( x y)y 0第二节作业一、填空题:1 sin( x2 y), xy 01. 设 f ( x, y)xy ,则 f x (0,1) .x 2 ,xy2. 设 f (x, y)x ( y 1) arcsinx, 则 f x ( x,1).y二、选择题(单选):设 z 2x y 2 , 则 z y 等于 :( A) y 2 x y 2 ln 4; (B) (x y 2 ) 2 y ln 4; (C ) 2 y( x y 2 ) e x y 2 ;(D ) 2 y 4 x y 2 .答:()三、试解下列各题:1. 设 z ln tan x , 求 z, z .2. 设 z arctan y, 求2z .y x yxx y四、验证 rx 2 y 2 z 2 满足2r2r2r 2 .x 2 y 2 z 2r第三节作业一、填空题:1. 函数 zy 当x 2, y时的全增量z全微分值x 1, x 0.1, y0.2dz.y2. 设z e x , 则dz.二、选择题(单选):1. 函数 z=f(x,y) 在点 P 0( x 0,y 0)两偏导数存在是函数在该点全微分存在的:( A )充分条件;( B )充要条件;( C )必要条件;( D )无关条件。
9、多元函数微分习题课(1)
2z 其中f 具有二阶连续偏导数, z = f (e x sin y , x 2 + y 2 ), 其中 具有二阶连续偏导数,求 4、 设 、 xy z = e x sin yf1′ + 2 xf 2′ 解 x
2z ′′ ′′ ′′ = f11e 2 x sin y cos y + 2e x ( y sin y + x cos y ) f12 + 4 xyf 22 + f1′e x cos y xy
x0 y0 z0 . 6abc
u=xyz(x>0,y>0,z>0)在条件( 于是问题转化为求函数 u=xyz(x>0,y>0,z>0)在条件(1)下的 最大值问题. 最大值问题. F(x,y,z)=xyz+ x,y,z)=xyz 令 F(x,y,z)=xyz+λ( a
x + b y + c z 1 ),解方程组
2、 由方程 xyz + 、
x 2 + y 2 + z 2 = 2 所确定的函数 z=z(x, y)
在点( 在点(1,0,-1)处的全微分 dz = dx - ) [利用全微分 由方程得 利用全微分] 利用全微分 因此,在点 因此,在点(1,0,-1)处 处
2dy
1 x + y +z
2 2 2
yzdx + xzdy + xydz +
在曲面上, 因 P0 在曲面上,即 a x 0 + b y 0 + c z 0 = 1 ,
(2)
a b c x+ y+ z =1 将它代入( 可化切平面方程为, 将它代入(2)式,可化切平面方程为, x0 y0 z0
第8章 多元函数微分法及其应用 习题 8 (1)
如图 8.3 阴影部分所示.
(4) 或
函数的定义域为
⎧⎪−1 ⎨
≤
z ≤ 1, x2 + y2
⎪ ⎩
x2 + y2 ≠ 0,
即
⎧⎪ ⎨
z
≤
x2 + y2 ,
⎪⎩ x2 + y2 ≠ 0,
{(x, y, z) z ≤ x2 + y2 且 x2 + y2 ≠ 0} .
此定义域的图形如图 8.4 阴影部分所示.
4
(2) f (tx,ty,tz) = (tx)3 + (ty)3 + (tz)3 + (tx)(ty)(tz)
3
= t 2 x3 + y3 + z3 + t3 (xyz) ≠ tk f (x, y, z) ,
所以此函数不是 k 次齐次函数. 8. 求下列极限:
1 − xy
(1) lim
;
(x, y)→(1,0) x2 + y2
arcsin(x2 + y2 )
(2) lim
;
(x, y)→(0,0)
x2 + y2
xy + 1 −1
(3) lim
;
(x, y)→(0,0)
xy
sin(xy)
(4) lim
;
(x, y)→(2,0) y
x3 + y3
(5) lim
;
(x, y)→(0,0) x2 + y2
(6)
lim (x2 + y2 )sin 1 .
分所示.
(2)
函数的定义域为
⎧⎪ x 2 ⎨
+
第八章多元函数微分法及其应用
第八章 多元函数微分法及其应用第一节 多元函数的基本概念1.填空。
(1)设()y x y x f 23,+=,则()()y x f xy f ,,=________________;(2) 设,),(2y x xyx y f +=+则()y x f , =_________________; (3) 设),1(-+=x f y z若当1=y 时x z =,则函数()x f =________________;(4) 函数)1ln(2)(x y x z -+=的定义域是_________________________;(5) 函数)1ln(4222y x y x z ---=的定义域是,此定义域可用平面图形表示为_____________________________________。
2.求极限。
(1))()cos(1lim22222200y x y x y x y x ++-→→ (2)yx x a y x x +→+∞→+2)11(lim4.讨论函数⎪⎩⎪⎨⎧=+≠++=0,0,0,242424y x y x y x xy z 的连续性。
第二节 偏导数1.填空。
(1),tan ln y x z=则______________=∂∂xz ,___________=∂∂y z;(2),)1(y xy z +=则______________=∂∂xz,___________=∂∂y z ; (3) 设222),,(zx yz xy z y x f ++=,则),,(z y x f z =__________,),,(z y x f zz =__________, ),,(z y x f zzx =__________,)3,5,2(zzx f =__ ________;(4)设 ⎰--Φ=at x atx du u t x f )(),(,(Φ为连续函数),则x f ∂∂=__ ________, tf∂∂=__ ________。
辽宁工业大学高数习题课8-1
多元函数微分法
一,多元函数的基本概念
1.极 限: ( x , y )lim , y ) f ( x , y ) = A 极 →( x
0 0
2.连 续: 连 3.偏导数: 偏导数: 偏导数
z x
( x , y )→ ( x0 , y0 )
lim
= f y ( x0 , y0 ) = lim
y → 0
f (x0 , y0 + x ) f ( x0 , y0 ) y
ρ 4.全微分: 若 z = Ax + By + ο ( ρ ) , = ( x ) 2 + ( y ) 2 , 全微分: 全微分
可微分, 则称函数 z = f ( x , y ) 在点 P ( x , y ) 可微分, 函数 z = f ( x , y ) 在点 P ( x , y ) 全微分为
y→0
f ( x , y )在点 (0, 0) 处连续 处连续.
x f (0 + x , 0) f (0, 0) f (0, 0) = lim = lim x → f (0, 0 + y ) f (0, 0) f (0, 0) = lim = lim y → 0 y → 0 y y
z 时,只要把 y 暂时看作常量 x z 求导数; 而对 x 求导数; 类似地, 类似地,可求函数 z = f ( x, y) 的偏导数 .
y
2.高阶偏导数 .
2 z z ( ) = f xx ( x , y ) = 2 x x x
2z z ( ) = f yx ( x , y ) = yx x y
2
= lim
x →0 y →0
多元函数微分学(1)
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
9
二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
10
题型 1 求二元函数的极限
解题思路 (1) 利用多元初等函数的连续性求二元
函数的极限 (如例 1); 如例 (2) 利用变量替换将求二元函数极限的问题转化为 求一元函数极限的问题 (如例 2); 如例 (3) 利用夹逼定理求二元函数的极限 (如例 3); 如例 (4) 判定二元函数的极限不存在 (如例 4). 如例
多元函数微分学
21
例 5 设 z = z(x, y) 是由方程 x2 + y2 − z = ϕ( x + y + z) 所确定的函数, 所确定的函数 其中 ϕ 具有二阶导数且 ϕ′ ≠ −1 , (1) 求 dz ;
∂u 1 ∂z ∂z ( − ), 求 (2) 记 u( x, y) = . ∂x x − y ∂x ∂y
第八章
多元函数微分学
1
多元函数微分学】 【多元函数微分学】习题课 一、主要内容 二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
2
一、主要内容
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
3
1、区域 、 (1) 邻域
U ( P0 , δ ) = { P | PP0 | < δ }
= {( x , y ) | ( x − x0 ) 2 + ( y − y0 ) 2 < δ }.
F ( x , y , u, v ) = 0 (1)F ( x , y ) = 0; (2)F ( x , y , z ) = 0; (3) . G ( x , y , u, v ) = 0
第八章 多元函数的微分法及其应用 练习题共7页word资料
第8章 多元函数的微分法及其应用§8.1 多元函数的基本概念一、填空题1.已知22),(y x xyy x f -=+ ,则f(x,y)= 。
2.函数)1ln(4222y x y x Z ---=的定义域为 。
3.11lim0-+→→xy xy y x = 。
二、判断题1. 如果P 沿任何直线y=kx 趋于(0,0),都有A P f kxy x ==→)(lim 0,则A y x f y x =-→→)(lim 00。
( )2. 从0)0,(lim 0=→x f x 和2)2,(lim 0=→x x f x 知),(lim 0y x f y x →→不存在。
( )3. 下面定义域的求法正确吗?)ln(11),(y x y x y x f -+-+=解:012)2()1()2(0)1(01>-⇒+⎩⎨⎧>->-+x y x y x 所以定义域为x>1/2的一切实数。
三、选择题1. 有且仅有一个间断点的函数是( )(A )、x y (B )、)22ln(y x e x +- (C )、yx x+ (D )、arctanxy 2.下列极限存在的是( ) (A )、y x x y x +→→00lim(B )、y x y x +→→1lim 00 (C )、y x x y x +→→200lim (D )、y x x y x +→→1sin lim 00四、求下列函数的定义域,并画出定义域的图形。
1.y x y x z --+=112.221)ln(yx x x y z --+-=3.)]1)(9ln[(2222-+--=y x y x z 五、求下列极限,若不存在,说明理由。
1.22101lim y x xy y x +-→→2. 222200cos 1limy x y x y x ++-→→3.y x x y x +→→00lim§8.2 偏导数一、判断题1. 如果f(x,y)在(x 0,y 0) 处,xf ∂∂存在,则一元函数f(x,y 0)在(x,y 0)处连续。
(完整版)多元函数微分学及其应用习题解答
1 / 28习题8-11. 求下列函数的定义域: (1) y x z -= ;解:0,0x y D ≥≥⇒=(){,0,x y y x ≥≥(2) 221)ln(yx xx y z --+-=;解:220,0,1y x x x y D -≥≥--⇒=(){}22,01x y y x xy >≥+<且(3) )0(122222222>>-+++---=r R rz y x z y x R u ;解:222222220R x y z x y z r ≤---<++-⇒,0D ⇒=(){}22222,,x y z rx y z R <++≤(4) 22arccosyx z u +=。
221,0x y D ≤+≠⇒=(){}22,0x y z x y ≤+≠2. 求下列多元函数的极限:: (1) 22y 01)e ln(limyx x y x ++→→;解:y 1ln 2x y →→== (2) xy xy y x 42lim0+-→→;解:令t=xy,1200001(4)12lim 14x t t y t -→→→→-+===-2 / 28(3) x xyy x sin lim50→→;解:0050sin sin lim5lim 55x x y y xy xyx x →→→→==(4) 22x 222200e)()cos(1limy y x y x y x ++-→→;解:22222222222x 001cos()11cos()2(sin ),lim 20022()ey x y x y x y x y x y →→+-+-+=∴=⋅⋅=+Q (5) xyy x y x )(lim 220+→→。
解:0,xy >设22ln()xy x y +两边取对数,由夹逼定理2200222222lim ln()2222000ln()()ln()0lim ln()0,lim()1x y xy x y xyx x y y xy x y x y x y xy xy x y x y e→→+→→→→≤+≤++<+=∴+==xylnxy 当时同理可得,3. 证明下列极限不存在: (1) y x yx y x -+→→00lim;证明:(1)(,)(,)(,)(1)m x x y y mx f x y f x mx m x+===-当沿直线趋于原点(0,0)时.001lim,1x y x y mm x y m →→++=--不同时,极值也不同,所以极限不存在。
吴第8章多元函数微分学-习题课
【解】 lim f(x,y)0f(0,0)所以f 在(0,0)点连续,故否B .
x 0
y 0
f( x ,0 ) f( 0 ,0 ) x 2 s1 ix n 2 ) (
f x ( 0 ,0 ) l x 0 im x
lim 0 x 0 x
fy (0 ,0 ) ly 0 ifm (y ,0 ) yf(0 ,0 ) ly 0 iy m 2 sy i 1y n 2 ) ( 0 偏导数存在, 否A .
第八章 习题课
多元函数微分法及其应用
一、关于多元函数极限的题类 二、关于多元函数连续、偏导数存在、可微的题类 三、关于复合函数求导、隐函数求导,全微分计算题类 四、关于多元函数极(最)值的题类
一、关于多元函数极限的题类
【例1】 求
lim
x0
xy x2 y2
y0
【解】
xy
lim
x 0
x2
【例8】 设x2z2y(fz)其 , f中 可微z, . 求
y
y
【解Ⅰ】公式法
抽象函数隐函数求导
令F(x,y,z)x2z2y(fz), y
则
Fz
2zf(z), y
Fyf(zy)zyf(zy),
z y
Fy Fz
yf( z) zf ( z)
y
y
2yz yf(z)
.
y
【例8】 设x2z2y(fz)其 , f中 可微z, . 求
y
y
抽象函数隐函数求导
【解Ⅱ】(求导直接法) z是x,y的函数
zyz 两边同时对y求导 2zyzf(zy)yf(zy)yy2 ,
yf(z) zf (z)
解得
多元函数微分学习题课
多元函数微分学习题课1.已知)(),(22y x y x y x y x f ++-=-+ϕ,且x x f =)0,(,求出),(y x f 的表达式。
2.(1)讨论极限y x xy y x +→→00lim 时,下列算法是否正确?解法1:0111lim 00=+=→→xy y x 原式;解法2:令kx y =,01lim 0=+=→kk x x 原式;解法3:令θcos r x =,θsin r y =,0sin cos cos sin lim 0=+=→θθθθr r 原式。
(2)证明极限yx xy y x +→→00lim 不存在。
3.证明⎪⎩⎪⎨⎧=≠+=00)1ln(),(x y x x xy y x f 在其定义域上处处连续。
4.试确定α的范围,使0|)||(|lim 22)0,0(),(=++→yx y x y x α。
5.设⎪⎩⎪⎨⎧=+≠+++=000)sin(||),(22222222y x y x y x y x xy y x f ,讨论(1)),(y x f 在)0,0(处是否连续?(2)),(y x f 在)0,0(处是否可微?6.设F (x ,y )具有连续偏导数,已知方程0,(=z y z x F ,求dz 。
7.设),,(z y x f u =有二阶连续偏导数,且t x z sin 2=,)ln(y x t +=,求x u ∂∂,yx u ∂∂∂2。
8.设)(u f z =,方程⎰+=x y t d t p u u )()(ϕ确定u 是y x ,的函数,其中)(),(u u f ϕ可微,)(),(u t p ϕ'连续,且1)(≠'u ϕ,求yz x p x z y p ∂∂+∂∂)()(。
9.设22v u x +=,uv y 2=,v u z ln 2=,求yz x z ∂∂∂∂,。
10.设),,(z y x f u =有连续的一阶偏导数,又函数)(x y y =及)(x z z =分别由下两式确定:2=-xy e xy ,dt t t e zx x ⎰-=0sin ,求dxdu 。
(完整版)多元函数微分法及其应用习题及答案
(完整版)多元函数微分法及其应⽤习题及答案第⼋章多元函数微分法及其应⽤(A)1.填空题(1)若()y x f z ,=在区域D 上的两个混合偏导数y x z 2,xy z2 ,则在D 上,xy zy x z =22。
(2)函数()y x f z ,=在点()00,y x 处可微的条件是()y x f z ,=在点()00,y x 处的偏导数存在。
(3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的条件。
2.求下列函数的定义域(1)y x z -=;(2)22arccos yx z u +=3.求下列各极限(1)x xy y x sin lim 00→→; (2)11lim 00-+→→xy xyy x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→4.设()xy x z ln =,求y x z 23及23y x z。
5.求下列函数的偏导数 (1)xyarctgz =;(2)()xy z ln =;(3)32z xy e u =。
6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数dt dz 。
7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dtdu。
8.曲线??=+=4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾⾓是多少?9.求⽅程1222222=++c11.设()y x f z ,=是由⽅程y z z x ln =确定的隐函数,求xz,y z ??。
12.设x y e e xy =+,求dxdy 。
13.设()y x f z ,=是由⽅程03=+-xy z e z确定的隐函数,求xz,y z ??,y x z 2。
14.设y ye z x cos 2+=,求全微分dz 。
15.求函数()222ln y x z ++=在点()2,1的全微分。
第八章 多元函数微分学习题解(1)
第8章 多元函数微分学§8.1 多元函数的基本概念习题8-1★1.设222(,)xy f x y x y=+,求(1,)y f x。
解:222222(1,)1()yy xy x f y xx y x==++ ★2. 已知函数(,,)wu vf u v w u w +=+,试求(,,)f x y x y xy +-。
解: 2(,,)()()xy x f x y x y xy x y xy +-=++★★3.设()zx y f x y =++-,且当0y =时,2z x =,求()f x 。
解:将0y =代入原式得: 20(0)x x f x =++- ,故 2()f x x x =-4.求下列函数的定义域: ★(1)2ln(21)z y x =-+解:要使表达式有意义,必须 2210y x -+>∴ 所求定义域为 2{(,)|210}D x y y x =-+>★(2)z =解:要使表达式有意义,必须0x -≥, ∴{(,)|D x y x =≥★★(3)arccosu=解:要使表达式有意义,必须11-≤≤∴{(,,)|D x y z z =≤≤★★★(4)ln(1)z x y =--解:要使表达式有意义,必须 222224010ln(1)0ln 1x y x y x y ⎧-≥⎪-->⎨⎪--≠=⎩∴ 222{(,)|01,4}D x y x y y x =<+≤≤★★(5)ln()z y x =-+解:要使表达式有意义,必须220010y x x x y ⎧->⎪≥⎨⎪-->⎩ ∴ 22{(,)|1,0}D x y x y x y =+<≤<5.求下列极限:★(1)10limyx y →→知识点:二重极限。
思路:(1,0)为函数定义域内的点,故极限值等于函数值。
解:10ln 2limln 21yx y →→==★★(2)00limx y xy→→知识点:二重极限。
高等数学题库第08章(多元函数微分学).
- 1 -第八章多元函数微积分习题一一、填空题1. 设f(x,y)=x-3y. ,则f(2,-1)=_______,f(-1,2)=________x2+y2_______. 2. 已知f(x,y)=2x2+y2+1,则f(x,2x)=__________二、求下列函数的定义域并作出定义域的图形 1.z=3. z=y-x 2. z=-x+-y 4-x2-y24. z=log2xy习题二一、是非题1. 设z=x+lny,则2∂z1=2x+ ()∂xy2. 若函数z=f(x,y)在P(x0,y0)处的两个偏导数fx(x0,y0)与fy(x0,y0)均存在,则该函数在P点处一定连续()3. 函数z=f(x,y)在P(x0,y0)处一定有fxy(x0,y0)=fyx(x0,y0) ()xy⎧,x2+y2≠0⎪4. 函数f(x,y)=⎨x2+y2在点(0,0)处有fx(0,0)=0及⎪0,x2+y2=0⎩fy(0,0)=0 ()5. 函数z=x2+y2在点(0,0)处连续,但该函数在点(0,0)处的两个偏导数zx(0,0),zy(0,0)均不存在。
()二、填空题- 2 -1. 设z=lnx∂z∂z,则=___________;∂x∂yy2x=2y=1=___________;2. 设f(x,y)在点(a,b)处的偏导数fx(a,b)和fy(a,b)均存在,则limh→0f(a+h,b)-f(a,b-2h)=_________.h2xy+sin(xy);x2+ey三、求下列函数的偏导数:1. z=x3y-y3x+1;2. z=3. z=(1+xy)y;4. z=lntanx; y5. u=xy2+yz2+zx2∂2z∂2z∂2z四、求下列函数的2,和:∂x∂y2∂x∂y3241. z=x+3xy+y+2;2. z=xy五、计算下列各题1. 设f(x,y)=e-sinx(x+2y),求fx(0,1),fy(0,1);∂2z2. 设f(x,y)=xln(x+y),求2∂x六、设z=ln(x+y),证明:x1313∂2z,2x=1∂yy=2∂2z,x=1∂x∂yy=2.x=1y=2∂z∂z1+y=. ∂x∂y3习题三一、填空题2xy_____. 1.z=xy+e在点(x,y)处的dz=__________ 2.z=xx+y_____. 在点(0,1)处的dz=__________- 3 -3.设z=f(x,y)在点(x0,y0)处的全增量为∆z,全微分为dz,则f(x,y)在点(x0,y0) 处的全增量与全微分的关系式是__________________.二、选择题1.在点P处函数f(x,y)的全微分df存在的充分条件为()A、f的全部二阶偏导数均存在B、f连续C、f的全部一阶偏导数均连续D、f连续且fx,fy均存在2.使得df=∆f的函数f为()A、ax+by+c(a,b,c为常数)B、sin(xy)C、e+eD、x2+y22三、设z=xy,当∆x=0.1,∆y=0.2时,在(1,2)点处,求∆z和dz。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y(ez
xy)
2 y2 ze z
2xy3z (ez xy)3
y 2 z 2e z
19
例. 设
解: f (x,0,0) x 3 cos x
注意: x , y , z 具有 轮换对称性
fx
(0,0,0)
3
x cos
x
x
0
1 4
利用轮换对称性 , 可得
f y (0,0,0)
f z (0,0,0)
多元函数微分学(上) 习题课
1
一、主要内容
1、多元函数的极限 说明:(1)定义中 P P0 的方式是任意的;
(2)二元函数的极限运算法则与一元 函数类似.
存在性 ——定义,夹逼定理
不存在 ——特殊路径、两种方式
求法
——运算法则、定义验证、夹逼定理 消去致零因子、化成一元极限等
2、多元函数的连续性
x
dz
f1du
f 2dv
f1d(xy)
dy dx
解 设 F x, y xy yx
则 Fx yx y1 y x ln y
Fy xy ln x xyx1
所以
y Fx Fy
yx y1 yx ln y x y ln x xyx1
17
例
设 ez
xyz
0,
求
2z x2
.
解 这是求隐函数的高阶偏导数.
令 F (x, y, z) ez xyz, 则
故 lim ( y x)x 0.
x y x0
2
2
y0
9
例. lim x ln(1 xy)
x0 x y
y0
是否存在?
解: 利用 ln(1 xy) ~ xy , 取 y x x
lim
x0 y0
x
ln(1 x
xy) y
lim
x0 x0
x2 y x y
lim(
x0
x2
x3
)
1 , 0, ,
F
z x
x F
e
yz z xy
yz ez xy
z
2z x 2
z x x
x
e
z
yz xy
请自己计算
18
2z x 2
x
z x
x
e
z
yz xy
y z (ez xy) yz ez z y
x
x
(ez xy)2
z x
e
z
yz xy
y 2 z(e z
xy) yz ez yz (ez xy)3
dy cos x, dx
求 dz , 对 ( x2,e y , z) 0 两边求 x 的导数,得
dx
1
2x
2
e
y
dy dx
3
dz dx
0
,
于是可得,
dz dx
1
3
(2
x
1
e s in
x
cos
x
2
),
故
du dx
f x
cos
x
f y
1
3
(2
x
1
esin x
cos
x
2
)
f z
.
15
例
设 F(x, y) xy et3 d t ( x 0, y 0) 0
1 4
d f (0,0,0) f y (0,0,0) d x f y (0,0,0) d y f z (0,0,0) d z
1 (d x d y d z) 4
20
例.
用全微分形式不变性求 z
f (xy, y)的全微分dz, x
并求偏导 z , z .
x y
解: 记 u = xy , v y , 从而 z = f (u, v).
解
w x f1
w y
f1
f2
w z
f2
f3
w t
f3
w w w w 0 x y z t
14
例 设 u f ( x, y, z), ( x2 ,e y , z) 0, y sin x,
( f , 具有一阶连续偏导数),且 0, 求 du .
z
dx
解
du f f dy f dz , 显然 dx x y dx z dx
lim
P P0
f (P)
f (P0 )
2
3、偏导数概念
定义、求法 偏导数存在与连续的关系 高阶偏导数——纯偏导、混合偏导
4பைடு நூலகம்全微分概念
定义 可微的必要条件
可微的充分条件
利用定义验证不可微
3
多元函数连续、可导、可微的关系
函数连续
函数可导
函数可微 偏导数连续
4
5、复合函数求导法则
z f (u,v), u u( x, y), v v( x, y) z z u z v x u x v x z z u z v y u y v y
(3)
F(x, y,z) 0 G( x, y, z) 0
(4)
F ( x, y,u,v) 0 G( x, y,u,v) 0
z Fx , z Fy x Fz y Fz
求隐函数偏导数的方法
①公式法 ②直接法 ③全微分法
7
二、典型例题
例. 设
求
解令
u y2 , v xy x
f ( y2 , xy) x
y2 x2
y2
8
例 求极限 lim ( y x)x .
x y x0
2
2
y0
解 令 x cos , y sin , ( 0)
则 ( x, y) (0,0) 等价于 0.
0 ( y x)x 2 (sin cos )cos
x2 y2
(sin cos )cos 2 ,
求 F , F .
x y
解
F
u
x
y
令 u
xy , 则 F(u) u et3 d t 0
关于 u 的 一元函数
F x
dF du
u x
eu3 2
y xy
1 e ( 2
xy )3
y x
F d F u eu3 x 1 e ( xy)3 x
y d u y
2 xy 2
y
16
例
xy
y x,求隐函数的导数
3
所以极限不存在. 10
练习. 证明极限 lim xy 1 1 不存在 .
x0 x y
y0
提示:
lim
xy 1 1 lim
xy
1
x0 x y
y0
x0 x y
y0
xy 1 1
由于lim 1 1 ,而 lim xy 不存在
x0 y0
xy 1 1
2
x0 x y
y0
11
例 已知
求
解: 由
“分道相加,连线相乘” 法则的推广——任意多个中间变量,任意多 个自变量 如何求二阶偏导数?
5
6、全微分形式不变性
无论 z是自变量u、v的函数或中间变量u、v 的函数,它的全微分形式是一样的.
dz z du z dv . u v
6
7、隐函数的求导法则
(1) F( x, y) 0 (2) F( x, y, z) 0
两边对 x 求导, 得
12
例
求曲线
z x2 y 1
y2
在点
1 2
,1,
5 4
处的切线与x 轴正方向所成的倾角是多少?
解 z 2x
z
x
z x
1
1 2
,1,
5 4
所求倾角 arctan1
4
x
y
13
例 已知 w f ( x y, y z,t z)
求
w w w w x y z t