高三文科数学复习教案:函数的单调性
高三数学教案《函数单调性》
高三数学教案《函数单调性》教案名称:函数单调性适用年级:高中三年级教学目标:1. 理解函数的增减性和单调性的概念。
2. 掌握函数单调递增和单调递减的判断依据及方法。
3. 能够应用函数单调性解决实际问题。
教学内容:1. 函数的增减性和单调性的概念介绍。
2. 单调递增和单调递减的判断依据及方法。
3. 判断函数的增减区间和单调递增递减区间。
4. 应用函数单调性解决实际问题。
教学步骤:Step 1:引入学习话题(5分钟)通过引入实际问题或例子,让学生意识到函数的增减性和单调性的重要性,并激发学生学习的兴趣。
Step 2:概念介绍(15分钟)通过讲解函数的增减性和单调性的定义,以及如何判断函数的单调性,引导学生理解概念。
Step 3:例题演示(20分钟)通过示范解决一些具体的例题,让学生掌握判断函数单调递增和单调递减的方法和技巧。
Step 4:练习与巩固(15分钟)分发练习题,让学生在课堂上独立完成练习题,巩固所学的知识。
Step 5:应用拓展(15分钟)给学生提供一些实际应用问题,鼓励学生运用函数单调性解决问题,并帮助他们分析和解答问题。
Step 6:总结与反思(10分钟)对今天的学习内容进行总结,并进行学生的自我反思,对不熟悉的知识点进行澄清和解答疑问。
课后作业:1.完成课堂练习题。
2.自主查找一个实际应用问题,运用函数单调性进行分析和解答。
教学辅助材料:1.教材(数学教科书)2.练习题册3.实际应用问题参考教学评估:1.课堂练习题的完成情况。
2.实际应用问题的分析和解答能力。
3.学生对函数单调性概念的理解程度。
高中数学函数单调性教案
高中数学函数单调性教案
一、教学目标:
1.了解函数的单调性概念;
2.掌握函数单调递增和单调递减的定义;
3.能够根据函数图像确定函数的单调性;
4.能够应用函数的单调性解决实际问题。
二、教学重点:
1.函数的单调性定义;
2.函数单调递增和单调递减的判定方法;
3.函数单调性在实际问题中的应用。
三、教学难点:
1.理解函数的单调性概念;
2.根据函数图像确定函数的单调性。
四、教学准备:
1.教师准备:课件、黑板、粉笔等;
2.学生准备:课本、笔记、习题册等。
五、教学步骤:
1.引入:教师通过举例子引入函数的单调性概念,并与学生讨论函数单调递增和单调递减
的定义。
2.讲解:教师详细讲解函数单调递增和单调递减的判定方法,包括导数的应用。
3.练习:教师让学生进行练习,通过观察函数图像判断函数的单调性,并完成相关计算题。
4.拓展:教师引导学生探讨函数单调性在实际问题中的应用,并展示相关案例。
5.归纳:教师与学生一起总结本节课的内容,强化理解和记忆。
6.作业:布置相关习题作为课后作业,以巩固学生的学习成果。
六、教学反馈:
1.教师及时回答学生提出的疑问;
2.对学生的作业进行批改,并及时反馈;
3.鼓励学生积极参与课堂讨论,提高学生的学习兴趣和主动性。
高三一轮复习:函数的单调性
高三一轮复习:函数的单调性第一篇:高三一轮复习:函数的单调性高三一轮复习:函数的单调性教学设计一、【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.二、【教学重点】函数单调性的概念、判断、证明及应用.函数的单调性是函数的最重要的性质之一,它在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,三、【教学难点】归纳抽象函数单调性的定义以及根据定义或导数证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数、三角函数及其他函数单调性的理论基础。
(2)函数的单调性是培养学生数学能力的良好题材,同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。
(3)函数的单调性有着广泛的实际应用。
在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。
因此“函数的单调性”在中学数学内容里占有十分重要的地位。
它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。
《函数单调性教案》
《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。
2. 学会利用单调性判断函数的性质,如极值、最值等。
3. 能够运用单调性解决实际问题,如求函数的极值、最值等。
二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。
2. 单调性的判断方法及应用。
3. 实际问题中的单调性应用。
三、教学重点与难点:1. 函数单调性的概念及判断方法。
2. 单调性在实际问题中的应用。
四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。
2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。
3. 互动教学法:提问、讨论,激发学生的思考。
五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。
2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。
3. 举例:分析具体函数的单调性,让学生学会判断。
4. 练习:布置练习题,让学生巩固单调性的判断方法。
5. 案例分析:分析实际问题,引导学生运用单调性解决问题。
6. 总结:回顾本节课的内容,强调单调性的重要性。
7. 作业布置:布置课后作业,巩固所学内容。
六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。
2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。
3. 案例分析:评估学生在实际问题中运用单调性的能力。
七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。
2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。
八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。
2. 课件:制作课件,辅助教学,提高课堂效果。
3. 练习题:准备练习题,巩固所学内容。
4. 实际问题案例:收集实际问题案例,用于教学实践。
九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。
函数的单调性优秀教案
函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。
掌握函数单调性的证明方法,能运用定义证明函数的单调性。
2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。
通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。
3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。
通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。
二、教学重难点1、教学重点函数单调性的概念。
运用定义证明函数的单调性。
2、教学难点函数单调性定义的理解。
利用定义证明函数的单调性。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。
引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。
强调定义中的关键词:定义域、区间、任意、都有。
通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。
3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。
分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。
解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。
优秀教案 函数单调性教案
1.3.1 函数的单调性教学目标:1、理解函数单调性的定义,会判断和证明简单函数的单调性。
2、培养从概念出发,进一步研究其性质的意识及能力,体会感悟数形结合、分类讨论的数学思想。
教学重点:形成增、减函数的形式化定义。
教学难点:形成增、减函数概念的过程中如何从图像的直观认识过渡函数增、减的数学符号;用定义证明函数的单调性。
一、复习旧知识区间的有关知识及其表示方法。
二、讲授新课1、观察下面各个函数的图像,并说出函数图像的特点。
2、研究一次函数12)(+=xxf和二次函数2)(xxf=的单调性。
不同的函数,图像的变化趋势不同,同一函数在不同区间的变化趋势也不同,通过描述这两个函数图像的性质,引出本节课题——函数的单调性。
3、深入研究二次函数2)(xxf=的图像,从特殊到一般引出增、减函数的定义。
]0,(-∞上)(x f 随x 的增大而减小,),0[+∞上)(x f 随x 的增大而增大增函数:),()(,,212121x f x f x x D x x <<∈∀时,有当那么就说)(x f 在D 上是增函数。
减函数:),()(,,212121x f x f x x D x x ><∈∀时,有当那么就说)(x f 在D 上是减函数。
区间D 叫做)(x f y =的单调区间。
三、例题演练例1 下图是定义在[]9,6-上的函数)(x f y =,根据图像说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数。
例2 证明函数12)(+=x x f 在R 上的单调性。
四、随堂练习证明:(1) 函数23)(+-=x x f 在R 上是单调减函数。
(2) 函数1)(2-=x x f 在),0(+∞上是增函数。
五、课堂小结1、增、减函数的的形式化定义是什么?2、如何用定义证明函数的单调性?六、作业布置A :证明:函数xx f 11)(-=在)0,(-∞上的单调性。
B :探究一次函数的)(R x b mx y ∈+=的单调性,并证明你的结论。
高中数学函数单调性的教案
高中数学函数单调性的教案一、教学目标1. 理解函数的单调性的概念,了解函数单调递增和单调递减的定义及特点。
2. 能够通过函数的导数或图像来判断函数的单调性。
3. 能够应用函数的单调性解决实际问题。
二、教学重点1. 函数的单调性的概念和特点。
2. 通过导数或图像判断函数的单调性。
三、教学难点1. 如何通过导数或图像来判断函数的单调性。
2. 应用函数的单调性解决实际问题。
四、教学内容1. 函数的单调性的定义和特点。
2. 利用导数判断函数的单调性。
3. 利用图像判断函数的单调性。
4. 单调性在实际问题中的应用。
五、教学过程1. 导入教学:通过一个生活实例引入函数的单调性的概念。
2. 讲解函数的单调性的定义和特点,引导学生理解。
3. 通过对几个函数的图像进行观察,讨论函数的单调递增和单调递减的特点。
4. 讲解如何通过导数或导数图像判断函数的单调性。
5. 练习:让学生通过计算导数或观察导数图像判断给定函数的单调性。
6. 应用:给学生一个实际问题,让他们利用函数的单调性来解决问题。
7. 总结:回顾本节课所学内容,强调函数的单调性在解决问题中的重要性。
六、教学资源1. 课件2. 教科书3. 练习题七、教学评估1. 课堂练习题2. 作业布置并检查八、拓展延伸1. 思考函数的极值点与单调性的关系。
2. 探究其他函数性质与单调性的联系。
以上是本节课的教学内容和组织安排,希望能够帮助学生更好地理解和掌握函数的单调性。
祝学习顺利!。
函数单调性优秀教案
函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。
为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。
在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
他是高中数学中相当重要的一个基础知识点。
是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。
函数单调性复习教案
函数单调性复习教案教案标题:函数单调性复习教案教学目标:1. 确定学生对函数单调性的理解程度,并能够准确地定义函数的单调性。
2. 帮助学生回顾和巩固函数单调性的相关概念和性质。
3. 培养学生通过图像、表格和符号等多种方式判断函数的单调性的能力。
4. 提供练习和应用机会,以加深学生对函数单调性的理解和运用。
教学准备:1. 教师准备多媒体投影仪、电脑和投影屏幕。
2. 教师准备白板、白板笔和彩色粉笔。
3. 教师准备教材、教辅资料和练习题。
教学过程:一、导入(5分钟)1. 教师通过提问或展示一个函数图像的方式引入本节课的话题。
2. 引导学生回顾函数的基本概念和性质,例如定义域、值域、图像、奇偶性等。
二、概念复习(10分钟)1. 教师通过多媒体投影仪展示函数单调性的定义和相关概念。
2. 引导学生参与讨论,共同理解函数单调性的含义和特点。
3. 教师通过示例函数的图像和数学表达式,引导学生判断函数的单调性。
三、性质讲解(15分钟)1. 教师通过多媒体投影仪展示函数单调性的性质和判断方法。
2. 引导学生思考和讨论函数单调性与导数的关系,进一步理解函数单调性的特点。
3. 教师通过具体的例子和练习题,帮助学生掌握函数单调性的判断方法。
四、练习与应用(20分钟)1. 教师提供一些练习题,要求学生通过图像、表格和符号等方式判断函数的单调性。
2. 学生个别或小组合作完成练习,教师及时给予指导和反馈。
3. 教师引导学生应用函数单调性的概念和性质解决实际问题,培养学生的应用能力。
五、总结与拓展(10分钟)1. 教师与学生一起总结本节课的重点内容和学习收获。
2. 教师提供一些拓展问题,鼓励学生进一步思考和探索函数单调性的相关问题。
3. 教师布置课后作业,巩固和拓展学生对函数单调性的理解和应用。
教学评估:1. 教师观察学生在课堂上的参与度和表现情况。
2. 教师检查学生完成的练习题和课后作业,评估学生对函数单调性的掌握情况。
3. 教师与学生进行互动问答,检验学生对函数单调性的理解和运用能力。
教案高中数学函数单调性分析
教案高中数学函数单调性分析
教学目标:学生能够掌握函数的单调性分析方法,能够熟练应用单调性分析解决相关问题。
教学重点:函数的单调性分析方法的掌握和应用。
教学难点:复杂函数的单调性分析。
教学准备:教材、黑板、彩色粉笔、教学PPT。
教学步骤:
一、导入(5分钟)
引导学生回顾函数的定义,引入单调性的概念,并介绍单调递增和单调递减的概念。
二、讲解(15分钟)
1. 解释函数的单调递增和单调递减的定义和性质。
2. 介绍函数的单调性的判断方法,包括一阶导数的判断法和函数图像的判断法。
3. 通过示例讲解单调性的判断方法和应用。
三、练习(20分钟)
1. 让学生进行单项选择题练习,巩固函数的单调性分析方法。
2. 给学生几道应用题,让学生运用单调性分析方法解决问题。
四、讲解(10分钟)
复杂函数的单调性分析方法,包括复合函数的单调性和反函数的单调性。
五、总结(5分钟)
总结本节课的内容,强调函数的单调性分析方法的重要性,鼓励学生多加练习。
六、作业布置(5分钟)
布置相关作业,要求学生做相关练习题,复习本节课的内容。
教学反思:
通过本节课的教学,学生对函数的单调性分析方法有了初步认识,学生的观念变化很明显,能够更好地运用单调性分析方法解决问题。
下一步,我将设计更多的实际应用题,让学生
从中感受到函数单调性分析的实际意义。
同时,我将鼓励学生多加练习,加深对函数单调
性分析方法的理解和掌握。
“函数的单调性”教案
“函数的单调性”教案一、教学目标1. 理解函数单调性的概念,掌握判断函数单调性的方法。
2. 能够运用函数单调性解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力,提高学生对函数知识的兴趣。
二、教学内容1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用三、教学重点与难点1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用四、教学方法1. 采用启发式教学,引导学生主动探究函数单调性的定义与性质。
2. 通过例题讲解,让学生掌握判断函数单调性的方法。
3. 结合实际问题,培养学生运用函数单调性解决问题的能力。
五、教学过程1. 导入新课:回顾上一节课的内容,引导学生思考函数的单调性。
2. 讲解函数单调性的定义与性质:详细讲解函数单调性的概念,引导学生理解并掌握函数单调性的性质。
3. 判断函数单调性的方法:讲解如何判断函数的单调性,引导学生通过实例分析来掌握判断方法。
4. 运用函数单调性解决实际问题:给出实际问题,引导学生运用函数单调性进行解决,培养学生的应用能力。
5. 课堂小结:对本节课的内容进行总结,强调函数单调性的重要性。
6. 布置作业:设计具有针对性的作业,巩固学生对函数单调性的理解和掌握。
六、教学评估1. 课堂提问:通过提问了解学生对函数单调性的理解程度,及时发现并解决学生在学习过程中遇到的困惑。
2. 作业批改:重点关注学生对函数单调性概念的掌握和判断方法的运用,及时给予反馈和指导。
3. 课堂练习:设计一些具有代表性的练习题,让学生在课堂上独立完成,检验学生对函数单调性的掌握情况。
七、教学拓展1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。
2. 介绍函数单调性在实际应用中的重要作用,如经济学、物理学等领域。
3. 鼓励学生进行课外阅读,了解函数单调性的更多相关知识,提高学生的知识面。
八、教学反思1. 反思教学过程中的优点和不足,总结经验教训,为今后的教学提供参考。
《函数单调性教案》
《函数单调性教案》word版章节一:引言1.1 课程背景本节课主要讲解函数的单调性。
函数单调性是数学中的一个重要概念,也是高中数学的核心内容之一。
通过学习函数单调性,学生可以更好地理解函数的性质,提高解决问题的能力。
1.2 教学目标1. 理解函数单调性的概念及意义。
2. 学会判断函数的单调性。
3. 能够应用函数单调性解决实际问题。
章节二:单调性的定义与性质2.1 单调性的定义本节课我们将引入单调性的定义。
一个函数在某个区间内,如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≤f(x2),则称该函数在区间内是单调递增的;如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≥f(x2),则称该函数在区间内是单调递减的。
2.2 单调性的性质本节课我们将学习单调性的几个重要性质。
如果函数在某个区间内是单调递增的,它在该区间内的任意子区间内也是单调递增的;同样地,如果函数在某个区间内是单调递减的,它在该区间内的任意子区间内也是单调递减的。
如果两个函数在某个区间内具有相同的单调性,它们的和函数在该区间内也具有相同的单调性。
章节三:判断单调性3.1 判断单调性的方法本节课我们将介绍几种判断函数单调性的方法。
可以通过求导数来判断函数的单调性。
如果函数在某个区间内的导数大于0,则函数在该区间内是单调递增的;如果函数在某个区间内的导数小于0,则函数在该区间内是单调递减的。
可以通过观察函数的图像来判断函数的单调性。
如果函数的图像在某个区间内是上升的,则函数在该区间内是单调递增的;如果函数的图像在某个区间内是下降的,则函数在该区间内是单调递减的。
3.2 判断单调性的应用本节课我们将通过一些实际问题来应用单调性的判断方法。
例如,我们可以通过判断函数的单调性来确定函数的最大值和最小值所在的区间,或者判断两个函数的交点位置等。
章节四:单调性与实际应用4.1 单调性与最值本节课我们将学习单调性与函数最值的关系。
高中数学单调性的教案
高中数学单调性的教案
课题:单调性
教学目标:
1. 理解函数的单调性的概念和性质;
2. 掌握函数单调递增和单调递减的判定方法;
3. 能够应用单调性定理解决实际问题。
教学重点和难点:
重点:函数的单调性概念和基本性质的理解;
难点:单调性定理的应用和实际问题的解决。
教学资源:
教材、黑板、彩色粉笔、计算器等。
教学步骤:
一、导入(5分钟)
1. 引入单调性的概念,让学生回顾函数的增减性,并引出单调递增和单调递减的定义。
二、讲解(15分钟)
1. 通过例题讲解单调递增和单调递减的判定方法;
2. 讲解单调性定理,引导学生理解单调性的基本性质。
三、练习(20分钟)
1. 学生根据所学知识,尝试解决一些简单的函数单调性问题;
2. 带领学生一起解答复杂的单调性定理应用问题。
四、拓展(10分钟)
1. 引导学生思考函数单调性与导数之间的关系;
2. 通过实例讨论函数单调性在实际问题中的应用。
五、总结(5分钟)
1. 总结本节课所学内容,确认学生对单调性的理解程度;
2. 引导学生思考如何更好地应用单调性定理解决各类问题。
六、作业布置(5分钟)
1. 布置练习题,巩固单调性的知识点;
2. 鼓励学生在日常生活中,发现函数单调性的应用实例。
教学反思:
通过本节课的教学,学生对单调性的概念和性质有了进一步的理解,能够应用单调性定理解决实际问题。
但在教学过程中,学生的动手能力和思维能力有待提高,需要在以后的教学中加强练习和引导。
高中数学《函数的单调性探究》教案
高中数学《函数的单调性探究》教案一、教学目标- 了解函数的单调性的基本概念和判定方法;- 掌握函数单调递增和单调递减的定义和性质;- 能够根据函数的图像或公式判断函数的单调性;- 运用函数的单调性解决实际问题。
二、教学内容2.1 单调性的概念- 单调递增函数的定义和性质- 单调递减函数的定义和性质- 严格单调递增函数和严格单调递减函数2.2 判定函数单调性的方法- 利用导数判断函数的单调性- 利用函数的一阶导数和二阶导数判断函数的单调性2.3 实际问题的应用- 运用函数的单调性解决实际问题,如求最值、确定约束条件等。
三、教学步骤1. 导入- 引入函数单调性的概念,激发学生对该主题的兴趣。
2. 理论探究- 介绍函数单调性的定义和性质,让学生熟悉相关术语。
- 讲解如何利用导数判断函数的单调性,并进行相关的例题演示。
- 介绍函数的一阶导数和二阶导数在判断函数单调性中的作用。
3. 练与讨论- 给学生一些函数图像和公式,让他们根据前面学过的知识判断函数的单调性。
- 引导学生讨论如何解决实际问题,通过函数的单调性求解最值、确定约束条件等。
4. 案例分析- 分析一些实际问题的案例,引导学生运用函数的单调性进行解答。
5. 小结与拓展- 小结函数的单调性的概念和判定方法。
- 鼓励学生进行更多的拓展性思考,尝试解决更复杂的问题。
四、教学评估- 在课堂上观察学生的参与度和对函数单调性的理解程度。
- 布置作业,要求学生练判断函数的单调性和运用函数的单调性解决实际问题。
- 根据学生的作业完成情况和课堂表现,评估他们对函数单调性的掌握程度。
五、教学资源- 教材《高中数学》- 多媒体设备- 讲义和练题六、教学反思本节课通过引入函数的单调性的概念,结合理论探究、练习与讨论、案例分析等步骤,帮助学生全面了解函数单调性的定义、性质和判定方法。
通过对实际问题的应用,培养学生运用函数单调性解决问题的能力。
在教学中,要注意引导学生灵活运用函数的单调性判断方法,培养他们的数学思维和问题解决能力。
高中数学函数的单调性教案
高中数学函数的单调性教案一、教学目标:1.掌握函数的单调性概念。
2.能判断函数在给定区间内的单调性。
3.能应用函数的单调性解决实际问题。
二、教学重点与难点:重点:函数的单调性概念及判断方法。
难点:如何应用函数的单调性解决实际问题。
三、教学内容:1.函数的单调性定义:设函数y=f(x),若对于区间[a,b]上的任意两个数x1,x2,若x1<x2,则有f(x1)≤f(x2),则称函数f(x)在区间[a,b]上是单调递增的;若对于区间[a,b]上的任意两个数x1,x2,若x1<x2,则有f(x1)≥f(x2),则称函数f(x)在区间[a,b]上是单调递减的。
2.函数单调性的判断方法:利用函数的导数或函数的增减性。
3.函数单调性的应用:可利用函数的单调性解决极值问题、最值问题等。
四、教学方法:1.讲授结合实例:通过具体实例讲解函数的单调性概念及判断方法。
2.让学生自主探究:设计相关问题,让学生自主探索函数的单调性并提出解决方法。
3.小组合作:让学生分组合作,共同研究函数单调性的应用问题,并讨论解决方案。
五、教学过程:1.引入:通过一个实际例子引入函数的单调性概念,并提出相关问题。
2.讲解:讲解函数单调性的定义及判断方法,并通过例题演示如何判断函数的单调性。
3.练习:让学生在课堂上完成一些相关练习题,巩固所学内容。
4.应用:设计一些应用题,让学生应用函数的单调性解决实际问题。
5.总结:对本节课所学内容进行总结,并展示相关实例。
六、板书设计:1.函数单调性概念及定义。
2.函数单调递增、单调递减的条件。
3.函数单调性的判断方法:导数、增减性。
七、教学反馈:1.课后布置相关练习题,巩固所学内容。
2.定期对学生进行单调性知识的测试,检查学生掌握情况。
以上是高中数学函数的单调性教案范本,希望对你有所帮助。
祝你教学顺利!。
高中数学《函数的单调性》优秀教案
高中数学教案课题:函数的单调性课型新授课课时1 课时教学目标知识目标理解增函数、减函数的概念;能力目标 1.掌握判断和证明某些函数增、减性的方法;2.培养学生观察、比较、分析的能力;3.增强数形结合的意识与能力;德育目标熟悉从感性认识到理性认识,从具体到抽象的研究问题的方法。
教材内容要求分解表教学重点《教学论》中指出了教科书中现有理论知识,要有应用的技能、技巧,教材的内容、要有反映生活、建设上的实际材料。
这一准则对数学教学尤其重要。
函数的单调性是函数的重要性质之一,也有广泛的应用。
但因这节课为新授课,不宜过于深入,点到为止,因而单调性的相关概念是重点。
教学难点利用概念证明或判断函数的单调性学法指导1. 理解和掌握函数的单调性的相关概念2.由于图象法是认识函数性质的重要方法,也是记忆和掌握函数性质的有效工具。
掌握下表内容,有助于提高研究函数的能力,特别是有助于数形结合思想与方法融会贯通。
函数图象直观显示函数的性质(部分)(1)着重注意从实际出发,从感性认识提高到理性认识(2)注重运用对比的方法和及时利用反馈信息纠错与强化(3)坚持结合直观图形或函数图象来说明和帮助学生理解概念(4)充分利用电脑与几何画板等辅助作用,增强教学效果。
教学流程设计开始师生问好学生作图观察教师提出问题师生对话:单调性定义不正确反馈正确例1,2,3(阅读、讲评)师生对话不正确反馈正确学生练习教师评讲引入例4(讲解)不理解反馈理解分组练习、教师讲评教师:课堂小结(布置作业)结束教学用具多媒体、实物投影仪、CAI课件、几何画板软件教学过程一.新课引入:日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从从阶梯教室后向前走,逐步下降;上下楼梯也是一样很多函数也具有类似性质。
如(学生在电脑上用几何画板画出图象):y=3x+2 y=1/x (x>0)图一图二从左往右看,函数的图象逐步上升(图一)或逐步下降(图二),这就是我们要研究的函数的重要性质之一:函数的单调性(电脑给出课题、教学目标)二.新授课1. 先由学生结合图象猜想函数的单调性的定义,然后纠错补充再让学生阅读书上从P58到P59的例1以上的部分。
高中数学函数单调问题教案
高中数学函数单调问题教案
一、知识点梳理
1. 单调递增函数:若对于任意的x1和x2,若x1 < x2,则f(x1) ≤ f(x2)
2. 单调递减函数:若对于任意的x1和x2,若x1 < x2,则f(x1) ≥ f(x2)
3. 单调性的判断方法:函数的导数是否大于0(单调递增)或者小于0(单调递减)
二、教学目标
1. 了解函数的单调性的概念
2. 能够通过函数的导数判断函数的单调性
3. 能够解决相关的单调性问题
三、教学过程
1. 引入单调性概念:通过实例让学生了解单调递增函数和单调递减函数的定义
2. 讲解单调性的判断方法:介绍通过函数的导数判断函数的单调性的方法
3. 案例演练:提供一些单调性问题的练习题,让学生通过计算导数,判断函数的单调性
4. 反思总结:让学生总结函数的单调性判断方法,并应用在解决问题中
四、拓展练习
1. 设函数f(x) = x^2 + 2x + 1,判断其在区间[-1,1]上的单调性
2. 设函数g(x) = e^x,判断其在整个实数域上的单调性
3. 解决以下问题:若f(x) = x^3 + 3x^2 - 6x + 5,求f(x)在实数域上的单调区间
五、教学反馈
1. 对学生在实际应用中学习单调性的重要性进行强调
2. 收集学生对于单调性问题的疑问和困惑,及时进行解答和引导
六、总结提醒
1. 单调性是数学中重要的性质之一,掌握好函数的单调性有助于解决各种问题
2. 多进行练习,加深对函数单调性的理解和应用。
《函数单调性教案》
《函数单调性教案》教案章节:一、函数单调性的概念教学目标:1. 了解函数单调性的概念;2. 学会判断函数的单调性;3. 能够应用函数单调性解决实际问题。
教学内容:1. 引入函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 引入实例,引导学生思考函数的单调性;2. 给出函数单调性的定义,解释单调递增和单调递减的概念;3. 讲解函数单调性的判断方法,引导学生进行判断;4. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;5. 总结本节课的重点内容,布置作业。
教案章节:二、函数单调性的判断方法教学目标:1. 学会判断函数的单调性;2. 掌握函数单调性的判断方法;3. 能够应用函数单调性解决实际问题。
教学内容:1. 回顾函数单调性的概念;2. 讲解函数单调性的判断方法;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 复习函数单调性的概念,引导学生回顾上一节课的内容;2. 讲解函数单调性的判断方法,如导数法、图像法等;3. 举例说明函数单调性在实际问题中的应用,如最优化问题、经济问题等;4. 练习判断函数的单调性,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。
教案章节:三、函数单调性与最优化问题教学目标:1. 了解函数单调性与最优化问题的关系;2. 学会应用函数单调性解决最优化问题;3. 能够应用函数单调性解决实际问题。
教学内容:1. 引入函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用;3. 举例说明函数单调性在实际问题中的应用。
教学步骤:1. 引入实例,引导学生思考函数单调性与最优化问题的关系;2. 讲解函数单调性在解决最优化问题中的应用,如求函数的最大值、最小值等;3. 举例说明函数单调性在实际问题中的应用,如成本最小化问题、收益最大化问题等;4. 练习解决最优化问题,让学生巩固所学知识;5. 总结本节课的重点内容,布置作业。
函数单调性教案函数单调性教学设计(6篇)
函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。
《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。
把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。
从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。
从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。
【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性
一、基础知识梳理:
1.函数的单调性定义:
2.单调区间:
3.一些基本函数的单调性
(1)一次函数b kx y +=
(2)反比例函数x
k y = (3)二次函数c bx ax y ++=2
(4)指数函数x a y =()1,0≠>a a
(5)对数函数x y a log =()1,0≠>a a
二、基础能力强化:
1.下列函数中,在),(0∞-内是减函数的是( )
A.21x y -=
B.x x y 22+=
C.21x
y =
D.1-=x x y 2.x x x f -=1)(在( ) A.),(),(∞+∞-11 上是增函数 B.),(),(∞+∞-11 是减函数
C.),)和(,(∞+∞-11是增函数
D.),)和(,(∞+∞-11是减函数
3.函数3)1(22+--=x a x y 在区间(]1,∞-内递减,在),(∞+1内递增,则a 的值是
( )
A.1
B.3
C.5
D.-1
4.函数54)(2+-=mx x x f 在区间[)∞+-,2上是增函数,在区间(]2-∞-,上是减函数,则)1(f =( )
A.-7
B.1
C.17
D.25
5.函数2)1(2)(2+-+=x a x x f 在区间4,(∞-]上是减函数,那么实数a 的取值范围
是( )
3-≤a B.3-≥a C.5≤a D.3≥a
6.设函数b x a x f +-=
)(12)(是R 上的增函数,则有( ) A.21>a B.21≤a C.21->a D .2
1<a
7.已知函数⎩⎨⎧≥+-<=)
0(4)3()0()(x a x a x a x f x ,满足对任意21x x ≠,都有0)()(2121<--x x x f x f 成立,则a 的取值范围是( ) A.⎥⎦⎤ ⎝⎛41,0 B.)(,10 C.⎪⎭
⎫⎢⎣⎡141, D.)(3,0 三、课堂互动讲练:
考点一、函数单调性的证明方法:
(1)定义法:
(2)求导法:
(3)定义的两种等价形式:
例1:证明:函数)(x f =x x -+12在定义域上是减函数.
例2:求函数()m x x x x f ++=9-6-23的单调区间.
例3:试讨论函数)(x f =)0(>+a x
a x 的单调性.
考点二、复合函数的单调性:
例1:求下列函数的单调区间,并指出其增减性。
(1))4(log 221x x y -= (2)322
12-+=
x x y
练习:
1.函数322)21(-+=x x y 的单调递减区间是 ;函数)23(log 23
1x x y --=的单调递增区间是
2.已知)2(log ax y a -=在[],10上是减函数,则实数a 的取值范围是( )
A.()1,0
B.()1,2
C.()2,0
D.[)∞+,
2
考点三、函数单调性的应用:
1.函数)(x f 在),(∞+∞-上是增函数,且a 为实数,则有( )
A.)2()(a f a f <
B.
)()(2a f a f < C.)()(2a f a a f <-
D.)()1(2a f a f >+ 2.已知函数)0(42)(2>++=a ax ax x f ,若0,2121=+<x x x x ,则( )
A.)()(21x f x f >
B.)()(21x f x f =
C.)()(21x f x f <
D.)()(21x f x f 与的大小不能确定
3.已知函数)(x f y =在[)∞+,0上是减函数,试比较)1()4
3(2+-a a f f 与的大小。
4.如果函数c bx x x f ++=2)(,对任意实数t 都有)2()2(t f t f -=+,试比较)4(),2(),1(f f f
的大小。
5.若)(x f 是定义在)(,11-上的减函数,解不等式0)1()1(2<---a f a f .
6.定义正实数集上的函数)(x f 满足以下三条:
(1)1)4(=f ;(2))()()(y f x f xy f +=;(3)y x >时,)(x f )(y f >. 求满足2)6()(≤-+a f a f 的实数a 的取值范围。
7.函数)(x f 对任意的R b a ∈,,都有1)()()(-+=+b f a f b a f , 并且当0>x 时,1)(>x f (1)求证:)(x f 是R 上的增函数
(2)若5)4(=f ,解不等式3)23(2<--m m f 。