思考题2015年材料力学性能(重点标黄)
《材料力学》第1章知识点+课后思考题

第一章绪论第一节材料力学的任务与研究对象一、材料力学的任务1.研究构件的强度、刚度和稳定度载荷:物体所受的主动外力约束力:物体所受的被动外力强度:指构件抵抗破坏的能力刚度:指构件抵抗变形的能力稳定性:指构件保持其原有平衡状态的能力2.研究材料的力学性能二、材料力学的研究对象根据几何形状以及各个方向上尺寸的差异,弹性体大致可以分为杆、板、壳、体四大类。
1.杆:一个方向的尺寸远大于其他两个方向的尺寸的弹性体。
轴线:杆的各截面形心的连线称为杆的轴线;轴线为直线的杆称为直杆;轴线为曲线的杆称为曲杆。
按各截面面积相等与否,杆又分为等截面杆和变截面杆。
2.板:一个方向的尺寸远小于其他两个方向的尺寸,且各处曲率均为零,这种弹性体称为板3.壳:一个方向的尺寸远小于其他两个方向的尺寸,且至少有一个方向的曲率不为零,这种弹性体称为板4.体:三个方向上具有相同量级的尺寸,这种弹性体称为体。
第二节变形固体的基本假设一、变形固体的变形1.变形固体:材料力学研究的构件在外力作用下会产生变形,制造构件的材料称为变形固体。
(所谓变形,是指在外力作用下构建几何形状和尺寸的改变。
)2.变形弹性变形:作用在变形固体上的外力去掉后可以消失的变形。
塑性变形:作用在变形固体上的外力去掉后不可以消失的变形。
又称残余变形。
二、基本假设材料力学在研究变形固体时,为了建立简化模型,忽略了对研究主体影响不大的次要原因,保留了主体的基本性质,对变形固体做出几个假设:连续均匀性假设认为物体在其整个体积内毫无间隙地充满物质,各点处的力学性质是完全相同的。
各向同性假设任何物体沿各个方向的力学性质是相同的小变形假设认为研究的构件几何形状和尺寸的该变量与原始尺寸相比是非常小的。
第三节 构件的外力与杆件变形的基本形式一、构件的外力及其分类1.按照外力在构件表面的分布情况:度,可将其简化为一点分布范围远小于杆的长集中力:一范围的力连续分布在构件表面某分布力: 二、杆件变形的基本形式杆件在各种不同的外力作用方式下将发生各种各样的变形,但基本变形有四种:轴向拉伸或压缩、剪切、扭转和弯曲。
材料力学性能大连理工大学课后思考题答案解读

第一章 单向静拉伸力学性能 一、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
13.比例极限:应力—应变曲线上符合线性关系的最高应力。
14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数、表面能低的晶面。
15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
材料力学性能

材料力学性能材料力学性能是指材料在外力作用下所表现出的力学特性,包括材料的强度、韧性、硬度、塑性等。
这些性能直接影响着材料在工程领域的应用,因此对材料力学性能的研究和评价显得尤为重要。
首先,强度是材料力学性能中的重要指标之一。
材料的强度是指材料抵抗外力破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等来表示。
不同材料的强度差异很大,例如金属材料的强度通常较高,而塑料和橡胶等材料的强度相对较低。
材料的强度直接影响着材料在工程中的承载能力和使用寿命。
其次,韧性是衡量材料抵抗断裂的能力。
韧性高的材料在受到外力作用时能够延展变形而不易断裂,这对于一些需要承受冲击或振动载荷的工程结构来说尤为重要。
例如,航空航天领域对材料的韧性要求较高,以确保飞行器在受到外部冲击时能够保持结构完整。
此外,硬度是材料力学性能中的重要参数之一。
材料的硬度是指材料抵抗划痕和压痕的能力,通常用洛氏硬度、巴氏硬度等来表示。
硬度高的材料通常具有较好的耐磨性和耐腐蚀性,适用于一些对材料表面要求较高的工程领域,例如汽车制造、船舶建造等。
最后,塑性是材料力学性能中的重要特性之一。
材料的塑性是指材料在受到外力作用时能够发生塑性变形而不断裂,这对于一些需要进行成形加工的工程材料来说尤为重要。
例如,金属材料的塑性使其能够通过锻造、轧制等工艺进行成形,从而制备出各种复杂的零部件。
综上所述,材料力学性能是材料工程领域中的重要研究内容,不同的材料力学性能对材料的应用具有重要的影响。
因此,对材料力学性能的研究和评价具有重要的意义,可以为工程领域的材料选择和设计提供重要的参考依据。
2015年材料力学性能思考题大连理工大学讲解

一、填空:1.提供材料弹性比功的途径有二,提高材料的,或降低。
2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是具有的普遍现象。
3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为与;按照晶体材料断裂时裂纹扩展的途径,分为和;按照微观断裂机理分为和;按作用力的性质可分为和。
4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加的现象,滞弹性应变量与材料、有关。
5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力;反向加载,规定残余伸长应力的现象。
消除包申格效应的方法有和。
6.单向静拉伸时实验方法的特征是、、必须确定的。
7.过载损伤界越,过载损伤区越,说明材料的抗过载能力越强。
8. 依据磨粒受的应力大小,磨粒磨损可分为、、三类。
9.解理断口的基本微观特征为、和。
10.韧性断裂的断口一般呈杯锥状,由、和三个区域组成。
11.韧度是衡量材料韧性大小的力学性能指标,其中又分为、和。
12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。
一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。
14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为、和三大类;在压入法中,根据测量方式不同又分为、和。
15. 国家标准规定冲击弯曲试验用标准试样分别为试样和试样,所测得的冲击吸收功分别用、标记。
16. 根据外加压力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本方式有、和。
17. 机件的失效形式主要有、、三种。
18.低碳钢的力伸长曲线包括、、、、断裂等五个阶段。
19.内耗又称为,可用面积度量。
《材料力学性能》课后思考题答案

第一章 单向静拉伸力学性能 一、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
13.比例极限:应力—应变曲线上符合线性关系的最高应力。
14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数、表面能低的晶面。
15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
材料力学性能习题及解答库及材料力学性能复习资料

第一章习题答案一、解释下列名词1、弹性比功:又称为弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。
2、滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。
3、循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力,称为金属的循环韧性。
4、包申格效应:先加载致少量塑变,卸载,然后在再次加载时,出现σe升高或降低的现象。
5、解理刻面:大致以晶粒大小为单位的解理面称为解理刻面。
6、塑性、脆性和韧性:塑性是指材料在断裂前发生不可逆永久(塑性)变形的能力。
韧性:指材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力7、解理台阶:高度不同的相互平行的解理平面之间出现的台阶叫解理台阶;8、河流花样:当一些小的台阶汇聚为在的台阶时,其表现为河流状花样。
9、解理面:晶体在外力作用下严格沿着一定晶体学平面破裂,这些平面称为解理面。
10、穿晶断裂和沿晶断裂:沿晶断裂:裂纹沿晶界扩展,一定是脆断,且较为严重,为最低级。
穿晶断裂裂纹穿过晶内,可以是韧性断裂,也可能是脆性断裂。
11、韧脆转变:指金属材料的脆性和韧性是金属材料在不同条件下表现的力学行为或力学状态,在一定条件下,它们是可以互相转化的,这样的转化称为韧脆转变。
二、说明下列力学指标的意义1、E(G):E(G)分别为拉伸杨氏模量和切变模量,统称为弹性模量,表示产生100%弹性变形所需的应力。
2、σr、σ0.2、σs: σr:表示规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
σ0.2:表示规定残余伸长率为0.2%时的应力。
σs:表征材料的屈服点。
3、σb:韧性金属试样在拉断过程中最大试验力所对应的应力称为抗拉强度。
4、n:应变硬化指数,它反映了金属材料抵抗继续塑性变形的能力,是表征金属材料应变硬化行为的性能指标。
5、δ、δgt、ψ:δ是断后伸长率,它表征试样拉断后标距的伸长与原始标距的百分比。
材料力学性能思考题

填空:1.影响材料弹性模数的因素有、、、、、等。
2.提供材料弹性比功的途径有二,提高材料的,或降低。
3.退火态和高温回火态的金属都有包申格效应,因此包申格效应是具有的普遍现象。
4.金属材料常见的塑性变形机理为晶体的和两种。
5.多晶体金属材料由于各晶粒位向不同和晶界的存在,其塑性变形更加复杂,主要有各晶粒变形的及各晶粒变形的的特点。
6.影响金属材料屈服强度的因素主要有、、、、等。
7.产生超塑性的条件是(1);(2);(3)。
8.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为与;按照晶体材料断裂时裂纹扩展的途径,分为和;按照微观断裂机理分为和;按作用力的性质可分为和。
9.包申格效应:金属材料经过的塑性变形,而后再同向加载,规定残余伸长应力;,规定残余伸长应力的现象。
10.剪切断裂的两种主要形式为、和。
11.解理断口的基本微观特征为、和。
12.韧性断裂的断口一般呈杯锥状,由、和三个区域组成。
13.韧度是衡量材料韧性大小的力学性能指标,其中又分为、和。
14.材料在受到应力作用时压力状态最硬,其分量为零,材料最易发生,适用于揭示塑性较好的金属材料的脆性倾向。
时,正应力分量较大,切应力分量较小,应力状态较硬。
一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;时应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;材料的硬度试验属于状态,应力状态非常软,可在各种材料上进行。
15. 材料缺口敏感性除与材料本身性能、压力状态(加载方式)有关外,还与、、有关。
16. 硬度是衡量材料软硬程度的一种力学性能,按加载方式基本上可以分为和两大类,在压入法中,根据加载速率的不同又分为和。
17. 国家标准规定冲击弯曲试验用标准试样分别为试样和试样,所测得的冲击吸收功分别用标记。
18. 影响材料低温脆性的因素有、、、、、等。
材料力学性能-第2版习题答案材料力学性能-第2版习题答案

《工程材料力学性能》课后答案机械工业出版社 2008第2版第一章 单向静拉伸力学性能1、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
材料力学性能重点总结讲解学习

材料力学性能重点总结讲解学习名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收弹性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。
7比例极限:应力与应变保持正比关系的应力最高限。
8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈服强度。
9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂过程,在裂纹扩展过程中不断的消耗能量。
韧性断裂的断裂面一般平行于最大切应力并于主应力成45度角。
10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。
断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。
11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。
12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。
13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓“缺口效应“①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度σbm与等截面尺寸光滑试样的抗拉强度σb的比值. NSR=σbn / σs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料力学实验思考题答案

材料力学实验思考题答案1. 引言。
材料力学实验是材料力学课程的重要组成部分,通过实验可以更直观地了解材料的性能和行为。
在实验过程中,学生需要不断思考和分析,以深化对材料力学知识的理解。
本文将针对材料力学实验中的一些思考题进行解答,希望能够帮助学生更好地掌握相关知识。
2. 实验思考题答案。
2.1 为什么在材料力学实验中常常使用金属材料?答,金属材料具有良好的可塑性和韧性,适用于各种加载条件下的实验。
同时,金属材料的力学性能稳定,易于加工和制备,因此在材料力学实验中被广泛应用。
2.2 为什么在拉伸试验中会出现颈缩现象?答,在拉伸试验中,当金属材料受到拉力作用时,由于材料内部应力分布不均匀,会出现局部应力集中的现象,导致材料发生颈缩。
这是由于材料的塑性变形导致的,属于材料的典型失效形式。
2.3 为什么在材料力学实验中需要进行应力应变曲线的测定?答,应力应变曲线是材料力学性能的重要指标,通过曲线的测定可以了解材料的屈服强度、抗拉强度、延伸率等性能参数。
这对于材料的选用和设计具有重要意义,因此在材料力学实验中需要进行应力应变曲线的测定。
2.4 为什么在材料力学实验中需要进行硬度测试?答,硬度是材料抵抗局部变形的能力,是材料力学性能的重要指标之一。
通过硬度测试可以快速了解材料的硬度水平,评估材料的耐磨性和耐腐蚀性能,对于材料的使用和维护具有重要意义。
2.5 为什么在材料力学实验中需要进行冲击试验?答,冲击试验可以评估材料的韧性和抗冲击性能,对于材料在受到冲击载荷时的表现具有重要意义。
通过冲击试验可以了解材料在实际工作条件下的表现,为工程设计和材料选择提供重要参考。
3. 结语。
通过对材料力学实验思考题的解答,可以更深入地了解材料力学知识的实际应用。
希望学生在实验过程中能够不断思考和分析,提高对材料力学的理解和掌握,为将来的工程实践奠定坚实的基础。
材料的力学性能

材料的力学性能材料的力学性能是指材料在外力作用下的力学行为和性能表现。
力学性能是材料工程中非常重要的一个指标,它直接关系到材料的使用寿命、安全性和可靠性。
材料的力学性能主要包括强度、韧性、硬度、塑性、蠕变等指标。
首先,强度是材料抵抗外力破坏的能力。
常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。
抗拉强度是材料在拉伸状态下抵抗断裂的能力,抗压强度是材料在受压状态下抵抗破坏的能力,抗弯强度是材料在受弯曲状态下抵抗破坏的能力。
强度指标直接反映了材料的抗破坏能力,是衡量材料力学性能的重要参数。
其次,韧性是材料抵抗断裂的能力。
韧性是指材料在受外力作用下能够吸收大量的变形能量而不断裂的能力。
韧性好的材料具有良好的抗冲击性能和抗疲劳性能,能够在外力作用下保持良好的形状和结构完整性。
再次,硬度是材料抵抗划痕和穿刺的能力。
硬度是材料抵抗外界硬物划破或穿透的能力,是材料抵抗局部破坏的重要指标。
硬度高的材料通常具有较好的耐磨性和耐磨损性能,能够在恶劣环境下保持较长时间的使用寿命。
此外,塑性是材料在受力作用下发生形变的能力。
塑性好的材料能够在外力作用下产生较大的变形,具有良好的加工性能和成形性能。
材料的塑性直接影响到材料的加工工艺和成型工艺,是材料加工和成形的重要指标。
最后,蠕变是材料在长期受力作用下发生变形和破坏的现象。
蠕变是材料在高温、高压、长期受力作用下产生的一种渐进性变形和破坏,是材料在高温高应力环境下的重要性能指标。
综上所述,材料的力学性能是衡量材料质量和可靠性的重要指标,强度、韧性、硬度、塑性和蠕变是材料力学性能的重要方面。
在材料设计、选材和工程应用中,需要充分考虑材料的力学性能,选择合适的材料以满足工程需求。
同时,通过合理的材料处理和改性,可以改善材料的力学性能,提高材料的使用寿命和安全可靠性。
材料力学性能知识要点

1低碳钢拉伸试验的过程可以分为弹性变形、塑性变形和断裂三个阶段。
2、材料常规力学性能的五大指标为:屈服强度、抗拉强度、延伸率断面收缩率、冲击功。
3、陶瓷材料增韧的主要途径有相变增韧、微裂纹增韧、表面残余应力增韧、晶须或纤维增韧显微结构增韧以及复合增韧六种。
4、常用测定硬度的方法有—布氏硬度_、_洛氏硬度_和_维氏硬度—测试法。
1聚合物的弹性模量对结构一非常敏感,它的粘弹性表现为滞后环、应力松弛和蠕变,这种现象与温度、时间密切有关。
2、影响屈服强度的内在因素有:_结构健、组织、结构、原子本性;外在因素有:—温度、应变速率、应力状态。
3、缺口对材料的力学性能的影响归结为四个方面:(1)产生应力集中、(2)引起三相应力状态,使材料脆化、(3)由应力集中带来应变集中、(4)使缺口附近的应变速率增高。
4、低碳钢拉伸试验的过程可以分为—弹性变形—、塑性变形_和_断裂—三个阶段5、材料常规力学性能的五大指标为:—屈服强度、抗拉强度、延伸率断面收缩率、冲击功6陶瓷材料增韧的主要途径有相变增韧、微裂纹增韧、表面残余应力增韧、晶须或纤维增韧—显微结构增韧以及复合增韧六种请说明下面公式各符号的名称以及其物理意义7、- c = K © /丫J a cC c:断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大, (T c表示引力的最大值;K ic:平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;丫:几何形状因子a c:裂纹长度da8、对公式C(AK)m进行解释,并说明各符号的名称及其物理意义(5分)dN答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。
da亞:裂纹扩展速率(随周次);dNc与m:与材料有关的常数;K :裂纹尖端的应力强度因子幅度茲=Acf9、箱蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;c为蠕变应力。
什么叫材料的力学性能?有哪些主要指标?

Don't waste your life, where you will regret it.整合汇编简单易用(页眉可删)什么叫材料的力学性能?有哪些主要指标?材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。
锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等。
(1)强度强度是指金属材料在外力作用下对变形或断裂的抗力。
强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD。
(2)塑性塑性是指金属材料在断裂前发生塑性变形的能力。
塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度。
(3)韧性韧性是指金属材料抵抗冲击负荷的能力。
韧性常用冲击功Ak和冲击韧性值αk表示。
Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。
而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。
表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。
(4)硬度硬度是衡量材料软硬程度的一个性能指标。
硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。
最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。
而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。
因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。
材料力学实验报告思考题答案

材料力学实验报告思考题答案在材料力学实验中,我们经常会遇到一些思考题,这些问题既能够检验我们对实验知识的掌握程度,也能够帮助我们更深入地理解材料力学的相关原理。
下面,我将针对一些常见的材料力学实验报告思考题进行解答,希望能够对大家的学习有所帮助。
1. 为什么在材料力学实验中会使用标准试样进行拉伸和压缩测试?标准试样在材料力学实验中的使用主要是为了保证实验的可重复性和可比性。
通过使用标准试样,可以确保不同实验之间的测试条件是一致的,从而能够得到具有可靠性和可比性的实验数据。
此外,标准试样的设计和制备经过严格的标准化程序,能够保证试样的质量和几何尺寸的精度,从而提高实验结果的准确性。
2. 为什么在材料力学实验中会进行拉伸和压缩测试?拉伸和压缩测试是材料力学实验中常见的测试方法,主要是为了研究材料在外力作用下的力学性能。
拉伸测试可以用来测定材料的抗拉强度、屈服强度、断裂强度等参数,而压缩测试则可以用来测定材料的抗压强度、屈服强度等参数。
通过这些测试,可以全面了解材料在不同加载条件下的力学性能,为材料的设计和选用提供依据。
3. 为什么在材料力学实验中会进行硬度测试?硬度测试是材料力学实验中常用的一种测试方法,主要是为了研究材料的硬度和耐磨性能。
硬度是材料抵抗外界力量的能力,硬度测试可以用来评价材料的硬度大小,从而为材料的选用和加工提供参考。
此外,硬度测试还可以用来评价材料的耐磨性能,对于一些需要经受摩擦和磨损的材料来说,硬度测试显得尤为重要。
4. 为什么在材料力学实验中会进行冲击测试?冲击测试是用来研究材料在受到冲击载荷时的响应行为,主要是为了评价材料的抗冲击性能。
在一些特殊的工作条件下,材料可能会受到冲击载荷,因此对于一些需要承受冲击载荷的材料来说,冲击测试显得尤为重要。
通过冲击测试,可以了解材料在受到冲击载荷时的变形和破坏情况,为材料的设计和选用提供依据。
综上所述,材料力学实验中的拉伸、压缩、硬度和冲击测试都是为了研究材料的力学性能,通过这些测试可以全面了解材料的力学性能,为材料的设计和选用提供依据。
材料力学性能 (2)

材料力学性能
材料力学性能是指材料在受力作用下的力学性能,包括以下几个方面:
1. 强度:材料的强度是指其抵抗外部力量破坏的能力。
常用的强度指标有抗拉强度、抗压强度、抗剪切强度等。
2. 韧性:材料的韧性是指其能够吸收外部作用力而发生塑性变形的能力。
韧性高的材料具有较大的塑性变形能力,可以在受到强力作用时不容易断裂。
3. 脆性:脆性是指材料在受力作用下发生断裂的倾向。
脆性材料在受到一定力量作用时容易发生断裂。
4. 硬度:材料的硬度是指其抵抗局部变形的能力。
硬度高的材料表面不容易发生划痕或凹陷。
5. 可塑性:可塑性是指材料在受力作用下发生塑性变形的能力。
材料的可塑性越高,其变形能力越大。
6. 弹性:弹性是指材料在受力作用下发生弹性变形的能力。
弹性材料在受力后能够恢复原状。
以上是材料力学性能的一些常见指标,不同材料具有不同
的力学性能特点。
材料的力学性能是衡量其适用性和使用
寿命的关键因素。
材料力学性能总思考题(1)

材料力学性能总思考题(1)第一章1什么是材料力学性能?有何意义?材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。
2金属拉伸试验经历哪几个阶段?拉伸试验可以测定哪些力学性能?三个阶段:弹性变形阶段;塑性变形阶段;断裂可测定的性能:屈服强度,抗拉强度,断后伸长率,断面收缩率3拉伸曲线有何作用?拉伸曲线各段图形分别意味着什么?拉伸曲线可测定材料的屈服强度,抗拉强度,断后伸长率,断面收缩率等力学性能指标;4不同材料的拉伸曲线相同吗?为什么?不同;材料的组织结构不同,成分不同,所处温度、应力状态不同,拉伸曲线也不同。
5材料的拉伸应力应变曲线发现了哪几个关键点?这几个关键点分别有何意义?真实应力应变曲线关键点是颈缩点工程应力应变是屈服强度7 弹性变形的实质是什么?金属晶格中原子自平衡位置产生可逆位移的反映。
8弹性模量E的物理意义?E是一个特殊的力性指标,表现在哪里?材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。
E=ζ/ε。
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
特殊表现:金属材料的E是一个对组织不敏感的力学性能指标,温度、加载速率等外在因素对其影响不大,E主要决定于金属原子本性和晶格类型。
9比例极限、弹性极限、屈服极限有何异同?比例极限:应力应变曲线符合线性关系的最高应力(应力与应变成正比关系的最大应力);弹性极限:试样由弹性变形过渡到弹-塑性变形时的应力;屈服极限:开始发生均匀塑性变形时的应力。
10你学习了哪几个弹性指标?弹性极限、比例极限、弹性模量、弹性比功11弹性不完整性包括哪些方面?金属在弹性变形阶段存在微小的塑性变形,即弹塑性变形之间无绝对的分界点,包括弹性滞弹性及内耗、包辛格效应等。
材料力学性能课后习题答案整理

(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
【P49 P58】(5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。
(6)维氏硬度——以两相对面夹角为136。
的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。
【P53 P62】(7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。
(8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。
2、说明下列力学性能指标的意义(1)σbc——材料的抗压强度【P41 P48】(2)σbb——材料的抗弯强度【P42 P50】(3)τs——材料的扭转屈服点【P44 P52】(4)τb——材料的抗扭强度【P44 P52】(5)σbn——材料的抗拉强度【P47 P55】(6)NSR——材料的缺口敏感度【P47 P55】(7)HBW——压头为硬质合金球的材料的布氏硬度【P49 P58】(8)HRA——材料的洛氏硬度【P52 P61】(9)HRB——材料的洛氏硬度【P52 P61】(10)HRC——材料的洛氏硬度【P52 P61】(11)HV——材料的维氏硬度【P53 P62】3、试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。
7、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。
【P49 P57】原理布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。
洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。
维氏硬度:以两相对面夹角为136。
的金刚石四棱锥作压头,计算单位面积所承受的试验力。
布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。
压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和。
4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加单向静拉伸时实验方法的特征是、、必须确定的。
.韧度是衡量材料韧性大小的力学性能指标,其中又分为、和。
12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。
一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。
14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为、和三大类;在压入法中,根据测量方式不同又分为、和。
15. 国家标准规定冲击弯曲试验用标准试样分别为试样和试样,所测得的冲击吸收功分别用22. 应力状态软性系数:用试样在变形过程中的测得和的比值表示。
23.微孔聚集型断裂是包括微孔、直至断裂的过程。
24.缺口试样的与等截面光滑试样的的比值。
称为“缺口敏感度”。
25.机件在冲击载荷下的断口形式仍为、和。
26.包申格应变是在给定应力下,正向加载和反向加载两曲线之间的应变差。
27.由于缺口的存在,在载荷作用下,缺口截面上的应力状态将发生变化的现象,被称为“缺口效应”。
28. 洛氏硬度是在一定的实验力下,将120º角的压入工件表面,用所得的来表示材料硬度值的工艺方法。
28.低温脆性是随的下降,材料由转变为的现象。
29. 缺口敏感性是指材料因存在缺口造成的状态和而变脆的疲劳条带是疲劳断口的特征,贝纹线是断口的特征。
34. 金属材料的疲劳过程也是裂纹的和过程。
35.金属材料抵抗疲劳过载损伤的能力,用或表示。
36.金属在和特定的共同作用下,经过一段时间后所发生的现象,成为应力腐蚀断裂。
37.应力腐蚀断裂的最基本的机理是和。
38.由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象叫钢的氢致延滞断裂过程可分为、、三个阶按磨损模型分为:、、、五大类。
44.韧窝是微孔聚集型断裂的基本特征。
其形状视应力状态不同分为下列、、三类。
其大小决定于第二相质点的、基体材料的和以及外加应力的大小和形状。
国家标准规定了四种断裂韧性测试试样:、和。
47.过载持久值越高,说明材料在相同的过载荷下能承受的应力循环周金属材料的蠕变变形主要是通过、等机理进行的。
50.当试验温度低于某一温度t k时,材料由状态变为状态,冲击吸收功明显下降,断裂机制由型变为断口特征,断口由状变为状,这就是低温脆性。
,也是金属材料的指标,它反映了温度对材料的51.韧脆转变温度tk影响。
也是性能指标,是从韧性角度选材的重要依据之一,可用于抗脆断设计。
52. 金属材料在长时高温载荷作用下的断裂大多为断裂。
在不同的应力和温度条件下,晶界裂纹的形成方式有、两种。
53. 金属材料蠕变断裂断口的宏观特征为:一是在断口附近产生,在变形区域附近有许多,使断裂机件表面出现现象;另一个特征是由于高温氧化,断口表面往往被一层覆盖。
54. 金属材料蠕变断裂断口的微观特征主要是冰糖状花样的。
55. 蠕变极限是表示材料在高温长时间载荷作用下的抗力指标,是选用高温材料,设计高温下服役机件的主要依据之一。
56. 描述材料的蠕变性能常采用、、等力学性能指标。
57. 缺口偏斜拉伸试验过程中,试样在承受拉伸力的同时还承受力的作用,承受复合载荷,故其应力状态更,缺口截面上的应力分布更,因而,更能显示材料的缺口敏感性。
58. 要在同一材料上测得相同的布氏硬度,或在不同的材料上测得的硬度可以相互比较,压痕的形状必须,压入角应。
59.高温下材料晶内和晶界的强度均随温度升高而,但晶界的强度降低速度比晶内的降低速度。
60.根据剥落裂纹起始位置及形态不同,接触疲劳破坏分为、和三类。
61. 是引起疲劳破坏的外力,它是指大小、方向均随时间变化的载荷。
62.紧凑拉伸试样预制裂纹后在固定应力比和应力范围条件下循环加载,随的变化曲线即为疲劳裂纹扩展曲线。
63.疲劳裂纹不扩展的应力强度因子范围临界值,称为。
64.产生疲劳微观裂纹的主要方式有、和。
65.疲劳裂纹扩展第二阶段断口最重要的特征是具有。
66.驻留滑移带在加宽过程中,还会出现和,其成因可用柯垂耳-赫尔模型描述。
67.剪切断裂和解理断裂都是断裂。
前者受剪切力作用是断裂,后者受正应力作用,属断裂。
断裂性质完全不同。
也就是说断裂既可能是韧性断裂也可能是脆性断裂。
取决于材料的本性和力的作用方式。
68解理断裂是沿特定界面发生的脆性断裂,解理断裂实际上是沿一族相互平行的晶面解理而引起的。
这些解理面称为。
69.若干相互平行的而且位于不同高度的解理面,从而形成解理断口的基本微观特征。
二、概念:1.韧脆转变:2.内耗:3.解理裂纹:4.弹性:5.低温脆性:6.低应力脆断:7.过载持久值:8.滞弹性:9.穿晶裂纹:10.疲劳缺口敏感性:11.韧脆转变温度:12.循环韧性:13.解理刻面:14.韧性:15.小范围屈服:16.有效裂纹长度:17.缺口敏感度:18.穿晶断裂:19.解理断裂:20.氢致延滞断裂21.应力腐蚀22.白点23.接触疲劳24.相对耐磨性25.粘着磨损26.约比温度27.松弛稳定性28.等强温度29持久强度30.蠕变极限31.高周疲劳32.弹性比功三、分析问答题第一章1.试分析金属材料在屈服阶段为何存在上下屈服点?2.循环韧性有何工程意义?选择音叉需要选择循环韧性高的还是低的材料?3. 何为拉伸断口三要素?影响宏观拉伸断口的形态的因素有哪些?4、为什么材料的塑性要以延伸率和断面收缩率这两个指标来度量?它们在工程上各有什么实际意义?5.包申格效应有何意义?工程中对机件会产生哪些影响?6.试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么?7. 试述韧性断裂与脆性断裂的区别,为什么说脆性断裂最危险?8. 常温静拉伸试验可确定金属材料的哪些性能指标?说出这些指标的符号定义、意义。
9.常用的标准试样有5 倍试样和10 倍试样,其延伸率分别用σ5和σ10表示,说明为什么σ5>σ10。
10.试述多晶体金属产生明显屈服的条件,并解释bcc金属与fcc金属及其合金屈服行为不同的原因。
第二章1. 布氏硬度与洛氏硬度可否直接比较?2. 缺口对材料的拉伸力学性能有什么影响?3. 布氏硬度与洛氏硬度的测量方法有何不同? HRA、HRB、HRC分别用于测量何种材料的硬度?4、什么是“缺口效应”?它对材料性能有什么影响?5.金属材料在受到扭转、单向拉伸、三向等拉伸、单向压缩、两向压缩、三向压缩应力作用时,其应力状态软性系数分别为多少?6.缺口试样拉伸时应力分布有何特点?7.试综合比较光滑试样轴向拉伸、缺口试样轴向拉伸和偏斜拉伸试验的特点8. 今有如下工件需要测定硬度,试说明选用何种硬度试验法为宜?(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁,(4)硬质合金,(5)鉴别钢中的隐晶马氏体与残余奥氏体,(6)仪表小黄铜齿轮,(7)龙门刨床导轨,(8)氮化层,(9)火车圆弹簧,(10)高速钢刀具。
第三章1. 试说明低温脆性的物理本质及其影响因素?2.冲击韧性主要有哪些用途?3.细化晶粒尺寸可以降低脆性转变温度或者说改善材料低温脆性,为什么?4.为什么通常体心立方金属显示低温脆性,而面心立方金属一般没有低温脆性?5.试述冲击载荷作用下金属变形和断裂的特点。
6、什么是低温脆性、韧脆转变温度t k?产生低温脆性的原因是什么?体心立方和面心立方金属的低温脆性有何差异?为什么?第四章1. 说明KI 和KIc的异同。
2.为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?3.试述应力场强度因子的意义及典型裂纹KⅠ的表达式4.试述K判据的意义及用途5.试述裂纹尖端塑性区产生的原因及其影响因素,在什么条件下需考虑塑性区的影响对KⅠ进行修正?6. 张开型、滑开型和撕开型哪种断裂方式最危险?7.试述影响KⅠc 和AkV的异同及其相互之间的关系8.什么叫断裂韧性?它与应力场强度因子有何联系与区别?9. 在生产实践中可以采用哪些方法提高材料的K IC值?第五章1.轴对称循环应力的平均应力、应力幅和应力比分别为多少?非金属夹杂物、表面粗糙度等对金属疲劳性能的影响规律5.试述金属表面强化对疲劳强度的影响。
第六章1.有一M24栓焊桥梁用高强度螺栓,采用40B钢调质制成,抗拉强度为1200MPa,承受拉应力650MPa。
在使用中,由于潮湿空气及雨淋的影响发生断裂事故。
观察断口发现,裂纹从螺纹根部开始,有明显的沿晶断裂特征,随后是快速脆断部分。
断口上有较多腐蚀产物,且有较多的二次裂纹。
试分析该螺栓产生断裂的原因,并考虑防止这种断裂的措施。
2.试述金属产生应力腐蚀的条件和机理。
3.试述区别高强度钢的应力腐蚀和氢致延滞断裂的方法。
4.何为氢致延滞断裂?为什么高强度钢的氢致研制断裂是在一定的应变速率和温度范围内出现?第七章1.粘着磨损产生的条件、机理及其防止措施2.摩擦副材料的硬度一般较测试材料高,请问为何一般不能选择同种材料作摩擦副?3.耐磨性一般如何测量?有哪些测定方法?4.如何提高材料或零件的抗粘着磨损能力?第八章1.试说明材料的持久强度极限是如何由实验方法测得的?2.试说明使材料产生稳态蠕变速率的蠕变极限是如何由实验方法测得的?3.解释材料高温蠕变变形理论主要有哪些?蠕变断裂有哪几种形式?4. 试分析晶粒大小对金属材料高温力学性能的影响。
5. 材料的高温性能包括哪些?6.试述金属蠕变断裂的裂纹形成机理与常温下金属的裂纹形成机理有何不同?四、计算1. 通常纯铁的γs =2J/m 2,E=2×105MPa,a 0=2.5×10-10m ,试求其理论断裂强度σm 。
(4×104MPa)210⎪⎪⎭⎫ ⎝⎛=aE s m γσ2. 若一薄板内有一条长3毫米的裂纹,且a 0=3×10-8mm , 试求脆性断裂时的断裂应力σc (设σm =E/10=2×105MPa )。
(71.4MPa )3. 有一材料E=2×1011N/m 2, γs =8N/m,试计算在 7×107N/m 2的拉力作用下,该材料的临界裂纹长度?(0.4mm )21⎪⎪⎭⎫ ⎝⎛=a E s m γσ4.一直径为2.5mm ,长为200mm 的杆,在载荷2000N 作用下,直径缩小为2.2mm, 试计算:(1)杆的最终长度;(258.3mm)(2)在该载荷作用下的真应力S 与真应变e ;(407.6MPam,0.291)(3)在该载荷作用下的名义应力σ与名义应变δ。
(526.2MPa,0.255)5.某材料制成长50mm 、直径5mm 的圆形拉伸试样,当进行拉伸试验时,塑性变形阶段的外力F 与长度增量ΔL 的关系为 F (N) 6000, 14000 ΔL (mm) 1, 11.5试求该材料的硬化系数和应变硬化指数。