第1单元数字电路基础知识
数字电子技术第1单元数字电路基础知识
第二部分 相 关 知 识
1.1 1.2 1.3 1.4 1.5 1.6
数字电路概述
计数体制
码制 逻辑代数基础
逻辑函数的化简
数字逻辑门电路
1.1 数字电路概述
1.1.1 什么是数字电路
1.数字电路的特点
• 数字信号目前常取二值信息,它用两个有 一定数值范围的高、低电平来表示,也可 用两个不同状态的逻辑符号如“1”或“H” 和“0”或“L”来表示。
第1单元 数字电路基础知识
第一部分 任 务 导 入
• 数字电路是电子技术的另一大类,广泛应 用于各个领域的各种电子电路之中。
• 图1-1所示为由数字集成块构成的触摸LED 追逐电路。 • 该电路主要是由数字门(如IC1)与数字 计数器(如IC2)共同构成的。
图1-1 数字集成块构成的触摸LED追逐电路
③ 数字电路不仅能完成数值运算,还可以 进行逻辑运算与判断,在控制系统中这是 不可少的,因此又把数字电路称作“数字 逻辑电路”。
1.1.3
数字电路与脉冲电路的异同
• 脉冲信号是短促的断续作用的电压或电流信 号,图1-4所示为常见的脉冲信号波形。 • 除正弦波和它的合成信号外,其他形式的信 号都属于脉冲信号。
3.二进制数运算规则
2.十进制数的计数原则
• 十进制数的计数原则是:逢10进1,借1当10。
• 例如,十进制数3743. 3由5位数字组成,小 数点左边有4位,右边有1位。
• 这个数实际上是由以下多项式缩写而成的, 即
3743.3=3×103+7×102+4×101+3×100+3×10−1
• 依此类推,任何一个n位整数、m位小数 的十进制数(N)10均可记为
数字电路基础第1章电信
总结词
数字电路的测试与维护是确保电路正常工作 的重要环节。
详细描述
测试的目的是检测电路的逻辑功能是否正确, 发现并排除故障。维护则是对已运行的数字 电路进行检修、调整和修复,保证其正常运 行。测试通常采用逻辑测试和功能测试等方 法,而维护则包括预防性维护和修复性维护 两种方式。
03
电信中的数字电路应用
智能化
数字电路将与人工智能技术相结合, 实现智能化控制和处理,提高系统的 自动化和智能化水平。
THANKS
感谢观看
字化传输和处理。
数字电路在电信系统中的应用场景
01
数字信号传输
数字电路可以用于传输数字信号,如语音、数据和图像等。数字信号在
数字电路中以离散的二进制码元形式传输,具有抗干扰能力强、传输质
量高的优点。
02
数字交换
数字电路可以用于实现数字交换,即利用数字电路中的交换设备实现数
字信号的路由选择和转发。数字交换具有速度快、容量大、灵活性强等
总结词
数字电路的基本元件包括逻辑门、触发器、寄存器等。
详细描述
逻辑门是数字电路的基本组成单元,实现逻辑运算功能,如与门、或门、非门等。触发器是一种能存 储二进制数的元件,具有置位、复位和保持三种基本工作状态。寄存器则用于存储二进制数据,具有 并入、并出、串入、串出等多种工作方式。
数字电路的设计方法
电信的应用领域
总结词
电信在各个领域都有广泛应用,如通信、广播、电视、互联网等。
详细描述
电信的应用领域非常广泛,包括但不限于通信、广播、电视、互联网等。在通信领域,电信可以实现电话、短信、 视频通话等功能;在广播和电视领域,电信可以实现节目的传输和接收;在互联网领域,电信是实现数据传输和 网络连接的基础。
数电知识点章节总结
数电知识点章节总结1.1 二进制和十进制在数字电路中,我们经常使用二进制来表示数字。
二进制是一种仅包含0和1两个数字的数制系统,它是计算机中数据存储和处理的基础。
与之相比,十进制是我们平时生活中常用的数制系统。
在数字电路中,我们需要能够熟练地进行二进制和十进制之间的转换,以便能够正确地理解和设计数字电路。
1.2 布尔代数布尔代数是一种特殊的数学体系,它基于逻辑运算而非算术运算。
在数字电路中,布尔代数被广泛应用于逻辑设计中,它可以帮助我们描述和分析数字电路中各种逻辑关系。
因此,对于数字电路的学习来说,布尔代数是一个非常重要的基础知识。
1.3 逻辑门逻辑门是数字电路中最基本的组成单元。
它可以实现各种逻辑运算,如与、或、非等。
了解逻辑门的工作原理和特性可以帮助我们更好地理解数字电路的工作原理和设计方法。
1.4 组合逻辑电路和时序逻辑电路数字电路可以分为组合逻辑电路和时序逻辑电路两种类型。
组合逻辑电路由逻辑门构成,其输出仅由当前输入确定,不受之前的输入或状态影响。
时序逻辑电路则包含了存储元件,其输出不仅受当前输入影响,还受到之前的输入和状态的影响。
了解这两种类型的数字电路有助于我们设计和分析复杂的数字电路系统。
1.5 数字逻辑电路的应用数字逻辑电路广泛应用于计算机、通信、数码显示、计数器、定时器等领域。
掌握数字逻辑电路的基础知识可以帮助我们更好地理解和应用数字电路技术。
第二章:数字电路设计2.1 组合逻辑电路设计组合逻辑电路的设计是数字电路设计的基础。
在这一部分,我们将学习如何使用逻辑门和其他逻辑元件来设计实现各种逻辑功能的数字电路。
2.2 时序逻辑电路设计时序逻辑电路设计是数字电路设计的进阶内容。
在这一部分,我们将学习如何设计和分析包含存储元件的数字电路系统,以实现更加复杂的功能。
2.3 FPGA和CPLDFPGA(可编程逻辑器件)和CPLD(复杂可编程逻辑器件)是现代数字电路设计中常用的集成电路。
它们具有可编程性和灵活性,可以满足各种复杂数字系统的设计需求。
数字电路(复习)
②C=1、C=0,即C端为高电平(+VDD)、C端为低电平(0V) 时,TN和TP都具备了导通条件,输入和输出之间相当于开关接通 一样,uO=uI 。
2.三态门电路的输出有高阻态、高电平和低电平3种状态
• 三态门逻辑符号控制端电平的约定
A
1
Y
EN
EN
(a)控制端低电平有效
控制端加低电平信号时,三 态门处于工作状态,Y=A, 加高电平信号时禁止,Y=Z
加法器
能对两个1位二进制数进行相加而求得和及进位的逻辑电 路称为半加器。 能对两个1位二进制数进行相加并考虑低位来的进位,即 相当于3个1位二进制数的相加,求得和及进位的逻辑电路称 为全加器。 实现多位二进制数相加的电路称为加法器。按照进位方 式的不同,加法器分为串行进位加法器和超前进位加法器两 种。串行进位加法器电路简单、但速度较慢,超前进位加法 器速度较快、但电路复杂。 加法器除用来实现两个二进制数相加外,还可用来设计 代码转换电路、二进制减法器和十进制加法器等。
数据分配器
数据分配器的逻辑功能是将1个输入数据传送到 多个输出端中的1个输出端,具体传送到哪一个输出 端,也是由一组选择控制(地址)信号确定。 数据分配器就是带选通控制端即使能端的二进 制译码器。只要在使用中,把二进制译码器的选通 控制端当作数据输入端,二进制代码输入端当作选 择控制端就可以了。 数据分配器经常和数据选择器一起构成数据传 送系统。其主要特点是可以用很少几根线实现多路 数字信息的分时传送。
八进制数
0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
十六进制数
0 1 2 3 4 5 6 7 8 9 A B C D E F
门电路 国标符号 曾用符号 美国符号 表达式
数字电路基础知识
01
添加标题
整数部分采用“除2取余,逆序排列” ,先得到的余数为低位,后得到的余数为高位。
添加标题
运算时把2换成任一基数N,可将十进制数转换为任意的N进制数。
解:(2)[38]10=[0011 1000]8421BCD
01
02
03
04
2421码的权值依次为2、4、2、1;余3码由8421码加0011得到;
十进制数
8421码
2421(A)码
2421(B)码
5421码
余3码
0
0000
0000
0000
0000
0011
03
数码为:0~9;基数是10。 运算规律:逢十进一,即:9+1=10。下标用10或D表示 十进制数的权展开式:
1、十进制
102、101、100称为十进制的权。各数位的权是10的幂。
3 3 1
3×102= 300
3×101= 30
1×100= 1
= 3 3 1
1001
1001
7
0111
0111
1101
1010
1010
8
1000
1110
1110
1011
1011
9
1001
1111
1111
1100
1100
权
8421
2421
2421
5421
无权
数字电子技术教案
数字电子技术教案第一章:数字电路基础1.1 数字电路概述了解数字电路的定义、特点和应用领域掌握数字电路的基本组成和基本原理1.2 数字逻辑基础学习逻辑代数的基本运算和规则熟悉逻辑函数的表示方法及其相互转换1.3 数字电路的表示方法掌握逻辑函数的图形表示方法(逻辑图、真值表)学习逻辑函数的代数化简方法第二章:数字电路的基本单元2.1 逻辑门电路了解常见的逻辑门电路(与门、或门、非门、异或门等)掌握逻辑门电路的电压传输特性2.2 逻辑函数及其简化学习逻辑函数的代数化简方法(卡诺图、最小项、最大项)熟悉逻辑函数的简化原则和步骤2.3 逻辑门电路的设计与实现学习逻辑门电路的设计方法掌握逻辑门电路的实际制作和调试技巧第三章:组合逻辑电路3.1 组合逻辑电路的基本概念了解组合逻辑电路的定义和特点掌握组合逻辑电路的分析和设计方法3.2 常见的组合逻辑电路学习编码器、译码器、多路选择器、算术逻辑单元等常见组合逻辑电路的原理和应用3.3 组合逻辑电路的设计与实现学习组合逻辑电路的设计方法掌握组合逻辑电路的实际制作和调试技巧第四章:时序逻辑电路4.1 时序逻辑电路的基本概念了解时序逻辑电路的定义、特点和应用领域掌握时序逻辑电路的分析和设计方法4.2 常见的时序逻辑电路学习触发器、计数器、寄存器等常见时序逻辑电路的原理和应用4.3 时序逻辑电路的设计与实现学习时序逻辑电路的设计方法掌握时序逻辑电路的实际制作和调试技巧第五章:数字电路的应用5.1 数字电路在计算机中的应用了解计算机的基本组成和工作原理学习微处理器、存储器、输入输出接口等计算机关键部件的设计和应用5.2 数字电路在通信系统中的应用了解通信系统的基本原理和数字调制技术学习数字通信系统中数字电路的设计和应用5.3 数字电路在其他领域中的应用了解数字电路在数字信号处理、嵌入式系统、工业控制等领域中的应用学习数字电路在不同领域中的设计和应用案例第六章:数字电路仿真与实验6.1 数字电路仿真基础学习数字电路仿真原理和工具熟悉使用仿真软件进行数字电路设计和验证的方法6.2 组合逻辑电路仿真与实验利用仿真软件对组合逻辑电路进行设计和验证分析仿真结果,优化电路性能6.3 时序逻辑电路仿真与实验利用仿真软件对时序逻辑电路进行设计和验证分析仿真结果,优化电路性能第七章:数字电路设计与验证7.1 数字电路设计流程熟悉数字电路设计的基本流程和方法掌握需求分析、模块设计、仿真验证和硬件实现等环节7.2 组合逻辑电路设计实例学习组合逻辑电路设计实例,如编码器、译码器等掌握设计方法和技术要求7.3 时序逻辑电路设计实例学习时序逻辑电路设计实例,如触发器、计数器等掌握设计方法和技术要求第八章:数字电路测试与维护8.1 数字电路测试方法学习数字电路测试的基本方法和策略掌握功能测试、结构测试和边界测试等技术8.2 数字电路调试与优化了解调试过程和方法,提高电路性能学习电路优化技巧,降低功耗和成本8.3 数字电路故障诊断与修复学习故障诊断原理和方法,如逻辑分析仪、示波器等工具的使用掌握故障分析和修复技巧,提高电路可靠性第九章:数字集成电路9.1 数字集成电路概述了解数字集成电路的分类、特点和应用领域掌握数字集成电路的基本结构和原理9.2 常见数字集成电路学习门阵列、触发器、寄存器等常见数字集成电路的原理和应用9.3 数字集成电路的设计与实现学习数字集成电路的设计方法掌握数字集成电路的实际制作和调试技巧第十章:数字电路技术的发展趋势10.1 数字电路技术的创新应用了解数字电路技术在、物联网、生物医疗等领域的创新应用学习数字电路技术在这些领域的发展前景和挑战10.2 新型数字电路技术学习新型数字电路技术,如量子计算、碳纳米管电路等掌握这些技术的原理和优势,了解其发展趋势和应用前景10.3 数字电路技术的未来发展了解数字电路技术在未来的发展趋势和挑战学习如何适应和推动数字电路技术的发展,为人类社会作出贡献重点和难点解析重点环节1:逻辑函数的表示方法及其相互转换补充和说明:逻辑函数的表示方法是理解数字电路的基础,包括逻辑图、真值表及其代数表达式。
数字电路第一章
绪论一、数字电路特点1、什么是数字电路电子电路按信号分成二类模拟电路数字电路模拟电路:信号连续分布 举例模拟电路—线性电路 0IV K V = 一次线性方程 线性 非线性数字电路:信号不连续—脉冲数字电路也称脉冲电路数字电路主要应用矩形波正逻辑高电平 1低电平 0“”“”二元码2、数字电路工作状态数字信号0、1表示二个相反的状态,因此原则上凡是能够代表二个相反的状态的任何方法都可以表示为数字信号,典型机械开关 导通“1 断开“0→→所以数字电路也称开关电路3、数字电路抗干扰性强二、数字电路的应用1、数字通讯2、数控装置 计算机控制操作设备3、数字计算机(最广泛、最杰出的应用)算盘1857年,Hill计数器1890年人口普查使用的制表机第二代1951年,IBM开始决定开发商用电脑,聘请冯·诺依曼担任公司的科学顾问,1952年12月研制出IBM第一台存储程序计算机,也是通常意义上的电脑,这是IT历史上一个重要的里程碑。
它叫IBM 701。
第一代1946年启动“埃尼阿克”(ENIAC)计算机1958年8月16日第一个集成电路第三代1964年4月7日,IBM主席Tom Watson,System 360。
Jr.亲自发布System 360。
超级计算机IBM蓝色基因落户德日计算相当于1.5万台PC( 2006年)第一章逻辑代数基础前面二进制数表示方法不讲,其它学科介绍,本书不用这些概念。
二进制逢二进一1101,110 ++右面给出常用的四位二进制逐一递增的8.4.2.1码。
§1.1 基本概念公式和定理1.1.1 基本和常用逻辑运算一、三种基本逻辑运算1、 与逻辑(与运算、逻辑乘)与逻辑—全部条件具备,事件发生。
下图用机械开关来表示与逻辑运算。
功能表开、关,亮、灭是一个二元状态,可以用0、1码表示 ②真值表 ①赋值合,亮断10,灭→→③与逻辑式 YA B =⋅④逻辑图(符号)多端输入(多个开关) Y ABC =上述逻辑运算的器件称“门” 对应与逻辑称“与门”2、 或逻辑(逻辑加)或逻辑— 一个或一个以上条件具备,事件发生。
数字电子电路第二版电子课件第一章数字电路基础
§1—1 数字信号与数字电路
4
第一章 数字电路基础
当人们在超市购物结账付款时,收银员只要把条形码扫描器对准货物上 的条形码一扫,计算机屏幕上立刻就会显示该物品的价格。这是因为条形 码经扫描器扫描后,会产生相应的“数字信号”,经计算机处理后就可以 显示为货物的名称及价格等信息,进而可刷卡付款,打印付款收据。超市 自动收款设备如图所示。
非逻辑开关电路
44
第一章 数字电路基础
图所示为非门逻辑符号。非门真值表见表。 非门的逻辑功能可概括为“有0出1,有1出0”。非门的逻辑表达式为:
该表达式读作Y等于A非。
非门真值表
非门逻辑符号
45
28
第一章 数字电路基础
几种常见的BCD码
29
第一章 数字电路基础
(1)8421BCD码 最常用的BCD码是8421BCD码。 (2)5421BCD码 5421BCD码也是一种有权码,从高位到低位分别是5、4、2、1。 (3)2421BCD码 2421BCD码也是一种有权码,从高位到低位的权分别是2、4、2、1。 (4)余3码 这是一种无权码,它是在相应的8421BCD码上加0011(3)得到的。
15
第一章 数字电路基础
用数字电路测量电动机转速的原理框图
16
第一章 数字电路基础
2. 四人抢答器 四人抢答器原理框图如图所示。
四人抢答器原理框图
17
第一章 数字电路基础
从以上两个电路的工作过程可以看出,数字电路大致包含数字信号的产 生与整形、编码、寄存、译码、显示等典型单元数字电路。
此外,为了将传感器转换而来的模拟信号转换成控制系统所需要的数字 信号,必须采用模数转换器(A/D Converter)。数字信号被处理后,通常 还要经过数模转换器(D/A Converter)恢复成模拟信号,去驱动执行元件, 如图所示。
第一章.数字逻辑电路基础知识
A
Z
Z=A A Z
实际中存在的逻辑关系虽然多种多样,但归结 起来,就是上述三种基本的逻辑关系,任何复杂 的逻辑关系可看成是这些基本逻辑关系的组合。
B Z
E
真值表
A 0 0 1 1 B 0 1 0 1 Z 0 1 1 1
逻辑符号 曾用符号
A B Z
逻辑表达式
Z A B
Z=A∨B 完成“或”运算功能的电路叫“或”门
3.“非”(反)逻辑-----实现 的电路叫非门(或反相器
定义:如果条件具备了,结果 便不会发生;而条件不具备时结果 一定发生。因为“非”逻辑要求对 应的逻辑函数是“非”函数,也叫 “反”函数 或“补”函数
数字集成电路发展非常迅速-----伴
随着计算机技术的发展: • 2.中规模集成电路
(MSI) 1966年出现, 在一块硅片上包含 • 1.小规模集成电 100-1000个元件或10路(SSI) 1960 100个逻辑门。如 : 集成记时器,寄存器, 年出现,在一块硅 译码器。 片上包含10-100 • TTL:Transister个元件或1-10个逻 Transister Logic 辑门。如 逻辑门 • SSI:Small Scale 和触发器。 Integration • MSI:Mdeium Scale Integration)
f(t)
t 模拟信号
f(t)
Ts 2Ts 3Ts
t
抽样信号
f(KT)
数字信号T 2T 3T
t
二.数字电路的特点:
模拟电路的特点:主要是研究微弱信号的放 大以及各种形式信号的产生,变换和反馈等。
数字电路的特点:
1 基本工作信号是二进制的数字信号,只 有0,1两个状态,反映在电路上就是低电平 和高电平两个状态。(0,1不代表数量的大 小,只代表状态 ) 2 易实现:利用三极管的导通(饱和)和 截止两个状态。-----(展开:基本单元是 连续的,从电路结构介绍数字和模拟电路的 区别)
数字电路知识点总结
数字电路知识点总结一、数字电路基础1. 数字信号与模拟信号- 数字信号:离散的电压级别表示信息,通常为二进制。
- 模拟信号:连续变化的电压或电流表示信息。
2. 二进制系统- 基数:2。
- 权重:2的幂次方。
- 转换:二进制与十进制、十六进制之间的转换。
3. 逻辑电平- 高电平(1)与低电平(0)。
- 噪声容限。
4. 逻辑门- 基本逻辑门:与(AND)、或(OR)、非(NOT)、异或(XOR)。
- 复合逻辑门:与非(NAND)、或非(NOR)、异或非(XNOR)。
二、组合逻辑1. 逻辑门电路- 基本逻辑门的实现与应用。
- 标准逻辑系列:TTL、CMOS。
2. 布尔代数- 基本运算:与、或、非。
- 逻辑公式的简化。
3. 多级组合电路- 级联逻辑门。
- 编码器、解码器。
- 多路复用器、解复用器。
- 算术逻辑单元(ALU)。
4. 逻辑函数的表示- 真值表。
- 逻辑表达式。
- 卡诺图。
三、时序逻辑1. 触发器- SR触发器(置位/复位)。
- D触发器。
- JK触发器。
- T触发器。
2. 时序逻辑电路- 寄存器。
- 计数器。
- 有限状态机(FSM)。
3. 存储器- 随机存取存储器(RAM)。
- 只读存储器(ROM)。
- 闪存(Flash)。
4. 时钟与同步- 时钟信号的重要性。
- 同步电路与异步电路。
四、数字系统设计1. 设计流程- 需求分析。
- 概念设计。
- 逻辑设计。
- 物理设计。
2. 硬件描述语言(HDL)- VHDL与Verilog。
- 模块化设计。
- 测试与验证。
3. 集成电路(IC)- 集成电路分类:SSI、MSI、LSI、VLSI。
- 集成电路设计流程。
4. 系统级集成- 系统芯片(SoC)。
- 嵌入式系统。
- 多核处理器。
五、数字电路应用1. 计算机系统- 中央处理单元(CPU)。
- 输入/输出接口。
2. 通信系统- 数字信号处理(DSP)。
- 通信协议。
- 网络通信。
3. 消费电子产品- 音频/视频设备。
数电知识点总结
数电知识点总结一、数字电路基础1. 数字信号与模拟信号- 数字信号:离散的电压或电流信号,代表信息的二进制状态(0和1)。
- 模拟信号:连续变化的电压或电流信号,可以表示无限多的状态。
2. 二进制系统- 数字电路使用二进制数制,基于0和1的组合。
- 二进制的运算规则包括加法、减法、乘法和除法。
3. 逻辑门- 基本逻辑门:与(AND)、或(OR)、非(NOT)、异或(XOR)和同或(XNOR)。
- 逻辑门的真值表描述了输入和输出之间的关系。
4. 组合逻辑与时序逻辑- 组合逻辑:输出仅依赖于当前输入,不依赖于历史状态。
- 时序逻辑:输出依赖于当前输入和历史状态。
二、组合逻辑电路1. 基本组合逻辑电路- 半加器:实现两个一位二进制数的加法。
- 全加器:实现三个一位二进制数(包括进位)的加法。
2. 多路复用器(MUX)- 选择多个输入信号中的一个,根据选择信号。
3. 解码器(Decoder)- 将二进制输入转换为多个输出信号,每个输出对应一个唯一的二进制输入组合。
4. 编码器(Encoder)- 将多个输入信号编码为一个二进制输出。
5. 比较器(Comparator)- 比较两个数字信号的大小。
三、时序逻辑电路1. 触发器(Flip-Flop)- SR触发器:基于设置(S)和重置(R)输入的状态。
- D触发器:输出取决于数据输入(D)和时钟信号。
2. 寄存器(Register)- 由一系列触发器组成,用于存储数据。
3. 计数器(Counter)- 顺序触发器的集合,用于计数时钟脉冲。
4. 有限状态机(FSM)- 由状态和状态之间的转换组成的电路,根据输入信号和当前状态决定输出和下一个状态。
四、存储器1. 随机存取存储器(RAM)- 可读写存储器,允许对任何地址进行直接访问。
2. 只读存储器(ROM)- 存储器内容在制造过程中确定,用户不能修改。
3. 存储器的组织- 存储单元的排列方式,如字节、字等。
五、数字系统设计1. 数字系统的基本组成- 输入接口、处理单元、存储器和输出接口。
数字逻辑课后习题(填空题)
第1章数字电路基础知识1 电子电路主要分为两类:一类是模拟电路,另一类是数字电路。
2 模拟电路处理的是模拟信号,而数字电路处理的是数字信号。
3 晶体管(即半导体三极管)的工作状态有三种:截止、放大和饱和。
在模拟电路中,晶体管主要工作在放大状态。
4 在数字电路中,晶体管工作在截止与饱和状态,也称为“开关”状态。
5 模拟信号是一种大小随时间连续变化的电压或电流,数字信号是一种突变的电压和电流。
6 模拟信号的电压或电流的大小是随时间连续缓慢变化的,而数字信号的特点是“保持”(一段时间内维持低电压或高电压)和“突变”(低电压与高电压的转换瞬间完成)。
7 在数字电路中常将0~1v范围的电压称为低电平,用“0”来表示;将3~5v范围的电压称为高电平,用“1”来表示。
第2章 门电路1 基本门电路有与门、或门、非门三种。
2 与门电路的特点是:只有输入端都为 高电平 时,输出端才会输出高电平;只要有一个输入端为“0”,输出端就会输出 低电平 。
与门的逻辑表达式是 Y A B =∙ 。
3 或门电路的特点是:只要有一个输入端为 高电平 ,输出端就会输出高电平。
只有输入端都为 低电平 时,输出端才会输出低电平。
或门的逻辑表达式是Y A B =+ 。
4 非门电路的特点是:输入与输出状态总是 相反 。
非门的逻辑表达式是 Y A -= 。
5 与非门的特点是:只有输入全为“1”,输出为 0 ,只要有一个输入端为“0”,输出端就会输出 1 。
与非门的逻辑表达式是 。
6 或非门的特点是:只有输入全为“0”时,才输出 1 ,只要输入有“1”,输出就为 0 。
或非门的逻辑表达式是 。
7 与或非的特点是:A 、B 或C 、D 两组中有一组全为“1”,输出就为 0 ,否则输出就为 1 。
与或非门的逻辑表达式是 。
8 异或门的特点是:当两个输入端一个为“0”,另一个为“1”,输出为 1 ,当两个输入端均为“1”或“0”时,输出为 0 。
异或门的逻辑表达式是 。
第1章 数字电路基础知识
1.3 逻辑函数及其化简
1.3.1 1.3.2 1.3.3 1.3.4 1.3.5
逻辑代数基础 常用的组合逻辑运算 逻辑函数的表示方法 逻辑代数 逻辑函数的化简
1.3.1 逻辑代数基础
1.与运算(逻辑乘)
与逻辑运算的定义为一个事件的发生 如果具有多个条件,必须同时满足全部条 件,此事件才会发生。 以三变量为例,布尔表达式为: F=A· B· C
2.逻辑函数表式
逻辑函数表达式是描述输入逻辑变量 与输出逻辑变量之间逻辑函数关系的代数 式,是一种用与、或、非等逻辑运算复合 组合起来的表达式。逻辑函数的表达式不 是唯一的,可以有多种形式,并且能互相 转换。 逻辑函数的特点是:简洁、抽象,便 于简化和转换。
3.逻辑图
将逻辑函数表达式中各变量间的与、 或、非等运算关系用相应的逻辑符号表示 出来,就是逻辑函数的逻辑图。 逻辑图表示法的优点是:逻辑图与数 字电路的器件有明显的对应关系,便于制 作实际电路。缺点是不能直接进行逻辑推 演和变换。
1.1.4 数字电路的特点
数字电路主要具有以下一些优点: (1)基本单元电路简单,电路成本低。 (2)抗干扰能力强。 (3)通用性强。 (4)容易实现算术和逻辑运算功能。 (5)数据便于存储、携带和交换。 (6)系统故障诊断容易。 (7)保密性好。
1.2 数制与编码
1.2.1 常用的几种进位计数制 1.2.2 数制转换 1.2.3 编码
3.逻辑代数三项规则
逻辑代数除基本定律外,还有三项重 要规则。 (1)代入规则 对于任一个含有变量A的逻辑等式, 可以将等式两边的所有变量A用同一个逻 辑函数替代,替代后等式仍然成立。这个 规则称为代入规则。 (2)反演规则 (3)对偶规则
4.逻辑代数常用的公式
数字电路的基础知识
2. 三极管的工作状态不同:
模拟电路中的三极管工作在线性放大区,是一 个放大元件;数字电路中的三极管工作在饱和 或截止状态,起开关作用。
因此,根本单元电路、分析方法及研究的范围
均不同。
(1-8)
3.数字电路研究的问题
根本电路元件
逻辑门电路
根本数字电路
触发器
组合逻辑电路
时序电路(寄存器、计数器、脉冲发生器、脉冲整 形电路)
(1-20)
3. 任意进制数的表示 • 对于一个n位整数,m位小数的任意进制数(N)R
可以表示为:
(N )R c n 1 c n 2c 0 c 1 c m 〔1—1—5〕
或 ( N ) 1 c n 0 1 R n 1 c n 2 R n 2 c 0 R 0 c 1 R 1 c m R m 〔1—1—6〕
式中(N)R的下标R表示R进制,ci可以是0,1,…, 〔R-1〕中任意一个数码,n、m为正整数,Ri称 为ci具有的权。
(1-21)
4. 八进制和十六进制数的表示
• 八进制数用0、1、2、3、4、5、6、7八个数码表示, 基数为8。计数规那么是“逢八进一〞,即7+1=10 〔表示八进制数的8〕,各数位的权为8n-1、…、82、 81、80、8-1、…、 8-m。那么按权展开可写成:
(1-18)
• 一般地,对于一个任意n位整数和m位小数的二进制数
(N)2可以表示为:
(N )2 b n 1 b n 2b 0 b 1 b m
〔1—1—3〕
或
( N ) 2 b n 1 2 n 1 b n 2 2 n 2 b 0 2 0 b 1 2 1 b m 2 m
Hexadecimal:十六进制的
Decimal:十进制的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大小都对应着该位上的数码乘上一个固定的数,这个固定的
数就是这一位的权数。权数是一个幂。如102 101 100. 10-1等
1、十进制
数码为:0~9;基数是10。
运算规律:逢十进一,即:9+1=10。下标用10或D表示
十进制数的权展开式:
102、101、100称为十
整数部分采用“除2取余,逆序排列”; 小数部分采用“乘2取整,顺序排列” ; 转换后再合并。
整数部分采用“除2取余,逆 序排列” ,先得到的余数为 低位,后得到的余数为高位。
2 44
余数
低位
2 22 … … … 0=K0
2 11 … … … 0=K1
2 5 … … … 1=K2
2 2 … … … 1=K3
部分不同位置的1数值 表示的十进制数
3、十六进制数
数码为:0~9、A~F;基数是16。 运算规律:逢十六进一,即:F+1=10。 下标用16或H表示。 十六进制数的权展开式:
如:(D8.A)H= 13×161 +8×160+10 ×16-1=(216.625)10
各数位的权是16的幂
1.2.2 数制转换
2、二进制数
数码为:0、1;基数是2。 运算规律:逢二进一0。即:1+1=10。下标用2 或B表示。 二进制数的权展开式:
如:(1101.01)2= 1×23 + 1×22 +0×21+1×20+0×2-1+1 ×2-2 =(13.25)10
各数位的权是2的幂
二进制数只有0和1两个数码,它的每一位都可 以用电子元件来实现,且运算规则简单,相应 的运算电路也容易实现。
运算时把2换成任一基数N,可将十进制数转换为任意 的N进制数。
把67.782转换成二进制数 整、小数部分开转换,然后合成
[67.782]10=[1000011.1100]2
ASK是幅移键控,FSK是频移键控,PSK是相移键控,
3.数字电路优点
(1)由于数字电路是以二值数字逻辑为基础的,只有 “0”和“1”两个基本字符,只要处理两种电平:高电 平与低电平,因此易于用电路来实现。
(2)高电平低电平允许有一定的范围,因此数字电路的 抗干扰能力较强。
(3)数字电路不仅能完成数值运算,而且能进行逻辑判 断和运算,这在控制系统中是不可缺少的。
将N进制数按权展开,即可以转换为十进制数。 “按权展开,相加即可”
1、二进制数转换为十进制数
例1.2 将二进制数[101.1]2转换成十进制数。
[101.1]2=1×22+0×21+1×20+1×2-1 =4+0+1+0.5
=[5.5]10
2、十进制数转换为二进制数
十进制 — 基数连除、连乘法
原理:将整数部分和小数部分分别进行转 换。
任意N的十进制表示方法
N10 an11n0 1an21n0 2 a1110 a0100 a110 1
a210 2 am10 m
∑ n1
ai1i0
im
式中,i表示位数,以小数点为分界,向左位数依 次为0,1,2……n-1;向右位数依次为-1,2,……-m。这样,第i位数表示量的权值为10i,即 ai实际所表示数值的大小为ai×10i,习惯上称为这 一位的加权系数。
退出
1.2.1 数制
(1)进位制:表示数时,仅用一位数码往往不够用,必 须用进位计数的方法组成多位数码。多位数码每一位的 构成以及从低位到高位的进位规则称为进位计数制,简 称进位制。常用的进位制有十进制、二进制、十六进制 和八进制 (2)基 数:进位制的基数,就是在该进位制中可能用到 的数码个数。(例十进制的基数是10,数码为0~9;二进 制2,数码是0、1;十六进制16,数码是0~F)
第1单元 数字电路基础知识
1.1数字信号和数字电路 1.2 数制与编码 1.3 逻辑代数基础
退出
1.1数字信号和数字电路
1. 模拟信号与数字信号
模拟信号:在时间上和 数值上连续的信号。
u
数字信号:在时间上和 数值上不连续的(即离 散的)信号。通常用0 u 和1表示两种对应的状 态。
t
模拟信号波形
对模拟信号进行传输、 处理的电子线路称为 模拟电路。
3×102= 300
3×101=
30
进制的权。各数位的 权是10的幂。
1×100= + 1
33 1
同样的数码在不同的数 位上代表的数值不同。
= 331
任意一个十进制数都 可以表示为各个数位 上的数码与其对应的 权的乘积之和,称权 展开式。
即:(331)10=3×102+3×101+1×100
又如:(209.04)10= 2×102 +0×101+9×100+0×10-1+4 ×10-2
(4)数字信息便于长期保存,凡是可以区分两种状态物 体就可以记录数字信号,比如可将数字信息存入磁盘、 光盘等长期保存。
数字电子技术应用
数字电路的应用:家用电子产品、数 字仪器、通信、数控装置、雷达和 电子计算机等。
数字化的发展前景非常光明。
(单片机、DSP、嵌入式电路等)
1.2 数制和编码
1.2.1 数制 1.2.2 不同进制之间的相互转换 1.2.3 编码
t
数字信号波形
对数字信号进行传输、 处理的电子线路称为 数字电路。
模拟信号与数字信号的比较
数字信号只要求分辨两种状态:高电平和低电平。 对应表示逻辑1和逻辑0。
2.数字电路:工作于数字信号下的电路。
在数字电路传送中,通常用时钟脉冲来决定一 位信号的宽度。 每一位信号所占的时间越长,信号传输越慢。
2 1 … … … 0=K40 Fra bibliotek … … 1=K5
高位
小数部分采用“乘2取整,
顺序排列” ,先得到的整
数为高位,后得到的整数为
低0 .3位7 5。
×2
整数
高位
0.750 … … … 0=K-1
0.750
×2
1.500 … … … 1=K-2
0.500
×2
1.000 … … … 1=K-3
低位
所以:(44.375)10=(101100.011)2
数字信号的波形
例1.1 某通信系统每秒钟传输10000位的数据, 求每位数据的时间。
解:按题意,每位数据的时间为
1 11 04s10s0
10000
想一想:既然每位数据所占的时间是固定的,为什 么在登录Internet网时,会有网速即单位时间内得 到的数据量不同的情况出现?
数字通信时,通常会进行调制后 传送