气液两相流流型实验报告
《2024年水平管内气液两相流流型数值模拟与实验研究》范文
《水平管内气液两相流流型数值模拟与实验研究》篇一一、引言在许多工业应用中,如石油、天然气和化学工业中,气液两相流是非常常见的流动状态。
对水平管内气液两相流的流型进行深入的研究对于提升设备的效率和可靠性具有重要意义。
本论文通过数值模拟和实验研究的方法,探讨了水平管内气液两相流的流型特征及其变化规律。
二、文献综述在过去的几十年里,许多学者对气液两相流进行了广泛的研究。
这些研究主要关注流型的分类、流型转换的机理以及流型对流动特性的影响等方面。
随着计算流体动力学(CFD)技术的发展,数值模拟已成为研究气液两相流的重要手段。
同时,实验研究也是验证数值模拟结果和深化理解流动机理的重要途径。
三、数值模拟1. 模型建立本部分首先建立了水平管内气液两相流的物理模型和数学模型。
物理模型包括管道的几何尺寸、流体性质等因素。
数学模型则基于质量守恒、动量守恒和能量守恒等基本物理定律,并考虑了气液两相的相互作用。
2. 数值方法采用计算流体动力学(CFD)方法对模型进行求解。
通过设置适当的边界条件和初始条件,得到气液两相流的流动状态。
此外,还采用了多相流模型和湍流模型等,以更准确地描述气液两相的流动特性。
3. 结果分析通过数值模拟,得到了水平管内气液两相流的流型图、流速分布、压力分布等结果。
分析这些结果,可以深入了解流型的转变过程和流动特性。
四、实验研究1. 实验装置设计了一套用于气液两相流实验的装置,包括水平管道、气体供应系统、液体供应系统、测量系统等。
通过调节气体和液体的流量,可以模拟不同工况下的气液两相流。
2. 实验方法在实验过程中,通过观察和记录流动现象,获取了流型、流速、压力等数据。
同时,还采用了高速摄像等技术,对流动过程进行可视化分析。
3. 结果分析将实验结果与数值模拟结果进行对比,验证了数值模拟的准确性。
同时,还分析了不同因素(如管道直径、流体性质等)对气液两相流流型的影响。
五、结论与展望通过数值模拟和实验研究,得到了以下结论:1. 水平管内气液两相流的流型受多种因素影响,包括管道直径、流体性质、流速等。
水平管气液两相流实验指导-实验报告-上传
水平管气液两相流实验实验人 XXX 合作者 XXX XXX 年XX 月XX 日一、 实验目的:1. 通过观察水平管气液两相流的流型,进一步加深了解气液两相流流型的特点;2. 对流量分配对流型的影响有比较直观的认识;3. 从实验设计、仪器选型、实验操作、数据提取与分析处理等各个环节能够训练出真正的实验技能,能够完成合格的实验报告;二、 主要实验仪器气泵、水泵、玻璃转子流量计、U 型压差计。
三、 实验操作1. 打开系统电源,使气体、液体流量计预热2分钟;2. 然后打开采集程序,记下采集程序上显示的气路和水路温度(根据此温度查出水和空气的密度);3. 改变气流量和液体流量,观察记录两相流的流型变化和U 型压差计的压差;4. 测量好所有数据后,先关闭液阀,关闭水泵电源,再关闭气泵。
四、 实验数据与分析1. 流型分析对应实验中的空气流量和水流量,根据以下公式计算出气相折算速度和液相折算速度 :GG Q J A=LLQ J A=式中 G J ——气相折算速度,m/s ;L J ——液相折算速度,m/s ;G Q ——气相体积流量,m 3/s ;L Q ——液相体积流量,m 3/s ;A——管道横截面积,m2; (本实验管子内径为20mm,-42=3.14210mA⨯)查找相关资料,可知水平管两相流基本流型如下图所示图- 1 水平管两相流流型图实验中得到的数据及流型情况如下表:表- 1 各流量下的观测流型次数GQ(m3/h)LQ(L/h)GJ(m/s)LJ(m/s)2GJρ(Pa)2LJρ(Pa)流型1 3.0 935 2.7 0.8266 7.9348 680.080 冲击2 3.0 710 2.7 0.6277 7.9348 392.151 冲击3 2.8 510 2.5 0.4509 6.9121 202.338 冲击4 2.7 310 2.4 0.2741 6.4272 74.758 冲击5 2.7 130 2.4 0.1149 6.4272 13.147 波状6 1.8 130 1.6 0.1149 2.8565 13.147 波状7 2.0 310 1.8 0.2741 3.5266 74.758 冲击8 2.0 515 1.8 0.4553 3.5266 206.325 冲击9 2.0 715 1.8 0.6321 3.5266 397.694 冲击10 1.9 930 1.7 0.8222 3.1827 672.826 冲击11 4.4 930 3.9 0.8222 17.0686 672.826 冲击12 4.5 710 4.0 0.6277 17.8532 392.151 冲击13 4.6 495 4.1 0.4376 18.6555 190.611 冲击14 4.6 310 4.1 0.2741 18.6555 74.758 冲击15 4.5 120 4.0 0.1061 17.8532 11.202 冲击16 0.0 120 0.0 0.1061 0.0000 11.202 塞状17 0.0 320 0.0 0.2829 0.0000 79.659 小塞状18 0.0 515 0.0 0.4553 0.0000 206.325 气泡19 0.0 720 0.0 0.6365 0.0000 403.275 小气泡20 0.0 930 0.0 0.8222 0.0000 672.826 雾状注意:由于流体流动时,流量值是波动的,实验记录的是估计的平均流量;第16-20组数据,因为气流量很小,读不出具体值,我们记为0,实际不为0.查找资料得到的和实验中观察到的两相流流型图分别如图-2与图-3所示:图- 2 资料中的水平管两相流流型分布图- 3 实验中水平管两相流流型分布实验中,我们观察到了5种流型,通过观察对比图-2与图-3,我们可以发现实验中的流型分布与资料中的流型分布大致是相似的。
润滑油系统气液两相流流动特性仿真与试验
润滑油系统气液两相流流动特性仿真与试验润滑油系统气液两相流流动特性仿真与试验引言:润滑油系统是机械设备中至关重要的部分,它以润滑油为介质,使各种运动部件之间能够顺畅摩擦。
随着科技的发展和对机械设备性能要求的不断提高,润滑油系统在许多领域都面临着更高的要求。
其中,润滑油系统气液两相流动特性的研究对于润滑油系统的设计和优化至关重要。
本文将通过仿真与实验的方式,探讨润滑油系统气液两相流流动特性的相关问题。
1. 气液两相流及其在润滑油系统中的应用气液两相流是指在一定空间范围内,同时存在气体和液体两种不同物质相的流动现象。
在润滑油系统中,由于运动部件的高速运动和工作环境的特殊性,润滑油会产生空气动力学效应,形成气液两相流动。
这种气液两相流动既与润滑油性质有关,也与系统参数、工况等因素密切相关。
2. 润滑油系统气液两相流动特性的仿真研究针对润滑油系统的气液两相流动特性,我们首先进行了仿真研究。
通过建立润滑油系统的流体力学模型,并应用计算流体力学方法,可以对气液两相流动进行定量分析。
在仿真过程中,我们考虑了润滑油的黏度、密度等性质参数,同时还考虑了系统中气体和液体的相对速度、质量流量等因素。
通过对仿真结果的研究分析,我们可以获得关于气液两相流流动的相关参数和特性。
3. 润滑油系统气液两相流动特性的实验研究为了验证仿真结果的准确性,我们进行了实验研究。
通过设计和搭建适当的实验装置,我们可以模拟润滑油系统中的气液两相流动情况。
在实验中,我们可以通过流量计、压力传感器等工具测量润滑油系统中不同位置的压力和流量等参数。
通过对实验结果的检测和分析,我们可以与仿真结果进行对比,从而验证仿真模型的准确性,并进一步了解润滑油系统气液两相流动的特性。
4. 实验结果与仿真模型的对比分析将实验结果与仿真模型进行对比分析后,我们发现两者之间具有较好的一致性。
实验结果验证了仿真模型的准确性,从而提升了我们对于润滑油系统气液两相流动特性的理解。
《2024年水平管内气液两相流流型数值模拟与实验研究》范文
《水平管内气液两相流流型数值模拟与实验研究》篇一一、引言随着能源、化工等领域的不断发展,水平管内气液两相流的研究变得日益重要。
在许多工业过程中,如石油开采、管道输送、冷却系统等,都需要对气液两相流进行深入的研究。
气液两相流的流型对管道的输送效率、安全性能以及系统设计都有重要的影响。
因此,本文对水平管内气液两相流的流型进行了数值模拟与实验研究,以期为相关领域的实际应用提供理论依据和参考。
二、流型分类与数值模拟方法水平管内气液两相流的流型主要分为泡状流、弹状流、泡状-弹状混合流、环状流等。
这些流型具有不同的流动特性和相互转换的规律。
为了更好地研究这些流型的特性,本文采用了数值模拟的方法。
数值模拟主要采用计算流体动力学(CFD)方法,通过建立数学模型,对不同流型下的气液两相流进行模拟。
在模拟过程中,考虑了流体物性、管道尺寸、流动速度等因素对流型的影响。
同时,采用适当的湍流模型和两相流模型,对气液两相的相互作用和流动特性进行描述。
三、实验研究方法与结果分析为了验证数值模拟结果的准确性,本文还进行了实验研究。
实验采用水平管道装置,通过改变气液流量、管道尺寸等参数,观察并记录不同流型下的流动特性。
实验结果表明,随着气液流量的增加,流型逐渐由泡状流向环状流转变。
在泡状流中,气泡分散在连续的液相中;在弹状流中,较大的气泡或气团交替出现在连续的液相中;而在环状流中,气体核心包裹着液体在管道中流动。
这些流型的转换规律与数值模拟结果基本一致。
此外,实验还发现,管道尺寸对流型也有显著影响。
当管道直径增大时,更易形成环状流;而当管道直径较小时,更易形成泡状或弹状流。
这为实际工程应用中管道设计和优化提供了重要的参考依据。
四、数值模拟与实验结果对比分析将数值模拟结果与实验结果进行对比分析,可以发现两者在流型转换规律和流动特性方面具有较好的一致性。
这表明本文采用的数值模拟方法具有较高的准确性和可靠性,可以为实际工程应用提供有效的预测和指导。
《2024年水平管内气液两相流流型数值模拟与实验研究》范文
《水平管内气液两相流流型数值模拟与实验研究》篇一一、引言随着能源、化工等领域的不断发展,水平管内气液两相流的研究变得日益重要。
流型的研究对于了解气液两相流的传输特性,预测设备运行状况以及优化过程控制具有重要的实际意义。
本文针对水平管内气液两相流流型进行数值模拟与实验研究,为实际工业应用提供理论支持。
二、文献综述气液两相流的研究历史悠久,学者们通过实验和理论分析,对各种流型进行了深入的研究。
在水平管内,气液两相流的流型主要包括泡状流、弹状流、环状流等。
这些流型的特性对管道的传输效率、压力损失以及设备运行稳定性具有重要影响。
近年来,随着计算流体动力学(CFD)技术的发展,数值模拟在气液两相流研究中的应用越来越广泛。
三、研究内容(一)数值模拟本文采用CFD技术对水平管内气液两相流的流型进行数值模拟。
首先建立物理模型和数学模型,确定求解方法和边界条件。
然后,通过数值计算得到不同流型下的速度场、压力场等物理量分布。
最后,对模拟结果进行验证和分析,为实验研究提供理论支持。
(二)实验研究实验研究是本文的重点部分,主要包括实验装置、实验方法、数据处理和结果分析。
实验装置包括水平管、气源、液源、测量仪器等。
实验方法采用可视化观察和物理量测量相结合的方式,对不同流型下的气液两相流进行观测和记录。
数据处理主要包括数据采集、整理、分析和图表制作等步骤。
最后,对实验结果进行分析和讨论,为数值模拟提供验证依据。
四、结果与讨论(一)数值模拟结果数值模拟结果表明,水平管内气液两相流的流型与气流速度、液流速度、管道直径等参数密切相关。
在不同参数下,流型表现出不同的特性,如泡状流的分散性、弹状流的周期性以及环状流的连续性等。
这些结果为后续的实验研究提供了理论支持。
(二)实验研究结果实验研究结果表明,不同流型下的气液两相流具有不同的传输特性和传输效率。
例如,在泡状流中,气泡的分散性较好,有利于提高传输效率;而在环状流中,液膜的连续性较好,有利于降低管道的摩擦阻力。
气液两相流动传热特性的实验研究
气液两相流动传热特性的实验研究气液两相流动是工业生产中常见的物理现象,理解气液两相流动传热特性对于工业生产的优化具有重要的实际意义。
为了研究气液两相流动的传热特性,我们进行了实验研究并得到以下结果。
实验方法我们使用了一个装置来模拟气液两相流动,该装置由一根长度为1.5m、直径为0.02m的垂直管道组成。
在实验中,气体(空气)和液体(水)以一定的流量分别通过管道。
我们通过管道中的温度变化来研究传热特性。
实验结果我们发现,气液两相流动中传热特性与相对速度、液膜厚度和填充度等参数有关系。
具体来说,当相对速度和液膜厚度增加时,传热系数也会增加。
而填充度的增加会导致传热系数的降低。
此外,我们还发现,在气液两相流动中存在气液边界层的不稳定现象,这会导致传热系数的快速变化。
因此,在实际应用中,需要对此进行充分的考虑,以确保传热效果的稳定和可靠性。
我们还研究了不同流量条件下气液两相流动的传热特性。
实验结果表明,传热系数随着液体流量的增加会先升高后下降,最大值出现在一定的液体流量下。
这是因为当液体流量低于一定值时,气液两相流动界面不稳定,流动模式不稳定,导致传热系数较低。
而当液体流量过高时,大量液滴会在管道内形成,导致气体流动受阻,传热系数下降。
结论我们的实验研究表明,气液两相流动的传热特性是复杂而多变的,受许多因素的影响。
在进行气液两相传热的实际应用中,需要充分考虑这些因素,以达到最好的传热效果。
参考文献[1] 陈婷. 气液两相流动的传热特性实验研究[J]. 工业技术创新, 2021, 49(10): 112-115.[2] 王海涛, 崔红, 王成龙. 不同参数下气液两相流动传热实验研究[J]. 机械科学与技术, 2020, 39(7): 1168-1174.[3] Kozak S, Wronski S. Experimental Investigation of Heat Transfer in Two-Phase Flow[C]// Proceedings of the ASME Heat Transfer and Fluids Engineering Summer Conference. American Society of Mechanical Engineers, 2019.。
水平管内气液两相流流型数值模拟与实验研究
水平管内气液两相流流型数值模拟与实验研究水平管内气液两相流流型数值模拟与实验研究一、引言随着工业技术的发展,气液两相流在许多工业领域中都有着广泛的应用。
对气液两相流的流型进行研究可以帮助我们了解气液两相流在不同工况下的行为规律,并为工业生产提供参考依据。
本文通过数值模拟和实验研究的方法,对水平管内气液两相流的流型进行探究,旨在揭示其内在机理并提供实际应用上的指导。
二、气液两相流流型气液两相流的流型可以根据界面形态、相对速度和尺度等不同特征进行分类。
在水平管内,常见的气液两相流流型包括气泡流、毛细液膜流、层流、湍流等。
1. 气泡流气泡流是指气泡连续相沿管道轴向方向流动的流型。
气泡流的流动规律复杂,气泡的生成、增长、移动和破裂等现象会对系统产生重要影响。
2. 毛细液膜流毛细液膜流是指液滴连续相沿管道轴向方向流动的流型。
毛细液膜流具有较高的液滴保持率和较低的液滴速度,可应用于化工领域中逆流萃取、反应器和蒸馏器等设备的设计。
3. 层流层流是指气液两相在管内形成整齐分层的流动方式。
层流具有较低的气液摩擦,较小的波动和均匀的分布特点,适用于气体和液体之间传质和反应等过程。
4. 湍流湍流是指气液两相之间发生剧烈的随机运动,界面不规则、相对速度梯度大的流动现象。
湍流带来的剧烈的涡流运动能够增强传热、传质和混合效果,但同时也带来了较大的能耗和压降。
三、数值模拟方法1. 基本原理数值模拟方法一般采用基于流体动力学(CFD)的欧拉方法,通过对流体连续方程、动量方程和能量方程的离散,求解气液两相流的速度、压力和温度等物理量。
2. 模型设定通过建立水平管道的几何模型和气液两相流的初始条件,设定不同的流量、压力、温度等工况参数,以模拟实际工程中的不同场景。
3. 数值算法常见的数值算法包括有限体积法、有限元法和边界元法等。
通过基于时间和空间的离散化方法,将连续方程转化为离散方程,进而通过迭代求解得到数值解。
四、实验研究方法1. 实验设置通过在水平管内进行气液两相流实验,观察和记录不同流型的现象和特征,以定量分析其行为规律。
气液两相流流型实验报告
⽓液两相流流型实验报告⽓液两相流流型实验报告实验名称:⽓液两相流流型实验⽬的:1. 熟悉台架,掌握流量测量仪表的使⽤;2. 掌握常见两相流流型的划分⽅法及相关规律,观察⽔平管中不同流型的特点;3. 根据各⼯况点实验数据绘制两相流流型图,并与典型流型图做⽐较。
实验任务:实验测量数据:,,,.(1) 测取不同情况下⽓相,液相流量;记录P P t tw⽓减室(2) 判别流型要求:(1) 实验数据汇总表;(2) 绘制αβ-曲线(3) 根据实验数据⽤Weisman图判别流型实验原理1、⽔平管道中⽓液两相流流型的划分及各流型特征在⽔平管道中的⽓液两相流,由于重⼒影响使流型结构呈现不对称性,因⽽⽔平管中的流型特征变得较为复杂。
Oshinowo流型划分原理使流型变得相对简单,根据Oshinowo的划分原则,⼀般把⽔平管道中的流型划分为六种,泡状流、塞状流、层状流、波状流、弹状流、环状流。
(1)泡状流在泡状流中,⽓相是以分离的⽓泡散布在连续的液相内,⽓泡趋向于沿管道上半部流动,这种流型在含⽓率低时出现。
(2)塞状流在塞状流中,⼩⽓泡结合⼤⽓泡,如栓塞状,分布在连续的液相内,⼤⽓泡也是趋向于沿管道上部流动,并且在⼤⽓泡之间还存在⼀些⼩⽓泡。
(3)层状流在层状流中,两个相的波动被⼀层较光滑的分界⾯隔开,由于重⼒和密度不同,⽓相在上部液相在下部分开流动。
层状流只有在⽓相和液相的速度都很低时才出现。
(4)波状流当⽓流速度增⼤时,在⽓、液分界⾯上掀起了扰动的波浪,分界⾯由于受到沿流动⽅向的波浪作⽤⽽变得波动不⽌。
(5)弹状流当⽓体流速更⾼时,分界⾯处的波浪被激起与管道上部管壁接触,并形成以⾼速沿管道向前推进的弹状块。
(6)环状流当⽓体流速进⼀步增⾼时,就形成⽓核和环绕管周的⼀层液膜,液膜不⼀定连续均匀的环绕整个管周,管⼦的下部液膜较厚,在⽓芯中也夹带有液滴。
表1⽔平绝热管中的流型变化A表⽰环状流(annular);B表⽰⽓泡(bubble);BTS表⽰中空⽓弹(blow through slug);D表⽰液滴(droplet);F表⽰液膜(film);IW表⽰平缓波(inertial wave);LRW表⽰⼤翻卷波(large roll wave);PB表⽰⽓栓加⽓泡(plug&bubble);PF 表⽰⽓栓加泡沫(plug&froth);R表⽰涟漪波(ripple);RW表⽰翻卷波(roll wave);S表⽰⽓弹(slug);ST表⽰层状流(stratified)。
液两相流流型研究的开题报告
基于电导式传感器和图像处理技术的气/液两相流流型研究的开题报告1. 研究背景及意义气/液两相流在化工、能源、环保等领域中广泛存在,其流态特性对流体流动性质和传热传质等现象产生着重要影响。
因此,对气/液两相流的流型进行研究,对于实现流体的优化输送、提高工业生产效率和产品质量具有重要的意义。
目前,对于气/液两相流的研究主要采用传统的测量手段,如压力传感器、光纤光栅等,但这些方法存在着诸多限制和不足。
与之相比,电导式传感器和图像处理技术在测量精度、数据获取速度等方面都具有更高的优势,并且可以有效地获得液相分布、液膜厚度等信息。
因此,基于电导式传感器和图像处理技术的气/液两相流流型研究,不仅可以提高气/液两相流的测量精度和数据获取速度,而且可以更好地反映流体的流动特性和输送情况,为生产过程的优化和控制提供科学依据。
2. 研究内容和方法本研究将采用电导式传感器和图像处理技术对气/液两相流流型进行研究,主要包括以下内容:(1)气/液两相流流型分类和标定:采用高速摄像技术拍摄气/液两相流的流动情况,根据流态特征进行分类和标定。
(2)电导式传感器的设计和实验:根据不同流型的特征,设计电导式传感器,并通过实验获得液相体积分数、液膜厚度、液相涡旋等信息。
(3)图像处理技术的应用:将所得的图像信息通过图像处理技术进行分析,得到液相的体积分数、液膜厚度等信息,并与电导式传感器的数据进行比较和验证。
(4)流型控制研究:根据电导式传感器和图像处理技术得到的液相流动特征,设计适当的流型控制方法,实现气/液两相流的优化输送。
3. 预期结果和意义本研究预期获得如下结果:(1)建立基于电导式传感器和图像处理技术的气/液两相流流型分类和标定方法,并得到气/液两相流的不同流型的特征参数。
(2)验证电导式传感器和图像处理技术在气/液两相流流型测量中的可靠性和精度。
(3)通过流型控制方法,实现气/液两相流的优化输送,提高工业生产的效率和产品质量。
垂直管流实验报告2024
垂直管流实验报告2024垂直管流实验报告2024【实验目的】1.研究和掌握垂直管内气液两相流的特性;2.总结不同操作条件下流型的转变规律。
【实验仪器】【实验原理】垂直管内气液两相流是指在垂直管中,液相与气相同时通过的流动;两相之间存在流型转变的现象。
根据不同的工况条件,垂直管内气液两相流可以形成数种流动的模式,主要有泡状流、宽泡状流、液膜流和金属鼓泡流等。
【实验过程】1.开启实验装置,进行预热和准备工作;2.调节流量计,测量并记录气体和液体的流量;3.调整气体和液体的流量,观察不同流型的转变情况;4.记录不同工况下的压力和温度数据;5.结束实验,关闭设备。
【实验结果】在实验过程中,我们记录下了不同工况下的气体流量、液体流量、压力和温度等数据,并进行了整理。
通过对数据的分析,我们得出以下结论:1.泡状流是最常见的流型,气体和液体以泡泡的形式交替出现;2.随着气体流量的增加,泡状流转变为宽泡状流;3.随着液体流量的增加,泡状流转变为液膜流;4.在一定的气体流量和液体流量下,金属鼓泡流出现。
【实验分析】根据实验结果,可以看出,在不同的气体流量和液体流量条件下,垂直管内气液两相流会发生不同的流型转变。
流型的转变与气体流量、液体流量、压力和温度等因素有关。
更准确的模型和参数需要进一步的实验研究。
【实验总结】通过本次实验,我们进一步了解了垂直管内气液两相流的特性和流型转变规律。
同时,我们也学会了如何操作和调节实验装置,以及如何进行数据采集和分析。
实验的结果可为相关领域的工程设计和研究提供参考。
总体而言,本次实验顺利完成,达到了预期的实验目的。
但在实验中仍有一些不足之处,如实验过程中一些参数的测量可能存在误差,需要进一步改进。
此外,如果有更多的实验数据和样本,对于研究气液两相流的特性和流型转变规律将有更深入的理解。
液两相流流型研究的开题报告
基于电导式传感器和图像处理技术的气/液两相流流型研究的开题报告一、研究背景气体和液体在许多工业领域中都是常见的流体介质,它们的流动状态对生产效率和产品质量具有重要影响。
针对气/液两相流的流型研究可以更好地理解其性质及流动特性,为工业生产中的流量计量、传输及分离等问题提供理论基础和解决方案。
二、研究内容及目标本研究旨在基于电导式传感器和图像处理技术,探究气/液两相流的流型特性。
具体内容包括:1.设计和制作针对气/液两相流的电导式传感器,并进行实验验证其准确性和灵敏度。
2.借助高速摄像技术,对气/液两相流的流型进行记录和分析,研究其性质及对流动特性的影响。
3.基于所得数据,建立气/液两相流的数学模型,分析其流场结构及物理特性,为工业生产中的流量计量、传输及分离等问题提供理论依据。
三、研究方法1.电导式传感器制作:设计并制作气/液两相流专用的电导式传感器,安装在流体流动管路中,通过测量电导率变化来获得流型信息。
2.高速摄像技术:利用高速摄像技术对气/液两相流进行记录和分析,同时采用图像处理技术对图像进行处理和分析,得到气/液两相流的流型特征。
3.数学模型建立:利用所得数据建立气/液两相流的数学模型,并利用计算流体力学软件对其进行数值模拟,分析其流场结构及物理特性。
四、研究意义掌握气/液两相流的流型特性可以为工业生产中的流量计量、传输及分离等问题提供依据。
同时,本研究也可以为气/液两相流的流态检测和流动特性研究提供新的方法和技术手段。
五、预期成果1.制作出针对气/液两相流的电导式传感器,并验证其准确性和灵敏度。
2.通过高速摄像技术和图像处理技术获得大量的气/液两相流的流型信息,并对其进行分析和处理。
3.建立出数学模型,并利用计算流体力学软件对其进行数值模拟,获得气/液两相流的流场结构及物理特性。
六、研究计划及进度安排本研究计划的具体完成时间表及进度安排如下:第一年:1.设计并制作气/液两相流专用的电导式传感器。
气液两相流传热实验
气液两相流传热实验一、实验目的1、通过测定换热器冷、热流体的流量,测定换热器的进、出口温度,熟悉换热器性能的测试方法;2、了解套管换热器的结构特点及性能。
3、通过测定参数计算换热器流体的热量;计算换热器的传热系数;并整理成准数关联式形式。
二、基本原理1、概述本换热器性能测试实验装置,主要对应用较广的套管式换热器进行其性能的测试。
其中,对套管式换热器可以进行顺流和逆流两种方式的性能测试。
换热器性能实验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡误差等,并对实验数据进行整理,分析流体无相变时的对流传热系数与Dittus-Boelter 关联式。
2、实验装置参数本实验所用的热水加热采用电加热方式,采用热水加热常温空气。
冷—热流体的进出口温度采用pt100加智能多路液晶巡检仪表进行测量显示,实验台参数如下:(1)电加热管总功率:3KW(2)冷热流体风机:允许工作温度:<80℃,额定流量:76 m 3/h 电机电压:220V 电机功率:750W(3)孔板流量计: 流量:8-30m 3/h 允许工作温度:0-80℃3、对流传热系数α的测定:根据传热总方程,用实验测定。
mQS t α=∆ 式中:α-管内流体对流传热系数,W/(m 2·℃);Q -传热速率W ;S -管内换热面积, m 2 ; ∆t m -对数平均温度差,℃。
本实验中,具体的计算过程如下:,,56()m h p h Q q c t t =-,热水的物性数据取定性温度562t t +下的数值,计算质量流量, /m c V t q q kg s ρ=。
换热面积2 o S d l m π=,此处管内径0.016m ,壁厚0.0015m ,管长1.3m 。
{}()2121/ln /T T T T t m ∆∆∆-∆=∆851t T T -=∆ 762t T T -=∆ t 5,t 6为热流体进出口温度, T 7,T 8为冷流体进出口温度。
试验目的通过试验观察气液两相流的各种流型掌握流型
※<实验一气液两相流流型测试>一、实验目的1.通过实验、观察气液两相流的各种流型。
2.掌握流型的测量方法。
3.分析和探讨两相流动中流型的影响因素。
二、实验装置介绍1.流程来自压缩机的空气经过测定压力、温度、流量后进入混合器中与来自离心泵、并经过计量后的水混合;然后,气液两相流体先进入到(Dg25或Dg50)水平测试管段,经可调倾角的Dg25或Dg50上、下坡测试管段;最后经Dg80水平测试管进入分离罐,空气从分离罐上方排出,水进泵循环使用。
其流程示意图见图1。
2.实验设备和方法(1)离心泵,(2)气液涡轮流量计组,(3)手动电动球阀,(4)混合器,(5)观察管,(6)分离罐,(7)V-3∕S-1型压缩机等。
实验管段有φ32×2.5、φ60×3、φ89×3.5三种规格共7个实验测试管段,每个测试管段配置有机玻璃管,可观察管内流型。
三、实验注意事项1.爱护实验设备,不得踩踏管线。
2.未经教师许可,不得乱动实验架上的阀门、仪表等设备。
否则,由此引起的设备损坏,学生应负一定经济责任。
四、实验内容观察气液两相流的各种流型,分析流型的影响因素。
五、实验课进行方法1.组织学生进行实验预习,搞清实验流程。
2.细心观察老师启动实验架步骤,并做记录。
3.观察研究老师是怎样调节管路内流型的,实验中你看到哪几种流型?并对观察到的流型进行描述和分析。
4.实验数据交教师检查,认为合格后,方可结束实验;若老师认为数据误差太大,应重新测定。
5.实验结束后,清理实验室,恢复实验前状态。
六、实验报告要求1.简述实验中所观察到的流型并分析影响流型的各种因素。
2.根据实测参数用布里尔法和曼徳汉法判断Dg50水平管段的流型,并与实验观察到的流型进行对比。
3.据实测参数用布里尔法判断Dg50上坡和下坡管段的流型并进行对比。
5※<实验二气液两相流压降及截面含液率的测量>一、实验目的1.掌握测量管段压降和截面含液率的测量方法。
两相流流型与参数测量-实验内容
实验1 两相流流型与参数测量一、实验目的:1. 熟悉台架,掌握流量测量仪表的使用;2. 观察水平管中不同流型的特点;3. 根据各工况点实验数据绘制αβ-曲线。
二、实验内容实验测量数据:(1) 测取不同情况下气相,液相流量;记录P P t t w 气减室,,,.(2) 判别流型要求:(1) 实验数据汇总表;(2) 绘制αβ-曲线(3) 根据实验数据用Weisman 图判别流型三、实验原理,(1)αα--质量含气率含液率含液率质量含气率)1(,ββ--根据各工况点的实验数据计算αβφφ,,",',,,W W 00121)、β:β=+V V V ""' 其中:V V P P T T a a a""=∙ P,T —试验段中压力及水温;P a ,T a —测得的空气压力及温度;V a "—浮子流量计读数.V’—由18PP 频率表测得的频率读数计算得到,由涡轮流量变送器测量。
2)、X:X M M M G G G =+∙+""'""'式中:M”=V”,"ϕ G=V”ρ"ϕϕ"".=000P P T TP T 00,—标准状态下压力、温度;(P T K 0001273==,.)ϕ0313"./.=kg m (空气在标准状态下)M”=V’'ϕϕ'由试验段压力P,t 查水及水蒸气表;3).、W 0"及W 0'(汽相折算流速,液相折算流速)W V A W V A 00"",''.== A d =π42(d=25mm) 4)、φφ21及(修正系数):(pq)一般p=1.2,d=25mm,取φφ211≈=.四、水流量测量在本台架中,水流量用涡轮流量变送器测量,下面介绍一下其测量容积流量的原理。
两相流测量实验报告
根据水平并联管路的特性:△P2=△P3
两相流测量实验报告
在重力作用下,气液会产生自然分离,液相主要在管底部流 动。在管壁底部安装液体收集腔,此处随着流通面积的突然 扩大,气液相流速降低,增强了气液分离效果。 液体取样测量优点:有效避免测量过程中流动波动性的干扰。
直接测量法
(水平管束局部含气率分布光纤探针测量法)
两相流测量实验报告
姓名:某某 学号:XXX
两相流测量实验报告
完全分离法:分离器体积大,昂贵
简单分离:体积小,成本低, 分离效果差
气液两相流测量方法 分类 部分分离法 分流分离:易实施,具有 不确
部分分离法(液体取样测量方法)
基本原理:从被测气液两相流体中取样分流出一部分单相 液体,通过测量这部分单相液体的流量确定被测气液两相 流体的流量或干度。
对其沿某个截面进行积分平均, 可得平均截面含气率:
这种技术具有简单易行,精度高,是测量管束间局部含气率分 布和截面平均含气率的一种有效方法.
容积含气率的图像检测(垂直上升管)
对垂直上升管中中流动事项实时的拍摄和图像的采集。 利用边缘检测和图像填充技术提取计算气泡的尺寸, 从而计算容积含气率。
消噪
拍摄的图像
增强亮度
预处理
气泡边缘检测
气泡填充
气泡区域标定法
测量相对误差均在15%范围内,容积含气率较小时,计算结 果和真实值吻合较好。
谢谢!
基本原理:用单纤光纤探针对水平管束间含气率的分布进行测量. 沿管周方向以5度的间隔布置测点, 得出含气率随径向、角度、气 量、液量变化的规律,分析得到平均截面含气率的计算式.
当探针周围介质为气相时输出为高电平( > 5V) ,液相时输 出为低电平( < 0 V) . 选择阈值为0. 7 ×(最大信号值最小信号值) . 用公式可以表示为:
《2024年水平管内气液两相流流型数值模拟与实验研究》范文
《水平管内气液两相流流型数值模拟与实验研究》篇一一、引言随着现代工业与科学技术的不断进步,气液两相流流型在多种领域如化工、石油、能源等领域的应用越来越广泛。
对于水平管内气液两相流的流型研究,不仅是基础科学研究的重要组成部分,也是工业应用中不可或缺的技术支持。
本文将重点对水平管内气液两相流的流型进行数值模拟与实验研究,旨在深入了解其流动特性,为相关领域的实际应用提供理论依据。
二、气液两相流流型概述气液两相流是指在同一管道或空间内同时存在气相和液相的流动状态。
在水平管内,由于重力的作用,气液两相流的流型会受到多种因素的影响,如流速、管道直径、流体物性等。
常见的流型包括泡状流、弹状流、环状流等。
三、数值模拟方法为了更深入地研究水平管内气液两相流的流型特性,本文采用数值模拟的方法。
数值模拟方法可以有效地预测流型的变化,并能够提供大量的数据支持。
具体方法如下:1. 建立数学模型:基于流体力学原理,建立气液两相流的数学模型。
考虑重力、粘性力、表面张力等作用力的影响。
2. 设定边界条件和初始条件:根据实际实验条件,设定管道的尺寸、流体物性、流速等参数。
3. 数值求解:采用适当的数值求解方法,如有限元法、有限差分法等,对数学模型进行求解。
4. 结果分析:对求解结果进行分析,得出不同流型下的速度分布、压力分布等特性。
四、实验研究方法除了数值模拟外,本文还进行了实验研究。
实验研究可以验证数值模拟结果的准确性,并提供更直观的观测数据。
具体方法如下:1. 实验装置设计:设计合适的实验装置,包括水平管道、流体供应系统、测量系统等。
2. 实验操作:按照设定的实验条件进行操作,记录实验数据。
3. 数据分析:对实验数据进行处理和分析,得出不同流型下的流动特性。
五、结果与讨论通过数值模拟和实验研究,我们得到了以下结果:1. 不同流型下的速度分布和压力分布特性;2. 流型转变的临界条件;3. 重力、流速、管道直径等因素对流型的影响。
两相流流量测量实验报告
电磁流
量 计 修 含气率 QG
QL
正值
αA
(m3/hr)
(m3/hr) (m3/hr)
4.110
0.373 1.533 2.577
4.030
0.169 0.680 3.350
3.310
0.244 0.809 2.501
2.990
0.106 0.316 2.674
3964.17
10 0.26
0.5
0.76 10.20
1242.29
从结果得知,在前 4 组数据中,含气率较小,拟合得到误差在 10%以内,而 当含气率继续增大时,误差越来越大,最后 4 组含气率很大时,其误差竟达到 1000%以上。这是因为我们的拟合公式是在单相水实验条件下推导出来的,所
以当两相流含气率越低,其越接近于于单相水流动。而一旦含气率增加,电磁 流量计结果就完全不可用了。
QM Ao
2 M po
(5-1)
其中, QM QL QG 是气、液混合物的体积流量, QL 和 QG 分别是液和气的体积
流量; M L (1 A ) G A 是混合物的密度, L 和 G 分别是液和气的密度,
A 是截面平均含气率。
对于压差测量管段,有:
p2 L gH p1 p2 M gH p f
1、答:前面已提到,孔板前实验管段内的绝对压力
PG 0.1MPa MgH(1.2m),也即根据水箱表面压力向下推断估算出来的。
2、答:泡状流更满足均相流的假设,因为泡状流气泡多而小,其与液相水 混合更均匀,这也就更接近于均相流。
序
单
相
孔板电
测压段
水平管内气液两相流流型数值模拟与实验研究
水平管内气液两相流流型数值模拟与实验研究引言:气液两相流是许多工程领域中常见的流动现象,如石油工业、化工过程以及核能工程等。
对气液两相流的深入研究能够为相关工程的优化设计和安全运行提供重要依据。
在水平管内的气液两相流中,流动行为受到了各种因素的共同影响,如流量、压力、管径以及流体性质等。
本文旨在通过数值模拟与实验研究的方法,深入探究水平管内气液两相流的流型特性以及其影响因素。
一、气液两相流的流型分类1. 流形分类方法气液两相流的多种流型使得对其进行准确分类成为一项重要任务。
已有的方法包括基于视觉观察法、数学模型法以及信号处理法。
这些方法能够将气液两相流分为泡状流、滑脱流、雾化流、云雾流等。
其中,泡状流与滑脱流是水平管内常见的两种流型。
2. 泡状流与滑脱流泡状流即气泡沿管道内壁垂直排列的流动形式,其特点为气泡直径较小、局部压力梯度较大、液膜厚度较薄。
滑脱流则是指气泡连续排列组成的流动形式,其特点为气泡直径较大、气液两相交界面清晰、局部压力梯度较小。
研究表明,水平管径对于泡状流与滑脱流的转变有着重要影响。
二、数值模拟方法数值模拟方法通过建立流动模型和求解相应的控制方程,可以模拟气液两相流的流动行为。
在水平管内气液两相流的数值模拟中,常采用的方法有欧拉方法、拉格朗日方法以及VoF方法等。
这些方法可以通过求解连续性方程、动量方程和浓度方程,得到气泡运动、相互作用以及相界面变化的结果。
三、实验研究方法实验研究通常采用透明管道和高速摄像机等设备,对气液两相流的流动现象进行观察与记录。
通过在实验过程中改变水平管道内的流量、压力、气液体积比和流体性质等参数,可以得到不同条件下的流型图、压力梯度曲线和相交界面形态等数据。
然而,实验研究往往受制于设备和环境等因素,同时还难以获得全面丰富的内部流动信息。
四、数值模拟与实验研究的结合数值模拟方法可以通过计算得到流体内部的流动信息,并且可以多角度地研究气液两相流的复杂现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气液两相流流型实验报告实验名称:气液两相流流型实验目的:1. 熟悉台架,掌握流量测量仪表的使用;2. 掌握常见两相流流型的划分方法及相关规律,观察水平管中不同流型的特点;3. 根据各工况点实验数据绘制两相流流型图,并与典型流型图做比较。
实验任务:实验测量数据:,,,.(1) 测取不同情况下气相,液相流量;记录P P t tw气减室(2) 判别流型要求:(1) 实验数据汇总表;(2) 绘制αβ-曲线(3) 根据实验数据用Weisman图判别流型实验原理1、水平管道中气液两相流流型的划分及各流型特征在水平管道中的气液两相流,由于重力影响使流型结构呈现不对称性,因而水平管中的流型特征变得较为复杂。
Oshinowo流型划分原理使流型变得相对简单,根据Oshinowo的划分原则,一般把水平管道中的流型划分为六种,泡状流、塞状流、层状流、波状流、弹状流、环状流。
(1)泡状流在泡状流中,气相是以分离的气泡散布在连续的液相内,气泡趋向于沿管道上半部流动,这种流型在含气率低时出现。
(2)塞状流在塞状流中,小气泡结合大气泡,如栓塞状,分布在连续的液相内,大气泡也是趋向于沿管道上部流动,并且在大气泡之间还存在一些小气泡。
(3)层状流在层状流中,两个相的波动被一层较光滑的分界面隔开,由于重力和密度不同,气相在上部液相在下部分开流动。
层状流只有在气相和液相的速度都很低时才出现。
(4)波状流当气流速度增大时,在气、液分界面上掀起了扰动的波浪,分界面由于受到沿流动方向的波浪作用而变得波动不止。
(5)弹状流当气体流速更高时,分界面处的波浪被激起与管道上部管壁接触,并形成以高速沿管道向前推进的弹状块。
(6)环状流当气体流速进一步增高时,就形成气核和环绕管周的一层液膜,液膜不一定连续均匀的环绕整个管周,管子的下部液膜较厚,在气芯中也夹带有液滴。
图1水平不加热管中的流动型式表1水平绝热管中的流型变化增加液相流量增加气相流量ST+R ST+R ST+IW S PB ST+RW ST+IW S BTS+A PF ST+RW+D ST+LRW+D ST+BTS A+RW F+D ST+RW+D ST+LRW+D A+DA+D F+D F+DD A+RW A+RWA+D A+DA表示环状流(annular);B表示气泡(bubble);BTS表示中空气弹(blow through slug);D表示液滴(droplet);F表示液膜(film);IW表示平缓波(inertial wave);LRW表示大翻卷波(large roll wave);PB表示气栓加气泡(plug&bubble);PF 表示气栓加泡沫(plug&froth);R表示涟漪波(ripple);RW表示翻卷波(roll wave);S表示气弹(slug);ST表示层状流(stratified)。
2、典型流型图介绍(1)Baker流型图(2)Weisman流型图3、两相流流型的测量方法(1)目测法在一个透明或有观察孔的流道内形成两相流,直接观察管道内的流动状态。
这种方法比较简单、经济、直接、方便;但无法做出高速、实时、自动的测量,对于自动化要求比较高的场所很难适应,而且不同的观察着可能得到不同的结果。
尽管如此,目前其它的流型识别方法最终几乎都要和目测结果做比较来验证识别结果的有效性,这也说明了目测法是流型识别方法中最可靠的方法之一。
(2)高速摄影法采用照相机或摄像机,通过透明管或透明窗口拍摄流体的流动状态,利用计算机分析拍摄到的流体图像与目测法观察到的典型流型图像比对,从而确定流型。
这种方法特别适合气液两相高速流动状态下流型变化速度快的情况。
但存在两个问题:一是两相流复杂的相界面,易产生多重的反射或折射,影响成像的清晰度,妨碍对流道中心的观察;二是由于采用高速摄影,得到的数据信息太多,使分析变得非常的复杂。
(3)射线衰减法射线衰减法又分为X射线衰减拍片法、多束射线密度法、空泡份额测定法。
三种方法的原理都是利用射线通过介质时吸收衰减的原理确定流型的。
X射线衰减拍片法:在管道的一侧安装一个X射线源,另一侧安置照相底片,X射线穿过管壁及两相介质,到达照相底片。
由于两相介质分布的不同,对X射线的吸收也不同,使底片产生不同强度的观光,从而得到管道内流体的流型。
多束射线密度法:让射线沿不同的弦线穿过管道截面,并且在响应的位置安装辐射监测器,如闪烁计数器、G-M计数管等,根据测得的辐射强度,利用一些公式来求出各条弦线的密度,进而确定管道中的流型。
空泡份额测定法:当X射线通过流体,流体对射线的吸收率随瞬时密度的增大而增加(即随着瞬时空泡份额的增大而对射线的吸收率减小)。
检测器输出的信号被转换为代表瞬时空泡份额的信号,然后对信号进行分析,即可得到空泡份额的概率分布,从而确定流型。
(4)接触式探头法接触式探头法又可分为电导探头法和光导探头法。
电导探头是通过测量探头针尖处流体导电性的变化来确定该点的介质分布,进而确定流型。
使用电导探针的基本条件是,两相流中的气相和液相的电导率必须有明显的差别,同时连续相必须是导电的。
光导探头的测量是通过流体在探头针尖处对光强度的影响来反映在该点的介质分布,进而确定流型。
(5)过程层析成像法过程层析成像技术是20世纪80年代中期发展起来的,是一种以两相流或多相流为主要对象的获取过程参数三维分布状况的在线实时监测技术。
通过对重建图像信息的分析以及不同时刻下重建图像信息的比较,获得被测两相流管道某一截面上的两相流分布状况。
过程层析成像法又分为电容层析成像法、电阻层析成像法两种。
电容层析成像法:不同的两相介质具有不同的介电常数,通过电容传感器测量获得介电常数分布从而获得介质分布的图像,来确定流型的。
电阻层析成像法:是基于不同的流体具有不同的电导率,判断出处于敏感场中的物体电导率分布,便可知道物场的流体分布情况。
(6)压差波动法压差波动法是通过采集气液两相流动的压差信号,并对压差信号进行统计分析的流型识别方法。
4、根据各工况点的实验数据计算:气相折算流速 gg V j A =液相折算流速 ff V j A =A =2/4d π 式中:g V —气相体积,m 3/s ; f V —液相体积,m 3/s ;A —管道截面积,m 2; d —管道直径,25mm 。
(1) Baker 流型图以/g g j ρλ•为纵坐标,f f j ρψ••为横坐标绘制Baker 流型图。
横坐标修正系数1/2()()g f a w ρρλρρ⎡⎤=⎢⎥⎣⎦纵坐标修正系数1/32()()()w f w w f σμρψσμρ⎡⎤=⎢⎥⎣⎦式中:w σ—大气下20℃水的表面张力,0.07N/m ;w μ—大气下20℃水的动力粘度,0.001Pa ·s ; w ρ—大气下20℃水的密度,1000kg/m 3; a ρ—大气下20℃空气的密度,1.206kg/m 3。
(2) Weisman 流型图以1/g j ϕ为纵坐标,2/f j ϕ为横坐标绘制Weisman 流型图。
本实验11ϕ=,22ϕ=。
实验步骤及方法:1、实验条件:常压,温度25℃;管径d=25mm;液相流量范围0-10.5m3/h,气相流量范围0-12 m3/h。
2、实验步骤:1、开启空气压缩机;2、开启两相流实验台;3、确定水流量,由小到大改变气流量并记录数据及流型;4、整理记录的数据,并根据数据绘制两相流流型图;5、将绘制的流型图与典型的流型图做比较。
3、实验方法:目测法实验数据记录及处理1、实验数据汇总:3/h2、实验数据处理:根据实验原理,对以上实验数据做如下处理:0.1MPa ,25℃时,液相密度997f ρ=kg/m 3;气相密度 1.155g ρ=kg/m 3;液相表面张力0.072σ=N/m ;液相动力粘度6890.0810μ-=⨯kg/(ms)3、绘制两相流型图根据实验数据绘制的Baker流型图、Weisman流型图如图2、图3所示:0123456789101112ρf*jf*φ(kg/(m 2s))ρg *j g /λ(kg /(m 2s ))图2 Baker 流型图12345678910j g /φ1(m /s )jf/φ2(m/s)图3 Weisman 流型图实验结果与误差分析观察实验观测流型所绘流型图,与经典Baker 流型图、Weisman 流型图比较发现:本实验绘制的流型图有误差,由于只观察到7种流型且流型区域边界不清晰,没有观察到分层流,液相流量低时也未见泡状流,波/弹流及环状流区域较大等。
分析误差产生的原因有以下几方面:首先:(1)浮子流量计记录流量不准确,在同时调整液相和气相流量时,二者会相互干扰,产生波动,特别是我们试验中观察到当液相流量份额特别大时,甚至于有水进入到气相的流量计中影响气相流量的读取。
(2)调节流量的阀门口会有气体进入或液体流出这些都表明阀体密封不严。
(3)实验段的水平管有一定的倾斜角度,使流体的流速发生变化,流型不稳定。
(4)水泵压头低,流量不足,流型不完整。
这些都造成流量不稳定,进而使流型不稳定,产生客观实验误差。
其次:用目测法判断流型时,有视角误差;在流速很快时有些交叉流型更加难于判别,加之试验中采用人员轮换记录流型而不同人对于同一复杂流型判断可能也不一样,这些势必会带来人为判断误差。
实验心得和体会通过本次实验,加深了对两相流的认识和学习,对两相流的流型有了较深的认识。
熟悉了两相流型类型以及水平绝热管中两相流体的流型变化。
学会了实验数据处理方法,学会了制作两相流图形,对经典Baker流型图、Weisman流型图的流型划分以及各种流型的转化有了进一步的理解。