新人教版第十二章.全等三角形全章教案

合集下载

(精)人教版数学八年级上册《全等三角形》全单元教案

(精)人教版数学八年级上册《全等三角形》全单元教案

第十二章《全等三角形》单元备课一、教课剖析1、内容剖析:本章主要内容是学习全等三角形的观点、性质以及判断方法,应用全等三角形的性质和判断研究角均分线的性质,能够应用全等三等三角形的性质和判断以及角均分线的性质解决简单的几何老是,初步掌握推理证明的方法。

2、教材剖析:学生已经学过线段、角、订交线、平行线、相关三角形的一些知识,经过本章的学习能够丰富和加深学生对已学图形的认识,同时为学习其余图形打好基础,教材力争创建与生活场景邻近的、风趣的问题情境引入,使学生经历了从现实生活研究并抽象出几何模型,并应用几何模型解决实质问题的过程,在内容上重点研究三角形全等的判断方法经及应用,至于角均分线的改天换地的两上互逆定理,只需修业生认识其条件与结论之间的关系,不用介绍互逆定理的观点,经过联合详细问题,使学生理解证明的基本过程,初步掌握推理、证明的正确的方法是本章的难点,初步培育学生的推理能力。

二、教科书内容和课程学习目标(一)本章知识结构框图:(二)本章的学习目标:1.认识全等三角形的观点和性质,能够正确地辨识全等三角形中的对应元素。

2.研究三角形全等的判断方法,能利用三角形全等进行证明,掌握综合法证明的格式。

3.利用尺规作图作一个角等于已知角、作一个角的角均分线。

4、经历角均分线的性质和判断方法的研究过程,灵巧应用角均分线的性质和判断解决问题 .三、本章教课建议(一)着重研究结论(二)着重推理能力的培育1.注意减缓坡度,顺序渐进。

2.在不一样的阶段,安排不一样的练习内容,突出一个重点,每个阶段都提出明确要求,便于教师掌握。

3.着重剖析思路,让学生学会思虑问题,着重书写格式,让学生学会清楚地表达思虑的过程。

(三)着重联系实质三、几个值得关注的问题(一)对于内容之间的联系(二)对于证明一般状况下,证明一个几何中的命题有以下步骤:(1 )明确命题中的已知和求证;(2 )依据题意,画出图形,并用数学符号表示已知和求证;(3 )经过剖析,找出由已知推出求证的门路,写出证明过程。

《第12章 全等三角形》全章教案

《第12章 全等三角形》全章教案

课题§12.1 全等三角形序号12备课时间8.27 授课时间主备人王暖清授课班级8.1 8.2课标要求理解全等三角形的概念,能识别全等三角形中的对应边、对应角.1.理解全等形和全等三角形的概念,能识别全等三角形中的对应边、对应角.教学目标2.掌握全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.教学重点全等三角形的性质.掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角教学难点形的对应元素.课型新授课教学准备PPT课件教学过程(一)观察实践,得到概念问题1:观察下列图案,找出这些图案中形状、大小相同的图形.师生活动:学生说出图案中形状、大小相同的图形.追问1:你能再举出一些类似的例子吗?师生活动:学生根据生活实际举出类似的例子.追问2:如果把这些形状、大小相同的图形放在一起,能够完全重合吗?问题2:把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?师生活动:学生动手操作,通过实践说明形状、大小相同的图形放在一起是完全重合的.教师顺势说出概念:能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(板书课题)【设计意图】学生通过生活经验判断、猜想,进而动手实际操作,得到这些图形是能够完全重合的.培养学生观察、动手能力.(二)图形变换,加深理解图1 图2 图3问题3:(如图1)把△ABC平移,得到△DEF.(如图2)把△ABC沿直线BC翻折180°,得到△DBC.(如图3)把△ABC绕点A旋转,得到△ADE.追问:平移、翻折、旋转前后的图形,什么变化了,什么没有变化?它们全等吗?师生活动:学生分组根据要求操作,小组讨论得到平移、翻折、旋转前后的图形位置变化了,形状和大小没变,它们依然全等.教师巡回指导,并利用多媒体动画展示给学生看,加深印象.问题4:全等用符号“≌”表示,读作“全等于”.如,△ABC≌△DEF.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.追问1:你能把图2和图3中全等三角形用符号表示出来,并说出它们的对应顶点、对应边和对应角吗?师生活动:教师讲解两个三角形全等的符号表示,结合图1讲解找两个全等三角形的对应顶点、对应边、对应角的方法.学生完成图2、图3中全等三角形的符号表示,并说出它们的对应顶点、对应边和对应角.追问2:上述几对全等三角形,它们的对应边和对应角有什么关系?为什么?师生活动:学生很容易得到全等三角形的对应边相等,全等三角形的对应角相等.教师板书指出这是全等三角形的性质.追问3:全等三角形的性质怎样用几何语言表示?因为△ABC≌△DEF所以 AB=DE,AC=DF,BC=EF (全等三角形的对应边相等)∠A=∠D,∠C=∠F,∠B=∠E (全等三角形的对应角相等)【设计意图】利用三角形的平移、翻折、旋转的不变性,让学生通过具体操作直观感知,进一步理解全等三角形的概念.通过观察,猜测并验证全等三角形的性质,这种效果是抽象的讲授难以达到的.利用基本三角形变换出各种图形,然后观察它们的对应边、对应角的变化,有利于提高学生识别图形的能力.(三)习题练习,巩固新知问题5:练习:教科书第32页练习第2题.如图4,△OCA≌△OBD,点C和点B,点A和点D是对应顶点.说出这两个三角形中相等的边和角.解:AC=DB, OA=OD, OC=OB;∠A=∠D, ∠C=∠B, ∠AOC=∠DOB.师生活动:学生回答图中相等的边和角.问题6:如图5,将△ABC沿直线BC平移,得到△DEF,说出图中相等的量.解:可能的结论有:对应角方面:∠A=∠D, ∠B =∠DEF, ∠ACB=∠F;对应边方面:AB=DE, AC=DF, BC=EF;间接的其他结论:AB∥DE, AC∥DF, BE=CF, 四边形ABEG与四边形FDGC面积相等.师生活动:学生独立完成后,分组讨论答案,教师巡回指导.【设计意图】通过练习,加强学生找全等三角形中对应边和对应角的能力,提高学生识别图形的能力.(四)小结与反思1.什么是全等形?什么是全等三角形?2.什么是全等三角形的对应顶点、对应边和对应角?3.全等三角形的性质是什么?4.怎样找全等三角形的对应边和对应角?【设计意图】通过小结,梳理本节课所学内容,总结方法,体会找全等三角形的对应边和对应角的一些具体方法.(五)布置作业A类:教科书第33页习题12.1第1题,B类:教科书第33页习题12.1第2题.板书设计§12.1 全等三角形1.全等形:能够完全重合的两个图形叫做全等形.例:2.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点、对应边、对应角3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.(二)构建三角形全等判定的探索思路追问1:如果两个三角形满足上述六个条件中的一个可以判定两个三角形全等吗?(1)一条边相等.(2)一个角相等.追问2:如果两个三角形满足上述六个条件中的两个可以判定两个三角形全等吗?(1)一条边和一个角相等.(2)两个角相等.(3)两条边相等.追问3:如果两个三角形满足上述六个条件中的三个可以判定两个三角形全等吗?满足三个条件又有哪些情况呢?师生活动:教师引导学生分析,满足一个条件、两个条件分别有哪些情况.学生通过画图说明均不能判定两个三角形全等,接着分析满足三个条件有哪几种情况.【设计意图】让学生通过思考、实践形成认知,渗透分类讨论的思想.(三)尺规作图,探究“边边边”判定方法问题2我们先研究两个三角形满足三边分别相等的情况.任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′= BC,A′C′= AC,把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?画法:(1)画B′C′= BC;(2)分别以B′、C′为圆心,线段AB、AC长为半径画弧,两弧相交于点A′;(3)连接线段A′B′、A′C′.追问:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?文字语言:三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).符号语言:在△ABC与△A′B′C′中,∴△ABC≌△A′B′C′(SSS).师生活动:师生共同进行尺规作图,学生操作、观察是否全等.然后引导学生得出“边边边”判定方法,掌握文字和符号语言.【设计意图】通过作图、剪图、比较图的过程让学生感悟到基本事实的正确性,获得“边边边”的判定方法,培养学生发现问题的能力,锻炼学生使用数学语言的能力.(四)应用新知,解决问题问题3如图:AB=AD,BC=DC,△ABC与△ADC全等吗?为什么?师生活动:学生先口述理由,然后写出完整的证明过程,教师规范步骤.【设计意图】让学生初步掌握证明两个三角形全等的一般程序,并善于从具体问题中发现隐含条件,比如公共边等.问题4例1 在如图所示的三角形钢架中,AB=AC,AD是连接点A与BC中点D的支架,求证:△ABD≌△ACD.师生活动:学生分析解题思路,然后写出完整的证明过程.【设计意图】巩固新知,培养学生规范的解题步骤.问题5:作一个角等于已知角.已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.师生活动:学生在教师的指导下进行作图,并掌握画法.学生思考:为什么画出的角等于已知角?【设计意图】为了作一个角等于已知角,实际上是先作出了一对全等的三角形,由全等三角形的对应角相等可知所作出的角等于已知角,这也启发学生:如果得到了全等的三角形,就能得到相等的角,当然也能得到相等的边,这为证明角相等、线段相等提供了全新的思路.师生活动:教师画一个△ABC,学生先讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等.简写成“边角边”或“SAS”.【设计意图】坚持让学生动手发现,在学习三角形画法的基础上探索全等条件.三、实际应用例2 如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C不经过池塘可以直接到达A和B。

初中数学人教八年级上册(2023年更新)第十二章 全等三角形全等三角形 教案

初中数学人教八年级上册(2023年更新)第十二章 全等三角形全等三角形  教案

全等三角形的判定复题课教学目标:熟练运用适当的方法判定两三角形全等通过探究与交流培养学生几何逻辑思维能力让学生感受和发现数学中的几何图形直观美教学重点:能够判定两个三角形的全等教学难点:能够利用条件熟练的应用适当的方法迅速的解题教学过程:教学环节、内容、步骤师生互动策划备注(活动目的)教师活动学生活动引入展导知识梳理:引导学生复习全等三角形的判定方法1、通常用于判定两三角形全等的一般方法有方法有种,分别简记为____,______,____ ,____2、对于直角三角形(即Rt△),除了一般方法外:当两直角三角形有一组斜边和直角边分别相等时,两三角形______,简记______。

3、全等三角形的______相等,______相等。

回顾旧知,为后面的学习埋下伏笔主题展导1.合作探究2.学生展评证明全等三角形全等的基本思路:一、挖掘“隐含条件”判全等引导学生总结:公共边,公共角,对顶角这些都是隐含的边,角相等的条件思考:(1)已知两边:SSS, SAS, HL(2)已知两角:ASA, AAS(3)已知一边一角:SAS, ASA,AAS, HL1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB若∠B=20°,CD=5cm,则∠C= __,BE=__,说说理由.3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD= __. 说说理由.学生通过自己探讨获得新知,使学生成为学习的主体,使学生学会学习,交流与合作。

3. 教师指导4. 反馈练习5.拓展延伸二、熟练转化“间接条件”判全等引导学生总结:等量加等量和相等,等量减等量差相等,都是用来间接找边和角相等的方法!5,AB=AC,DB=DC,F是AD的延长线上的一点,试说明:BF=CF.能力提升:如图,在△ABC中, AC=BC,∠ACB=90°, ∠CAB的角平分线AE交边CB于E点,过E点作EF⊥AB于F,已知AB等于10㎝,求△EFB的周长?课后闯关: 略4.如图在△ABC、△ADE中∠B=∠D,AC=AE, 且∠CAE=∠BAD,1.独立思考2.小组讨论3.展示成果1.独立思考2.小组讨论3.展示成果略在教师的指导下主动构建知识的过程。

初中数学人教八年级上册(2023年更新)第十二章 全等三角形“边边边”判定三角形全等教案

初中数学人教八年级上册(2023年更新)第十二章 全等三角形“边边边”判定三角形全等教案

全等三角形的判定(SSS)教学设计三维目标:1.掌握“边边边”条件的内容,能初步应用“边边边”条件判定两个三角形全等。

2.经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程。

3.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。

教学重点:探究三角形全等的条件教学难点:“边边边”判定方法和应用教学过程一、复习巩固引新知1、什么是全等三角形?2、全等三角形有什么性质?__________________________________________________________________________3.已知△ABC ≌△DEF,找出其中相等的边与角。

二、研讨探究得新知如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?1、探究1:给一个条件:给两个条件:归纳1:在两个三角形中,如果只有一个或两个元素对应相等,这两个三角形_____.给三个条件:2、探究2:先任意画出一个△ABC ,再画出一个△A ′B ′C ′ ,使A ′B ′= AB ,B ′C ′ =BC, A ′ C ′ =AC.把画好的△A ′B ′C ′剪下,放到△ABC 上,他们全等吗?作法:(1)画B ′C ′=BC ;(2)分别以B',C'为圆心,线段AB,AC 长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C '。

发现: 。

归纳2:在两个三角形中,如果 ,那么 .(可简写成“边边边”或 “SSS”)几何语言:三、典例精析 例1 如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .四、针对训练如图, C 是BF 的中点,AB =DC,AC=DF 。

求证:△ABC ≌ △DCF 。

F五、用尺规作一个角等于已知角 作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA , OB 于点C 、D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D ′;(4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB 。

最新人教版八年级上册第12章《全等三角形》全章教案(共8份)

最新人教版八年级上册第12章《全等三角形》全章教案(共8份)

一、课前导学:(学生自学课本31-32页内容,并完成下列问题)(一)全等有关定义: 1、能够______________的两个图形叫做全等形, 能够______________的两个三角形叫做全等三角形,两个全等图形的______和_____ 完全相同.2、一个图形经过平移、______、_________后所得的图形与原图形全等.3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 .“全等”用“ ”表示,读作 .4.若△ABC 与△DEF 全等,记作:_________________,(对应顶点的字母写在对应位置上)对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,______和____,_____和_____.(二)全等三角形的性质:1.思考:全等三角形的对应边、对应角有什么关系?为什么?2.归纳:全等三角形的_________;全等三角形的___________.3.几何语言描述:∵△ABC ≌ △DEF (已知)∴ AB=DE,_____ ,______ (全等三角形的对应边相等) ∠ A=∠ D, _______ ,________ (________________ ) (三)找全等三角形的对应元素1. 若△ABC ≌△DBC , 2 若△ABC ≌△CDA ,对应边是_____________ , 对应边是_____________ ,对应角是_____________ ; 对应角是_____________ ;教 学 过 程 设 计B C E F A B CDBAB C E F【思考】:找全等三角形的对应元素时有什么规律呢?二、合作、交流、展示:(一) 交流展示1:找全等三角形对应元素1.如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点, 2.如图,△ABN ≌△ACM ,∠B和∠C 是对应角,AB 与AC 是对应边.写出这两个三角形中的对应边和对应角. 写出其他对应边及对应角.【归纳】:寻找全等三角形的对应元素的一般规律.(二).交流展示2: 全等三角形性质及其应用1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?为什么?三、巩固与应用1. 课本第33页第3题;2. 课本第34页第6题;3. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; (2)若∠A =50°,∠E=75°,则∠ACB= 度.四、小结:1.知识: 2.思想方法: 五、作业:《作业本》第8页. 六、课后反思:N M CB ANMGH FEDCBEAF EDCB A DC B O一、课前导学:(学生自学课本35-37页内容,并完成下列问题)1.三角形全等条件的探究:两个三角形满足三边分别相等,三个角分别相等,则这两个三角形全等. 思考:判定两个三角形全等是否一定要六个条件?条件能否尽可能少呢?(动手画一画并回答下列问题) (1).只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2).给出两个条件画三角形,有____种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等 (3)、给出三个条件画三角形,有____种情形.按下面给出三个条件,画出的两个三角形一定全等吗?①三组对应角相等②三组对应边相等(按课本35页探究2画图实验)2.归纳三角形全等判定方法(1)归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”. 用数学语言表述: 在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌ ( )教 学 过 程 设 计C 'B 'A 'C B AAB O3.运用“边边边”证明两个三角形全等:已知:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .证明:∵D 是BC∴ =∴在△ 和△ 中 AB= BD= AD=∴△ABD △ACD( )【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论. 二、合作、交流、展示:1.如图,点B 、E 、C 、F 在同一直线上,且AB=DE ,AC=DF ,BE=CF ,请将下面说明ΔABC ≌ΔDEF 的过程和理由补充完整. 解:∵BE=CF (_____________) ∴BE+EC=CF+EC 即BC=EF在ΔABC 和ΔDEF 中 AB=________ (________________)__________=DF (_______________) BC=__________∴ΔABC ≌ΔDEF (_____________)变式1:你能证明∠ A=∠ D 吗? 变式2;请你能提出几个要证明的结论?2.如图,已知AB=DE ,BC=EF ,AF=DC ,求证: EF ∥BC .3.已知:∠AOB. 求作:∠A ′O ′B ′ ,使∠A ′O ′B ′=∠AOB. 作法:1)以点___为圆心,任意长为半径画弧,分别交OA ,____于点C ,D ; 2)画一条射线O ′A ′,以点___为圆心,___长为半径画弧,交__于点C ′; 3)以点C ′为圆心,____长为半径画弧,与第2步中所画的弧交于点D ′; 4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB. 三、巩固与应用:课本第37页第1、2题;四、小结:1.全等判定方法: 2.证明全等格式: 3.思想方法: 五、作业:《作业本》第9页. 六、课后反思:A B C D EF A B D EFC 'B 'A 'C B A一、课前导学:(学生自学课本37-39页内容,并完成下列问题) 1. 探究新知 探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试(请在右方空白处作图) 已知:△ABC求作:'''A B C ∆,使''A B AB =,''A C AC =,'A A ∠=∠ 作法:①画∠DA ’E=∠A ;②在射线AD ’上截取A ’B ’=AB,在射线A ’E 上截取A ’C ’=AC ; ③连接B ’C ’.(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完重合? (3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(二) 在△ABC 和'''A B C ∆中,''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌ ( )2.探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出: 3 .运用“边角边”证明两个三角形全等:教 学 过 程 设 计证明:在△ABC 和△DEC 中,⎪⎩⎪⎨⎧==∠=CB CA 1 ∴ △ABC ≌ ( )∴ AB= . 【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来(按边-角—边)C 、写出全等结论.二、合作、交流、展示:1.如图1,已知AD ∥BC ,AD =CB ,求证:△ABC ≌△CDA 。

第十二章全等三角形12.1全等三角形教案

第十二章全等三角形12.1全等三角形教案
其次,在讲解全等三角形的判定方法时,我尝试用了一些具体图形和实例来说明,但可能还不够充分。我打算在下一节课增加一些更具挑战性的题目,让学生们亲自动手操作,以加深对判定方法的理解。
在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:

2022年人教版八年级数学上册第十二章全等三角形教案 三角形全等的判定(第1课时)

2022年人教版八年级数学上册第十二章全等三角形教案   三角形全等的判定(第1课时)

第十二章全等三角形12.2 全等三角形的判定第1课时利用“边边边”判定三角形全等一、教学目标【知识与技能】1.掌握“边边边”的内容;2.能初步应用“边边边”条件判定两个三角形全等.3. 能用尺规作一个角等于已知角.【过程与方法】经历探索三角形全等条件的过程,体会用操作、归纳得出数量结论的过程.【情感态度与价值观】通过探索三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好品质以及发现问题的能力.二、课型新授课三、课时第1课时,共4课时。

四、教学重难点【教学重点】探索三角形全等的条件,会应用“边边边”判定两个三角形全等.【教学难点】探索三角形全等的条件,用尺规作一个角等于已知角.五、课前准备教师:课件、三角尺、圆规、直尺等。

学生:三角尺、圆规、直尺。

六、教学过程(一)导入新课为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?(二)探索新知1.师生互动,探究两个三角形全等的条件教师问1:什么叫全等三角形?学生回答:能够完全重合的两个三角形叫全等三角形.教师问2:全等三角形有什么性质?学生回答:全等三角形的对应边相等,对应角相等.(出示课件4)教师讲解:我们如何识别两个三角形是否全等呢?我们从“条件尽可能的少”出发,逐步增加条件分类进行操作验证,希望得到我们想要的结论.教师问3:满足一个条件对应相等时,识别两个三角形全等,共有几种情况呢?分别是哪些情况?学生讨论并回答:一共有两种情况,①只给一条边时;②只给一个角时.教师问4:请同学们每人画出一个边长为3cm的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.教师问5:请同学们每人画出一个45°的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.结论:只有一条边或一个角对应相等的两个三角形不一定全等.(出示课件6)教师问6:如果满足两个条件判断两个三角形全等,你能说出有哪几种可能的情况?学生分组讨论、探索、归纳,给出的两个条件可能是:一边一内角、两内角、两边.教师请同学们分别按下列条件做一做.①三角形两条边分别为3cm,4cm.三角形②三角形的一条边为4cm,一内角为30°,.③三角形两内角分别为30°和45°教师问7:同学根据①画出的两个三角形全等吗?学生作出图形并且组内识别后回答:两条边对应相等的两个三角形不一定全等.(出示课件8)教师问8:同学根据②画出的两个三角形全等吗?学生做出图形并且组内识别后回答:一条边一个角对应相等的两个三角形不一定全等.(出示课件9)教师问9:同学根据③画出的两个三角形全等吗?学生做出图形并且组内识别后回答:两个角对应相等的两个三角形不一定全等.(出示课件10)教师分析并归纳结论:只满足两个条件画出的三角形不一定全等.总结点拨:(出示课件11)一个条件①一角;②一边;两个条件①两角;②两边;③一边一角.结论:只给出一个或两个条件时,都不能保证所画的三角形一定全等.教师问10:给出三个条件画三角形,会有几种可能的情况?学生思考后师生归纳:有四种可能,即三角、三边、两边一角、两角一边分别相等.教师问11:已知两个三角形的三个内角分别为30°,60° ,90° 它们一定全等吗?学生作出图形并且组内识别后回答:有三个角对应相等的两个三角形不一定全等.(出示课件13)教师问12:已知两个三角形的三条边都分别为3cm、4cm、6cm .它们一定全等吗?(出示课件14)教师演示作法,学生按要求尺规作图,动手操作,通过比较得出结论.这两个三角形相等.教师问13:任意两个三角形的三条边都分别相等.它们一定全等吗?我们进行下边的操作:做一做:先任意画一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?教师演示作法:(1)画B′C′=BC;(2)分别以B',C'为圆心,线段AB,AC长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C'.(出示课件15)学生按要求尺规作图,动手操作,通过比较得出结论.三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).总结:(出示课件16)“边边边”判定方法文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)几何语言:在△ABC和△ DEF中,{AB=DE,BC=EF,CA=FD,∴△ABC ≌△ DEF(SSS).例1:如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:(1)△ABD ≌△ACD.(2)∠BAD = ∠CAD.(出示课件17)解题思路:①先找隐含条件:公共边AD ;②再找现有条件:AB=AC③最后找准备条件:D 是BC 的中点→BD=CD师生共同解答如下:(出示课件18)证明:(1)∵ D 是BC 中点,∴ BD =DC.在△ABD 与△ACD 中,{AB =AC (已知)BD =CD (已证)AD =AD (公共边) ∴ △ABD ≌ △ACD ( SSS ).(2)由(1)得△ABD≌△ACD ,∴ ∠BAD= ∠CAD.(全等三角形对应角相等)总结点拨:(出示课件19)证明的书写步骤:①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;:④写出结论:写出全等结论.例2:已知:如图,AB=AC,AD=AE,BD=CE.求证:∠BAC=∠DAE. (出示课件21)分析:要证∠BAC=∠DAE,而这两个角所在三角形显然不全等,我们可以利用等式的性质将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明△ABD≌△ACE,根据全等三角形的性质可得∠BAD=∠CAE.师生共同解答如下:(出示课件22)证明:在△ABD和△ ACE中,AB=AC,AD=AE,BD=CE,∴ △ ABD≌ △ ACE(SSS),∴∠BAD=∠CAE.∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.例3:用尺规作一个角等于已知角.已知:∠AOB.求作: ∠A′O′B′=∠AOB.(出示课件24)师生共同解答如下:(出示课件25)作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA,OB 于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC 长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD 长为半径画弧,与第(2)步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.(三)课堂练习(出示课件28-34)1. 如图,D,F是线段BC上的两点,AB=EC,AF=ED,要使△ABF≌△ECD ,还需要条件___________________(填一个条件即可).2.如图,AB=CD,AD=BC,则下列结论:①△ABC≌△CDB;②△ABC≌△CDA;③△ABD ≌△CDB;④ BA∥DC.正确的个数是( )A . 1个 B. 2个 C. 3个 D. 4个3. 已知:如图,AB=AE,AC=AD,BD=CE,求证:△ABC ≌△AED.4. 已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB,(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径作弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.5. 如图,AD=BC,AC=BD.求证:∠C=∠D .(提示: 连结AB)6. 如图,AB =AC ,BD =CD ,BH =CH ,图中有几组全 等的三角形?它们全等的条件是什么?参考答案:1. BF=CD2.C3. 证明:∵BD=CE ,∴BD -CD=CE -CD .∴BC=ED .在△ABC 和△ADE 中,AC=AD (已知),AB=AE (已知),BC=ED (已证),∴△ABC≌△AED(SSS ).4. 证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′, 在△OCD 和△O′C′D′中 D COAB∴△OCD≌△O′C′D′(SSS),∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.5. 证明:连接AB两点,在△ABD和△BAC中,AD=BC,BD=AC,AB=BA,∴△ABD≌△BAC(SSS)∴∠D=∠C.6.解:(四)课堂小结今天我们学了哪些内容:1.本节课学了判定两个三角形全等的条件数目和全等三角形的判定方法(边边边)2.利用尺规作图作一个角等于已知角(五)课前预习预习下节课(12.2)教材37页到39页的相关内容。

2024年度第12章《全等三角形》全章教案(含反思)

2024年度第12章《全等三角形》全章教案(含反思)
24
完成情况检查和批改方式
课堂检查
利用课堂时间对学生的作业完成情况进行抽查,了解学生 掌握情况。
课后批改
教师课后对学生的作业进行详细批改,标注错误和不足之 处,给出改进建议。
学生互评
鼓励学生之间相互交换作业进行批改,相互学习,相互借 鉴。
2024/2/3
25
问题解答和辅导跟进
2024/2/3
课堂解答
例题3
通过给定条件,构造全等 三角形并解决实际问题。
11
教材内容整合与拓展
01
对全章内容进行梳理和 总结,形成清晰的知识 体系。
2024/2/3
02
拓展全等三角形在其他 数学领域的应用,如几 何变换、相似三角形等 。
03
04
引入相关数学史和数学 文化内容,激发学生的 学习兴趣和探究欲望。
12
设计综合性问题和开放 性问题,提高学生的思 维能力和创新能力。
教学难点
全等三角形判定方法的灵活运用、解决实际问题的思路和方法。针对这些难点,教师将采用多种教学手段和方法 进行突破,如通过例题讲解、练习巩固、小组讨论等方式帮助学生理解和掌握相关知识。同时,教师还将根据学 生的实际情况进行有针对性的辅导和指导,以确保每个学生都能够顺利掌握所学知识。
2024/2/3
14
互动式讨论法实施
小组讨论
组织学生进行小组讨论,让他们 交流彼此的想法和解题思路,相
互启发、相互学习。
2024/2/3
提问与答疑
鼓励学生提出问题,教师及时解答 ,同时引导学生通过讨论自主解决 问题。
分享与交流
让学生分享自己的解题方法和学习 心得,促进彼此之间的交流与合作 。
15
多媒体辅助教学运用

2024年人教版八年级数学上册教案及教学反思第12章12.2 三角形全等的判定(第4课时)

2024年人教版八年级数学上册教案及教学反思第12章12.2 三角形全等的判定(第4课时)

第十二章全等三角形12.2.三角形全等的判定第4课时直角三角形全等的判定一、教学目标【知识与技能】掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.【过程与方法】经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.【情感、态度与价值观】通过画图、探究、归纳、交流,发展学生的实践能力和创新精神.二、课型新授课三、课时第4课时,共4课时。

四、教学重难点【教学重点】掌握判定两个直角三角形全等的特殊方法——HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.五、课前准备教师:课件、三角尺、直尺、圆规等。

学生:三角尺、直尺、圆规。

六、教学过程(一)导入新课小明去公园玩,在公园看到了如下两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,小明说只要测量出左边滑梯AB的长度就可以知道右边滑梯有多高了,小明的说法正确吗?(出示课件2-4)(二)探索新知1.师生互动,探究直角三角形全等的判定方法教师问1:判定两个三角形全等的条件有哪些?(出示课件6)学生回答:SSS、SAS、AAS、ASA教师提出问题:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?(出示课件7)教师问2:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(出示课件8)(让学生观察课件中的两个直角三角形并思考回答:分析:1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了.2.再满足两直角边对应相等,就可用“SAS”证全等了.教师问3:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?学生不能作肯定回答,经过小组讨论,只能作出猜测:可能全等.教师讲解:现在不要求马上给出结论.看看通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.教师问4:如图,已知AC=DF,BC=EF,∠B=∠E,△ABC≌△DEF 吗?(出示课件9)学生讨论并回答:证明三角形全等不存在SSA定理.所以一般的三角形不一定全等.教师问5:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?(出示课件10)我们完成下边的问题:思考:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC 上,看看它们是否全等.(课件出示11-14,师生一起看题)(学生独立探究,动手作图)分析:画法直接由教师给出,而不安排学生画出,是考虑学生画图有一定的难度,况且作图不是本节课的重点.教师问6:Rt△ABC就是所求作的三角形吗?学生回答:是要求作的三角形.教师问7:画好后,把Rt△A′B′C′剪下,放到Rt△ABC上,看它们全等吗?学生动手做后回答:全等.教师问8:这样你发现了什么结论?学生回答:有一条斜边和直角边相等的两个直角三角形全等》教师板书:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”).总结点拨:(出示课件15)“斜边、直角边”判定方法文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:在Rt△ABC和Rt△ A′B′C′ 中,AB=A′B′,BC=B′C′,∴Rt△ABC ≌ Rt△ A′B′C′ (HL).警示注意:(1)一是“HL”是仅适用于Rt△的特殊方法;二是应用“HL”时,虽只有两个条件,但必须先有两个三角形是Rt△的条件.(2)“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1:如图,AC⊥BC,BD⊥AD,AC﹦BD.求证:BC﹦AD.(出示课件17)师生共同解答如下:证明:∵ AC⊥BC,BD⊥AD,∴∠C与∠D 都是直角.在Rt△ABC 和Rt△BAD 中,AC=BD .∴Rt△ABC≌Rt△BAD (HL).∴ BC﹦AD.例2:如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.(出示课件22)师生共同解答如下:证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF. 即BC=BE.总结点拨:(出示课件23)证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生共同解答如下:解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .∴Rt△ABC≌Rt△DEF (HL).∴∠B=∠DEF(全等三角形对应角相等).∵∠DEF+∠F=90°,∴∠B+∠F=90°.(三)课堂练习(出示课件29-34)1. 判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等2. 如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E ,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC________(填“全等”或“不全等”),根据_______________(用简写法).4. 如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求证:△EBC≌△DCB.5. 如图,AB=CD, BF⊥AC,DE⊥AC, AE=CF.求证:BF=DE.6. 如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P,Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?参考答案:1.D2.A3. 全等HL4. 证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90 °.在Rt△EBC 和Rt△DCB 中,CE=BD,BC=CB .∴Rt△EBC≌Rt△DCB (HL).5. 证明: ∵ BF⊥AC,DE⊥AC,∴∠BFA=∠DEC=90 °.∵AE=CF,∴AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.6. 解:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=BC,∴Rt△ABC≌Rt△QPA(HL),∴AP=BC=5cm;(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=AC,∴Rt△QAP≌Rt△BCA(HL),∴AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.(四)课堂小结今天我们学了哪些内容:1.直角三角形“HL”判定方法2.灵活选择三角形全等的判定方法来解决问题(五)课前预习预习下节课(12.3)教材48页到49页的相关内容。

人教版八年级数学上册教案:第12章 全等三角形 全等三角形(1课时)

人教版八年级数学上册教案:第12章 全等三角形 全等三角形(1课时)

12.1全等三角形一、基本目标【知识与技能】1.掌握全等形、全等三角形的概念,能运用符号语言正确表示两个三角形全等.2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质.【过程与方法】经历探索全等三角形性质的过程,在观察中寻求新知,在探索中培养学生发现问题、解决问题的能力.【情感态度与价值观】在探究和运用全等三角形知识的过程中感受到数学活动的乐趣.二、重难点目标【教学重点】全等三角形的认识.【教学难点】全等三角形的性质的应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P31~P32的内容,完成下面练习.【3 min反馈】1.能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.2.全等用符号≌表示,读作全等于.3.△ABC全等于三角形△DEF,用符号表示为△ABC≌△DEF.4.若△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角是∠E,则∠C与∠F是对应角;AB与DE是对应边,BC与EF是对应边,AC与DF是对应边.5.全等三角形的对应边相等,对应角相等.环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO ≌△AEO,指出这两个三角形的对应角.【互动探索】(引发学生思考)全等三角形的对应元素该如何找?【解答】△BOD与△COE的对应边:BO与CO,OD与OE,BD与CE.△ADO与△AEO的对应角:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.【互动总结】(学生总结,老师点评)找全等三角形的对应元素的关键是准确分析图形.另外,记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.【例2】如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF 的长.【互动探索】(引发学生思考)求角和线段长,从全等三角形的性质出发去思考.【解答】∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC-BF=7-4=3.【互动总结】(学生总结,老师点评)全等三角形的对应边相等,对应角相等.活动2巩固练习(学生独学)1.已知图中的两个三角形全等,则∠α的度数是(D)A.72° B.60°C.58° D.50°2.如图,△ABC≌△DEF,BE=3,AE=2,则DE的长是(A)A.5 B.4C.3 D.23.如图,△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=70°.4.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF.(2)∵EF=NM,EF=2.1 cm,∴MN=2.1 cm.∵FG=MH,FH+HG=FG,FH=1.1 cm,HM=3.3 cm,∴HG=FG-FH=HM-FH=2.2 cm.活动3拓展延伸(学生对学)【例3】如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=150°,求∠ACB的度数.【互动探索】在△ACB中,已知∠B=25°,要求∠ACB,只要求出∠CAB即可,求∠CAB可以从全等三角形的性质出发.【解答】∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=150°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=150°,∴∠CAB=70°.∵∠B=25°,∴∠ACB=180°-∠CAB-∠B=180°-70°-25°=85°.【互动总结】(学生总结,老师点评)解题时,要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!。

2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案

2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案

第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。

学生:三角尺、直尺、全等图形、三角形纸板。

六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。

初中数学人教八年级上册第十二章 全等三角形《三角形全等的判定SSS》教学设计

初中数学人教八年级上册第十二章 全等三角形《三角形全等的判定SSS》教学设计

“三角形全等的判定——SSS”教学设计人教版义务教育教科书数学八年级上册第十二章第二节第1课时王悦(南充安平中学)一、教学内容及内容解析《三角形全等的判定——SSS》是人教版《义务教育教科书·数学》八年级上册第十二章第二节的第1课时的内容.其主要内容为构建三角形全等条件的探索思路,掌握“边边边”的判定方法.本节课的内容是探索三角形全等条件的第一课时,是在学习了全等三角形的概念、全等三角形的性质后展开的.它不仅是下节课探索三角形全等其他条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供了很好的模式和方法.因此本节课的知识具有承前启后的作用,占有相当重要的地位.根据全等三角形的性质:全等三角形的三条边分别相等、三个角分别相等,并类比“平行线的性质”与“平行线的判定”之间的联系,探索能否从“三条边分别相等、三个角分别相等”六个条件中选择部分条件,简捷地判定两个三角形全等.为此建构了三角形全等条件的探索思路,即从“一个条件”“两个条件”“三个条件”分别进行探究,最后通过动手操作,概括出一种判定方法——“边边边”.该探索过程也为其他判定方法的探索提供了思路.二、教学目标和目标解析教学目标1.构建三角形全等条件的探索思路,体会研究几何问题的方法.2.探索并理解“边边边”判定方法,会用“边边边”判定方法证明三角形全等.3.会用尺规作一个角等于已知角,了解作图的道理.三、教学问题诊断分析探索三角形全等的条件是一个复杂且开放的问题,涉及到“类比”、“分类”等数学思想,对于农村学校八年级的学生来说有一定难度,这方面的知识十分欠缺,需要多做引导,使学生逐步理解这一类数学思想;在探究3中,所运用到的尺规作图虽说有一定基础,但运用较少,学生对这方面的知识也有所欠缺,老师在作图时应共同与学生完成作图.因此本节课的教学重难点分别为:◆教学重点:掌握“边边边”判定三角形全等的方法,灵活运用“边边边”判定方法解题.◆教学难点:构建三角形全等条件的探索思路,运用尺规作图的方法进行证明“SSS”,灵活运用“边边边”判定方法解题.四、教学过程(一)创设情境,引出课题情景展示:小明家衣橱上镶有两块全等的三角形玻璃装饰品,光泽又漂亮,可惜有一天有一块打碎了,妈妈让小明到玻璃店里配一块回来,聪明的同学,小明该测量哪些数据呢?才能使得与原来那块三角形全等.【设计意图】通过学生熟悉的生活实例创设情境便于学生快速进入状态思考,也能让同学感受应用数学的魅力. 引言 1 老师这儿判断三角形全等的方法有很多种.我们先从几千年前的数学家欧几里得那儿感受下如何判断三角形全等 (播放“欧几里得利用剪裁的方法验证全等”的视频).【设计意图】让学生从数学史中领略数学的进步以及魅力,并引导学生学习更多新的方法.引言2怎样不剪下来就能证明全等,就是我们本节课所要学习的方法——三角形全等的判定(SSS).【设计意图】引出课题,揭示三角形全等的判定是判断三角形全等的进一步创新,并能够为生活带来更多便利. (二)体验过程,探究新知1.类比“平行线的判定”,构建探索思路问题1 我们先来回顾一下以前的知识,“两直线平行,内错角相等”这个命题是平行线的什么?“内错角相等,两直线平行”这个命题又是平行线的什么?师生活动: 学生独立思考,举手回答问题,老师及时对问题进行评价.【设计意图】通过回顾已学知识,为下一步类比探索铺垫.追问: 观察一下,平行线的性质以及判定有什么联系吗?师生活动: 学生独立思考后,与同桌交流思想,代表进行发言【设计意图】通过交流引导学生发现性质到判定的内在联系,即互换原有题设和结论,便从性质转换成判定.追问:上节课我们学习了全等三角形的性质,你能猜想出全等三角形的判定吗?师生活动:学生独立思考,举手进行回答,老师并带领学生对给出的猜想进行验证. 【设计意图】引导学生类比平行线的性质和判定,得出全等三角形的判定. 问题2 猜想中需要6个条件才能够得出结论,一定需要6个条件吗?师生活动:学生举手进行回答.若学生回答不上来,老师则进一步进行指导,举一个具体的例子:已知两对角分别相等,能不能证明第三对角分别相等呢?【设计意图】引导学生对三角形全等判定方法条件的探索,运用简捷的条件对三角形全等进行判定. 探究1 观察如图1、2所示的图形,观察△ABC 、△BCD 有什么共同点?师生活动:学生小组合作进行讨论,思想交流.教师在交流过程中对学生进行指导与帮助,指派小组代表上台展示思路以及成果,老师并对成果进行有效评价.【设计意图】学生通过交流,认真分析问题,讨论问题,最终得出满足一个条件不能满足三角形全等 探究2 观察如图3、4、5所示的图形,上述图形中得到两个三角形有什么共同点?师生活动:学生独立思考,举手回答问题,老师及时对回答进行解读与评价.【设计意图】学生通过独立思考,并根据认真分析问题,最终得出满足两个条件不能满足三角形全等.图2图3图4 图5图12.尺规作图,探索“边边边”判定方法探究3 先任意画出一个ABC △.在画一个C B A '''△,使CA A C BC C B AB B A =''=''='',,.把画好的C B A '''△剪下来,放到ABC △上,他们全等吗?师生活动:首先带领学生对“满足三条边分别相等的条件证明全等”的正确性进行判断,借助“三角形的稳定性”辅助判断探究3的正确性.然后师生共同用尺规作图,学生剪图比较图.具体过程如下:(1)师生共同回顾如何用尺规作一条线段等于已知线段,然后引导学生先任意画一个△ABC,然后利用尺规作图的方法作出C B '',使,进而确定了点C B '',的位置;(2)共同探索如何确定A '的位置,并用尺规作图确定其位置;(3)画出C B A '''△,并将其剪下来,放到原三角形;(4)老师并选取几个较为成功的作品上台展示,进一步获得三角形全等的“边边边”判定方法.追问:作图的结果说明了什么?你能用文字语言和符号语言概括吗?师生活动:学生回答问题,并互相补充.教师板书:三边分别相等的两个三角形全等.【设计意图】通过作图、剪图、比较图的过程,感悟基本事实的正确性,锻炼学生的动手操作能力以及归纳概括能力.知识1 三角形全等的判定方法:三边分别相等的两个三角形全等. (1)简称:“边边边”或“SSS ”. (2)判定定理应用格式:(三)应用知识,理解所学例 在如图12,.2-3所示的三角形钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD.BCC B ='')(△中和△在△SSS C B A ABC C AAC C B BC B AAB C B AABC '''≅∴''=''=''='''师生活动:教师引导学生运用图形结合进行思考问题,并利用不同的符号对不同的条件进行标识,然后安排学生独立进行证明过程的书写.【设计意图】运用“边边边”判定方法证明简单的几何问题,感悟判定方法的简捷性,并在细节上揭示判定方法运用的技巧,从而达到例题精做的效果(四)课堂小结,素养提升问题1 探索三角形的条件,基本思路是什么?问题2 “SSS”判定方法有什么作用?(五)布置作业,延伸课外1.教科书习题第1,9题.2.练习册《用SSS判定三角形全等》【设计意图】既巩固本节课的内容,又由课内延伸到课外.使每个学生都能得到不同程度的发展.板书设计:板书设计§三角形全等的判定方法——SSS一、相关定义二、例题学生展示:1.判定方法例12.判定定理应用格式。

人教版八年级上数学教学设计《第12章全等三角形》

人教版八年级上数学教学设计《第12章全等三角形》

人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。

通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。

教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。

二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。

但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。

同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。

三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。

2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。

2.教学难点:全等三角形的判定方法以及在实际问题中的运用。

五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。

2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。

3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。

4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。

六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。

2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。

3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。

2022年人教版八年级数学上册第十二章全等三角形教案 三角形全等的判定(第2课时)

2022年人教版八年级数学上册第十二章全等三角形教案  三角形全等的判定(第2课时)

第十二章全等三角形12.2 全等三角形的判定第2课时利用两边及其夹角判定三角形全等(SAS)一、教学目标【知识与技能】掌握“边角边”条件的内容,能初步应用“边角边”条件判定两个三角形全等.【过程与方法】经历探索三角形“边角边”判定定理的过程,在观察中寻求新知,在探索中发展推理能力,逐步掌握说理的基本方法.【情感、态度与价值观】通过探究三角形全等的条件的活动,培养学生观察分析图形的能力及运算能力,培养学生乐于探索的良好品质以及发现问题的能力.二、课型新授课三、课时第2课时,共4课时。

四、教学重难点【教学重点】会用“边角边”证明两个三角形全等,得到线段或角相等.【教学难点】指导学生分析问题,寻找判定三角形全等的条件.五、课前准备教师:课件、三角尺、直尺等。

学生:三角尺、直尺、剪刀。

六、教学过程(一)导入新课在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?问题:如图有一池塘.要测池塘两端A、B的距离,可无法直接到达,因此这两点的距离无法直接量出.你能想出办法来吗?(出示课件2-3)(二)探索新知1.师生合作,探究三角形全等判定方法2教师问1:我们学习了三角形全等的判定方法1,请同学们回一下并回答其内容.学生回答:三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”).教师问2:用几何语言如何表示呢?出示课件5:符号语言表达:在△ABC和△ DEF中AB=DE,BC=EF,CA=FD,∴△ABC ≌△ DEF.(SSS)教师问3:除了SSS外,还有其他情况能判定两个三角形全等吗?当两个三角形满足六个条件中的3个时,有四种情况,还有哪一些呢?(出示课件6)学生回答:两边一角和两角一边教师问4:今天我们来探究一下两边一角的情况,已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?学生讨论并回答:有两种情况:两边及夹角和两边和其中一边的对角学生问:它们能判定两个三角形全等吗?教师我们还是通过画图来验证,我们先看两边及其夹角能否判定两个三角形全等,同学们根据下边的要求作图:已知任意△ABC,画△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A.分析:(1)作∠MB′N=∠B;(2)在射线B′M上截取B′A′=AB,在射线B′N上截取B′C′=BC;(3)连接B′C′.教师问5:如何画呢?学生讨论后回答,教师引导总结:作法:(出示课件9)(1)画∠DA'E=∠A;(2)在射线A'D上截取A'B'=AB,在射线A'E上截取A'C'=AC;(3)连接B'C '.教师问6:△A′ B′ C′ 与△ABC 全等吗?如何验证?学生讨论后得出如下方法:把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否能够完全重合.学生:通过作图得到这两个三角形完全重合,所以这两个三角形全等教师问7:这两个三角形全等是满足哪三个条件?学生回答:两边和它们的夹角对应相等.教师板书:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”).总结点拨:(出示课件10)“边角边”判定方法文字语言:两边和它们的夹角分别相等的两个三角形全等.(简写成“边角边”或“SAS ”).几何语言:在△ABC 和△ DEF中,AB = DE,∠A =∠D,AC =AF ,∴△ABC ≌△ DEF(SAS).警示:必须是两边“夹角”例1:如果AB=CB ,∠ ABD= ∠ CBD,那么△ ABD 和△ CBD 全等吗?(出示课件11)师生共同解答如下:分析: △ABD ≌△ CBD.(SAS)边: AB=CB(已知),角: ∠ABD= ∠CBD(已知),边: BD=BD(公共边),证明:在△ABD 和△ CBD中,AB=CB(已知),∠ABD= ∠CBD(已知),BD=BD(公共边),∴△ ABD≌△CBD ( SAS).例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC 并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?(出示课件13)师生共同解答如下:证明:在△ABC 和△DEC 中,AC = DC(已知),∠ACB =∠DCE (对顶角相等),CB=EC(已知),∴△ABC ≌△DEC(SAS).∴AB =DE .(全等三角形的对应边相等)2.展开想象,探究SSA能否判定两个三角形全等教师问8:同学们想一下,两边一角还有那种情况呢?学生回答:两边及其一边的对角教师问9:已知两边及其一边的对角能否判定两个三角形全等?学生小组讨论后,认为利用作图观察.教师引导学生作图,提示学生考虑全面,然后给出下面的问题:(出示课件15)如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC.固定住长木棍,转动短木棍,得到△ABD.这个实验说明了什么?△ABC和△ABD满足AB=AB ,AC=AD,∠B=∠B,但△ABC与△ABD 不全等.教师问10:画△ABC 和△ABD,使∠A =∠A =30°,AB =AB=5 cm ,BC =BD =3 cm .观察所得的两个三角形是否全等?学生作图并且比较后回答:不全等.出示课件16:结论:两边和其中一边的对角分别相等的两个三角形不一定全等.例3:下列条件中,不能证明△ABC≌△DEF的是( )(出示课件17)A.AB=DE,∠B=∠E,BC=EFB.AB=DE,∠A=∠D,AC=DFC.BC=EF,∠B=∠E,AC=DFD.BC=EF,∠C=∠F,AC=DF师生共同解答如下:解析:要判断能不能使△ABC≌△DEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合,故选C.总结点拨:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.只有两边及夹角对应相等时,才能判定三角形全等.(三)课堂练习(出示课件21-25)1.在下列图中找出全等三角形进行连线.2.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是( )A.∠A=∠DB.∠E=∠CC.∠A=∠CD.∠ABD=∠EBC3.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.4. 已知:如图,AB=AC,BD=CD,E为AD上一点.求证: BE=CE.5. 如图,已知CA=CB ,AD=BD,M,N分别是CA,CB的中点,求证:DM=DN.参考答案:1.答案如下:2.D3. 证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,AD=AB (已知),∠BAC=∠DAC (已证),AC=AC (公共边),∴△ABC≌△ADC(SAS).4. 证明:在△ABD和△ACD中,AB=AC (已知),已知),公共边),∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD,在△ABE和△ACE中,AB=AC (已知),∠BAD=∠CAD(已证),AE=AE (公共边),∴△ABE≌△ACE(SAS).∴BE=CE.5. 证明: 连接CD,如图所示;在△ABD与△CBD中CA=CB,(已知)AD=BD ,(已知)CD=CD ,(公共边)∴△ACD≌△BCD(SSS)∴∠A=∠B又∵M,N分别是CA,CB的中点,∴AM=BN在△AMD与△BND中AM=BN ,(已证)∠A=∠B ,(已证),(已知)∴△AMD≌△BND.(SAS)DM=DN.(四)课堂小结今天我们学了哪些内容:1. 判定定理2:两边及其夹角对应相等的两个三角形全等(简称为“边角边”或“SAS”).2.利用SSA不能判定两个三角形全等(五)课前预习预习下节课(12.2)教材39页到41页的相关内容。

人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计

人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计

人教版八年级数学上册《第十二章全等三角形》——大单元整体教学设计一、内容分析与整合(一)教学内容分析《全等三角形》作为人教版初中八年级数学上册第十二章的核心内容,不仅是几何学知识体系中的一个重要里程碑,也是学生深化几何思维、培养逻辑推理能力的关键章节。

本章内容设计逻辑严密,层次分明,旨在通过系统的学习,使学生全面掌握全等三角形的基本概念、判定方法及其在实际问题中的应用,为后续深入探索相似三角形、三角函数等更高级的数学概念打下坚实的基础。

本章首先从全等三角形的定义切入,明确了两个三角形在完全重合时被称为全等三角形,这一基本概念为后续的学习奠定了理论基础。

教材详细展开了三角形全等的几种主要判定方法,即SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)和AAS(两角及非夹边相等),每一种判定方法都配以清晰的图形说明和严密的逻辑推理,帮助学生理解并掌握如何根据给定的条件判断两个三角形是否全等。

为了增强学生的实践能力和探索精神,本章还特别融入了“信息技术应用:探究三角形全等的条件”这一环节,鼓励学生利用计算机软件或数学工具进行动态演示和实验操作,通过直观的视觉体验加深对三角形全等判定方法的理解。

这种信息技术与数学教学的深度融合,不仅丰富了教学手段,也极大地提升了学生的学习兴趣和参与度。

本章末尾引入了“角的平分线的性质”这一内容,进一步拓展了全等三角形的应用范畴。

通过学习角的平分线如何影响三角形的形状和大小,学生能够从更广阔的视角理解全等三角形的本质,同时也为后续学习其他几何概念提供了有力的支撑。

《全等三角形》这一章节不仅是对几何学基础知识的深入探索,更是培养学生逻辑思维、空间想象能力和实践操作能力的重要载体。

通过本章的学习,学生不仅能够建立起全等三角形的完整知识体系,还能够在解决实际问题的过程中,体验到数学的严谨之美,为后续的数学学习和个人发展奠定坚实的基础。

教师应充分利用教材资源,结合多样化的教学方法,激发学生的学习兴趣,引导他们主动探索,从而在掌握知识的同时,培养良好的数学素养和创新能力。

第12章《全等三角形》全章教案(11页,含反思)

第12章《全等三角形》全章教案(11页,含反思)

第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。

人教版初中数学课标版八年级上册第十二章12.2 三角形全等的判定 教案

人教版初中数学课标版八年级上册第十二章12.2 三角形全等的判定 教案

人教版初中数学课标版八年级上册第十二章12.2 三角形全等的判定教案12.2.3全等三角形的判定(ASA与AAS)教学设计一、教学目标1、知识与技能:(1)让学生掌握已知三角形两个内角和一条边的长度怎么画三角形;(2)掌握三角形全等的证明方法:ASA和AAS;(3)熟练掌握证明的标准步骤;(4)通过对问题的共同探讨,培养学生的协作、交流能力。

2、过程与方法:探究式教学,让学生通过探究,体会分类讨论的思想.3、情感、态度与价值观通过探究全等三角形的证明方法,体会分类讨论的思想,有助于学生形成严谨的学习习惯以及形成较强的逻辑推理能力.(1)在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。

(2)培养学生善于思考、积极参与数学学习活动、勇于探索的钻研精神及作交流的意识.(3)在教学过程中,使学生获得用所学数学知识解决实际问题的成功体验,提升用数学的意识.二、学习重点和难点1、重点:指导学生分析问题,寻找判定三角形全等的条件及应用角边角定理解决问题。

2、难点:三角形全等条件的探索过程。

三、教学方法了什么?(学生分享小组的作法----学生上台展示自己所画的图形—学生分享他们的结论)(2)得到实验结论:所画的三角形均能相互重合。

(3)师提出问题:你能根据作图要求具体说说所画的是什么样的两个三角形吗?(学生回答,并让学生对实验结论进行猜想,后有教师补充,从而形成判定)(4)师生归纳:三角形全等的判定(三):两角和它们的夹边对应相等的两个三角形全等。

(可以简写成“角边角”或者“ASA”)(5)符号语言:在△ABC和△DEF中,∠A=∠DAB=DE∠B=∠E∴△ABC≌△DEF (ASA)学生活动:除了这已经写出来的符号语言,你还能尝试转换写一下别的符号语言表达吗?(学生自主举手上台板书){设计说明:让学生体会在全等证明的过程中条件不是固定的,激发学生的知识扩展,学了知识能举一反三的能力}2、说理证明(探究6),探索新知(角角边)探究:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF 全等吗?能利用角边角证明你的结论吗?证明:在△ABC中,∠A+∠B+∠C=180°∴∠C=180-∠A-∠B同理∠F=180°-∠D-∠E又∠A=∠D ,∠B=∠E∴∠C=∠F在△ABC和△DEF 中∠B=∠EBC=EF∠C=∠F∴△ABC≌△DEF (ASA)(让学生交流从这道题中得到什么启发,然后代表起来分享启发,教师再做点评,从而形成判定)(设计意图:培养学生合作意识与探究意识)(3)归纳:三角形全等的判定(四):两个角和其中一个角的对边对应相等的两个三角形全等。

新人教版第十二章.全等三角形全章教案

新人教版第十二章.全等三角形全章教案

C 11CABA 1第十二章 §12.1 全等三角形教学目标(一)知识技能: 1、了解全等形及全等三角形的概念。

2、理解掌握全等三角形的性质。

3、能够准确辩认全等三角形的对应元素。

(二)过程与方法 : 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。

2、在观察发现生活中的全等形和实际操作中获得全等 三角形的体验。

(三)情感态度与价值观: 在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

教学重点: 全等三角形的性质.教学难点:找全等三角形的对应边、对应角.预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角?全等三角形有哪些性质?教学过程(一)提出问题,创设情境 出示投影片 :1.问题:你能发现这两个图形有什么美妙 的关系吗?这两个图形是完全重合的.2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F生:同一张底片洗出的同大小照片是能够完全重合的。

形状与大小都完全相同的两个图形就是全等形. 3.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 4.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、 对应边,以及有关的数学符号.记作:△ABC ≌ △ A ’B ’C ’ 符号“ ≌ ”读作“全等于”甲DCABFE(注意强调书写时对应顶点字母写在对应的位置上)(二).新知探究利用投影片演示1.活动:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED .2. 议一议:各图中的两个三角形全等吗? 启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 3. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.(三)例题讲解[例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.1. 分析:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB .2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.2小结:找对应边和对应角的常用方法有:DCABODCABE 乙DCAB 丙DCABE(1)有公共边的,公共边是对应边.(2)有公共角的,公共角是对应角.(3)有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.(4)一对最大的角是对应角,一对最小的角是对应角(5)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(6)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(四)课堂练习1、填空点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.2、判断题1)全等三角形的对应边相等,对应角相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C 1B 1CABA 1第十二章 §12.1 全等三角形教学目标(一)知识技能: 1、了解全等形及全等三角形的概念。

2、理解掌握全等三角形的性质。

3、能够准确辩认全等三角形的对应元素。

(二)过程与方法 : 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。

2、在观察发现生活中的全等形和实际操作中获得全等 三角形的体验。

(三)情感态度与价值观: 在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

教学重点: 全等三角形的性质.教学难点:找全等三角形的对应边、对应角.预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角?全等三角形有哪些性质?教学过程(一)提出问题,创设情境 出示投影片 :1.问题:你能发现这两个图形有什么美妙 的关系吗?这两个图形是完全重合的.2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F生:同一张底片洗出的同大小照片是能够完全重合的。

形状与大小都完全相同的两个图形就是全等形. 3.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 4.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、 对应边,以及有关的数学符号.记作:△ABC ≌ △ A ’B ’C ’ 符号“ ≌ ”读作“全等于”甲DCABFE(注意强调书写时对应顶点字母写在对应的位置上)(二).新知探究利用投影片演示1.活动:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED .2. 议一议:各图中的两个三角形全等吗? 启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 3. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.(三)例题讲解[例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.1. 分析:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB .2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.2小结:找对应边和对应角的常用方法有:DCABODCABE 乙DCAB 丙DCABE(1)有公共边的,公共边是对应边.(2)有公共角的,公共角是对应角.(3)有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.(4)一对最大的角是对应角,一对最小的角是对应角(5)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(6)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(四)课堂练习1、填空点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.2、判断题1)全等三角形的对应边相等,对应角相等。

()2)全等三角形的周长相等,面积也相等。

()3)面积相等的三角形是全等三角形。

()4)周长相等的三角形是全等三角形。

()(五).课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,• 并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.找对应元素的常用方法有以下几种:(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.3. 有公共边的,公共边是对应边.4.有公共角的,公共角是对应角.5.有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.一对最大的角是对应角,一对最小的角是对应角(六)作业:习题12.1第2,第4题(七)教学反思:§12.2 三角形全等的判定§12.2.1 三角形全等的判定(一)教学目标(一)知识与技能1、三角形全等的“边边边”的条件.2、了解三角形的稳定性.3、作一个角等于已知角。

(二)过程与方法:经历探索三角形全等条件的过程,体会利用操作、 归纳获得数学结论的过程.(三)情感态度价值观: 体会探索全等的条件,通过合作交流, 形成良好的思维教学重点: 三角形全等的条件. 教学难点: 寻求三角形全等的条件.预习导航: 1、已知三角形三边如何作三角形?2、如何判定三角形全等?3、如何作一个角等于已知角?教学过程(一).创设情境,引入新课出示投影片, 已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.(二).导入新课出示投影片活动1:探究1.只给一个条件(一组边相等或一组角相等),•画出的两个三角形一定全等吗? 2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm . ②三角形两内角分别为30°和50°. ③三角形两条边分别为4cm 、6cm .C 'B 'A 'C B A学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.③4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内角一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.活动2:已知三边作三角形已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1.画图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个△A ′B ′C ′,使AB=A ′B ′、AC=A ′C ′、BC=B ′C ′.将△A ′B ′C ′剪下,发现两三角形重合.这反映了一个规律:作法:(略)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”. 活动3:定理的应用 用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒[师生共析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等.生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.有前面的结论还可以得到作一个角等于已知角的方法。

已知:∠AOB。

求做:∠A′B′C′,使∠A′B′C′=∠AOB作法:略(三).随堂练习1.如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?2.课本P9练习.(四).课时小结本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.(五).作业1.习题12.2复习巩固1。

习题12.2综合运用9.教学反思:F DCBEA§12.2.2 三角形全等的判定(二)教学目标知识技能; 1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.过程与方法: 3.掌握三角形全等的“SAS”条件,了解三角形的稳定性.4.能运用“SAS”证明简单的三角形全等问题.情感态度与价值观:在探究三角形全等的过程中学生通过交流合作获取快乐。

教学重点三角形全等的条件.教学难点寻求三角形全等的条件.预习导航:三角形全等的判定方法是什么?教学过程一、创设情境,复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?3.三角形全等的判定Ⅰ的内容是什么?二、新课讲解1.三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1( 2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A 'B 'C '剪下来放到△ABC 上,观察△A 'B 'C '与△ABC 是否能够完全重合? 3.边角边公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS ”) 4. 猜一猜:是不是两条边和一个角对应相等,这样的两个三角形一定全等吗?你能举例说明吗?如图△ABC 与△ABD 中,AB=AB ,AC=BD , ∠B=∠B 他们全等吗?三、例题与练习例1 已知: AD ∥BC ,AD = CB(图3). 求证:△ADC ≌△CBA .问题:如果把图3中的△ADC 沿着CA 方向平移到△ADF 的位置(如图5),那么要证明△ADF ≌ △CEB ,除了AD ∥BC 、AD =CB 的条件外,还需要一个什么条件(AF = CE 或AE =CF)?怎样证明呢?1.已知:如图,AB =AC ,F 、E 分别是AB 、AC 的中点. 求证:△ABE ≌△ACF .例2 已知:AB =AC 、AD =AE 、∠1=∠2(图4).求证:△ABD ≌△ACE .2. 已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .四、小 结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件. 2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.五、作 业:习题12.2第2和第10题教学反思B AC D§12.2.3 三角形全等的判定(三)教学目标:知识技能1、掌握三角形全等的“角边角”“角角边”条件2.能运用全等三角形的条件,解决简单的推理证明问题过程与方法:通过作图、对比、发现,小结得出三角形的判定方法。

相关文档
最新文档