第四章 抽样

合集下载

第4章__抽样调查

第4章__抽样调查

4.1.3抽样误差的确定
❖1)抽样误差的概念
❖2)影响抽样平均误差的因素
1、全及总体标志变异程度 2、样本容量 3、抽样组织方式 4、抽样方法
❖3)降低调查误差的途径
1、提高样本的代表性
2、注重样本量的控制
3、提高抽样设计的效率 4、重视抽样方案的审评
5、努力降低调查员的误差 6、努力调查被调查者的误差
❖ (4)如果这一地区街对面从第一号开始都没有住户,在第一号对面的街区转 一圈,并遵循右手法则。(即按顺时针方向在街区转一圈。)试着沿路线每 隔两户访问一户。
❖ (5)在起始门牌号对面邻近的街区绕过一圈后,如果你没有完成所需的访问, 就按顺时针方向到下一个街区访问。
❖ (6)如果第三个街区的住户数不够完成你的任务,就再做几个街区直到要求 的户数完成为止;这些区要按顺时针方向绕原有的街区来找。
❖5)简单随机抽样方式的优缺点
随机抽样方式的优点
方法简单直观,当总体名单完整时,可直接从中随机抽取样本。由于 抽取概率相同,计算抽样误差及对总体指标加以推断比较方便。
随机抽样方式的缺点
尽管简单随机抽样在理论上是最符合随机原则的,但是在实际应用中 有一定的局限性。第一,采用简单随机抽样,一般需对总体各单位加以 编码,而实际市场调查活动中所需调查总体往往是十分庞大的,单位非 常多,逐一编码几乎是不可能的;第二,对于某些事物无法使用简单随 机抽样,如对连续不断产生的大量产品进行质量检验,就不能对全部产 品进行编号抽样;第三,当总体的标志变异程度较大时,简单随机抽样 的代表性就不如经过分组后再抽样的代表性高;第四,由于抽出样本单 位较为分散,所以调查人力、物力、费用消耗较大。
2)抽样调查的特征
❖(1)抽取样本的客观性 ❖(2)抽样调查可以比较准确地推断总体

第四章 抽样与抽样估计

第四章 抽样与抽样估计

(一)样本统计量的极限分布 1、如果总体服从正态分布,且均值和方差均为已知,即
Y ~ N (, 2 )
则可以证明不论样本量大小如何,样本均值都围绕总体 均值而服从正态分布,并且其抽样分布的方差等于总体方差 的n分之一,即 y ~ N (, 2 / n)
2、对于非正态总体,若均值μ 和σ 2有限,则根据中心极限 定理,当样本量n充分大时,样本均值仍然围绕着总体均值 而近似地服从正态分布,即
3、缺点: (1)若群内个单元有趋同性,效率将会降低; (2)通常无法预先知道总样本量,因为不知道群内有 多少单元; (3)方差估计比简单随机抽样更为复杂。
(四)分层抽样
1、定义:在抽样之前将总体分为同质的、互不重叠 的若干子总体,也称为层。然后在每一个层独立地随机 抽取样本。 分层抽样示意图:
2、优点:
抽取样本
总体 样本
推断总体


抽样调查中的总体是有限的。在抽样以前,必须根
据实际情况把总体划分成若干个互不重叠并且能组合成 总体的部分,每个部分称为一个抽样单元,不论总体是 否有限,总体中的抽样单元数一定是有限的,而且是已 知的,因此说抽样调查的总体总是有限的。 抽样调查中影响样本代表性的因素有以下几个方面: (1)总体标志值分布的离散程度。 (2)抽样单元数的多少(或称样本量的大小)。 (3)抽样方法。

通常将反映总体数量特征的综合指标称为总体参
数。常见的总体参数主要有:总体总和;总体均值;总
体比率;总体比例。 一般将反映样本数量特征的综合指标称之为统计


量。统计量是n元样本的一个实值函数,是一个随机变
量,统计量的一个具体取值即为统计值。主要的样本统 计量有:样本总和;样本均值;样本比率;样本比例。

第四章 抽样

第四章 抽样
第四章 抽 样
主讲人: 张建鹏 要内容
一、抽样的意义与作用 二、概率抽样的原理与程序 三、概率抽样方法 四、非概率抽样方法 五、样本规模与抽样误差
2
一、抽样的意义与作用
1. 相关概念 (1). 总体(population):构成它的所有元素的集合 N 表示。元素则是构成总体的基本的单元。 如:海医学生新闻获得方式调查 某市居民家庭生活状况 (2). 样本(sample):从总体中按一定方式抽取的一部 分元素的集合。用n表示 如:从海医1万名学生中,按一定方式抽取300人进行 调查,这300人构成该总体的一个样本。
28
分层(最佳)抽样法
定义:又称非比例抽样法,根据各层样本标准差 的大小确定各层的样本数目的方法。 计算公式为:
ni = n * ( N i Si / ∑ N i Si )
(1)
式中:ni ----- 各类型应抽选的样本单位数 n ----- 样本单位数 Ni ----- 各类型的调查单位数 Si ----- 各类型调查单位数的样本标准差
14
抽样设计的五个步骤 1)定义目标总体 (如上述案例中正在上学的 年龄在8-17岁的年轻人) 2)制定抽样框 (例如上述案例中的所有县及 县内的城市和城镇) 3)选择一种抽样技术 (如上述案例中的三段 分层概率抽样) 4)实际抽取样本 (样本容量,1000名;执行 抽样过程和对调查员指令) 5)评估样本质量 (如检测样本平均年龄是否 与全国普查数据一致或接近)
33
整群抽样与分层抽样的比较
特征 样本来源 抽样目的 划分原则 整群抽样 一个或几个 不提高成本而提 高抽样效率 分层抽样 所有层 不提高成本而提 高精度
群中的个体异质, 层中个体同质, 群间同质 层间异质

(04)第4章+抽样与抽样分布

(04)第4章+抽样与抽样分布

4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大

[高等教育]现代社会调查 第四章 抽样

[高等教育]现代社会调查  第四章 抽样
27
3.分层抽样
——又称类型抽样,它是先将总体中的所有单位按某种特征或标 志(如性别、年龄、职业或地域等)划分成若干类型或层次,然后 再在各个类型或层次中采用简单随机抽样或系统抽样的办法抽取 一个子样本,最后,将这些子样本合起来构成总体的样本。 操作方法:
将总体中的所有单位按某种特征或标志(如性别、年龄、职业或地
特点 简单随机抽样 一阶段抽样 系统抽样
分层抽样
整群抽样 多阶段抽样 多段抽样 PPS抽样
样本一次直接从 总体中抽出
样本分多阶段从 总体中抽出
17
1.简单随机抽样
——是概率抽样的最基本形式,它是按等概率原则直 接从含有N个元素的总体中随机抽取n个元素组成样本 (N>n)。
常用方法:直接抽样法、抽签法、随机数表法
25
当抽样间距(K=N/n)不是整数时:
循环等距抽样法 A+K A A+2K
A+3K
A+4K
A+(n-1)K
调整直线等距抽样 如:N=2580, n=300, 则K=8.6
……
调整:在1-86之间选择整数的随机起点,如27;将小数 点调回,得到非整数的随机起点2.7,由此得到号码:2.7, 11.3, 19.9, 28.5,……。将小数点后面的部分略去,就是迁 中单位的号码:2, 11, 19, 28, …… 26
抽5个区
抽4个区 抽3个区
抽12所学校
抽10所学校 抽10所学校
每所学校抽20名教师
每所学校抽30名教师 每所学校抽40名教师
方案8
方案9
根据抽取对象的具体方式的不同,把抽样分为概率抽 样和非概率抽样。
6
抽样的类型

第四章 抽样技术

第四章 抽样技术

• (五)多阶段抽样
– 含义:multistage sampling-----即先抽大的调 查单元,在大单元中抽小单元,再在小单元 中抽更小的单元。如:我国的城市职工家计 调查,采用三阶段抽样,先城市-基层单位调查户。
第四章 抽样技术
– 应用:在复杂、大规模的市场调查中。
• (六)抽样技术的选用原则
• (四)常用术语
– 1.总体(population)与样本(sample) – 2.总体指标和样本指标
• 总体指标-------反映总体数量特征的指标,有总 体平均数µ,总体比例P, 总体方差 σ 2
第四章 抽样技术
– 样本指标------又称样本估计量或统计量,用 以估计和推断相应总体指标的综合指标,有 样本平均数 x ,样本比例p ,样本方差S2。
第四章 抽样技术
• 成数------分总体成数与样本成数 • 含义------总体中具有某种特征的单位占全部单 位的比例,称总体成数(总体比例) • 如:产品的合格率,市场占有率等。 • 样本成数的抽样分布
– 当从总体中抽出一个容量为n的样本时,样本中具有 某种特征的单位数x服从二项分布,即有x~B(n, π),且 有E(x)=n π V(x)=n π(1- π). – 因而样本比例p=x/n也服从二项分布,且有: – E(p)=E(x/n)= π – V(p)=V(x/n)=1/n π(1- π)
第四章 抽样技术
第四章 抽样技术
第四章 抽样技术
本章要点
• 1.抽样调查的含义、特点与程序; • 2.随机抽样技术的类型及其各自的特点、 方法; • 3.非随机抽样技术的类型及其各自的特 点、方法; • 4.抽样误差的含义及其计算方法 。
第四章 抽样技术

第四篇抽样和分布1(药学)PPT课件

第四篇抽样和分布1(药学)PPT课件
该法要求各层间差异尽可能大,才能得到有较 好代表性的样本,并便于各层间分析比较。
24
4、整群抽样 先将总体分成若干互不重叠部分(称为群),再 从各群中随机抽取某群或几群作为样本。 例:调查某年级学生上网情况
可把每班作为一群,从中随机抽取一班或几班作 为样本。
该法适用于大规模调查,易于组织,节省人 力物力,但误差较大,适于群体差异较小的调 查对象。
8
实例 研究某地区12岁儿童生长发育情 况,总体和个体应为什么? 显然,总体为该地区的全体儿童
个体为每一个儿童。
当然,衡量儿童生长发育情况要通过诸如身高、 体重等数量指标进行,所以对总体的研究实际上 是对该地区的全体儿童的这些指标值概率分布进 行研究。
9
根据研究指标的多少,总体分为 一维总体-研究一项描述指标,常用随机变量X表示; 多维总体-研究多项描述指标,常用随机向量表示,
14
一般地,对有限总体,应采用有放回抽样,对 无限总体(或数量较多),可采用无放回抽样 (近似看作有放回),否则违背独立性。
简单随机抽样具体实施的方法: 抽签法
随机数法
15
三、统计量(Statistic )
样本是对总体的代表和反映,抽样的目的是利用样本值对 总体进行统计推断。
而对总体进行统计推断,常根据需要的不同,利用样本构 造一些包含所需要的多种信息的量,就是关于样本 X1 ,X2 ,…,Xn的一些函数,这些函数统称为统计量。
3
例如,在几何学中要证明“等腰三角形底角相等”, 只须从“等腰”这个前提出发,运用几何公理,一步一 步推出这个结论.这是演绎推理。
而一个习惯于统计思想的人,可能这样推理: 做很多大小形状不一的等腰三角形,实地测量 其底角,看差距如何,根据所得资料看看可否作 出“底角相等”的结论. 这样做就是归纳式的方法.

第四章 抽样

第四章 抽样
抽样的类型
(1)概率抽样:简单随机抽样、系统抽样、 分层抽样、整群抽样、多段抽样、PPS抽样、 户内抽样 (2)非概率抽样:偶遇抽样、判断抽样、 定额抽样、雪球抽样
二、概率抽样的原理与程序
(一)概率抽样的基本原理 1、总体的同质性与异质性 同质性:如果某个总体中的每一个成员在所有方 面都相同,那么,我们就说这个总体具有完全的 同质性。 否则,就存在不同程度的异质性。 同质性总体不需要抽样。 社会各种总体的异质性决定了严格的概率抽样的 必要性。
(二)系统抽样
3、系统抽样优缺点: <1>优点: ①易于实施,工作量少。 ②样本在总体中分布更为均匀,抽样误差 小于或至多等于简单随机抽样。
(二)系统抽样
<2>系统抽样缺点: ①系统抽样是以总体的随机排列为前提, 如果总体的排列出现有规律分布时,会使 系统抽样产生极大误差。 ②当总体内个体类别之间的数目悬殊过大 时,样本的代表性可能较差。 <3>适用范围:系统抽样最适用于同质性较 高的总体。
人们通常采用下列几组数字
有90%的样本统计值落在u〒1.65SE(样本 平均数的标准差)之间; 有95%的样本统计值落在u〒1.96SE之间; 有98%的样本统计值落在u〒2.33SE之间; 有99%的样本统计值落在u〒2.58SE之间。 其中,百分数表示置信水平,u〒1.65SE等 表示置信区间。
随机数表抽样举例
3、简单随机抽样方法
①当总体元素较少时:常用的办法类似于 抽签,即把总体中每一个单位都编号,将 这些号码写在一张张小纸条上,然后放入 一容器如纸盒、口袋中,搅拌均匀后,从 中任意抽取,直到抽够预定的样本数目。 这样,由抽中的号码所代表的元素组成就 是一个简单随机样本。

06 第四章 抽样

06 第四章  抽样
下选取,也可以依纵列的方向往上选取,由左到右或者由右到左, 也可以依对角线的方式选取。什么方式并不重要,关键是从头到 尾贯彻使用这种方法。这里我们为了方便选择从纵列方向,当一 列到了末端时,可以从下一列最顶端选起,当一页选完以后,可 以从下一页的第一纵列继续选取。
现在,我们决定从那里开始。可以闭着眼睛随便戳一个数字。也
(二)方法
A 总体元素较少时,类似于抽签方法。
B 总体元素较多时,随机数表法 小总体时 抓阄,抽签, 较大总体时 随机数字表.使用方法. 简单随机样本是概率抽样的理想类型,他从 随机样本的抽取到对总体进行推断有一套健全的规 则.但是当总体所含个体的数目太多时采用这种方法 不仅费事,工作繁杂,而且费用太高.此外当总体内分 类明显时,这种抽样无法按类别特征自动分配样本数, 若想保证样本的代表性,必须增大样本量,从而使整 个工作的工作量增大.
因此,我们在使用系统抽样方法时,一定要注意抽样
框的编制方法。
注意:
总体名单中,个体的排列具有某种次序上的先后、等级上的高低的情况
例如:我们从2000户家庭的社区,抽取50户进行消费状况的调查,
而2000户家庭的名单是按照家庭收入的多少按照由高到低排列的。
抽样间距=2000/50=40
如果两个人选择样本,一个人选择初始号码为3,另一个人选择初 始号码为38,那么肯定前者家庭平均收入远远高于后者。
随机数表中的数码
8432990906 1053873020 9427410041 0139022507 9361404310 1359866042 6321912683 9420582507 2725651176
选用的数码
0906
不选用的原因
后面四位数大于3000

四章样本及抽样分布

四章样本及抽样分布

E(X )
1 n
n i 1
E( X i )
D(X )
1 n2
n
2
D(Xi )
i 1
n
X ~ N(, 2 )
n
X ~ N (0, 1) / n
iid
2.若X1,,X n ~ N (, 2 ), 则 (1) X与S 2相互独立; (2) 2
(n 1)S 2
2
~
2 (n 1);
(3)T X ~ t(n 1).
第四 章 样本及抽样分布
引言 run 随机样本 抽样分布
4.1 随机样本 一、总体与样本
1. 总体:研究对象旳全体。 一般指研究对象旳某项数量指标。 构成总体旳元素称为个体。
从本质上讲,总体就是所研究旳随机变量或 随机变量旳分布。
2. 样本:来自总体旳部分个体X1, … ,Xn 假如满足: (1)同分布性: Xi, i=1,…,n与总体同分布. (2)独立性: X1,… ,Xn 相互独立; 则称为容量为n 旳简朴随
P{ 1
1
P{ 1 F
F (n2 , n1)}
} 1
F F1 (n1, n2 )
P{ 1
1 }
得证!
F F1 (n1, n2 )
4.3 正态总体旳抽样分布定理
iid
1.若X1 ,,Xn ~ N(, 2 ), 则U
X / n
~
N(0, 1)
证明:
X
1 n
n i 1
Xi
是n 个独立旳正态随 机变量旳线性组合,故 服从正态分布
i 1
称为自由度为n的 2 分布.
2.2—分布旳密度函数f(y)曲线
f
(y)

统计学第四章抽样与参数估计

统计学第四章抽样与参数估计

疗效评价
通过参数估计和假设检验等方法,评价药物 的疗效和安全性。
案例三:工业生产过程质量控制
抽样检验计划制定
根据产品特性和质量要求,制定合适的抽样 检验计划。
不合格品控制
对不合格品进行统计分析和处理,找出原因 并采取措施加以改进。
过程能力分析
收集生产过程中的质量数据,进行过程能力 分析和参数估计。
抽样作用
通过样本信息推断总体特征,为决策提供依据。
抽样方法分类
随机抽样
按照随机原则从总体中抽取样本,每个个体 被抽中的概率相等。
系统抽样
按照某种规则从总体中抽取样本,如每隔一 定距离或时间抽取一个样本。
分层抽样
将总体分成若干层,然后从各层中随机抽取 样本。
整群抽样
将总体分成若干群,然后随机抽取若干群作 为样本。
05
案例分析:实际场景下抽样 与参数估计问题探讨
案例一:市场调查中消费者满意度测评
01
抽样方法选择
根据市场调查的目的和预算,选 择合适的抽样方法,如简单随机 抽样、分层抽样或整群抽样。
03
数据收集与处理
设计调查问卷,收集消费者满意 度数据,并进行数据清洗和整理

02
样本量确定
综合考虑调查的精度要求、总体 规模、抽样误差等因素,合理确
运用统计学方法进行假设检验和参数估计,验证研究假 设的可靠性。
THANKS
定样本量。
04
参数估计
运用统计学方法,对消费者满意 度进行参数估计,如计算满意度
均值、标准差等。
案例二:医学研究中药物疗效评价
试验设计
采用随机对照试验等方法,确保试验组和对 照组的可比性。
样本量计算

产品质量抽样的法律规定(3篇)

产品质量抽样的法律规定(3篇)

第1篇第一章总则第一条为了加强产品质量监督管理,确保产品质量,保障消费者合法权益,根据《中华人民共和国产品质量法》和其他有关法律、行政法规的规定,制定本规定。

第二条本规定所称产品质量抽样,是指产品质量监督管理部门依法对生产、销售的产品进行抽样检验的活动。

第三条产品质量抽样应当遵循公开、公正、公平、合法的原则。

第四条产品质量监督管理部门应当建立健全产品质量抽样制度,加强对产品质量抽样的管理和监督。

第五条产品质量抽样不得妨碍被抽样单位的正常生产、经营活动。

第六条产品质量抽样人员应当具备相应的专业知识和技能,并经培训合格。

第二章抽样范围和标准第七条产品质量抽样范围包括:(一)列入国家产品质量监督抽查目录的产品;(二)质量投诉较多或者存在质量问题的产品;(三)其他需要抽查的产品。

第八条产品质量抽样标准应当符合以下要求:(一)抽样依据:抽样依据应当为国家标准、行业标准或者地方标准;(二)抽样方法:抽样方法应当科学合理,能够代表产品真实质量;(三)抽样数量:抽样数量应当符合国家标准或者行业标准的要求;(四)抽样时间:抽样时间应当合理,不影响产品质量的稳定性。

第三章抽样程序第九条产品质量抽样程序如下:(一)制定抽样计划:产品质量监督管理部门根据产品质量抽样范围和标准,制定抽样计划,并报上级主管部门批准;(二)下达抽样通知:产品质量监督管理部门向被抽样单位下达抽样通知,告知抽样时间、地点、数量等事项;(三)现场抽样:抽样人员按照抽样计划,在规定的时间和地点对产品进行抽样;(四)封样:抽样后,抽样人员应当对样品进行封样,并填写封样单;(五)送检:抽样人员将封样单和样品送至指定的检验机构;(六)检验:检验机构按照国家标准或者行业标准对样品进行检验;(七)出具检验报告:检验机构根据检验结果出具检验报告。

第十条产品质量抽样人员应当出示有效的抽样证件,并说明抽样依据、抽样范围、抽样数量等事项。

第十一条被抽样单位应当积极配合产品质量抽样工作,如实提供有关资料。

第四章 抽样调查

第四章 抽样调查

p
p1 p
n
0.2 0.8 0.02 400
即:根据样本资料推断全部学生中戴眼镜的学 生所占的比重时,推断的平均误差为2%。
例: :
一批食品罐头共60000桶,随机抽查300桶,发 现有6桶不合格,求合格品率的抽样平均误差?
解: 已知 N 60000 n 300 n1 6
解:
x xf 12600 126件 f 100
s x x 2 f 4144 6.47件
f 1
99
x
s 2 1 n n N
6.472 1 100 0.614件
100 1000
x
通过例题可说明以下几点:
①样本平均数的平均数等于总体平均数。 ②抽样平均数的标准差仅为总体标准差的 1
n
③可通过调整样本单位数来控制抽样平均误差。
例:假定抽样单位数增加 2 倍、0.5倍时, 抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍
则:
x

3n
1 0.577 3
二、抽样调查的特点
1、 是专门组织的一次性的非全面调查 2、 抽选样本单位遵循随机原则 3、 用样本指标数值去推断总体指标数值 (与重点调查的区别) 4、 抽样误差可计算并控制在一定范围内 (与典型调查的区别)
三、抽样调查的几个基本概念 (一) 全及总体和抽样总体
全及总体 指研究对象的全体。其单位数 (总体) 用N 表示。
即:当根据样本学生的平均体重估计全部学生的平均 体重时,抽样平均误差为1公斤。
例: 某厂生产一种新型灯泡共2000只,随机抽出 400只作耐用时间试验,测试结果平均使用寿 命为4800小时,样本标准差为300小时,求抽 样推断的平均误差?

第4章-抽样设计

第4章-抽样设计

9
第一节 抽样设计的基本概念
市场调研
二、抽样调查的相关概念
1、全及总体——人们想要认识的对象的全体,它是构成 它的所有个体的集合,也称为总体。(常用 N 表示)
2、抽样总体——由总体中抽取的部分个体构成,具有对
总体的代表性,也称为样本。(常用 n 表示) 3、抽样单元——组成样本的互不重叠的基本单位,也称
49
40
9
2
调查研究总体:美国全体选民
调查访问样本:2000名选民
13
第一节 抽样设计的基本概念
市场调研
抽样调查的特点
(1)调查方式的科学性
(2)调查费用的经济性
(3)获取资料的及时性
(4)调查结果的准确性和全面性
(5)应用范围的广泛性
任何样本都无法完全代表总体,永远存在抽样误差。
14
第二节 抽样调查方法
23
第二节 抽样调查方法
市场调研
N=90,n=10, 则:K=90/10 =9;设k=6
1 11 21 31 41 51 61 71
2 12 22 32 42 52 62 72
3 13 23 33 43 53 63 73
4 14 24 34 44 54 64 74
5 15 25 35 45 55 65 75
7
第一节 抽样设计的基本概念
市场调研
3、重点调查
在调查总体中,针对一部分处于十分重要地位 的单位进行的非全面市场调查,以尽快估计调查总 体的基本情况。 重点调查的特点
(1)便于尽快了解调查对象的基本情况;
(2)在人、财、物和时间上比较节省;
8
第一节 抽样设计的基本概念
市场调研
4、抽样调查

第四章 抽样技术

第四章   抽样技术
第四章 抽样技术
STAT
§4.1 抽样调查的一般理论 §4.2 随机抽样技术 §4.3 非随机抽样技术
§4.1 抽样调查的一般理论
一、基本概念 二、基本准则 三、基本方法 四、抽样误差的确定 五、样本容量的确定
STAT
一、基本概念
STAT
1.全及总体 1.全及总体 简称总体或母体, 简称总体或母体,是指所要调查认识的研究对 象的全体,它由具有某种共同性质或特征的单 象的全体, 位组成。用字母N表示。 位组成。用字母N表示。 2.样本总体 2.样本总体 简称样本, 简称样本,指在全及总体中抽取部分单位所构 成的小总体。用字母n表示。 成的小总体。用字母n表示。
STAT
完全代表总体而导致的误差。 完全代表总体而导致的误差。
原 因
记 差 登 误 误差 统 误 系 性 差 表 误 代 性 差 机 差 随 误
三种误差的区别: 三种误差的区别:
STAT
• 登记误差:由于人的主观失误在观察、登 登记误差:由于人的主观失误在观察、 主观失误在观察
抽样调查的一般步骤
STAT
设 计 抽 样 方 案
抽 取 样 本 单 位
收 集 样 本 数 据
计 算 样 本 统 计 量
推 断 总 体 参 数
二、基本准则
STAT
1.随机原则 1.随机原则 ——抽取样本单位时,应确保每个总体单位都 抽取样本单位时, 抽取样本单位时 有被抽取的可能. 有被抽取的可能 2.抽样误差最小 2.抽样误差最小 ——在其他条件相同的情况下,选抽样误差 在其他条件相同的情况下, 在其他条件相同的情况下 设计抽样方案时, 设计抽样方案时,通常是 最小的方案. 最小的方案 在误差达到一定要求的条 3.费用最少 3.费用最少 件下,选择费用最少的方案 件下, —在其他条件相同的情况下,选费用最少的 在其他条件相同的情况下, 在其他条件相同的情况下 方案. 方案
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 3.设计抽样方案 • 4.制定抽样框
– 制定抽样框就是依据已经明确界定的总体范围,收集总体中全部抽样单位 的名单,并统一编号。
• 5.实际抽取样本 • 6.样本评估
– 样本评估就是对样本的质量和代表性进行检验,其目的是防止因样本的偏 差过大而导致的失误。
– 实际抽取样本就是在上述几个步骤的基础上,严格按照所选定的抽样方法, 从抽样框中抽取一个个的抽样单位,构成样本。
运用:
• 从侨光分校的7000位学生中,抽取100位学 生进行调查查,以研究学生对学校教学条 件的满意度。之前所做的普查表现出的对 学校教学条件的平均满意度为85%,现通 过抽查统计后的满意度为80%。 • 请说出本次抽查中的总体、样本、抽样元 素、抽样单位、抽样框、参数值、统计值、 抽样误差。
二、抽样的作用
• 分类抽样有着突出的优点: 第一,分类抽样能够克服简单随机抽样的缺 点,适用于总体内个体数目较多,结构较复杂, 内部差异较大的情况。 第二,精确度较高。 第三,便于对不同层面的问题进行探索。 第四,便于分工,使工作效率提高。 分类抽样的缺点是,如何分类通常由人们主 观判定,因此要求调查者具备较高的素质与能力, 并且必须事先对总体各单位的情况有较多的了解, 而它们在实际工作中有时难以完全实现,这就会 影响分类的科学性和精确性。
三、抽样的类型
• 概率抽样 • 非概率抽样
– 根据抽取对象的具体方式,人们把抽样分为许多不同 的类型。总的来说,各种抽样都可以归为概率抽样与 非概率抽样两大类。这是两种有着本质区别的抽样类 型。概率抽样是依据概率论的基本原理,按照随机原 则进行的抽样,因而它能够避免抽样过程中的人为误 差,保证样本的代表性;而非概率抽样则主要是依据 研究者的主观意愿、判断或是否方便等因素来抽取对 象,它不考虑抽样中的等概率原则,因而往往产生较 大的误差,难以保证样本的代表性。 概率抽样与非概率抽样又各自包括了许多具体类 型。分别适用于不同调查对象。联系实际认识概率抽 样的不同类型及其适用性是掌握抽样方法的关键。
第四章 抽 样
本章教学目的
• 本章提出了抽样的基本概念和基本术语, 阐释了抽样在社会调查研究中的作用,介 绍了不同种类的抽样方法,特别说明了每 一种方法的适用范围和操作程序,并对它 们做了简要评价。同时,为了更好地应用 抽样方法,还简要介绍了样本规模和抽样 误差问题。其中最重要的就是要联系实际 认识和掌握各种抽样方法。
• 多阶段抽样的不足之处是抽样误差较大。 由于每次抽样都必然产生误差,所以抽样 阶段越多抽样误差就越大。因此,为了降 低抽样误差的程度,必须避免不必要的分 段。
(二)非概率抽样

非概率抽样又称为不等概率抽样、非随机抽 样或主观抽样,就是调查者根据自己的方便或主 观判断抽取样本的方法。
– 它不是严格按随机抽样原则来抽取样本,所以失去了 大数定律的存在基础,也就无法确定抽样误差,无法 正确地说明样本的统计值在多大程度上适合于总体。 虽然根据样本调查的结果也可在一定程度上说明总体 的性质、特征,但不能从数量上推断总体。 非随机抽样的具体方法很多,其中常用的有以下 几种:
在社会调查研究中,抽样主要解决的是调查对象的 选取问题,即如何从总体中选出一部分对象作为 总体的代表的问题。关于抽样的作用,有两个相 关的问题需要特别明确: 第一,抽样和抽样调查不能混为一谈。抽样 只是抽样调查的前提和一部分,只解决抽样调查 过程中的选取调查对象这一个问题,抽样调查的 其它所有问题都是靠另外的方法来解决的。 第二,抽样只是抽取样本的方法,而不是调 查方法或者说资料收集方法。
(二)抽样的基本术语
• 1.基本术语 在抽样中,有一些常用的基本术语: (1)总体。它是构成事物的所有元素、也就是最基本 单位的集合。 (2)样本。它是从总体中按照一定方式抽取出的一部 分元素的集合。 (3)抽样元素。它指的是构成总体的每一个最基本单 位,也称 “抽样分子”或“个体”。 (4)抽样单位。它是一次直接的抽样所使用的基本单 位。抽样单位与抽样元素有时是同一的,有时又是不同的。 (5)抽样框。它又称作抽样范围,指的是一次直接抽 样时总体中所有抽样单位的名单。 (6)参数值。它也称为总体值,是关于总体中某一变 量的综合描述,或者总体中所有元素的某种特征的综合数量 表现。在统计中最常见的参数值是某一变量的平均值。 (7)统计值。它也称为样本值,是关于样本中某一变 量的综合描述,或者说是样本中所有元素的某种特征的综合 数量表现。 (8)抽样误差。它是用样本统计值去估计总体参数值 时所出现的误差
• 简单随机抽样没有人为因素的干扰,简单易行, 是概率抽样的理想类型。但是它也有很大局限性。 第一,这种抽样方法,在总体同质性较高时, 用来比较准确有效,但在总体异质性较高时,则 不一定效果好。这是因为当构成总体的个体差异 较大时,用简单随机抽样方法抽出的样本由于在 总体中的分布不一定均匀,所以很可能误差较大, 不能很好地说明总体的性质和特征。 第二,当总体所含个体数目太多时,采用这 种抽样方式不仅费时、费力、费钱,而且很难操 作
1.简单随机抽样
• 简单随机抽样又称纯随机抽样,是指 在特定总体的所有单位中直接抽取n个组成 样本。它是一种等概率抽样和元素抽样方 法,最直观地体现了抽样的基本原理。简 单随机抽样是最基本的概率抽样,其它概 率抽样都以它为基础,可以说是由它派生 而来的。
• 简单随机抽样分为重复抽样和不重复抽样 两类。 • 常用的简单随机抽样方法有直接抽样法、 抽签法和随机数表法。 其中直接抽样法、抽签法适用于总体 规模稍小的抽样;随机数表法是用随机数 表来抽样的方法,适用于总体规模稍大的 抽样。 。
• 同简单随机抽样相比,系统抽样有明显的优点。 第一,当总体规模较大时,系统抽样比简单 随机抽样中的随机数表法易于实施,工作量较少。 它不需要反复使用随机数字表抽取个体,而只需 按照间隔等距抽取即可。 第二,系统抽样的样本不是任意抽取,而是 按照间隔等距抽取,所以在总体中的分布更均匀, 抽样误差一般也要小于简单随机抽样,也就是说 精确度更高,代表性更强。 系统抽样的局限性与简单随机抽样一样,也 是仅适用于同质性较高的总体。当总体内不同类 别个体的数量相差过于悬殊时,采用此法所抽出 的样本代表性可能较差。另外,总体单位的排列 不能呈有规律分布的状态,否则会使系统抽样产 生很大误差,降低样本的代表性。
三、分类抽样

所谓分类抽样也叫类型抽样或分层抽样,就 是先将总体的所有单位依照一种或几种特征分为 若干个子总体,每一个子总体即为一类,然后从 每一类中按简单随机抽样或系统随机抽样的办法 抽取一个子样本,称为分类样本,再把它们集合 起来即为总体样本。 按照确定分层样本数量的不同方式,分类抽 样分为比例分类抽样和非比例分类抽样两种。比 例分类抽样是指分类样本在总体样本中所占比例 与该类所有单位在总体中所占比例相同;非比例 分类抽样则比例不同。
五.多阶段抽样
• 多阶段抽样又称多级抽样或分段抽样,就是把 从总体中抽取样本的过程分成两个或多个阶段进 行的抽样方法。它是在总体内个体单位数量较大, 而彼此间的差异不太大时,先将总体各单位按一 定标志分成若干群体,作为抽样的第1阶段单位, 并依照随机原则,从中抽出若干群体作为第1阶段 样本;然后将第1阶段样本又分成若干小群体,作 为抽样的第2阶段单位,从中抽出若干群体作为第 2阶段样本,依此类推,可以有第3阶段、第4阶 段。。。直到满足需要为止。最末阶段抽出的样 本单位的集合,就是最终形成的总体样本。
二、系统抽样

系统抽样也称等距抽样或机械抽样,是按一 定的间隔距离抽取样本的方法。其做法是先编制 抽样框,将总体的所有单位都按一定标志排列编 号;再用总体的单位数除以样本的单位数,求得 抽样间距;然后,在第一个抽样间距内随机抽出 第一个样本单位,作为抽样的起点;接着,按照 抽样间距依次抽取样本单位,直到抽足样本的单 位数为止。
四、整群抽样
• 整群抽样又称聚类抽样或集体抽样,是将总体按照某种标 准划分为一些群体,每一个群体为一个抽样单位,再用随 机的方法从这些群体中抽取若干群体,并将所抽出群体中 的所有个体集合为总体的样本。
– 整群抽样分为等规模整群抽样和不等规模整群抽样,前者总体内 所有群体的规模都大致相同,后者总体内各群体规模则不等,在 社会调查研究中以后一种情况居多。这种差异如果较大,就会对 抽样成本预算与精确度测算以及实地调查工作造成不利影响,同 时还容易产生抽样偏差。为了解决这一问题,人们往往采用概率 与元素的规模大小成比例的抽样方法,简称PPS抽样 (Probability Proportionate to Size),就是根据每个群体所 包含的最终抽样单位(如家庭)的规模来决定各自抽取样本的比 例大小,规模大则抽取样本比例相对小,规模小则抽取样本比例 相对大,从而保证每个群体中的最终抽样单位都具有被抽中的同 等机会。
• 整群抽样与分类抽样都是将总体分为一些子群,但它和分 类抽样的区别在于不是按性质和特征而是按集群性划分抽 样对象。而且分类抽样中所有子群均要抽取一个样本,总 体样本是各分类样本的集合,即总体样本在各类中均有分 布。整群抽样则不然,它是抽取若干子群,并将这些子群 的全部个体集合为总体样本,因此,总体样本只分布在部 分子群之中。整群抽样对于个体单位之间界限不清的总体, 能够充分发挥其作用,却并不适用于总体单位界限分明的 情况。对于后者,一般还是以采用分类抽样等方法为宜。 另外,整群抽样对于所含子群总数较少的总体也不大 适用。
四、基本程序
• 1.界定总体
– 界定总体就是在具体抽样前,明确从中抽取样本的总体的范围与界限。
• 2.决定抽样方法
– 各种不同的抽样方法都有自身的特点和适用范围。因此,我们在具体实施 抽样之前,应依据调查研究的目的、界定的总体范围、要求确定样本的规 模和要求量化的精确程度来决定具体采用哪种抽样方法
• 二、抽样的类型
第二节 概率抽样
• 概率抽样又称随机抽样,是指总体中每一个成员都有 同等的进入样本的可能性,即每一个成员的被抽概率相等, 而且任何个体之间彼此被抽取的机会是独立的。概率抽样 以概率理论为依据,通过随机化的机械操作程序取得样本, 所以能避免抽样过程中的人为因素的影响,保证样本的客 观性。虽然随机样本一般不会与总体完全一致,但它所依 据的是大数定律,而且能计算和控制抽样误差,因此可以 正确地说明样本的统计值在多大程度上适合于总体,根据 样本调查的结果可以从数量上推断总体,也可在一定程度 上说明总体的性质、特征。正是因为如此,现实生活中绝 大多数抽样调查都采用概率抽样方法来抽取样本。 概率抽样依照具体抽样方法的不同,分为以下类型:
相关文档
最新文档