材料物理性能
材料物理性能简介
<<材料物理性能>>基本要求一,基本概念:1.摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为摩尔热容。
它反映材料从周围环境吸收热量的能力。
2.比热容:质量为1kg的物质在没有相变和化学反应的条件下,温度升高1K所需要的热量称为比热容。
它反映材料从周围环境吸收热量的能力。
3.比容:单位质量(即1kg物质)的体积,即密度的倒数(m3/kg)。
4.格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。
因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。
5.声子(Phonon): 声子是晶体中晶格集体激发的准粒子,就是晶格振动中的简谐振子的能量量子。
6.德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=ћωmax/k。
7.示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和标准试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。
8.示差扫描量热法(Differential Scanning Calorimetry, DSC): 用示差方法测量加热或冷却过程中,将试样和标准样的温度差保持为零时,所需要补充的热量与温度或时间的关系。
9.热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。
10.塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。
11.玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q的现象。
材料物理性能总复习
奈曼-柯普定律
化合物分子热容等于构成此化合物各元素原子热容之和。
杜隆珀替定律
恒压下元素的原子热容等于25J/(K.mol)。
经典热容理论:模型过于简单,不能解释低温下热容减小的现象
1
2
3
4
5
6
2、经典热容理论
• 爱因斯坦热容理论假设:每个原子皆为一个独立的振子,原子之间彼此无关。
高温部分符合较好,但低温部分的理论值比实验值下降得过快。
磁性是一切物质的基本属性,从微观粒子到宏观物体以至于宇宙间的天体都存在着磁的现象。 磁性是磁性材料的一种使用性能,磁性材料具有能量转换、存储或改变能量状态的功能。
材料的磁学性能
01
02
1、基本磁参量的概念与定义以及影响因素
磁矩
磁化强度
磁导率
方向与环形电流法线的方向一致,其大小为电流与封闭环形面积的乘积IΔS,与电流I和封闭环形面积ΔS成正比
6、半导体的载流子浓度、迁移率及其电阻率 本征半导体 本征载流子浓度与温度T和禁带宽度Eg 有关: 随温度增加,载流子浓度增加; 禁带宽度大时,载流子浓度小; μn 和μp 分别表示在单位场强下自由电子和空穴的平均漂移速度(cm/s),称为迁移率。 杂质半导体 多子导电
温 度 升 高
半导体载流子浓度、迁移率及其电阻率与温度的关系
n -- 单位体积内载流子数目 q -- 为每一载流子携带的电荷量
E -- 为外电场电场强度
μ为载流子的迁移率,其含义为单位电场下载流子的平均漂移速度。
J -- 为电流密度
2、导电性本质因素
决定材料导电性好坏的本质因素有两个:
载流子浓度
载流子迁移率
温度、压力等外界条件,以及键合、成分等材料因素都对载流子数目和载流子迁移率有影响。任何提高载流子浓度或载流子迁移率的因素,都能提高电导率,降低电阻率。
材料物理性能及测试
材料物理性能及测试材料的物理性能是指材料在物理方面的性质和行为,包括材料的力学性能、热学性能、电学性能以及光学性能等。
这些性能对于材料的使用和应用起着重要的作用。
为了准确地评估和测试材料的物理性能,科学家和工程师使用了各种测试方法和仪器设备。
一、力学性能力学性能是衡量材料在外力作用下的行为的一种性能。
主要指材料的强度、韧性、硬度、延展性等。
常用的测试方法包括拉伸测试、压缩测试、剪切测试和弯曲测试等。
1.拉伸测试拉伸测试是一种常见的方法,用来评估材料的强度和延展性。
在拉伸测试中,材料样品被施加拉伸力,通常通过测量载荷和伸长量来计算拉伸应力和应变。
拉伸强度是指材料在拉伸过程中承受的最大应力,屈服强度是指材料开始产生可观察的塑性变形的应力。
2.压缩测试压缩测试用于测量材料在受压力下的性能。
将材料样品放入压力装置中,施加压力使其受到压缩,通过测量载荷和位移来计算压缩应力和应变。
压缩强度是指材料在压缩过程中承受的最大应力。
3.剪切测试剪切测试用于评估材料的抗剪切能力。
将材料样品放入剪切装置中,施加剪切力使其发生剪切变形,通过测量载荷和位移来计算剪切应力和应变。
剪切强度是指材料在剪切过程中承受的最大应力。
弯曲测试用于评估材料在弯曲载荷下的行为。
将材料样品放入弯曲装置中,施加弯曲力使其发生弯曲变形,通过测量载荷和位移来计算弯曲应力和应变。
弯曲强度是指材料在弯曲过程中承受的最大应力。
二、热学性能热学性能是指材料在温度变化下的行为。
主要包括热膨胀性、热导率、比热容等性能。
常用的测试方法包括热膨胀测试、热导率测试和比热容测试等。
1.热膨胀测试热膨胀测试用于测量材料随温度变化而发生的膨胀或收缩。
在热膨胀测试中,材料样品被加热或冷却,通过测量长度变化来计算热膨胀系数。
2.热导率测试热导率测试用于测量材料传导热的能力。
在热导率测试中,材料样品的一侧被加热,另一侧被保持在恒定温度,测量两侧温度差来计算热导率。
3.比热容测试比热容测试用于测量材料吸热或放热的能力。
材料物理性能
材料物理性能
测试弹性模数的必要性
材料物理性能
几种材料在常温下的弹性模数
材料物理性能
比弹性模数
定义:指材料的弹性模数与其单位体积质 量的比值。
陶瓷的比弹性模数一般都比金属材料的大。 在金属材料中,大多数金属的比弹性模数 相差不大。
材料物理性能
材料物理性能
2.3 影响弹性模数的因素
材料的弹性模数是构成材料的离子或分子 之间键合强度的主要标志。
材料物理性能
④ 微观结构
金属材料,在合金成分不变的情况下,显 微组织对弹性模数的影响较小,晶粒大小 对弹性模数无影响。
冷加工可以降低金属及合金的弹性模数 (5%以下),只有形成强的织构才有明显 的影响,并出现弹性各项异性。 作为金属材料刚度代表的弹性模数,是一 个组织不敏感的力学性能指标。
材料物理性能
材料物理性能
真应力—真应变曲线
工程设计和材料选用中一般以工程应力、工程应变为依据. 在材料科学研究中,真应力与真应变将具有重要意义.
材料物理性能
第二节 弹性变形及其性能指标
2.1 弹性变形的本质
材料产生弹性变形的本质,概括来说,都是构成 材料的原子(离子)或分子自平衡位置产生可逆 位置的反映。
材料物理性能
第一节 力-伸长曲线和应力-应变曲线
1.1 力—伸长曲线
材料物理性能
应力: P
FN
FN A
----胡克定律
Fl FN l l EA EA
其中:E----弹性模量,单位为Pa;
EA----杆的抗拉(压)刚度。 可得胡克定律 的另一种形式
l 规定线应变 l
建筑材料物理性能
建筑材料物理性能在建筑领域中,建筑材料的物理性能是至关重要的。
它们直接影响着建筑物的质量、耐久性、安全性以及舒适度。
建筑材料的物理性能涵盖了多个方面,包括密度、孔隙率、吸水性、导热性、热膨胀性等等。
接下来,让我们逐一深入了解这些性能。
首先,密度是建筑材料的基本物理性能之一。
它指的是材料在绝对密实状态下单位体积的质量。
不同的建筑材料具有不同的密度,例如钢材的密度较大,而木材的密度相对较小。
密度的大小对于建筑物的结构设计和承重能力有着重要的影响。
在选择建筑材料时,需要根据建筑物的用途和结构要求,合理选择具有适当密度的材料。
孔隙率则反映了材料内部孔隙的多少。
孔隙的存在会影响材料的多种性能。
较高的孔隙率通常会导致材料的强度降低,但同时可能会增加其保温隔热性能。
以砖块为例,如果孔隙率过高,其抗压强度可能不足,影响墙体的稳定性;而对于保温材料来说,适度的孔隙率可以有效地阻止热量传递,提高保温效果。
吸水性是另一个关键的物理性能。
材料吸收水分的能力不仅影响其自身的性能,还可能对建筑物的整体性能产生影响。
比如,木材在吸收水分后会膨胀,可能导致变形和开裂;而混凝土如果吸水性过强,在潮湿环境中容易受到侵蚀,降低其使用寿命。
因此,在建筑施工中,需要根据使用环境和材料的吸水性特点,采取相应的防护措施。
导热性决定了材料传递热量的能力。
在建筑节能设计中,导热性是一个重要的考虑因素。
良好的保温材料通常具有较低的导热系数,能够有效地阻止室内外热量的交换。
例如,聚苯乙烯泡沫板、岩棉等保温材料,由于其低导热性,可以大大减少建筑物的能量消耗,提高能源利用效率。
热膨胀性是指材料在温度变化时尺寸发生变化的特性。
如果建筑材料的热膨胀系数差异较大,在温度变化时可能会产生应力,导致结构的损坏。
例如,在金属与混凝土的连接处,如果没有考虑到两者热膨胀系数的不同,在温度变化较大的情况下,可能会出现裂缝。
除了上述性能外,建筑材料的物理性能还包括硬度、耐磨性、隔音性等。
材料物理性能(课件)
TIM
Ni(OH)2
19
(二)热容
■ 热分析方法 · 差热分析(Differential thermal analysis, DTA): 测量试样与参比物之 间温差与时间或温度的关系 。分析所采用的参比物应是热惰性物质 , 即在 整个测试温度范围内不发生分解、相变和破坏 ,也不与被测物质发生化学 反应 。参比物的热容、热传导系数等应尽量与试样接近。
5
(一 )热学性能的物理基础
■ 晶格热振动
· 晶格热振动: 晶体点阵中质点围绕平衡位置的微小振动 。材料 热学性能的物理本质均与其晶格热振动相关。 · 晶格振动是三维的 , 当振动很微弱时 , 可认为原子作简谐振动。 振动频率随弹性模量Em增大而提高。
x=ACOS(ot+p)
· 温度升高时质点动能增大 , 1/2 mv2= 1/2 kT, ∑ (动能)i =热能 · 质点热振动相互影响 ,相邻质点间的振动存在一定的相位差, 晶格振动以波(格波) 的形式在整个材料内传播 。格波在固体中的 传播速度: v = 3 * 103m/s, 晶格常数a为10-10 m数量级 ,格波最高频 率:v / 2a = 1.5 * 1013 Hz · 频率极低的格波: 声频支振动; 频率极高的格波: 光频支振动
■ 亚稳态组织转变为稳定态要释放 热量 ,热容 -温度曲线向下拐折。
H
TC
T
二级相变焓和热容随温度的变化
17
(二)热容
■ 热容的测量
· 量热计法 。低温及中温区: 电加热法 · 高温区:撒克司法
P:搅拌器 ,C: 量热器筒 18
材料物理性能
材料物理性能材料的物理性能是指材料在受力、受热、受光、受电、受磁等外界作用下所表现出的性质和特点。
它是材料的内在本质,直接影响着材料的使用性能和应用范围。
材料的物理性能包括了热学性能、光学性能、电学性能、磁学性能等多个方面。
首先,热学性能是材料的一个重要物理性能指标。
热学性能包括导热性、热膨胀性和热稳定性等。
导热性是指材料传导热量的能力,通常用热导率来表示。
热膨胀性是指材料在温度变化下的体积变化情况,通常用线膨胀系数来表示。
热稳定性是指材料在高温环境下的性能表现,包括了热变形温度、热老化等指标。
这些性能对于材料在高温环境下的应用具有重要意义。
其次,光学性能是材料的另一个重要物理性能。
光学性能包括透光性、反射率、折射率等指标。
透光性是指材料对光的透过程度,通常用透光率来表示。
反射率是指材料对光的反射程度,通常用反射率来表示。
折射率是指材料对光的折射程度,通常用折射率来表示。
这些性能对于材料在光学器件、光学仪器等领域的应用具有重要意义。
此外,电学性能是材料的另一个重要物理性能。
电学性能包括导电性、介电常数、电阻率等指标。
导电性是指材料导电的能力,通常用电导率来表示。
介电常数是指材料在电场中的极化能力,通常用介电常数来表示。
电阻率是指材料对电流的阻碍程度,通常用电阻率来表示。
这些性能对于材料在电子器件、电气设备等领域的应用具有重要意义。
最后,磁学性能是材料的另一个重要物理性能。
磁学性能包括磁导率、磁饱和磁化强度、矫顽力等指标。
磁导率是指材料对磁场的导磁能力,通常用磁导率来表示。
磁饱和磁化强度是指材料在外磁场作用下的最大磁化强度,通常用磁饱和磁化强度来表示。
矫顽力是指材料在外磁场作用下的抗磁化能力,通常用矫顽力来表示。
这些性能对于材料在磁性材料、电机、传感器等领域的应用具有重要意义。
综上所述,材料的物理性能是材料的重要特性,直接影响着材料的使用性能和应用范围。
不同类型的材料具有不同的物理性能,因此在材料选择和应用过程中,需要充分考虑材料的物理性能指标,以确保材料能够满足特定的使用要求。
材料物理性能
材料物理性能第一章.材料的力学性能1.剪切应变:是指材料受到平行于截面积方向的大小相等,方向相反的两个剪切应力τ时发生的形变。
2.压缩应变:指材料周围受到均匀应力P时,其体积从起始时的V0变化为V1的形变。
3.胡克定律:对于理想的弹性材料,在应力作用下会发生弹性形变,其应力与应变关系服从胡克定律,即应力σ与应变ε成正比:σ=Eε。
(式中的比例系数E称为弹性模量,又称弹性刚度或杨氏模量。
4.弹性模量:是材料发生单位应变时的应力,它表征材料抵抗形变能力的大小。
E越大,越不易变形,表示材料刚度越大。
(单位:N/m2)杨氏模量E(反映材料抵抗正应变的能力),剪切模量G(反映材料抵抗切应变的能力)和体积模量B(反映材料在三向压缩(流体静压力)下,压强与体积变化率之间的线性比例关系):E=σ/ε;G=τ/γ;B=P/Δ5.泊松比μ:称为横向变形系数,反映材料横向正应变与受力方向线应变的比值。
G=E/[2(1+μ)];B=E/[3(1-2μ)]6.E的影响因素:(1)原子结构的影响:周期表中同一族的元素,随原子序数的增加和原子半径的增大弹性模量减小(过渡族金属表现出特殊规律性)。
(2)温度的影响:随着温度的升高材料发生热膨胀现象,原子结合力减弱,因此金属与合金的弹性模量降低。
(3)相变的影响:材料内部的相变(如多晶型相变,有序化转变,铁磁性转变,超导态转变等)都会对弹性模量产生比较明显的影响。
7.复相的弹性模量(1)并联:E=E A V A /V+E B V B /V ,式中:νA =V A /V 与νB =V B /V 分别表示两相的体积分数,且νA +νB =1。
E μ=νA E A +(1-νA )E B (大部分应力由高模量的材料承担)(2)串联:1/E=νA /E A +(1-νA )/E B (弹性模量为复合材料弹性模量的下限值)8.理论断裂强度:合理的最大值相当于材料断裂时的作用力。
理论断裂强度公式:σth =a E(a 为晶格常数)通常γ约为aE/100. (一般材料常数的典型数值为:E=300GPa;γ=1J/m 2;a=3*10-10m)第二章.材料的热学性能1.格波的定义与分类:一个质点的振动会使邻近质点随着振动,而使相邻质点间的振动存在着一定的位相差,使得晶格振动以弹性波的形式在整个材料内传播,这种存在于晶格中的波叫做格波。
材料物理性能
1.根据受力应变特征材料分为:脆性材料,延性材料,弹性材料。
2.材料受载荷后形变的三个阶段:弹性形变,塑形形变,断裂3.弹性模量:材料在弹性变形阶段内正应力和对应的正应变的比值。
意义:反映材料抵抗应变的能力,是原子间结合强度的标志。
影响因素〔键合方式,晶体结构,温度,复相的弹性模量〕。
机理:对于足够小的形变应力与应变成线性关系,系数为弹性模量,物理本质是原子间结合力抵抗外力的宏观表现,弹性系数和弹性模量是反映原子间结合强度的标志。
4.滞弹性:固体材料的应变产生与消除需要有限的时间,这种与时间有关的弹性称为滞弹性。
衡量指标:应力弛豫和应力蠕变。
应力弛豫:在持续外力作用下发生形变的物体在总变形值保持不变的情况下,徐变变形增加使物体的内部应力随时间延续而逐渐减少的现象。
应力蠕变:固体材料在恒定荷载下变形随时间延续而缓慢增加的不平衡过程。
5.塑性形变指一种在外力移去后不能回复的形变。
滑移系统:滑移方向和滑移面。
产生条件:a-〔几何条件〕面间距大滑移矢量小b〔静电条件〕每个面上是同种电荷原子,相对滑移面上的电荷相反。
无机非材料不产生原因:a.滑移系统少;b.〔位错运动激活能大〕位错运动需要克服的势垒比拟大,位错运动难以实现。
施加应力,或者由于滑移系统少无法到达临界剪应力,或者在到达临界剪应力之前就导致断裂;c.伯格斯矢量大。
6.高温蠕变定义:材料在高温下长时间受到小应力作用出现蠕变现象。
影响因素:温度和应力。
机理:a晶格机理〔位错攀移理论,由于热运动位错线处一列原子移去或移入,位错线向上移一个滑移面。
〕b扩散蠕变理论〔空位扩散流动,应力造成浓度差,导致晶粒沿受拉方向伸长或缩短引起形变〕c晶界机理〔多晶体蠕变,高温下晶界相对滑动,剪应力松弛,有利蠕变。
低温下晶界本身是位错源,不利蠕变〕7.理论断裂强度:理论下材料所能承受的最大应力。
实际强度:实际情况中材料在外加应力作用下,沿垂直外力方向拉断所需应力。
8.断裂韧性:是材料的固有性能,由材料的组成和显微结构所决定,是材料的本征参数。
材料物理性能
材料物理性能1. 引言材料物理性能是指材料在物理方面的性能特征与表现,包括其力学性能、热学性能、电学性能等。
了解材料的物理性能能够帮助我们选择合适的材料,预测材料的行为以及进行工程设计和优化。
2. 力学性能2.1 弹性模量弹性模量是材料在受力作用下产生弹性变形的能力,一般表示为杨氏模量(Young’s modulus)、剪切模量(Shear modulus)和泊松比(Poisson ratio)。
- 杨氏模量描述了材料在受拉或受压时的弹性性能,可以算作是应力与应变之间的比例系数。
- 剪切模量衡量了材料在受剪切力作用下的变形能力。
- 泊松比描述了材料在受力作用下,在两个垂直于受力方向的平面上的变形比例。
2.2 强度强度是指材料在承受外力作用下能够抵抗变形和破坏的能力。
强度可以分为屈服强度、抗拉强度、抗压强度、抗剪强度等。
不同类型的力学性能指标适用于不同的应用场景。
2.3 脆性和韧性脆性是指材料在受力作用下容易发生断裂的性质,表现为材料的断裂韧度较低;韧性是指材料在受力作用下能够发生塑性变形而不断裂的性质,表现为材料的断裂韧度较高。
脆性和韧性是相对的,不同材料的脆性和韧性特点不同。
3. 热学性能3.1 热膨胀系数热膨胀系数描述了材料在温度变化下的对长度、体积或密度的变化率。
材料的热膨胀系数可以影响它在温度变化下的热膨胀或收缩行为。
3.2 热导率热导率是指材料传导热量的能力,表示的是单位时间内单位温度差下,通过单位横截面积所传导的热量。
热导率可以用于描述材料的导热性能。
3.3 热容量热容量是指材料在受热时吸收热量的能力,以及在冷却时释放热量的能力。
热容量可以用于描述材料在温度变化下的热稳定性和热响应行为。
4. 电学性能4.1 电导率电导率是指材料导电的能力,表示单位长度内单位面积上的电流。
电导率可以用于描述材料的导电性能。
4.2 介电常数介电常数是指材料对电场的响应能力,表示单位电场下单位体积内储存能量的能力。
材料物理性能
一、名词解释1.顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有磁性,当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场,这样的磁体称顺磁体。
2.铁磁体:在较弱的磁场内,铁磁体也能够获得强的磁化强度,而且在外磁场移去,材料保留强的磁性。
原因是强的内部交换作用,材料内部有强的内部交换场,原子的磁矩平行取向,在物质内部形成磁畴,这样的磁体称铁磁体。
3.金属热膨胀:物质的体积或长度随温度的升高而增大的现象。
4.内耗:对固体材料内在的能量损耗称为内耗。
5.磁致伸缩效应:铁磁体在磁场中被磁化时,其形状和尺寸都会发生变化的现象。
6.磁畴:指在未加磁场时铁磁体内部已经磁化到饱和状态的小区域。
7.软磁材料:软铁被磁化后,磁性容易消失,称为软磁材料。
8.亚铁磁体:磁体中存在大小不等反平行的自旋磁矩,磁矩大小部分抵消,因而磁体仍然可以自发磁化,类似于铁磁体。
这种磁体称为亚铁磁体。
9.磁畴结构:磁畴的形状、尺寸、磁壁的类型与厚度的总称。
10.磁滞回线:当磁化磁场作周期的变化时,表示铁磁体中的磁感应强度与磁场强度关系的一条闭合曲线。
二、问答题1.对于一根具体的导线而言,影响它的导电因素有哪些?答:对于一根具体的导线而言,导电过程分两部分,包括最外电子脱离正离子实和之后的在晶格中运行,所以,影响导电性包括这两部分的影响因素。
(1) 从导电定律关系式中可以看出一个电子的电荷是固定的数值,n有效决定于金属的晶体结构及能带结构,而电子自由运行时间或电子平均自由程则决定于在外电场作用下,电子运动过程中所受到的散射。
(2) 电子在金属中所受到的散射可用散射系数μ来表述。
μ的来源有两方面,一是温度引起离子振动造成的μT,二是各种缺陷及杂质引起晶格畸变造成的μn。
μ=μT+μn相应地电阻为:ρ=ρT+ρn(3) 由温度造成的晶格动畸变和由缺陷造成的晶格静畸变,两者都会引起金属电阻率增大。
2.什么是西贝克(Seeback)效应?它是哪种材料的基础?答:西贝克效应是由于温差产生的热电现象,即温差电动势效应——广义地,在半导体材料中,温度和电动势可以互相产生。
材料物理性能
第一章热学性能1、热容热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1k所需要增加的能量2、金属高聚物的热容本质及比较大小高聚物多为部分结晶或无定形结构,热容不一定符合理论式。
大多数高聚物的比热容在玻璃化温度以下比较小,温度升高至玻璃化转变点时,分子运动单位发生变化,热运动加剧,热容出现阶梯式变化。
高分子材料的比热容由化学结构决定,温度升高,使链段振动加剧,而高聚物是长链,使之改变运动状态较困难,因而需提供更多的能量。
一般而言,高聚物的比热容比金属和无机材料大。
3、热膨胀的物理本质物体的体积或长度随温度的升高而增大的现象称为热膨胀。
材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶格结点上原子振动的平衡位置间的距离。
材料温度一定时,原子振动但平衡位置保持不变,材料不随温度升高而发生膨胀;而温度升高,振动中心右移,原子间距增大,材料产生热膨胀。
4、化学键对热膨胀的影响材料的膨胀系数与化学键强度密切相关。
对分子晶体而言,膨胀系数大;而由共价键相连接的材料,膨胀系数小的多。
对于高聚物来说,长链分子中的原子沿链方向是共价键相连接的,近邻分子间的相互作用是弱的范德华力,因此结晶高聚物和取向高聚物的热膨胀具有很大的各向异性。
5、从化学键角度比较高聚物的膨胀系数对于高聚物来说,长链分子中的原子沿链方向是共价键相连接的,近邻分子间的相互作用是弱的范德华力,因此结晶高聚物和取向高聚物的热膨胀具有很大的各向异性。
6、热膨胀与熔点、热容的关系(1)热膨胀与熔点的关系当固体晶体温度升高至熔点时,原子热运动将突破原子间结合力,使原有的固态晶体结构被破坏,物体从固态变成液态,所以,固态晶体的膨胀有极限值。
因此,固态晶体的熔点越高,其膨胀系数就越低。
(2)热膨胀与热容的关系热膨胀是固体材料受热以后晶格振动加剧而引起的容积膨胀,而晶格振动的激化就是热运动能量的增大,每升高单位温度时能量的增量也就是热容的定义。
材料物理性能
材料物理性能材料的物理性能是指材料在物理层面上所表现出来的各种性质和特性,包括力学性能、热学性能、电学性能、磁学性能等。
首先,力学性能是材料最基本的物理性能之一。
它包括抗拉强度、屈服强度、硬度、韧性、弹性模量等指标。
抗拉强度是材料在拉伸破坏时所能承受的最大拉力,屈服强度是材料在拉伸过程中开始产生塑性变形的拉力。
硬度是材料抵抗划痕或压痕的能力,描述了材料的抗刮擦性能。
韧性是材料在受外力作用下发生塑性变形而不破裂的能力,反映了材料的延展性。
弹性模量是材料在受力后产生弹性变形的能力,反映了材料的变形程度与受力大小的关系。
其次,热学性能是材料在热力学层面上的表现,包括热导率、热膨胀系数、比热容等。
热导率是材料导热性能的指标,反映了材料传导热量的能力。
热膨胀系数是材料在受热后的膨胀程度与温度变化之间的关系,描述了材料在温度变化时的尺寸变化。
比热容则是材料所需吸收或释放的热量与温度变化之间的关系,反映了材料的热量储存能力。
此外,电学性能是材料在电学层面上的表现,包括电导率、介电常数、磁导率等。
电导率是材料导电性能的指标,反映了材料导电的能力。
介电常数是材料对电场的响应能力,描述了材料在电场中的电极化程度。
磁导率则是材料对磁场的响应能力,反映了材料对磁场的传导性能。
最后,磁学性能是材料在磁化和磁导方面的表现,包括磁化强度、剩余磁感应强度、矫顽力等。
磁化强度是材料在外加磁场下磁化的能力,剩余磁感应强度是材料在去除外加磁场后保留的磁感应强度。
矫顽力是材料从磁化过程中恢复原始状态所需的去磁场强度,反映了材料抵抗磁通方向变化的能力。
总之,材料的物理性能涵盖了力学、热学、电学及磁学等多个方面,对于不同的应用需求,选择合适的材料具备合适的物理性能是十分重要的。
材料物理性能(第二章材料的脆)
脆性材料的破坏形式
脆性破坏
脆性材料的破坏往往是发生在一 个瞬间,伴随着明显的断裂,并 且很难修复。
劈裂破坏
劈裂破坏是指在压力或拉力作用 下,脆性材料沿着晶体极易劈开 的方向产生断裂。
穿晶破坏
穿晶破坏是指在脆性材料中,断 裂面穿过晶粒,在晶界或晶粒内 发生断裂。
脆性材料的改进技术
材料改性
通过ห้องสมุดไป่ตู้加合适的添加剂,改变 材料的化学成分,以提高其塑 性和韧性。
材料物理性能(第二章材 料的脆)
本章将介绍材料的物理性能,特别是与脆性相关的方面。我们将了解脆性材 料的定义、特点以及破坏形式,以及如何改进脆性材料的技术。
材料的物理性能
1 导热性
材料的导热性能是指它传导热量的能力,对 于热传导和热稳定性的要求很高的应用非常 重要。
2 电导性
材料的电导性能是指它传导电流的能力,对 于电子器件和电气设备而言非常重要。
热处理
通过控制材料的加热和冷却过 程,改变晶体结构,从而提高 材料的强度和延展性。
加工工艺
采用适当的加工方法,如压延、 拉伸等,使材料的晶界发生滑 移,从而提高其塑性。
材料延展性和韧性
延展性和韧性是与材料的塑性密切相关的性能指标,延展性通常指材料的线 性塑性变形能力,韧性则是指材料在断裂前能吸收的能量。
3 机械性能
材料的机械性能包括强度、硬度、延展性等 指标,决定了材料在力学应用中的表现。
4 热性能
材料的热性能涉及热膨胀系数、热传导率等 参数,对于热应用和热循环要求高的场合至 关重要。
脆性材料的定义和特点
1 定义
脆性材料是指在受到外力作用下容易发生断 裂,而不发生明显的塑性变形的材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料物理性能》
一、试用外斯分子场理论说明铁磁性形成的条件,并用技术磁化理论说明磁滞
回线的形成。
(15分)
、
二、试说明压电体、热释电体、铁电体各自在晶体结构上的特点。
(10分)
答:对压电晶体而言,从晶体结构上分析,要求结构上没有对称中心,而且结构上必须带有正、负电荷的质点,即存在离子或离子团。
也就是说压电体必须是离子晶体或者由离子团组成的分子晶体;而具有压电效应的晶体必须还要具有自发极化的特性在结构上要求具有极性轴;对铁电体而言,也必须具有自发极化的特性,在结构上满足产生电滞回线。
三、 考虑一个处在垂直于轨道平面的电场中的氢原子基态的半经典模型,证明
氢原子的极化率304H H r απε=,H r 为未受微扰轨道的半径。
(10分)
四、导出爱因斯坦热容和德拜热容的表达式,并讨论高温和低温极限下的性
质。
(15分)
解:在热力学里,固体的定容和定压比热分别定义为,
》
频谱分布应满足,
可求出比热的表式为,
讨论比热问题时,关键在于如何求出晶格振动的频率分布。
爱因斯坦模型:
爱因斯坦模型认为固体中各原子的频动相互独立,所有原子那以相同的角频率振动,因而晶格振动能量,
晶格定容比热为,
》
式中,称为爱因斯坦比热函数。
通常引入爱因斯坦温度,它与角频率的关系为:。
因此,
上更快地趋近零,与实验结果偏离。
德拜模型:
德拜比热模型的主要特点是把晶格看作是各向同性的连续介质,格波成为弹性波,用弹性波的声学谱代替单一的爱因斯坦频率,并假定格波的总数为3N(N代表晶体中原子的总数),晶格热容量等于各种模的弹性波对比热的贡献的总和。
可求得德拜模型下弹性波的频谱分布为,
因此,比热为:
#。
五、对铁电体的初步认识是它具有自发极化。
自发极化的产生机制是与铁电体
的晶体结构密切相关。
其自发极化的出现主要是晶体中原子(离子)位置变化的结果。
试以钙钛矿结构的BaTiO3为例说明自发极化的起源。
(15分)
答:氧八面体结构——钛离子和氧离子的半径比为,其配位数为6,形成TiO6结构;规则的TiO6结构八面体有对称中心和6个
Ti—O电偶极矩,由于方向相互为反平行、电矩都
抵消了,但是当正离子Ti4+单向偏离围绕它的负离
子O2-时,则出现净偶极矩。
在BaTiO3结构中每个氧离子只能与2个钛离于耦
合,并且在BaTiO3晶体中,TiO6一定是位于钡离
子所确定的方向上。
因此,提供了每个晶胞具有净
偶极短的条件。
这样在Ba2+和O2-形成面心立方结
构时,Ti4+进入其八面体间隙,但是诸如Ba、Pb、
Sr原子尺寸比较大,所以Ti4+在钡—氧原子形成的
面心立方中的八团体间隙中的稳定性较差,只要外界稍有能量作用,使可以使Ti4+偏移其中心位置,而产生净电偶极矩。
在温度T>T c时,热能足以使Ti4+在中心位置附近任意移动。
这种运动的结果
造成无反对称可言。
虽然当外加电场时,可以造成Ti4+产生较大的电偶极矩,但不能产生自发极化。
"
当温度T<T c时,此时Ti4+和氧离子作用强于热振动。
晶体结构从立方改为四方结构,而且Ti4+偏离对称中心,产生永久偶极矩。
六、 Cu-Cr 合金强度高,导电性和耐热性好,广泛应用于电工、电子、机电行
业。
在Cu-Cr 合金的基础上添加少量Zn ,可有效调节合金的电阻率,而对合金的强度影响不大。
现配制成分为Cu-(2~3)%Zn-~%Cr (质量分数)的合金,合金经熔铸、挤压并水淬后分成两组:A-冷拉成条材,冷拉变形量30%;B-未经冷拉的条材。
对A 、B 试样进行时效处理,给定时效时间为4小时,时效温度范围从100o C 至510o C 所得样品的性能如左图;在给定温度450o C 下的时效时间1~10小时所得性能如右图。
组织观察表明,时效处理时析出物为Cr 的颗粒;冷拉条材经390o C 、4小时时效未发现明显再结晶,450o C 、4小时时效再结晶明显。
试分析时效过程中A 、B 两组样品的电阻率变化的原因,并给出相应的时效工艺规范。
(35分)
答:根据时效过程中Cu-Cr-Zn 合金的两组试样的硬度变化的特点可知:
①
较低温度下进行时效时(330℃以下),B 试样中的硬度缓慢增加,表明有少量的第二相Cr 颗粒析出,A 试样中的硬度缓慢降低,表明材料中的空位、位错数量减少; ② 时效温度超过350℃时,A 、B 试样的硬度显著增大,在450达到最大值,表明时效过
程进行得很充分,A 试样在时效温度超过400℃后,硬度上升变缓,表明此时试样发生再结晶;
③ 当时效温度超过450℃后,A 、B 试样的硬度均发生降低,表明此时析出相发生长大。
因此,时效过程中影响合金电阻率变化的主要因素有三个方面:一是回复、再结晶及晶粒长大过程中晶体缺陷的消除;二是过饱和固溶体中固溶元素的析出使基体中固溶元素减少;再是整个合金中第二相的出现。
(10分)
-
合金的电阻主要由“声子散射”——晶体中原子热振动和“杂质散射”—— 晶体中的杂质、缺陷、晶界等结构上的不完整性产生的。
按照Mathiessen 定律,Cu-Cr-Zn 合金的电阻率可表示如下:
0ρρρρρρρ=+∆+∆+∆+∆+∆固溶晶界析出空位位错
A 试样的电阻率变化:当时效温度较低时(≤330℃),电阻率有明显下降,主要是过饱和固溶体部分分解,时效过程中形变试样发生恢复,空位和位错浓度降低所引起,但同时析出的第二相减缓了电阻率的下降速率;当时效温度超过350℃后,电阻率迅速下降,此时主要是由于时效过程进行得充分,过饱和固溶体得到充分分解,尤其当温度超过400℃后,试样发生再结晶,空位和位错浓度更低,亚晶界消除,试样电阻率几乎恢复到最低;当时效温度超过450℃后,晶
粒和析出相发生长大,但电阻率下降不明显。
(10分)
B 试样的电阻率变化:当时效温度较低时(≤330℃),电阻率有明显下降,主要是时效过程中过饱和固溶体部分分解,试样中空位浓度降低所引起,但同时析出的第二相减缓了电阻率的下降速率;当时效温度超过350℃后,电阻率迅速下降,此时主要是由于时效过程进行得充分,过饱和固溶体得到充分分解,当温度超过400℃后,试样电阻率几乎恢复到最低;当时效温度超过400℃后,晶粒和析出相发生长大,但电阻率下降不明显。
实验数据表明,对电阻率影响最大的是固溶ρ∆固溶,其次是析出相ρ∆析出、空位ρ∆空位、位错ρ∆位错和ρ∆晶界。
(10分)
结合两图发现,在450℃时效4小时,过饱和固溶体中Cr 得到充分析出、弥散分布,同时析出相又不致长大,合金的硬度达到最大值,电阻率基本降到最低、趋于稳定,因此是较为理想的时效工艺。
(5分)。