第七章 参数估计 第八章讲解

合集下载

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

概率论与数理统计完整课件第七章参数估计PPT课件

概率论与数理统计完整课件第七章参数估计PPT课件

n
L(1,2,,k ) L(x1, x2,, xk ;1,2,,k ) f (xi ;1,2,,k ) i 1
将其取对数,然后对1,2 ,,k 求偏导数,得
ln L(1, 2 ,, k ) 0 1
ln L(1, 2 ,, k ) 0 k
该 方 程 组 的 解 ˆi ˆi (x1, x2,, xn),i 1,2,,k ,即 为 i 的 极
§1 参数的点估计
设总体 X 的分布函数 F(x;) 形式已知,其中θ 是待估计的参数,点估计问题就是利用样本 (X1, X 2,, X n ) ,构造一个统计量ˆ ˆ(X1, X2,, Xn) 来估 计θ,我们称ˆ(X1, X2,, Xn )为θ的点估计量,它是 一个随机变量。将样本观测值 (x1, x2 ,, xn ) 代入估计 量 ˆ(X1, X2,, Xn ) , 就 得 到 它 的 一 个 具 体 数 值 ˆ(x1, x2,, xn ) ,这个数值称为θ的点估计值.
如果样本中白球数为0,则应估计p=1/4,而不估计 p=3/4.因为具有X=0的样本来自p=1/4的总体的 可能性比来自p=3/4的总体的可能性要大.一般当 X=0,1时,应估计p=1/4;而当X=2,3时,应估计 p=3/4.
第10页/共71页
定义:设总体 X 的分布类型已知,但含有未知参数θ. (1)设离散型总体 X 的概率分布律为 p(x; ) ,则样本 (X1, X2,, Xn ) 的联合分布律
~~ 2n1nLeabharlann ini1n1x(i xix
x
)
2
由微积分知识易验证以上所求为μ与σ2的极大似然 估计.
第21页/共71页
• 例:设总体X具有均匀分布,其概率密度函数为
p(x;)

统计学第七章、第八章课后题答案

统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3. 怎样理解置信区间 在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌.在公布调查结果时给出被调查人数是负责任的表现.这样则可以由此推算出置信度(由后面给出的公式),反之亦然.4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率.也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0。

95的概率覆盖总体参数.5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为其中: 2222)(E z n σα=n z E σα2=▪与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。

第7章参数估计

第7章参数估计
对于是非标志(即服从两点分布的变量)来说,若 将其具体表现分别用1、0数量化 ,成数就是其平 均数 是非标志的方差=P(1-P)
x 1 0
f P 1-p
x
xf f
1 p 0 (1 p) p (1 p)
p
2 (x x)2 f (1 p)2 p (0 p)2 (1 p)
f
p (1 p)
似然函数常简记为L或 L 1,2, ,k
未知参数的函数。
38
若有 ˆi (x1, x2,..., xn ) i 1, 2, k 使得
L x1, x2,..., xn;ˆ1, ˆ 2,
, ˆ k
max L (1 ,2 , ,k )
x1, x2,..., xn; 1, 2,
, k
则 ˆi (X1, X2,..., Xn) 为参数θi的极大似然估计量。
中选出一个使样本观察值出现的概率为最大的 ˆ 作
为θ的估计量。
称 ˆ 为θ 的极大似然估计量。
37
2.似然函数的数学表达式
设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度 (连续型)或联合分布律 (离散型)为 :
f (x; 1,2 , , k )
定义似然函数为:
n
L L x1,..., xn; 1, 2, , k f xi; 1, 2, , k i 1 x1, x2 ,..., xn 给定的样本观察值
§7.1.4抽样误差
1.误差:调查结果与实际值之间的差异 抽样调查中的误差
登记性误差(非抽样误差) 误差代表性误差随系机统误误差差((抽非样抽误样差误)差)
2.抽样误差—由于抽样的随机性而产生的 样本指标对总体指标的代表性误差。抽样误 差可以计算并加以控制,但不可以避免。

《概率论与数理统计》7

《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

统计学第七章参数估计

统计学第七章参数估计
04
单击添加文本具体内容
参数估计
假设检验
描述统计
推断统计
参数估计在统计方法中的地位
统计方法
统计推断的过程
总体
总体均值、比例、方差等
样本统计量 如:样本均值、比例、方差
样本
§7.1 参数估计的一般问题
单击此处添加文本具体内容,简明扼要地阐述你的观点
一、估计量和估计值
参数估计(Parameter Estimation) ,用样本估计量估计总体估计值。
一个总体参数的区间估计
总体参数
符号表示
样本统计量
均值
比例
方差
第一章节
总体均值的区间估计 (正态总体、2已知,或非正态总体、大样本)
总体均值的区间估计 (大样本)
假定条件 总体服从正态分布,且方差(2) 未知 如果不是正态分布,可由正态分布来近似 (n 30) 使用正态分布统计量 z 总体均值 在1- 置信水平下的置信区间为
(1)估计量:用来估计总体参数的样本统计量。如:样本算术平均数、样本中位数、样本标准差、样本方差等。 例如: 样本均值就是总体均值 的一个估计量 (2)参数用 表示,估计量用 表示 (3)估计值:估计参数时计算出来的统计量的具体值 如果样本均值 x =80,则80就是的估计值
矩估计法
最小二乘法
换句话说,做出校全体女大学生身高均数为163.0 -- 164.5cm的结论,说对的概率是95%,说错的概率是5%;做出校全体女大学生身高均数为162.7 – 164.7cm的结论,说对的概率是99%,说错的概率是1%。
3、置信区间与置信水平
(1 - ) 区间包含了 的区间未包含
a /2
A
B
的抽样分布

张厚粲 第七章 参数估计

张厚粲 第七章 参数估计

间。

解:12名学生阅读能力的得分假定是从正态总体
中抽出的随机样本,而总体标准差σ未知,样本的容量 较小(n=12<30),在此条件下,样本平均数与总体 平均数离差统计量服从呈t分布。

于是需用t分布来估计该校三年级学生阅读能力总
体平均数95%和99%的置信区间。
由原始数据计算出样本统计量为
X 29.917
性的指标。
平均数区间估计的基本原理
通过样本的平均数估计总体的平均数,首先假定该样本 是随机取自一个正态分布的母总体(或非正态总体中的n> 30的样本),而计算出来的实际平均数是无数容量为n的
样本平均数中的一个。
根据样本平均数的分布理论,可以对总体平均数进行估 计,并以概率说明其正确的可能性。
一.总体平均数区间估计的基本步骤 ①.根据样本的数据,计算样本的平均数和标准差; ②.计算平均数抽样分布的标准误;
例:已知某样本的分散程度
标准差与方差分别计算)。
解1(标准差):
,样本
容量40,问该样本之总体的分散程度如何。(用
,样本标准差的分布接近正态分布,用Z分布。
(1) 0.95或0.05
10-1.96×1.12<σ<10+1.96×1.12
7.8 <σ<12.2 (2)0.99或0.01 10-2.58×1.12<σ<10+2.58×1.12 7.11<σ<12.89
第二节 总体平均数的估计
平均数抽样分布的几个定理

⑴.从总体中随机抽出容量为n的一切可
能样本的平均数之平均数等于总体的平均数。
E( X )
⑵.容量为n的平均数在抽样分布上的标准差 (即平均数的标准误),等于总体标准差除以n的平 方根。

概率论与数理统计课件第7章参数估计

概率论与数理统计课件第7章参数估计

一、矩估计
4
A B
一、矩估计 例1
5
01
OPTION
02
OPTION
一、矩估计 解
6
一、矩估计
7
一、矩估计
8
解(1)
一、矩估计
9
解(2)
一、矩估计 例3
10
一、矩估计 解
11
一、矩估计
12
关于矩估计量有下列结论:
一、矩估计
13
例4

一、矩估计
14
01
OPTION
02
OPTION
一、无偏性 定义1
51
ˆ lim E θ 如果 n+ X1 ,
, X n θ
一、无偏性
52
例1
试求 1 3 2

(1)由矩估计定义可知
一、无偏性
53

一、无偏性
54
一、无偏性 例2
55
一、无偏性
56

一、无偏性 定理 1
57
则有
因此, 样本均值是总体均值的无偏估计, 样本
二、极大似然估计
48
极大似然估计求解
似然函数 对数似然求导法
直接法
49
目录/Contents
7.1 7.2
点估计 点估计的优良性评判标 准 置信区间 单正态总体下未知参数的置信区间 两个正态总体下未知参数的置信区间
7.3
7.4 7.5
50
目录/Contents
7.2
点估计的优良性评判标准 一、无偏性 二、有效性 三、相合性
置信区间
69
置信区间
70
置信区间

概率论与数理统计第七章参数估计演示文档

概率论与数理统计第七章参数估计演示文档

概率论与数理统计第七章参数估计演示文档参数估计是概率论与数理统计中的重要内容之一,是通过样本数据来推断总体参数的方法。

在实际应用中,参数估计广泛应用于市场调查、医学研究、经济预测等领域。

本文将以一些常用的参数估计方法为例,进行演示说明。

首先,我们介绍最常见的点估计方法,矩估计。

矩估计是通过样本矩来估计总体矩。

以正态分布的均值和方差为例,假设我们有一个样本数据集,通过计算样本均值和样本方差,可以分别得到正态分布的均值和方差的矩估计值。

接下来我们介绍第二种常见的点估计方法,最大似然估计。

最大似然估计是通过找到使得观察到的样本数据出现的概率最大的参数值。

以二项分布的成功概率为例,假设我们有一组二项分布的观察数据,通过计算二项分布的似然函数,并求导得到其极大值点,可以得到二项分布的成功概率的最大似然估计值。

此外,假设检验是参数估计的重要应用。

在进行参数估计时,我们常常需要进行假设检验来判断参数估计是否具有统计意义。

以均值的假设检验为例,假设我们有两组样本数据,通过计算样本均值和样本方差,可以得到均值的矩估计值。

然后,我们可以利用假设检验的方法,比较这两个样本的均值,从而判断两个样本是否具有统计意义上的差异。

最后,我们介绍一种常用的参数区间估计方法,置信区间估计。

置信区间估计是通过样本数据得到一个区间,该区间内的参数值有一定的置信度。

以总体均值的置信区间估计为例,假设我们有一组样本数据,通过计算样本均值和样本标准差,可以得到总体均值的点估计值。

然后,我们可以利用参数估计的理论知识,计算得到总体均值的置信区间,从而对总体均值进行估计。

综上所述,参数估计是概率论与数理统计中的重要内容,应用广泛。

通过点估计方法可以从样本数据中推断总体参数的值,通过假设检验可以判断参数估计的统计意义,通过置信区间估计可以得到参数值的置信区间。

这些参数估计方法为我们提供了在实际问题中进行估计和推断的依据,使我们能够更好地理解和分析数据。

第七章-参数估计

第七章-参数估计

• 根据n2=36的样本估计总体参数μ: • 0.95的置信区间
78 1.961.18 79 1.961.18
76.7 81.3
• 0.99的置信区间
79 2.581.18 79 2.581.18
75.7 82.04
• 【例7-2】
• 有一个49名学生的班级,某学科历年考试成绩的
• 3.一致性 • 当样本容量无限增大时,估计值应能够越来越接
近它所估计的总体参数,估计值越来越精确,逐 渐趋近于真值。 n大, X • 4.充分性 • 一个容量为n的样本统计量,是否充分地反映了 全部n个数据所反映总体的信息。
三、区间估计
(一)区间估计的定义 1. 根据估计量以一定可靠程度推断总体参数所在的区
少?
• 解:平均数的标准误
sn1 1 s1 8 2.67
X1
n1
n1 1 10 1
sn2 1 s2 9 1.52
X2
n2
n2 1 36 1
• 0.95的置信区间 • 当n1=10时,df1=n-1=9,t0.05/2=2.262
78 2.262 2.67 78 2.262 2.67 71.96 84.04
•置著性水平
• 显著性水平:估计总体参数落在某一区间时,可能 犯错误的概率,用符号表示。
• 置信度:被估计参数落在置信区间内的概率, • 1-表示 • 例:0.95置信区间(1-)指总体参数落在该区间内
,估计正确的概率为95%,而估计错误的概率为 5%(=0.05)
7.07 2.24
X1
n1
10
7.07 1.18
X2
n2
36
• 用n1=10的样本估计总体参数μ: • 0.95的置信区间

《概率论与数理统计》课件第七章 参数估计

《概率论与数理统计》课件第七章 参数估计
添加标题
03
若存在, 是否惟一?
添加标题
1
2
3
4
5
6
对于同一个未知参数,不同的方法得到的估计量可能不同,于是提出问题
应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
常用标准
(1)无偏性
(3)一致性
(2)有效性
7.2 估计量的评选标准
无偏性
一致性
有效性
一 、无偏性
定义1 设 是未知参数θ的估计量
09
则称 有效.
10

11
例4 设 X1, X2, …, Xn 是X 的一个样本,
添加标题
问那个估计量最有效?
添加标题
解 ⑴
添加标题
由于
添加标题
验证
添加标题
都是
添加标题
的无偏估计.
都是总体均值
的无偏估计量.

D
C
A
B
因为
所以
更有效.
例5 设总体 X 的概率密度为
关于一致性的两个常用结论
1. 样本 k 阶矩是总体 k 阶矩的一致性估计量.
是 的一致估计量.
由大数定律证明
用切比雪夫不 等式证明
似然函数为
其中
解得参数θ和μ的矩估计量为
2

3

1

6
,故
5
,表明L是μ的严格递增函数,又
4
第二个似然方程求不出θ的估计值,观察
添加标题
所以当
01
添加标题
从而参数θ和μ的最大似然估计值分别为
03
添加标题
时L 取到最大值
02
添加标题

第七章 参数估计ppt课件

第七章 参数估计ppt课件

ˆ lim P ( ) 1
n
0 ,则称 ˆ 为θ的一致估计量
31
随着样本容量增大,估计量会越来越接近 被估计的参数。即对任意的>0,有
n
ˆ l i m{ P | | } 1
则称 ˆ 是参数θ的一致估计量。 一致估计量是大样本所呈现的性质。若某
是总体X 的一个容量
1 ˆ X X X ) 1 ( 1 2 3 3
1 ˆ 2 X 3 X X ) 2 ( 1 2 3 6
是总体均值 的估计量,它们是无偏估计 量吗?若是,哪一个更有效。
30
三、一致性
设 ˆ 为未知参数θ的估计量,当 n 时, ˆ按 概率收敛于θ。即
n
2 ( x ) i 2 2


1n X X , ˆ 解方程组,得 i i 1 n
1n 2 2 X X ˆ i i 1 n 20
2
21
7.1.4 评价估计优良的准则
无偏性 有效性 一致性
22
一、无偏性
设 ˆ 为未知参数θ的估计量,若
离 散 型 (, ) x ( X x ) j 1 , k i p i
j i 1
j
n
8
例如0-1分布的数学期望(一阶原点矩)为p, x , x , , x ) 在总体中抽出随机样本 ( , 则样本平均数 1 2 n (样本的一阶原 点矩)

1n p xi n i1
26
, 2 , ,X 设 XX 1 n 是总体X的样本
ˆ X 1 1
1 ˆ 2 xi n
ห้องสมุดไป่ตู้ ,ˆ

第七章__参数估计

第七章__参数估计

三、区间估计与标准误
㈠区间估计的定义 是根据样本统计量,利用抽样分布的原理,在一定的
可靠程度上,估计出总体参数所在的范围,即以数 轴上的一段距离表示未知参数可能落入的范围。 ㈡置信区间与显著性水平 ⑴置信区间:也称置信间距,指在一定可靠程度上,总体参
数所在的区域距离或区域长度。
⑵置信界限(临界值):置信区间的上下两端点值。 ⑶显著性水平:指估计总体参数落在某一区间时,可能犯错
⑶区间估计的原理是样本分布理论。在计算区间估计值解释估 计的正确概率时,依据的是该样本统计量的分布规律及样本 分布的标准误。样本分布可提供概率解释,而标准误的大小 决定区间估计的长度。一般情况下,加大样本容量可使标准 误变小。
当总体方差已知时,样本平均数的分布为正态分布或
渐近正态分布,此时,样本平均数的平均数uX u, 平均数的离散程度即平均数分布的标准差(简称
例4
解:由题意知,其总体方差未知,但其总体分布为正态分布,
则此样本均数的分布服从t分布, 可以依t分布对总平 均身高μ进行估计。
SEX
S 4.8 0.81; df n 1 36 1 35 n 1 35
查t值表可知 : t0.05 230 2.042;t0.01 230 2.75
例2 已知某区15 岁男生立定跳远的方差 为 436.8cm ,现从该区抽取58名15岁男生, 测得该组男生立定跳远的平均数为198.4cm, 试求该区15岁男生立定跳远平均成绩的95%和 99%的置信区间。
例2
解:由题意知:由于样本容量(n=58)大于30 ,
该样本的抽样分布为渐进正态分布。
SEX
因此, 的95%的置信区间为 :
82 2.0211.12 82 2.0211.12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3) 求似然函数L( ) 的最大值点(常常转化为求ln L( )的最大值点) ,即
的MLE;

(4) 在最大值点的表达式中, 用样本值代入就得参数的最大似然估计值 .
例 设x1, x2, , xn是总体的样本,已知总体的密度函数为
f
x



x( 1) ,
0,
x 1; (其中参数 1)
)


n

n
( 1)
xi ,
i1
i1
n
ln L( ) n ln ( 1) xi , i 1
d
ln L( ) d

n


n i 1
xi

0.
由以上似然方程解得的极大似然估计
ˆ2
n
n
.
xi
i 1
1.(2006-4)设总体X服从参数为λ的指数分布,其中λ未知,X1,X2,…,Xn为来自总 体X的样本,则λ的矩估计为________.
2.(2006-7)设总体X服从泊松分布,即X~P(λ),则参数λ2的极大似然估计量为 __________.
3.(2007-4)设总体X具有区间[0,θ]上的均匀分布(θ>0),x1,x2,…,xn是来自该总
体的样本,则θ的矩估计 _ˆ_______.
4.(2007
-
7)设总体X
的概率密度为f
则以下关于的四个估计:ˆ1

1 4
( x1

x2

x3

x4 ),
ˆ2

1 5
x1

1 5
x2

1 5
x3 ,
ˆ3

1 6
x1

2 6
x2
ˆ4

1 7
x1中,哪一个是无偏估计?(
要求:领会
2.2 估计量的有效性、相合性, 要求:领会
3.区间估计
3.1 置信区间的概念,
要求:领会
3.2 求单个正态总体均值和方差的置信区间,要求:简单应用
参数估计
现在我们来介绍一类重要的统计推断问题
参数估计问题是利用从总体抽样得到的信息来估计总体的 某些参数或者参数的某些函数.
估计新生儿的体重
例如我们要估计某队男生的平均身高.
(假定身高服从正态分布
) N (,0.12 )
现从该总体选取容量为5的样本,我们的任务是要根据选出的样本(5个
数)求出总体均值 的估计. 而全部信息就由这5个数组成 .
设这5个数是:
1.65 1.67 1.68 1.78 1.69
估计 为1.68,
这是点估计.
(
x)



e
x
,
0,
x 0, x 0, x1, x2,
的一个样本,则未知参数的矩估计ˆ ___________ .
, xn为总体X
5.(2007-7)设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,…,Xn为 来自该总体的一个样本,则参数λ的矩估计量为___________.
x2

1 3
x3 , 其中较有效
的估计量是 ___ .
6.(2008 10)设总体X ~ N ( , 2 ), X1, X 2, , X n为来自总体的样本,, 2均未知, 则 2的无偏估计是( )
A.
1 n 1
n i 1
(Xi

X
)2
B.
1 n 1
n i 1
(Xi

A.无偏估计量 B.有偏估计量 C.渐近无偏估计量 D.一致估计量
3.(2007 -10)设总体X ~ N (, 2 ), x1, x2, x3为来自X的样本,则当常数a __时,
ˆ

1 4
x1

ax2

1 2
x3是未知参数的无偏估计.
4.(2008 1)设总体X
~
N (,1), (x1, x2, x3)为其样本, 若估计量ˆ
作出估计, 或估计

g ( ) 的某个已知函数
.
这类问题称为参数估计.
点估计
参数估计 区间估计
用样本均值x估计总体均值E(X ),即E(X ) x;
用样本二阶中心矩sn2

1 n
n i 1
( xi

x )2估计总体方差D( X
),即D( X )

sn2 ;
用事件A出现的频率估计事件A发生的概率.
最大似然估计原理:
设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度(连续型)或联 合分布律 (离散型)为 f (x1,x2,… ,xn ; ) .

当给定样本X1,X2,…Xn时,定义似然函数为:
L( ) f (x1, x2 ,…, xn; )
这里 x1, x2 ,…, xn 是样本的观察值 .
而相应的统计量
θ( X1, , Xn ) 称为 θ的最大似然估计量 .
两点说明:
1、求似然函数L( ) 的最大值点,可以应用微积分中的技巧。由于ln(x) 是 x 的增函数, lnL( )与L( )在 的同一值处达到它的最大值,假定 是一实 数,且lnL( )是 的一个可微函数。通过求解方程:

1 2
x1

1 3
x2
kx3为的
无偏估计量,则k _______ .
5.(2008 - 4)设总体是X ~ N(, 2),x1, x2, x3是总体的简单随机样本, ˆ1, ˆ2是总体
参数的两个估计量, 且ˆ1

1 2
x1

1 4
x2

1 4
x3 ,
ˆ2

1 3
x1

1 3
11.(2009 - 7)设总体X为指数分布,其密度函数为p(x;) ex , x 0, x1, x2, , xn是 样本,故的矩法估计ˆ ______.
12.(2009
-10)设总体X
的概率密度为f
(
x,
)


1

xe,xFra bibliotek 0,0,
x 0,
其中 0,X1,X 2, ,X n为来自总体X的样本.
其他.
试分别求出的矩估计ˆ1和极大似然估计ˆ2.
解 总体期望为
E( X ) x x( 1)dx 1
由矩估计法,令x 得矩法方程.解之得的矩估计 1
ˆ1

x. x 1
为求的极大似然估计,易求得似然函数为
L( )
n
(
xi (
1)
估计废品率 估计湖中鱼数
估计降雨量
在参数估计问题 中,假定总体分
布形式已知,未
… 知的仅仅是一个 或几个参数.

参数估计问题的一般提法
设有一个统计总体 , 总体的分布函数为
F( x, ) ,其中 为未知参数 ( 可以是向量) .
现从该总体抽样,得样本
X1,X2,…,Xn
要依据该样本对参数
估计
在区间 [1.57, 1.84] 内,
这是区间估计.
例 设x1, x2, , xn是来自服从区间(0, )上的均匀分布U (0, )的样本, 0为未知参数.求的矩估计ˆ.
解 总体X的均值E(X ) .
2
由矩法,应有 x, 解得 =2x.
2
比如,若样本值为0.1, 0.7, 0.2,1,1.9,1.3,1.8,则ˆ的估计值
9.(2008 -10)设总体X 服从参数为( 0)的指数分布,其概率密度为
f
(
x,

)

e

x
,
x 0,
0, x 0.
由来自总体X的一个样本x1, x2, , xn ,算得样本平均值x 9,则参数的矩估计ˆ ____ .
10.(2009 - 4)设总体X 服从参数为( 0)的泊松分布, x1, x2, , xn为X的一个样本, 其样本均值x 2,则的矩估计值ˆ _______ .
d ln L( ) 0 d
可以得到 的MLE .
若 是向量,上述方程必须用方程组代替 .
2、用上述求导方法求参数的MLE有时行不通,这时要用最大似然原则 来求 .
下面举例说明如何求最大似然估计
例5 设X1,X2,…Xn是取自总体 X~B(1, p) 的一个样本,求参数p的最大似然 估计量.
最大似然法的基本思想
先看一个简单例子:
某位同学与一位猎人一起外出打猎 . 一只野兔从前方窜过 .
只听一声枪响,野兔应声倒下 . 如果要你推测, 是谁打中的呢? 你会如何想呢?
你就会想,只发一枪便打中, 猎人命中的概率一般大于这位同学命中的概 率 . 看来这一枪是猎人射中的 .
这个例子所作的推断已经体现了极大似然法的基本思想 .
6.(2007 -10)设总体X 服从[0,2 ]上的均匀分布( 0), x1, x2, , xn是来自该 总体的样本, x为样本均值,则的矩估计ˆ ( )
A. 2x
B. x
C. x
D. 1
2
2x
7.(2008 - 4)设总体X的概率密度为
x( 1) , x 1;
似然函数:
L( ) f (x1,x2,…, xn; )
L(看)作参数 的函数,它可作为 将以多大可
能产生样本值 x1, x2,… ,xn 的一种度量 .
最大似然估计法就是用使
去ˆ 估计 .
相关文档
最新文档