用单摆测量重力加速度

合集下载

物理实验之用单摆测定重力加速度

物理实验之用单摆测定重力加速度

用单摆测定重力加速度实验目的用单摆测定当地的重力加速度实验原理当单摆摆角很小(小于50)时,可看作简谐运动,其固有周期为,由公式可得故只要测定摆长l和单摆的周期T,即可算出重力加速度g。

实验器材长约1米的细线、小铁球、铁架台(连铁夹)、米尺、秒表。

实验步骤(1)将细线的一端穿过铁球上的小孔并打结固定好,线的另一端固定在铁架台上,做成一个单摆。

(2)用毫米刻度的米尺测定单摆的摆长l(摆线静挂时从悬挂点到球心的距离)。

(3)让单摆摆动(摆角小于50),测定n(30—50)次全振动的时间t,用公式求出单摆的平均周期T;(4)用公式算出重力加速度g。

实验记录实验结论实验注意1、细线不可伸缩,长度约1m。

小球应选用密度较大的金属球,直径应较小(最好不超过2㎝)。

2、单摆的上端不要卷在夹子上,而要用夹子加紧,以免单摆摆动时摆线滑动或者摆长改变。

3、最大摆角小于5º,可用量角器测量,然后通过振幅来掌握。

4、摆球摆动时要在同一个竖直平面内。

5、计算单摆的振动次数时,应以摆球通过最低点时开始计时,以后摆球从同一方向通过最低点时进行计数,且在数零的同时按下秒表,开始计时计数,并且要测多次全振动的总时间,然后除以振动次数,如此反复三次,求得周期的平均值作为单摆的周期。

实验练习(1)在用单摆测重力加速度的实验中,摆线应选用:A.80厘米长的橡皮筋. B.1米左右的细线.C.1米左右的粗绳.D.25厘米左右的细绳.(2)在用单摆测重力加速度的实验中,摆球应选用:A.半径约1厘米的木球. B.半径约1厘米的铝球.C.半径约1厘米的空心钢球. D.半径约1厘米的空心钢球.(3)在“用单摆测重力加速度”的实验中,单摆得摆角必须小于50,其原因是因为:A.单摆的周期与振幅有关,摆角超过50,测出周期大;B.摆角越大,空气阻力越大,影响实验结果;C.因为简谐振动的周期与振幅无关,摆角小些给实验带来很大方便;D.摆角超过50,单摆的振动不在是简谐振动,周期公式失效.(4)利用单摆测重力加速度的实验中,若测得g 只偏小,可能是由于:A.计算摆长时,只考虑悬线长,而未加小球半径;B.测量周期时,将n 次全振动,误记成n+1次全振动;C.计算摆长时,用悬线长加小球直径;D.单摆振动时,振幅较小.(5)为了提高周期的测量精度,下列那种说法是可取的?A.在最大位移处启动秒表和结束记时;B.用秒表测30至50次全振动的时间,计算出平均值;C..用秒表测100次全振动的时间,计算出平均周期;D.在平衡位置启动秒表,并开始记数,当摆球第30次经过平衡位置时制动秒表,若读数为t ,7、 在用单摆测重力加速度的实验中,某同学利用两个单摆测得其周期分别为T 1、T 2,已知两个单摆的摆长之和为L ,则测得当地重力加速的表达式为____________。

用单摆测定重力加速度 (30张ppt)

用单摆测定重力加速度 (30张ppt)

T
t n
2
2t n
为了测量周期,摆球到达哪个位置的时刻作为计
时开始与停止的时刻比较好?
应以摆球变一次摆长,将相应的l和T代入公式 中求出g值,最后求出g的平均值.如下表处理数据:
表1-5-1
摆长(m)
实验次数
l线 d
l
时间
振次
周期
周期平 重力加
【实验步骤】
1、做单摆:让细线的一端穿过摆球的小孔,然后打 一个比孔大的线结,制成一个单摆.
×
【实验步骤】
2、测摆长: 摆长为l=l线+d/2 (1)用米尺量出悬线长l线,准确到mm
(2)用游标卡尺测摆球直径d,准确到mm L
0 0
1
5
10
【实验步骤】
3、测周期: 把单摆从平衡位置拉开一个很小角度(<5o)后释放 用停表测量单摆的周期。
高中物理
实 验 九
用 单 摆 测 定 重 力 加 速 度
如皋市第一中学
学生实验课件
【实验目的】 【实验原理】 【实验器材】 【实验内容】 【注意事项】 【减小误差】 【实验练习】
0
10
【实验目的】
用单摆测定当地重力加速度
【实验原理】
单摆做简谐运动时,其周期为 T 2,l 故有 以求g 出4,当2因Tl地2此的测重出力单加摆速的度摆g长的l和数振值动。周g期T,就可
11
4
10
5
9
6
87
53
33 4 35 6
37
22 51
20 49 18 47 16
8 39
10 41 12 43 45 14
【实验步骤】 3、测周期:
把单摆从平衡位置拉开一个很小角度(<5o)后释放

用单摆测量重力加速度

用单摆测量重力加速度

2.5 实验:用单摆测量重力加速度问题引入:理论上,与重力加速有关的物理现象都可以用来测量重力加速度g ,例如:利用自由落体运动就可以测量g ,也可以研究平抛运动测量g ,上一节课中我们又学习了单摆的周期公式T =2πlg,我们是否能从该公式出发设计一个实验用来单摆测量重力加速度g 呢?解析:能,由公式T =2πlg可知,只需要设计一个单摆,测出单摆的长度l ,周期T ,然后代入公式即可测出重力加速度g. 一、实验原理:单摆在摆角很小时,由单摆周期公式T =2πl g ,得g =4π2lT2,测得单摆的摆长l 和振动周期T ,就可以测出当地的重力加速度g . 二、实验器材:铁架台及铁夹、金属小球(最好上面有一个通过球心的小孔)、秒表、细线(1 m 左右)、刻度尺(最小刻度为mm)、游标卡尺. 三、实验步骤: 1.做单摆:让线的一端穿过小球的小孔,然后打一个比小孔大一些的结,把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记. 2.测摆长:l = l ′+ d2①.用毫米刻度尺量出悬线长l ′,如图甲所示. ②.用游标卡尺测出摆球的直径d ,如图乙所示. ③.摆线悬点固定方法:用“夹”不用“绕”3.测周期:将单摆从平衡位置拉开一个角度,且满足偏角小于5°,然后释放摆球,当单摆摆动稳定后,用秒表测量单摆完成30次(或50次)全振动的时间t ,计算出平均摆动一次的时间T =tn,即为单摆的振动周期.(注意:应以摆球经平衡位置时开始或停止计时.) 4.求重力加速度:把测得的周期和摆长的数值代入公式,求出重力加速度g 的值.5.多次改变摆长,重测周期,并记录数据.四、数据处理:方案一:平均值法改变摆长,重做几次实验.计算出每次实验的重力加速度.最后求出几次实验得到的重力加速度的平均值,即可作为本地区的重力加速度.分别以l和T 2为纵坐标和横坐标,作出l =g4π2T 2的图象,它应该是过原点的一条直线,根据这条直线可以求出斜率k,则重力加速度值g =4π2k.由于l-T的图象不是直线,不便于进行数据处理,所以采用l-T 2的图象,目的是将曲线转换为直线,便于利用直线的斜率计算重力加速度.五、误差分析:1.系统误差:主要来自于单摆模型本身是否符合要求,即悬点是否固定,摆球和摆长是否符合要求,最大摆角是否不超过5°,是否在同一竖直平面内摆动等。

用单摆测定重力加速度(含答案)

 用单摆测定重力加速度(含答案)

图1图2实验十三 用单摆测定重力加速度一、实验目的用单摆测定当地的重力加速度. 二、实验原理当单摆偏角很小时(α<10°),单摆的运动为简谐运动,根据单摆周期T =2π l g 得g =4π2l T2,因此,只需测出摆长l 和周期T ,便可测定g . 三、实验器材中心有小孔的金属小球、长约1米的细线、铁架台(带铁夹)、刻度尺、秒表、游标卡尺. 四、实验操作 1.实验步骤(1)做单摆:让细线的一端穿过小球的小孔,并打一个比小孔大一 些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,且在单摆平衡位置处做标记,如图1所示.(2)测摆长:用米尺量出摆线长l ′,精确到毫米,用游标卡尺测出小球的直径D ,也精确到毫米,则单摆长l =l ′+D 2.(3)测周期:将单摆从平衡位置拉开一个角度(小于10°),然后释放小球,记下单摆做30~50次全振动的总时间,算出平均每次全振动的时间,即为单摆的 振动周期.反复测量三次,再算出测得周期数值的平均值. (4)改变摆长,重做几次实验. 2.数据处理(1)公式法:利用多次测得的单摆周期及对应摆长,借助公式g =4π2lT 2求出加速度g ,然后算出g 的平均值.(2)图象法:由公式g =4π2lT 2,分别测出一系列摆长l 对应的周期T ,作出l -T 2的图象,如图2所示,图象应是一条通过原点的直线, 求出图线的斜率k ,即可求得g 值.g =4π2k ,k =l T 2=Δl ΔT 2.五、注意事项1.构成单摆的条件:细线的质量要小,弹性要小,选用体积小、密度大的小球,摆角不超过10°.2.要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.3.测周期的方法:(1)要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.(2)要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过最低位置时计数1次.4.本实验可以采用图象法来处理数据.即用横轴表示摆长l ,用纵轴表示T 2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k =4π2g .这是在众多的实验中经常采用的科学处理数据的重要办法. 六、误差分析1.系统误差的主要来源:悬点不固定,球、线不符合要求,振动是圆锥摆而不是在同一竖直平面内的振动等.2.偶然误差主要来自时间的测量上,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计振动次数. 记忆口诀轻绳重球铁架台,竖直平面小角摆; 先做单摆后测长,线长半径两不忘; 低点数数把时计,三五十次算周期; 秒表计数不估读,改变摆长多组数; 计算平均误差小,做图方法很美妙.例1 在做“用单摆测定重力加速度”的实验时,用摆长l 和周期T 计算重力加速度的公式是g =________.如果已知摆球直径为2.00 cm ,让刻度尺的零点对准摆线的悬点,摆线竖直下垂.如图3甲所示,那么单摆摆长是________.如果测定了40次全振动的时间如图乙中秒表所示,那么秒表读数是________ s .单摆的摆动周期是________ s.图3例2 下表是用单摆测定重力加速度实验中获得的有关数据:(1)图4(2)利用图象,取T2=4.2 s2时,l=________m.重力加速度g=________m/s2.例3有一测量微小时间差的装置,是由两个摆长略有微小差别的单摆同轴水平悬挂构成的.两个单摆摆动平面前后相互平行.(1)现测得两单摆完成50次全振动的时间分别为50.0 s和49.0 s,则两单摆的周期差ΔT=________s.(2)某同学利用此装置测量小于单摆周期的微小时间差,具体操作如下:把两摆球向右拉至相同的摆角处,先释放长摆摆球,接着再释放短摆摆球,测得短摆经过若干次全振动后,两摆恰好第一次同时同方向通过某位置,由此可得出释放两摆的微小时间差.若测得释放两摆的时间差Δt=0.165 s,则在短摆释放______s(填时间)后,两摆恰好第一次同时向________(填方向)通过______(填位置).(3)为了能更准确地测量微小的时间差,你认为此装置还可做的改进是________________.1.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议:A.适当加长摆线B.质量相同、体积不同的摆球,应选用体积较大的C.单摆偏离平衡位置的角度不能太大D.当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期其中对提高测量结果精确度有利的是________.2.在做“用单摆测定重力加速度”的实验中,(1)以下对实验的几点建议中,有利于提高测量结果精确度的是________.图5图7 A .实验中适当加长摆线B .单摆偏离平衡位置的角度不能太大C .当单摆经过最大位置时开始计时D .测量多组周期T 和摆长L ,作L -T 2关系图象来处理数据 (2) 某同学在正确操作和测量的情况下,测得多组摆长L 和对应 的周期T ,画出L -T 2图线,如图5所示.出现这一结果最可能 的原因是:摆球重心不在球心处,而是在球心的正____方(选填 “上”或“下”).为了使得到的实验结果不受摆球重心位置无法准确确定的影响,他采用恰当的数据处理方法:在图线上选取A 、B 两个点, 找出两点相应的横纵坐标,如图所示.用表达式g =________计算重力加速度,此结果即与摆球重心就在球心处的情况一样.3.两个同学利用假期分别去参观北京大学和南京大学的物理实验室,各自在那里利用先进的DIS 系统较准确地探究了“单摆的周期T 与摆长L 的关系”,他们通过校园网交换实验数据,并由计算机绘制了T 2-L 图象,如图6甲所示,去北大的同学所测实验结果对应的图线是________(选填“A ”或“B ”).另外,在南大做探究的同学还利用计算机绘制了两种单摆的振动图象(如图乙),由图可知,两单摆摆长之比L aL b=________.图64.某实验小组在进行“用单摆测定重力加速度”的实验中,已知单摆 在摆动过程中的摆角小于5°;在测量单摆的周期时,从单摆运动 到最低点开始计时且记数为1,到第n 次经过最低点所用的时间为t ;在测量单摆的摆长时,先用毫米刻度尺测得摆球悬挂后的摆线长(从悬点到 摆球的最上端)为L ,再用螺旋测微器测得摆球的直径为d (读数如图7所示). (1)该单摆在摆动过程中的周期为________.(2)用上述物理量的符号写出求重力加速度的一般表达式g =________. (3)从上图可知,摆球的直径为________ mm.(4)实验结束后,某同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的 ( ) A .单摆的悬点未固定紧,振动中出现松动,使摆线增长了图8B .把n 次摆动的时间误记为(n +1)次摆动的时间C .以摆线长作为摆长来计算D .以摆线长与摆球的直径之和作为摆长来计算5.某同学在做“用单摆测定重力加速度”的实验中,先测得摆 线长78.50 cm ,摆球直径2.0 cm.然后将一个力电传感器接到 计算机上,实验中测量快速变化的力,悬线上拉力F 的大小 随时间t 的变化曲线如图8所示. (1)该摆摆长为________ cm. (2)该摆摆动周期为________ s.(3)测得当地重力加速度g 的值为________ m/s 2.(4)如果测得g 值偏小,可能原因是 ( ) A .测摆线长时摆线拉得过紧B .摆线上端悬点未固定好,摆动中出现松动C .计算摆长时,忘记了加小球半径D .读单摆周期时,读数偏大6.(1)在“探究单摆周期与摆长的关系”实验中,两位同学用游标卡尺测量小球的直径如图9甲、乙所示.测量方法正确的是________(选填“甲”或“乙”).图9(2)实验时,若摆球在垂直纸面的平面内摆动,为了将人工记录振动次数改为自动记录振动次数,在摆球运动最低点的左、右两侧分别放置一激光光源与光敏电阻,如图10甲所示.光敏电阻与某一自动记录仪相连,该仪器显示的光敏电阻阻值R 随时间t 的变化图线如图乙所示,则该单摆的振动周期为________.若保持悬点到小球顶点的绳长不变,改用直径是原小球直径2倍的另一小球进行实验,则该单摆的周期将________(填“变大”、“不变”或“变小”),图乙中的Δt 将________(填“变大”、“不变”或“变小”).图10答案课堂探究例14π2lT287.40 cm75.2 1.88例2(1)见解析(2)1.059.86例3(1)0.02(2)8.085左平衡位置(3)减小两单摆的摆长差等随堂训练1.AC2.(1)ABD(2)下4π2(L A-L B) T2A-T2B3.B 4 94.(1)2tn-1(2)π2(n-1)2(L+d2)t2(3)5.980(4)BD5.(1)79.50(2)1.8(3)9.68(4)BCD 6.(1)乙(2)2t0变大变大。

实验08:用单摆测定重力加速度

实验08:用单摆测定重力加速度

实验08:用单摆测定重力加速度一.实验目的:(1)会用单摆测定当地的重力加速度g;(2)会正确使用秒表。

二.实验原理:在偏角很小时,单摆的运动可看作是简谐运动,其固有周期为T=2π√L/g它与偏角的大小及摆球的质量无关,将公式变形后可得g=4π^2 L/T^2,故只要测定摆长和周期,就可以求出当地的重力加速度g.三.实验器材:不易伸长的细线(约1m),带孔的小钢球和小木球,铁架台,米尺,游标卡尺,秒表.四.实验步骤:(1)取长约1m的细丝线穿过带孔的小钢球,打一个比孔略大一些的结,做成单摆;(2)把线的上端用铁夹固定在铁架台的支架上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记.2.测摆长:用毫米刻度尺量出悬线长l′,准确到毫米,测三次,取平均值;用游标卡尺测出摆球的直径d,在不同位置测三次,取平均值,则摆长l=l′+d/2.将测量结果填入表格中.3.测周期:把单摆从平衡位置拉开一个角度(小于5°)释放,让小球摆动,待摆动平稳后用秒表测出单摆完成30~50次全振动所用时间t,求出小球完成一次全振动所用的时间t,这个时间就是单摆的周期,即T=t/N(N为全振动的次数).重复本步骤3次,再计算周期的平均值T=(T1+T2+T3)/3,将结果填入表格。

4.改变摆长,重复上述步骤并做好记录,实验完毕,整理好器材。

5.计算重力加速度:(1)公式法:测出30次或50次全振动的时间t,利用T=t/N,求出周期;不改变摆长,反复测量三次,算出三次测得的周期的平均值,然后代入公式g=4π^2 L/T^2,求重力加速度,改变摆长后算出每次实验的重力加速度值并取平均,即可看作本地的重力加速度.2)图像法:由单摆周期公式可得:L=g/4π^2·T^2,因此,分别测出一系列摆长L对应的周期T,作L-T2的图象,图象应是一条通过原点的直线,求出图线的斜率k=g/4π^2,即可利用g=4π2k求得重力加速度值。

高二物理【实验:用单摆测量重力加速度】

高二物理【实验:用单摆测量重力加速度】
[答案] (1)测摆长时漏掉了摆球半径 (2)9.87
37
3.某同学利用单摆测量重力加速度. (1)(多选)为了使测量误差尽量小,下列说法正确的是( ) A.组装单摆须选用密度和直径都较小的摆球 B.组装单摆须选用轻且不易伸长的细线 C.实验时须使摆球在同一竖直面内摆动 D.摆长一定的情况下,摆的振幅尽量大
6
(4)把此单摆从平衡位置拉开一个角度,并使这个角小于 5°,再 释放小球.当摆球摆动稳定以后,在最低点位置时,用秒表开始计 时,测量单摆全振动 30 次(或 50 次)的时间,然后求出一次全振动的 时间,即单摆的振动周期.
(5)改变摆长,重做几次.
7
(6)根据单摆的周期公式,计算出每次实验的重力加速度;求出 几次实验得到的重力加速度的平均值,即本地区的重力加速度的值.
19
(2)①根据单摆振动的 v-t 图像知,单摆的周期 T=2.0 s. ②根据 T=2π gl 得 T2=4πg2l. 图线的斜率:k=4gπ2=4.04 s2/m, 解得:g≈9.76 m/s2. [答案] (1)①adf ②4πt22n2l (2)①2.0 ②9.76
20
【例 2】 用单摆测定重力加速度的实验装置如图所示.
41
[答案]
(1)BC
4π2ΔL (2)T21-T22
42
4.某同学在一次用单摆测重力加速度的实验中,测量 5 种不同 摆长与单摆的振动周期的对应情况,并将记录的结果描绘在如图所 示的坐标系中.图中各坐标点的标号分别对应实验中 5 种不同摆长 的情况.在处理数据时,该同学实验中的第________数据点应当舍 弃.画出该同学记录的 T2-l 图线.求重力加速度时,他首先求出图 线的斜率 k,则用斜率 k 求重力加速度的表达式为 g=________.

实验:用单摆测重力加速度(解析版)

实验:用单摆测重力加速度(解析版)

第5节实验:用单摆测重力加速度一、教材原型实验1.用单摆测定重力加速度的实验装置如图1所示。

(1)选用合适的器材组装成单摆后,主要步骤如下:①将单摆上端固定在铁架台上①让刻度尺的零刻度线对准摆线的悬点,测摆长L①记录小球完成n次全振动所用的总时间t①根据单摆周期公式计算重力加速度g的大小根据图2所示,测得的摆长L=________cm;重力加速度测量值表达式g=_________(用L、n、t表示);(2)实验中为测量单摆的周期,将摆球从平衡位置拉开一个角度(小于5°),然后释放摆球,从摆球运动到___________处(选填“平衡位置”或“释放点位置”)开始计时;(3)为减小实验误差,多次改变摆长L,测量对应的单摆周期T,用多组实验数据绘制T2-L图像,如图3所示。

由图可知重力加速度g=___________(用图中字母表示);(4)关于本实验,下列说法正确的是________(选填选项前的字母)。

A.需要用天平称出小球的质量B.测量摆长时,要让小球静止悬挂再测量C.摆长一定的情况下,摆的振幅越大越好【答案】98.502224Lntπ平衡位置()22122214L LT Tπ--B【详解】(1)[1]刻度尺的最小分度值为1mm,以小球中心为准,根据读数规则读数为98.50cm。

[2]测量单摆的周期为tTn=而单摆的理论周期为2T=2224πLngt=(2)[3]测量单摆的周期时,应该从摆球运动到平衡位置时开始计时,以此来减小计时误差。

(3)[4]对单摆的周期公式进行变形可得224πT Lg=根据图中斜率值,可得22221214πT TL L g-=-解得()22122214πL L gT T-=-(4)[5]A.本实验通过单摆的周期来测量当地的重力加速度,不需要摆球的质量,故A错误;B.测量摆长时,要让小球静止悬挂再测量,可以更精确地测量出悬点到球心的距离,故B正确;C.单摆只有在摆角小于或等于5°时才能看作是简谐运动,故C错误。

实验:用单摆测重力加速度(高中物理教学课件)

实验:用单摆测重力加速度(高中物理教学课件)
05.实验:用单摆测重力加速度 图片区
一.实验目的
1.练习使用秒表
2.测量当地的重力加速度
二.实验原理
T 2
l g
g
4 2l
T2
1.计算法:测量单摆的摆长和周期,可以计算出 当地的重力加速度。要求多次测量求平均值
T 2 l T 2 4 2 l或者l g T 2
g
g
4 2
2.图像法:测出多组数据作T2-l图象或者l-T2图 象,利用斜率求重力加速度
典型例题
例6. (1)在做“用单摆测定重力加速度”的实验中,用主 尺最小分度为1mm、游标尺上有20个分度的卡尺测量金 属球的直径,结果如图甲所示,可以读出此金属球的直 径为 14.35 mm. (2)单摆细绳的悬点与拉力传感器相连,将摆球拉开一小 角度使单摆做简谐运动后,从某时刻开始计时,拉力传 感器记录了拉力随时间变化的情况,如图乙所示,则该 单摆的周期为 2.0 s.
问题:若某同学用单摆测定重力加速度实验把绳 长当成了摆长,能否求得重力加速度?
T 2
Lr g
Lr
g
4 2
T2
L
g
4
2
T
2
r
L
答:能求出。 作出l -T2图象如 图,可以利用斜率
得到重力加速度,
0
T2 且纵轴截距的绝对
-r
值就是小球半径。
祝你学业有成
2024年4月28日星期日8时27分34秒
六.机械秒表的读数
1.按钮功能: 开始,结束,复位 2.表盘构造: 内侧表盘与外侧表盘 3.工作原理:
内侧表盘:反映分针读数t1,转一周是15分钟,每1大格为1分钟, 分成前后两部分,指针在1~2之间t1=1分,指针在2~3之间t1=2分, 以此类推…… 外侧表盘:反映秒针读数t2,转一周是30s,转两周为60s,每大格 为1秒钟,分成10小格,读到0.1s,不需要估读。若分针在前半部 分,秒针为0~30.0s,若分针在后半部分,秒针为30.0~60.0s。

第一章 第5节 学生实验:用单摆测定重力加速度

第一章 第5节 学生实验:用单摆测定重力加速度

第5节学生实验:用单摆测定重力加速度对应学生用书P14一、实验目的、原理、器材1.做单摆(1)让线的一端穿过小球的小孔,然后打一个比小孔稍大一些的结,制成一个单摆。

(2)把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记。

(如图所示)2.测摆长用米尺量出从悬点到小球上端的悬线长l 0,再用游标卡尺测量出摆球的直径d ,则摆长l =l 0+d 2。

3.测周期将单摆从平衡位置拉开一个小角度(摆角小于5°),然后释放摆球让单摆在竖直平面内摆动。

当单摆摆动稳定后,过平衡位置时开始计时,测量30~50次全振动的时间。

计算出完成一次全振动的时间,即为单摆的振动周期T 。

4.改变摆长重测周期将单摆的摆长变短或变长,重复实验三次,测出相应的摆长l 和周期T 。

三、数据处理1.平均值法每改变一次摆长,将相应的l和T代入公式g=4π2lT2中求出g值,最后求出g的平均值。

设计如表所示实验表格2由T=2πlg得T2=4π2g l作出T2-l图像,即以T2为纵轴,以l为横轴。

其斜率k=4π2g,由图像的斜率即可求出重力加速度g。

四、注意事项(1)实验时,摆线长度要远大于摆球直径,且摆线无明显伸缩性,另外摆球要选取密度大且质量分布均匀的钢球。

(2)单摆摆球应在竖直平面内摆动,且摆角应小于5°。

(3)测摆长l时,应为悬点到球重心的距离,球质量分布均匀时等于摆线长加上小球半径。

(4)应从摆球经过平衡位置时开始计时,以摆球从同一方向通过平衡位置时计数。

(5)适当增加全振动的测量次数,以减小测量周期的误差,一般30~50次即可。

五、误差分析(1)测摆长l时只测量出细线长,没有加上小球的半径,使得所测摆长偏小,g的测量值偏小。

(2)测摆动周期时,将N次全振动误记为N+1次全振动,使所测周期偏小,g的测量值偏大。

(3)实验时,摆角较大,使得摆动实际周期与2πlg有偏差。

2024届高考物理一轮复习:实验:用单摆测重力加速度

2024届高考物理一轮复习:实验:用单摆测重力加速度

第七章机械振动与机械波实验:用单摆测重力加速度【考点预测】1.用单摆测重力加速度实验器材和实验原理2.用单摆测重力加速度实验步骤和数据处理3.用单摆测重力加速度注意事项和误差分析【方法技巧与总结】1.实验原理当摆角较小时,单摆做简谐运动,其运动周期为T=2πlg,由此得到g=4π2lT2,因此,只要测出摆长l和振动周期T,就可以求出当地的重力加速度g的值.2.实验器材单摆,游标卡尺,毫米刻度尺,停表.3.实验过程(1)让细线的一端穿过金属小球的小孔,做成单摆.(2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图所示.(3)用毫米刻度尺量出摆线长度l′,用游标卡尺测出金属小球的直径,即得出金属小球半径r,计算出摆长l=l′+r.(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t,计算出单摆的振动周期T.(5)根据单摆周期公式,计算当地的重力加速度.(6)改变摆长,重做几次实验.4.数据处理(1)公式法:利用T=tN求出周期,算出三次测得的周期的平均值,然后利用公式g=4π2lT2求重力加速度.(2)图像法:根据测出的一系列摆长l对应的周期T,作l-T2的图像,由单摆周期公式得l=g4π2T2,图像应是一条过原点的直线,如图所示,求出图线的斜率k,即可利用g=4π2k求重力加速度.5.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定.(2)单摆必须在同一平面内振动,且摆角小于5°.(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.(4)应在小球自然下垂时用毫米刻度尺测量悬线长.(5)一般选用一米左右的细线.【题型归纳目录】题型一:教材原型实验题型二:实验误差分析题型三:探索创新实验【题型一】教材原型实验【典型例题】例1.在做“用单摆测量重力加速度”的实验时。

单摆法测量重力加速度

单摆法测量重力加速度

如果物体下落的初速度为零,即v0=0,则 s= gt2/2
(2-5)
可见,如果能测得物体在最初t秒内通过的距离s,就可以算出重力加速度值g。
实际中由于v0=0这一条件不易达到,往往造成小球通过第一光电门时有一初速度v0,
测得的时间值比小球实际下落时间短,使测得结果g值偏大。同时,测量s也有一定困难,
3.测量摆动周期 T
使摆球摆动幅度在允许范围内,测量摆球往返摆动 50 次所需时间 t50,重复测量 3
∑ 次,求出 T= t50 。测量时,选择摆球通过最低点时开始计时,最后计算时单位统一为 3× 50
秒。
4. 将所测数据列于下表中,并计算出摆长、周期及重力加速度。
次数 L1(cm)
摆球 直径 d (cm)
[实验目的]
1.学习使用秒表、米尺。 2.用单摆法测量重力加速度。
[教学要求]
1. 理解单摆法测量重力加速度的原理。 2. 研究单摆振动的周期与摆长、摆角的关系。 3. 学习在实验中减小不确定度的方法。
[实验器材]
单摆装置(自由落体测定仪),秒表,钢卷尺
[实验原理]
单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长 远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边 (很小距离,摆角小于 5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动, 如图 2-1 所示。
(2-8)
s2t1-s1t2= g (t22t1-t12t2) 2
于是得到
g
=
⎜⎜⎝⎛
s2 t2 t2
− s1 t1
− t1
⎟⎟⎠⎞
(2-9)
2
[实验步骤]
(一) 按式(2-6)测定重力加速度

【高中物理】实验:用单摆测量重力加速度课件 高二上学期物理人教版(2019)选择性必修第一册

【高中物理】实验:用单摆测量重力加速度课件 高二上学期物理人教版(2019)选择性必修第一册


4π2
示).其斜率k= ,由图象的斜率即可求出重力加速度g.

意义
T 2 / 2
4.4




4.0
3.6
3.2
2.8
横纵轴截距的意义
面积的意义
斜率的意义
求解
2.4
2.0
0.5 0.6
0.7
0.8
0.9
1.0
L/m
在直线上取两个相距较远读数准
确的点(坐标纸上的十字交叉点)
来求斜率。






计算摆长,由此得到的T2-L图象是图乙中的________(填“①”“②”或“③”),由图乙可得当地重
4 2
不变
力加速度g=________;由此得到的g值会________(填“偏小”“不变”或“偏大”).

例4
如图甲所示,某学习小组在实验室做“用单摆测定重力加速度”的实验.



(1)若用秒表测出单摆完成n次全振动所用的时间t.请写出周期的表达式T=
A.不应在小球经过最低点时开始计时,应该在小球运动到最高点时开始计时
B.开始计时后,不应记录小球经过最低点的次数,而应记录小球做全振动的次数
C.不应作t2-L图线,而应作t-L图线

1
D.不应作t2-L图线,而应作t2-(L+2d)图线
例6







某日,风和日丽,天高气爽,你和朋友一道历经千辛万苦登上了一座





________.

(2)若利用拉力传感器记录拉力随时间变化的关系图象如图乙所示,由图乙

高二物理研究用单摆测重力加速度

高二物理研究用单摆测重力加速度

实验: 研究用单摆测重力加速度
一、实验原理
得 只要测出单摆的摆长L和振动周期T,就可以求出当地的重力加速度g的值, 单摆做简谐运动时,其周期为:
×
二、实验步骤
1、做单摆:取约1米长的线绳栓位小钢球,然后固定在桌边的铁架台上。
二、实验步骤
算出半径r,也准确到毫米
2、测摆长:
(1)用米尺量出悬线长L,准确到毫米
3、为了提高实验精度,在试验中可改变几次摆长L,测出相应的周期T,从而得出一组对应的L与T的数值,再以L为横坐标T2为纵坐标,将所得数据连成直线如下图所示,则测得的重力加速度g= 。
1.0
4
3
2
0.8
0.5
0
l/m
T2/s2
9.86m/s2
(2)用游标卡尺测摆球直径
摆长为L+r
L
0
5
10
0
1
二、实验步骤
用秒表测量单摆的周期。
测周期:
把单摆从平衡位置拉开一个角度(<5o)放开它
2分7.6秒
秒表的读数
0
31
2
33
4
35
6
37
8
39
41
10
43
12
14
45
16
47
18
49
20
51
22
53
24
26
55
57
28
59
0
1
2
6
7
8
9
10
11
3
4

课 堂 练 习
课 堂 练 习
某同学测定的g的数值比当地公认值大,造成的原因可能是( ) 摆球质量太大了; 量摆长时从悬点量到球的最下端; 摆角太大了(摆角仍小于10°); 计算摆长时忘记把小球半径加进去; 计算周期时,将(n-1)次全振动误记为n次全振动. ⑤

用单摆测量重力加速度ppt课件

用单摆测量重力加速度ppt课件

3.关于单摆图像,回答下列问题
(1)造成图线不过坐标原点的原因可能是
____测__量___摆__长__时___漏__掉___了__摆___球__的__半___径____。 (2)由图像求出的重力加速度g=__9__.8__7__m/s2(取π2=9.87)。 (3)如果测得的g值偏小,可能的原因是____B____。
如图甲所示,在摆球运动的 最低点位置的左右两侧分别 放置一激光光源与光敏电阻, 光敏电阻与某一自动记录仪 相连,该仪器可以显示光敏电阻的阻值R随时间t变化的曲线,如图乙所 示。摆球摆动到最低点时,挡住激光使得光敏电阻的阻值增大(或I小), 从t1时刻开始,再经过两次挡光完成一个周期,故该单摆的振动周期为 2t0。
A.测摆长时摆线拉得过紧 B.摆线上端悬点未固定,振动中出现松动,使摆线长度增加了 C.开始计时时,停表过迟按下 D.实验时误将49次全振动记为50次
4.用单摆测量重力加速度的创新实验方案
人工计数时,需要在摆球经过最低点时按下停表,但是在实际操作中,经常 会过早或过晚按下停表,导致误差较大,因此可以用自动计数代替人工.
1、在《用单摆测定重力加速度》的实验中,以下各实验步骤中有
错误的是( )
A.在未悬挂好摆球之前先测好摆长; B.测得的摆长为10cm;
BDA
C.将摆球拉离平衡位置,最大偏角小于5º,让摆球在竖直平面内
振动;
D.当摆球第一次通过平衡位置时开始计时,以后摆球每经过平
衡位置都计数,数到30时停止计时,所测时间即为单摆振动30个
周期的时间 .
2.某同学在“用单摆测量重力加速度”的实验 中进行了如下的操作: (1)用游标尺为10分度(测量值可精确到0.1 mm) 的游标卡尺测量摆球直径,游标卡尺的示数如 图甲所示,摆球直径为________ cm。把摆球用 细线悬挂在铁架台上,测量摆线长,通过计算 得到摆长l。 (2)用停表测量单摆的周期。当单摆摆动稳定且 到达最低点时开始计时并计数为0,单摆每经过 最低点计数一次,当数到n=60时停表的示数如 图乙所示,该单摆的周期是T=________ s(结 果保留3位有效数字)。

2.4 用单摆测量重力加速度 课件(13张PPT)

2.4 用单摆测量重力加速度 课件(13张PPT)
在平衡位置,摆球速度最大,对于相同位移误差的时间测量误差更小
单摆的应用——测量重力加速度
数据处理
ഥ (s)
实验次数 摆长ҧ (m) 周期
1
2
3
4
5
计算法
=



+ + + +
=

图像法
l
T 4
g
2
2
4 2
斜率 k
g
单摆的应用——测量重力加速度
粤教版 选择性必修一
第四节 用单摆测量重力加速度
知识回顾:单摆的应用
1.利用单摆的等时性计时
惠更斯于1656年发明了世界上第一个用摆的
等时性来计时的时钟(1657年获得专利权)
2. 用单摆测定重力加速度
l
T 2
g
l
g 4 2
T
2
单摆的应用——测量重力加速度
实验目的
用单摆测量当地的重力加速度
释放(保证其在竖直平面内摆动),用秒表测量单摆
完成30次全振动(通过平衡位置标记60次)所用的时
间t,计算得单摆周期T。改变摆长多次重复实验。
为什么要测出单摆完成30~50次全振动的时间再算出周期?
减小单次测量因人的反应时间而引起的误差
避免因测量次数太多而引起的偶然误差
单摆的应用——测量重力加速度
实验原理
单摆的简谐运动周期
l
T 2
g
l
g 4 2
T
2
单摆的应用——测量重力加速度
实验目的
用单摆测量当地的重力加速度
实验原理

= (单摆、简谐运动)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用单摆测量重力加速度的实验,通过测定时的周期公式,即摆长L和振动周期T与重力加速度g之间的关系。实验中,需要选取适当的摆球和摆线,确保摆球在同一竖直平面内振动,且摆角不超过10度。通过测量摆线长度和摆球直径来确定摆长,并使用停表精确测量单摆的振动周期。将测得的周期和摆长代入公式,即可求出重力加速度g的值。为减小误差,需进行多次测量并取平均值。此外,实验还需注意悬点固定、摆线不易伸长、摆球密度大且直径小等细节,以提高测量的准确性。
相关文档
最新文档