高中数学会考模拟试题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 付电费10 8元B 少付电费10 8元
C 少付电费15元D 多付电费4 2元
10 圆心在 上,半径为3的圆的标准方程为()
A B
C D
11 不等式组 所表示的平面区域是()
A B C D
12 焦点在 轴上,且 的双曲线的标准方程是()
A B
C D
13 “ ”是“ ”的()
A 充要条件B 充分不必要条件
2 每小题选出答案后,用铅笔涂黑答题卡上对应题目的答案标号 如需改动,用橡皮擦干净后,再选涂其它答案 答案写在试题卷上无效
一、选择题(每小题3分,共48分)
1 已知集合 , ,则 等于()
A B C D
2 已知 ,则 的终边在()
A 第一象限B 第二象限C 第三象限D 第四象限
3 算式 的值是()
A B C D
高中数学会考模拟试题(5)
本试卷第I卷和第II卷两部分 第I卷为选择题,第II卷为非选择题
第I卷(选择题,共48分)
注意事项:
1 答第I卷前,考生务必用蓝 黑色墨水笔或圆珠笔将姓名 座位号 考试证号 考点名称 考场序号填写在答题卡上,并用2B铅笔在答题卡规定位置涂黑自己的试卷类型 考试证号和考试科目
C 必要不充分条件D 既不充分又不必要条件
14 若 ,则下列各式正确的是()
A B C D
15 不等式 的解集是()
A B
C D
16 在生态系统中,当输入一个营养级的能量后,大约10%~20%的能量流动到下一个营养级,在 这条生物链中,若能使 获得10J的能量,按流动10%计算,则需要 提供的能量是()
C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行
9 某地区对用户用电推出两种收费办法,供用户选择使用:一是按固定电价收取;二是按分时电价收取------在固定电价的基础上,平时时段电价每千瓦时上浮0 03元;低谷时段电价每千瓦时下浮0 25元。若一用户某月平时时段用电140千瓦时,低谷时段用电60千瓦时,则相对于固定电价收费该月()
三、解答题(本大题共5小题,共40分)
21 (6分)设 , 求 的值
22 (7分)某居民小区在一块边长 米, 米的长方形空地上,拟建一个平行四边形绿化带,如图中阴影部分EFGH,要求 。
(1)设 米,写出绿化面积 关于 的函数关系式;
(2)求 为何值时,绿化面积最大,最大绿化面积是多少?
23 (8分)如图,已知PA 面ABC,AB BC,若PA=AC=2,AB=1
(2) 的通项
∴
又 ∴ 为等差数列
(3)∵ ∴
∴
∴
25 解:(1)设动点 ,又 轴,
又P为CD中点, 。
即 ,即
(2)令 假设存在满足题设条件的点为
则
又 ①消去
代入①得 故存在点 ,使得
4 函数 的反函数是()
A B
C D
5 如图,在正六边形ABCDEF中,点O为其中点,
则下列判断错误的是()
A B ∥
C D
6 函数 的定义域是()
A B C D
7 直线 的斜率 的值为()
A B C D 2
8 在空间中,下列命题正确的是()
A 平行Hale Waihona Puke Baidu同一平面的两条直线平行B 平行于同一直线的两个平面平行
(1)求动点P的曲线 的方程;
(2)若(1)中曲线 与 轴正半轴交于E点,问曲线 上是否存在一点M,使得 ?若存在,求M点坐标;若不存在,说明理由。
高中数学会考模拟试题(5)
答案
一、选择题(每题3分,共48分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
答案
C
B
A
A
D
D
C
D
B
B
D
C
B
A
A
C
二、填空题(每题3分,满分12分)
题号
17
18
19
20
答案
19
三、解答题(本大题共5小题,满分40分)
21 解:
原式
22
,又
面积最大,其最大值为900
23 证明:(1)由BC 面PAB得:面PAB 面PBC
(2)过A作AM PB于M,取PC的中点N,连接MN,
易证:∠ANM为二面角的平面角,
且
24 解:(1) ∴
∴
即: 且
∴ 是等比数列
(1)求证:面PAB 面PBC;(2)求二面角A-PC-B的大小。
24 (9分)已知数列 中, 是它的前 项和,并且 , 。
(1)设 ,求证 是等比数列
(2)设 ,求证 是等差数列
(3)求数列 的通项公式及前 项和公式
25 (10分)已知在平面直角坐标系中,点,,动点C满足 ,点C在 轴上的射影为D,点P为线段CD中点。
A B C D
第II卷(非选择题,共52分)
二、填空题(每题3分,共12分)
17 数列 的通项公式为 ,则
18 将棱长为6厘米的正方体大理石,加工成一个健身球,则该球的最大体积为
19 抛物线 的焦点坐标为
20 如图,已知两个灯塔A和B与观察站C的距离都为 ,灯塔A在观察站C的北偏东 ,灯塔B在观察站C的南偏东 ,则灯塔A,B间的距离是
C 少付电费15元D 多付电费4 2元
10 圆心在 上,半径为3的圆的标准方程为()
A B
C D
11 不等式组 所表示的平面区域是()
A B C D
12 焦点在 轴上,且 的双曲线的标准方程是()
A B
C D
13 “ ”是“ ”的()
A 充要条件B 充分不必要条件
2 每小题选出答案后,用铅笔涂黑答题卡上对应题目的答案标号 如需改动,用橡皮擦干净后,再选涂其它答案 答案写在试题卷上无效
一、选择题(每小题3分,共48分)
1 已知集合 , ,则 等于()
A B C D
2 已知 ,则 的终边在()
A 第一象限B 第二象限C 第三象限D 第四象限
3 算式 的值是()
A B C D
高中数学会考模拟试题(5)
本试卷第I卷和第II卷两部分 第I卷为选择题,第II卷为非选择题
第I卷(选择题,共48分)
注意事项:
1 答第I卷前,考生务必用蓝 黑色墨水笔或圆珠笔将姓名 座位号 考试证号 考点名称 考场序号填写在答题卡上,并用2B铅笔在答题卡规定位置涂黑自己的试卷类型 考试证号和考试科目
C 必要不充分条件D 既不充分又不必要条件
14 若 ,则下列各式正确的是()
A B C D
15 不等式 的解集是()
A B
C D
16 在生态系统中,当输入一个营养级的能量后,大约10%~20%的能量流动到下一个营养级,在 这条生物链中,若能使 获得10J的能量,按流动10%计算,则需要 提供的能量是()
C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行
9 某地区对用户用电推出两种收费办法,供用户选择使用:一是按固定电价收取;二是按分时电价收取------在固定电价的基础上,平时时段电价每千瓦时上浮0 03元;低谷时段电价每千瓦时下浮0 25元。若一用户某月平时时段用电140千瓦时,低谷时段用电60千瓦时,则相对于固定电价收费该月()
三、解答题(本大题共5小题,共40分)
21 (6分)设 , 求 的值
22 (7分)某居民小区在一块边长 米, 米的长方形空地上,拟建一个平行四边形绿化带,如图中阴影部分EFGH,要求 。
(1)设 米,写出绿化面积 关于 的函数关系式;
(2)求 为何值时,绿化面积最大,最大绿化面积是多少?
23 (8分)如图,已知PA 面ABC,AB BC,若PA=AC=2,AB=1
(2) 的通项
∴
又 ∴ 为等差数列
(3)∵ ∴
∴
∴
25 解:(1)设动点 ,又 轴,
又P为CD中点, 。
即 ,即
(2)令 假设存在满足题设条件的点为
则
又 ①消去
代入①得 故存在点 ,使得
4 函数 的反函数是()
A B
C D
5 如图,在正六边形ABCDEF中,点O为其中点,
则下列判断错误的是()
A B ∥
C D
6 函数 的定义域是()
A B C D
7 直线 的斜率 的值为()
A B C D 2
8 在空间中,下列命题正确的是()
A 平行Hale Waihona Puke Baidu同一平面的两条直线平行B 平行于同一直线的两个平面平行
(1)求动点P的曲线 的方程;
(2)若(1)中曲线 与 轴正半轴交于E点,问曲线 上是否存在一点M,使得 ?若存在,求M点坐标;若不存在,说明理由。
高中数学会考模拟试题(5)
答案
一、选择题(每题3分,共48分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
答案
C
B
A
A
D
D
C
D
B
B
D
C
B
A
A
C
二、填空题(每题3分,满分12分)
题号
17
18
19
20
答案
19
三、解答题(本大题共5小题,满分40分)
21 解:
原式
22
,又
面积最大,其最大值为900
23 证明:(1)由BC 面PAB得:面PAB 面PBC
(2)过A作AM PB于M,取PC的中点N,连接MN,
易证:∠ANM为二面角的平面角,
且
24 解:(1) ∴
∴
即: 且
∴ 是等比数列
(1)求证:面PAB 面PBC;(2)求二面角A-PC-B的大小。
24 (9分)已知数列 中, 是它的前 项和,并且 , 。
(1)设 ,求证 是等比数列
(2)设 ,求证 是等差数列
(3)求数列 的通项公式及前 项和公式
25 (10分)已知在平面直角坐标系中,点,,动点C满足 ,点C在 轴上的射影为D,点P为线段CD中点。
A B C D
第II卷(非选择题,共52分)
二、填空题(每题3分,共12分)
17 数列 的通项公式为 ,则
18 将棱长为6厘米的正方体大理石,加工成一个健身球,则该球的最大体积为
19 抛物线 的焦点坐标为
20 如图,已知两个灯塔A和B与观察站C的距离都为 ,灯塔A在观察站C的北偏东 ,灯塔B在观察站C的南偏东 ,则灯塔A,B间的距离是