金属塑性变形物理基础位错理论

合集下载

中南大学张新明教授金属塑性加工原理03

中南大学张新明教授金属塑性加工原理03

(4)采用活动套环和包套:如图3—55所示,选用塑性 采用活动套环和包套:如图3 55所示, 所示 好抗力较低的材料做外套, 好抗力较低的材料做外套,由于外套和坯料一起加热后 镦粗,外套对坯料的流动起着限制作用, 镦粗,外套对坯料的流动起着限制作用,从而增加了三 向压应力状态,防止了裂纹的产生。 向压应力状态,防止了裂纹的产生。镦粗低塑性的高合 金钢时,用普通钢做外套,套的外径可取D=(2 3)d, D=(2金钢时,用普通钢做外套,套的外径可取D=(2-3)d,d是 坯料原始直径。 坯料原始直径。 用活动套镦粗时, 用活动套镦粗时,低塑性毛坯经一定的小变形后就 能与套环接触,然后取走垫铁,继续镦粗, 能与套环接触,然后取走垫铁,继续镦粗,套环材料除 塑性好外,要其变形抗力比锻坯稍大些, 塑性好外,要其变形抗力比锻坯稍大些,使其对流动起 限制作用,以增强三向压应力,防止裂纹的产生。 限制作用,以增强三向压应力,防止裂纹的产生。
(3)采用软垫:如图3-54,因为软垫的变形抗力较小, 采用软垫:如图3 54,因为软垫的变形抗力较小, 在压缩开始阶段,软垫先变形, 在压缩开始阶段,软垫先变形,产生了强烈的径向流 结果工件侧面成凹形如图3 54( )。随着软垫的 动,结果工件侧面成凹形如图3-54(a)。随着软垫的 继续压缩变薄,其单位变形抗力增加。 继续压缩变薄,其单位变形抗力增加。这时工件便开 始显著地被压缩, 始显著地被压缩,于是工件侧表面的凹形逐渐消失变 得平直见图3 54( ),继续压缩时才出现鼓形如图 继续压缩时才出现鼓形如图3 得平直见图3-54(b),继续压缩时才出现鼓形如图354( ),这样与未加软垫的镦粗工件相比 这样与未加软垫的镦粗工件相比, 54(c),这样与未加软垫的镦粗工件相比,其鼓形凸 度就相应减少了, 度就相应减少了,因而也就相应地减少了工件侧面的 周向拉应力。 周向拉应力。

金属塑性变形物理基础位错理论

金属塑性变形物理基础位错理论
此时,位错应变能一般指E0。它可通过 在晶体内“制得”一个位错所作的功求 得。
E螺=
Gb2
4
ln
R r0
E刃=
Gb2 ln R
4 (1 ) r0
则 E刃=
1
1
E螺,一般取0.3,
2
所以 E 螺= 3 混合位错
E混=
Gb 2
4 (1 )
E刃 (1-cos2)ln
R r0
• 汇集一点的位错线,它们的柏氏矢量和 为零;
• 一根位错线不能终止在晶体内部,只能 终止在晶体表面。
位错环 b
1.2.3 位错密度——描述位错多少的参数 (1) 定义:单位体积中位错的总长度。
V = L cm/cm3
(2) 位错的形成——液态结晶时形成。晶体 经过塑性变形回复和再结晶及其它热处 理,位错的密度变化。
体的一边贯通到另一边,而是有时终止 在晶体的中部。
1934年,提出了位错的概念,
1947年低碳钢的屈服效应,位错理论得到 了很大发展,
1950年以后,用电镜直接观察到位错。至 此,位错的存在才最终得到间接证明。 从此以后,位错理论得以迅速发展。它 是一门很重要的基本理论。
1.2 位错模型和柏氏矢量 1.2.1 位错的分类:
如1-2图所示,若位错线上的原子沿切 应力方向移动不到一个原子间距,周围其 它原子稍作调整,多余半原子面和位错线 就可以向前移动一个原子间距。可见位 错移动具有易动性。
• 图1-2示出了位错由晶体的一端扫到另一端
(2)螺位错的滑移运动 如图所示位错线上的原子只需在切应
力作用下向前移动一个原子间距的分数倍 的距离,位错线可以向左移动一个原子间 距。
设m= b
化简得

塑性成形原理重点问题解答

塑性成形原理重点问题解答

一、加工硬化加工硬化指经过塑性变形后,金属内部的组织结构和物理力学性能发生改变,其塑性、韧性下降,强度、硬度增加,继续变形的力提高的现象。

微观上,加工硬化与金属内部的位错滑移、位错交割、位错塞积、交滑移以及晶粒的破碎与变化等有关。

加工硬化的后果: 强度提高,增加设备吨位;塑性下降,降低变形程度,增加变形工序和中间退火工序;强化金属材料(不能热处理的),提高金属零件的强度,改善冷塑性加工的工艺性能。

附:金属的结构:单晶体结构(体心立方、面心立方、密排六方) 实际多晶体结构(点缺陷、线缺陷、面缺陷) 单晶体的塑性变形机构:滑移,挛生 位错理论的基本概念:位错、刃型位错、螺型位错、柏氏矢量、位错运动与增值 多晶体冷塑性变形的微观机理:晶界、晶粒位向、晶内变形、晶间变形、变形不均匀性、 变形后组织与性能的改变 有关基本内容参阅金属学及热处理 二、金属的塑性与塑性指标金属的塑性:指固体金属在外力的作用下产生永久变形而不破坏其完整性的能力。

注:塑性是一种状态、而不是一种性质 塑性的影响因素:(各因素具体的影响没详细) 内部因素:晶格类型、化学成分、晶相组织; 外部因素:变形温度、变形速度、受力状态 附:塑性指标三、金属受外力而变形,抵抗变形的力—变形抗力 变形的难易程度 单位流动应力 变形抗力的影响因素: 化学成分、组织结构、变形温度 变形速度、变形程度、应力状态四、金属的超塑性—金属材料在一定的内部条件(金属的组织状态)和外部条件(变形温度、变形速度)下变形体现出的极高的塑性,延伸率达δ=100%~2000%。

, m =0.3~1.0超塑性结构超塑性(微细晶粒超塑性) 动态超塑性(相变超塑性)超塑性的影响因素:组织结构(晶粒度5 ~ 10μm ) 变形温度(0.5 ~ 0.7T m )、变形速度(10-4 ~ 10-1 min-1) 五、塑性力学的基本假设:1.变形体连续2.变形体均质和各向同性3.变形体静力平衡4.体积力和体积变形不计 六、主应力、应力状态特征方程(在课本上) 1、应力特征方程的解是唯一的;2、对于给定的应力状态,应力不变量也具有唯一性;3、应力第一不变量J1反映变形体体积变形的大小,与塑性变形无关;J3也与塑性变形无关;J2与塑性变00100%h l l l δ-=⨯ 延伸率−00100%hA A A φ-−=⨯断缩面收率 00100%h C H H H ε-−=⨯压缩变形程度()()()()()()()()22222222222212322311616x y y z z x xy yz zx x y y z z x xy yz zx J σσσσσστττσσσσσστττσσσσσσ⎡⎤''''''=-++-++⎣⎦⎡⎤=-+-+-+++⎢⎥⎣⎦⎡⎤=-+-+-⎣'⎦10x y z J σσσ'''+'=+=形有关;4、应力不变量不随坐标而改变,是确定点的应力状态异同的判据。

(金属塑性成形原理课件)第2讲塑性变形物理本质

(金属塑性成形原理课件)第2讲塑性变形物理本质
多晶体: 晶粒方向性互相抵消——各向 同性
存在着一系列缺陷: 点缺陷、线缺陷、 面缺陷
2020/10/4
10
Lesson Two
一些金属材料的实验屈服强度和理论屈服强度
材料
理论强度(G/30)/GPa 实验强度/MPa 理论强度/实验强度
银 铝 铜 镍 铁 钼 铌 镉 镁(柱面滑移) 钛(柱面滑移) 铍(基面滑移) 铍(柱面滑移)
2020/10/4
13
Lesson Two
肖脱基空位——只形成空位而不形成等量的间隙原子 弗兰克尔缺陷——同时形成等量的空位和间隙原子
2020/10/4
14
Lesson Two
在实际晶体中,点缺陷的形式可能更复杂。例 如,即使在金属晶体中,也可能存在两个、三个甚 至多个相邻的空位,分别称为双空位、三空位或空 位团。但由多个空位组成的空位团从能量上讲是不 稳定的,很容易沿某一方问“塌陷”成空位片(即 在某一原子面内有一个无原子的小区域)。同样,间 隙原子也未必都是单个原子,而是有可能m个原子均 匀分布在n个原子位置的范围内(m>n),形成所谓 “挤塞子”(crowdion)。
(1)表面:指所研究的金属材料系统与周围气相或液相介质的接触面。 (2)晶界、亚晶界:指多晶体材料内部,结构及成分相同,而位向不 同的两部分晶体之间的界面。 (3)相界:指晶体材料内部不仅位向不同,而且结构不同,甚至成分 也不同的两部分晶体之间的界面。在纯金属的同素异晶转变过程中出现 的相界面,其两侧仅结构不同;而合金相的相界两侧,除结构不同外, 往往成分也不相同。 此外,还有孪晶界、反相畴界,层错界、胞壁等等。
(1)对称倾侧晶界
对称倾侧晶界相当于两部分晶体,沿着平行于界面
的某一轴线,各自转过方向相反的θ/2而形成的。两晶 粒位向差为θ,如下图1所示。此晶界相当于两个晶粒的 对称面,它只有一个自由度θ。

福州大学材料科学基础课件-第三章 位错金属的塑性变形

福州大学材料科学基础课件-第三章  位错金属的塑性变形


实际只有5个变量是独立的。至少应有5个独立 的滑移系才能协调多晶体的塑性变形。
3. 晶粒大小的影响 多晶体的强度随其晶粒细化而提高。满足 霍尔-佩奇(Hall-Petch)关系。
是与材料有关的两个常数。 d:多晶体中各晶粒的平均直径。
0, k
§4 塑性变形对金属组织与性能的影响
一、显微组织的变化
· 单相固溶体合金塑性
变形的特点
2.应变时效
将低碳钢试样拉伸到 产生少量预塑性变形 后卸载,然后重新加 载,试样不发生屈服 现象,但若产生一定 量的塑性变形后卸载, 在室温停留几天或在 低温(如150℃)时 效几小时后再进行拉 伸,此时屈服点现象 重新出现,并且上屈 服点升高,这种现象 即应变时效
§2
单晶体的塑性变形
金属变形的主要方式:滑移、孪生、扭折 一、滑移 (一)滑移线与滑移带
(二)滑称系 晶体的滑移是沿着一定的晶面发生的,此组晶 面称为滑移面,滑移还沿着滑移面上一定的晶向 进行,称为滑移方向。 每一个滑移面和此面上的一个滑移方向合起来 叫做一个滑移系。 FCC: 滑移面{111},滑移方向<110> BCC: 低温{112} 室温{110},高温{123}, 而滑移方向都是<111> 滑移面为(0001),滑移方向为<11 2 0>
· 1.聚合型两相合金的塑性变形 (1)如果两个相都具有塑性,则合金的变形决定于两 相的体积分数。 等应变理论:假定塑性变形过程中两相应变相等。 合金产生一定应变的平均流变应力 σ a = f 1 σ 1 + f2 σ 2 : 其中:f1、f2为两个相的体积分数 f1+f2=1 σ1、σ2为两个相在此应变时的流变应力 等应力理论:假定塑性变形过程中两相应力相同。 对合金施加一定应力时,平均应变εa= f 1ε1+f 2ε2 其中:f1、f2为两个相的体积分数 ε 1,ε2为此应力下两相的应变

金属在塑性变形中的组织结构与性能变化

金属在塑性变形中的组织结构与性能变化

6 材料在塑性变形中的组织结构与性能变化本章仅将简要地介绍冷形变及其后的加热过程、以及热形变过程对金属和合金的组织结构与性能的影响的主要理论。

6.1 冷形变后金属组织结构和性能的变化金属和合金在低于再结晶温度进行压力加工时,通常就称为冷形变或冷加工。

钢在常温下进行的冷轧、冷拔、冷挤、冷冲等压力加工过程皆为冷形变过程。

在冷形变过程中组织和性能都会发生变化。

6.1.1 金属组织结构的变化金属塑性变形的物理实质基本上就是位错的运动,位错运动的结果就产生了塑性变形。

在位错的运动过程中,位错之间、位错与溶质原子、间隙位置原子以及空位之间、位错与第二相质点之间都会发生相互作用,引起位错的数量、分布和组态的变化。

从微观角度来看,这就是金属组织结构在塑性变形过程中或变形后的主要变化。

塑性变形对位错的数量、分布和组态的影响是和金属材料本身的性质以及变形温度、变形速度等外在条件有关的。

单晶体塑性变形时,随着变形量增加,位错增多,位错密度增加,运动位错在各种障碍前受阻,要继续运动需要增加应力,从而引起加工硬化。

变形到一定程度后产生交滑移,因而引起动态回复,这些塑性变形过程中的变化已是我们所熟知的,不再细述。

多晶体塑性变形时,随着变形量增加和单晶体变形一样,位错的密度要增加。

用测量电阻变化、储能变化的方法,或者用测量腐蚀坑的方法以及电镜直接观测的方法都可以出金属材料的位错密度。

退火状态的金属,典型的位错密度值是105~108 cm -2,而大变形后的典型数值是1010~1012cm -1。

通过实验得到的位错密度(ρ)同流变应力(σ)之间的关系是:21ρασGb = (6-1) 式中:a —等干0.2~0.3范围的常数;G —剪切弹性模量;b —柏氏矢量。

多晶体塑性变形时,因为各个晶粒取向不同,各晶粒的变形既相互阻碍又相互促进,变形量稍大就形成了位错胞状结构。

所谓胞状结构,是变形的各种晶粒中,被密集的位错缠给结区分许多个单个的小区域。

《材料成型金属学》教学资料:第一章位错理论基础

《材料成型金属学》教学资料:第一章位错理论基础

晶界特点
1) 晶界—畸变—晶界能—向低能量状态转化—晶粒长大、 晶界变直—晶界面积减小; 2) 阻碍位错运动— 流变应力↑ 细晶强化; 3) 位错、空位等缺陷多—晶界扩散速度高; 4) 晶界能量高、结构复杂—容易满足固态相变的条件— 固态相变首先发生地; 5) 化学稳定性差—晶界容易受腐蚀; 6) 微量元素、杂质富集。
1 位错理论基础
Fundamentals of dislocation theory
理想晶体 完全按照空间点阵有规则排列
实际晶体 不可能完全规则排列,存在晶格缺陷 lattice defect
1.1 晶体缺陷概述
晶体中的缺陷: 原子排列偏离完整性的区域
点缺陷-在三个方向上尺寸都很小 线缺陷-在二个方向上尺寸很小 面缺陷-在一个方向上尺寸很小
Ae-q / kT
空位迁移速度与绝对温度T和空位迁移能量q的关系 式中:A为常数,k为玻尔兹曼常数。
点缺陷对晶体性质的影响
晶格畸变:点缺陷引起晶格局部弹性变形。
空位缺陷
间隙粒子缺陷 杂质粒子缺陷
点缺陷引起的三种晶格畸变
点缺陷对材料性能的影响
点缺陷的存在会使其附近的原子稍微偏离原结点位置才能平 衡,即造成小区域的晶格畸变。
Low Angle Grain Boundary -小角晶界
(a)倾侧晶界模型;(b)扭转晶界模型
小角晶界可理解为位错墙 位向差θ<10°
亚结构
变形→位错密Leabharlann 增加→位错缠结 高位错密度区将位错密度低的区域隔开 → 晶粒内部出现“小晶粒” ,取向差不大→ 胞状亚结构
.
透射电镜 (TEM)
大角晶界
理想晶体原子 面堆积
含有刃型位错晶 体原子面堆积

8 位错理论基础

8 位错理论基础

晶体特性与P-N力: • fcc结构的位错宽度W大,其P-N力小,故其 容易屈服; • bcc相反,其屈服应力大; • 共价键和离子键晶体的位错宽度很小,所以 表现出硬而脆的特性。
滑移面、滑移方向与P-N力: • P-N力与(-d/b)成指数关系; • 密排面的面间距d最大,降低P-N力; • 沿密排方向的位错线最稳定,因为相邻密排 方向之间的间距 b大,因而P-N力也大。
b2
刃型位错 的扭折
b2 b1
b1
刃型位错 的割阶
3.螺型位错间的交割 位错线和柏氏矢量都垂直的两个螺型位错交割 后,两个螺型位错上都形成刃型位错型的割阶。
b1
刃型位错 的割阶
b2
b2
刃型位错 的割阶
b1
4. 扭折与割阶的性质 • 所有的割阶都是刃型位错,而扭折可以是刃 型的也可是螺型的。
• 扭折与原位错线在同一滑移面上,可随主位 错线一道运动,几乎不产生阻力, 且扭折在 线张力作用下能够消失。
四. 位错的应变能
位错周围点阵畸变引起弹性应力场导致晶体能 量增加, 这部分能量称为位错的应变能,或称为 位错的能量。
位错的应变能分为两部分:
中心区域的应变能 Wc:约占位错总能量的 10%, 计算复杂, 通常忽略不计去。 中心区域以外的应变能 We:占位错总能量的90 %左右。
单位长度刃型位错 的应变能为:
一.位错间的交互作用
1. 两平行螺型位错的交互作用
在b1应力场作用下,b2 受力为
两位错同号取正,为斥力; 异号取负,为引力。
结论: • 平行螺型位错间的作用力大小与b的乘积成正 比,与位错间距成反比; • 其方向垂直位错线。 bl 与 b2 同向时 ,两位错相 互排斥, 反向时相互吸引。

金属塑性成形原理---第二章_金属塑性变形的物理基础

金属塑性成形原理---第二章_金属塑性变形的物理基础

位错的攀移
❖ 螺型位错无攀移
❖ 正攀移——正刃型位错位错线上移
负刃型位错位错线下移
编辑课件
位错的交割
❖ 两根刃型位错线都在各自的滑移面上移动,
则在相遇后交截分别形成各界,形成割阶后
仍分别在各自的平面内运动。
❖ 刃型位错和螺型位错交割时,在各自的位错
线上形成刃型割阶,位错线也能继续滑移。
❖ 螺型位错和螺型位错交割时,相交后形成的
❖ 假设:理想晶体两排原子相距为a,同排原子间距
为b。原子在平衡位置时,能量处于最低的位置。
在外力τ作用下,原子偏离平衡位置时,能量上升,
原子能量随位置的变化为一余弦函数。
❖ 通过计算晶体的临界剪切应力,并与实际的临界
剪切应力进行比较,人们发现,理论计算的剪切
强度比实验所得到的剪切强度要高一千倍以上。
编辑课件
典型的晶胞结构
编辑课件
典型的晶胞结构
编辑课件
三种晶胞的晶格结构
编辑课件
一、塑性变形机理
实际金属的晶体结构
❖ 单晶体:各方向上的原子密度不同——各向
异性
❖ 多晶体:晶粒方向性互相抵消——各向同性

❖ 塑性成形所用的金属材料绝大多数为多晶
体,其变形过程比单晶体复杂的多。
编辑课件
多晶体塑性变形的分类
加工中,会使变形力显著增
加,对成形工件和模具都有
III.抛物线硬化阶段:
一定的损害作用;但利用金
与位错的交滑移过程有关,
θ3
随应变增加而降低,应力应变
属加工硬化的性质,对材料
曲线变为抛物线。
进行预处理,会使其力学性
能提高
编辑课件
2.2 金属热态下的塑性变形

位错强化理论[终稿]

位错强化理论[终稿]

位错强化理论通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。

所谓强度是指材料对塑性变形和断裂的抗力。

从根本上讲,金属强度来源于原子间结合力,而根据理论计算的金属切变强度一般是其切变模量的1/10~1/30,而金属的实际强度只是这个理论强度的几十分之一,甚至几千分之一。

造成这样大差异使位错理论应运而生,晶体的滑移不是晶体的一部分相对于另一部分同时做整体运动,而是位错在切应力的作用下沿着滑移面逐步移动的结果。

位错虽然移动了一个原子间距,但位错中心附近的的少数原子只做远小于一个原子间距的弹性偏移,而晶体其他区域的原子仍处于正常位置,这样,位错运动只需要一个很小的应力(P169)就能实现,位错理论的发展揭示了晶体实际切变强度(和屈服强度)低于理论切变强度的本质。

金属材料的强化途径不外两个,一是提高合金的原子间结合力,提高其理论强度,并制得无缺陷的完整晶体,如晶须。

铁的晶须强度接近理论值,可以认为这是因为晶须中没有位错,或者只包含少量在形变过程中不能增殖的位错。

从自前来看,只有少数几种晶须作为结构材料得到了应用。

另一强化途径是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界、高度弥散的质点或不均匀性(如偏聚)等,这些缺陷阻碍位错运动,也会明显地提高金属强度。

具体方法有固溶强化、形变强化(加工硬化)、沉淀强化和弥散强化(质点强化)、细晶强化、相变强化:1.固溶强化它的实现主要是通过溶质原子与位错的交互作用。

固溶体中存在着溶质原子,使合金的强度硬度提高,而塑性韧性有所下降,即产生固溶强化。

其原因在于,一是固溶体中溶质与溶剂的原子半径所引起的弹性畸变,与位错之间产生的弹性交互作用,对滑移面上运动着的位错有阻碍作用;二是在滑移线上偏聚的溶质原子(柯氏气团)对位错的束缚和钉扎作用。

(P176)2.形变强化,即加工硬化:随着变形程度的增加,金属的强度硬度增加,而塑性韧性下降。

其原因与位错的交互作用有关,随着变形程度的增加,位错密度不断增加。

材料成形工艺基础最新精品课件第五章金属塑性成形理论基础

材料成形工艺基础最新精品课件第五章金属塑性成形理论基础
图5-3孪生变形示意图
2. 多晶体的塑性变形
多晶体的塑性变形是由于晶界的存在和 各晶粒晶格位向的不同,其塑性变形过程比 单晶体的塑性变形复杂得多。在外力作用下, 多晶体的塑性变形首先在晶格方向有利于滑 移的晶粒A内开始,然后,才在晶格方向较 为不利的晶粒B、C内滑移。由于多晶体中 各晶粒的晶格位向不同,滑移方向不一致, 各晶粒间势必相互牵制阻扰。为了协调相邻 晶粒之间的变形,使滑移得以继续进行,便 图5-4 多晶体塑性变形过程示意图 会出现晶粒彼此间相对的移动和转动。因此, 多晶体的塑性变形,除晶粒内部的滑移和转 动外,晶粒与晶粒之间也存在滑移和转动。
图5-6 回复和再结晶示意图
(3)晶粒长大 在结晶退火后的金属组织一般为细小均匀的等 轴晶。如果温度继续升高,或延长保温时间,则在结晶后的晶粒 又会长大而形成粗大晶粒,从而使金属的强度、硬度和塑性降低。 所以要正确选择再结晶温度和加热时间的长短。
5.2.2 冷变形和热变形后金属的组织与性能
金属在再结晶温度以下进行的塑性变形称为冷变形,在再结晶以 上进行的塑性变形称为热变形。
图5-7 冲压件的制耳
(4)残余内应力 残余内应力是指去除外力后,残留在金属内 部的应力,它主要是由于金属在外力作用下变形不均匀而造成的。 残余内应力的存在,使金属原子处于一种高能状态,具有自发恢 复到平衡状态的倾向。在低温下,原子活动能力较低,这种恢复 现象难以觉察,但是,当温度升高到某一程度后,金属原子获得 热能而加剧运动。金属组织和性能将会发生一系列变化。
1. 锻造比 锻造比是锻造生产中代表金属变形程度大小的一个参数,一 般是用锻造过程中的典型工序的变形程度来表示(Y)。如拔长时, 锻造比Y拔=F0/F;镦粗时,锻造比Y镦=H0/H。(式中,H0、F0分别为坯 料变形前的高度和横截面积,H、F分别为坯料变形后的高度和横截面 积)。

第三章 金属的塑性变形

第三章 金属的塑性变形
发生再结晶的最低温度称再结晶温度。

纯金属的最低再结晶温度 与其熔点之间的近似关系: T再≈0.4T熔 其中T再、T熔为绝对温度.

金属熔点越高, T再也越高.
T再与ε的关系
T再℃ = (T熔℃+273)×0.4–273,如Fe的T再=(1538+273)×0.4–273=451℃
影响再结晶退火后晶粒度的因素
钛合金六方相中的形变孪晶
奥氏体不锈钢中退火孪晶
二、单晶体的塑性变形 分析单晶体的塑性变形,实际上就是分析 晶内变形。 单晶体塑性变形的主要方式有滑移和孪晶。 根据晶体结构 理论,任何一块单 晶体都包含有若干 不同方向的晶面。
外 力 在 晶 面 上 的 分 解 切 应 力 作 用 下 的 变 形 锌 单 晶 的 拉 伸 照 片
580º C保温8秒后的组织
580º C保温15分后的组织 700º C保温10分后的组织
第四节
金属的热加工
• 一、冷加工与热加工的区别
• 在金属学中,冷热加工的界限是以再结晶温
度来划分的。低于再结晶温度的加工称为冷 加工,而高于再结晶温度的加工称为热加工。
轧制
模锻
拉拔
• 如 Fe 的再结晶温度为451℃,其在400℃ 以下的加 工仍为冷加工。而 Sn 的再结晶温度为-71℃,则其 在室温下的加工为热加工。 • 热加工时产生的加工硬化很快被再结晶产生的软化 所抵消,因而热加工不会带来加工硬化效果。
铁素体变形80%
碎拉长的晶粒变为完整
的等轴晶粒。
650℃加热
• 这种冷变形组织在加热
时重新彻底改组的过程
称再结晶。
670℃加热
• 再结晶也是一个晶核形成 和长大的过程,但不是相 变过程,再结晶前后新旧 晶粒的晶格类型和成分完 全相同。

材料科学基础_材料的塑形变形

材料科学基础_材料的塑形变形

第三节
• • • • •
滑移的位错理论分析
滑移的实质是位错的运动 位错的增殖 位错的交割 位错的塞积 加工硬化
滑移的实质是位错的运动
大量的理论研究证明,滑移原来是由于滑移面上 的位错运动而造成的。图示例子表示一刃型位错在切 应力的作用下在滑移面上的运动过程,通过一根位错 从滑移面的一侧运动到另一侧便造成一个原子间距的 滑移。
滑移的实质是位错的运动
位错的滑移面就是晶体的滑移面,柏氏矢量的 方向就是晶体的滑移方向。为了使位错的能量较低, 在结构容许的条件下,尽量减小柏氏矢量,所以原子 的密排方向就成为了位错的柏氏矢量的方向。
位错的增殖
塑性变形的过程中,尽管位错移出晶体产 生滑移台阶,但位错的数量(位错密度)却在不 断的增加,这是因为在外应力作用下发生塑性 变形时位错会发生增殖。
3. 应变:物体形状尺寸所发生的相对改变。物体内部 某处的线段在变形后长度的改变值同线段原长之比 值称为“线应变”;物体内两互相垂直的平面在变 形后夹角的改变值称为“剪应变”或“角应变”; 变形后物体内任一微小单元体体积的改变同原单位 体积之比值称为“体积应变”。
变形过程
低碳钢的拉伸曲线如 图所示。 在应力低于弹性极限 σ e时,材料发生的 变形为弹性变形;应 力在σ e到σ b之间将 发生的变形为均匀塑 性变形;在σ b之后 将发生颈缩;在K点 发生断裂。
塑性变形过程--颈缩
1. 颈缩:试样将开始发生不均匀的塑性变形, 产生了颈缩,即塑性变形集中在一局部区域 进行。 2. 特点:颈缩发生后,宏观表现为外力在下降, 工程应力在减小,但颈缩区的材料承受的真 实应力依然在上升。
3. 极限强度:材料开始发生颈缩时对应的工程 应力σ b ,这时试样出现失稳,颈缩真实应 力依然在上升,但能承受的总外力在下降。

第2章 金属塑性变形的材料学原理

第2章  金属塑性变形的材料学原理

8
2.2 单晶体的塑性变形
主要形式滑移(变形) 次要形式孪生(协调)
Principle of Metal Forming
2.2.1 滑移

概念:晶体在切应力的作用下, 晶体的一部分沿一定的晶面(滑移
面)上的一定方向(滑移方向)相对于另一部分发生的相对移动或切变。
9

特点:
①滑移只能在切应力作用下才会发生。 ②滑移是晶体内部位错运动的结果。 ③晶体总变形量是这个方向上的原子间距的整数倍。 ④滑移总是沿着晶体中原子密度最大晶面和晶向进行。
c.合金比纯金属的加工硬化率要高。
2.6
回复和再结晶
2.6.1 冷变形金属的静态回复 和静态再结晶 1. 静态回复 金属经变形以后,形成不 稳定结构,使内能增高,处于 热力学不稳定状态。在变形停 止以后,若变形程度不超过临 界变形程度时,将发生回归稳 定的现象。
26
2. 静态再结晶
在热变形后,若金属仍处于再结晶温度以上,则 将发生静态再结晶。重新形成无畸变的等轴晶。 影响因素: 1)温度 2)保温时间 3)变形程度 4)原始晶粒尺寸 5)金属的化学成分
①体心立方:滑移优先、低温孪生
②面心立方:多滑移、少孪生(极低温或高冲击)
③密排六方:少滑移、多孪生
17
1.3 位错理论的基本概念(自学)
1.4 多晶体的塑性变形
2.4.1 多晶体的变形方式
1.晶内(单晶体内)变形 转动+滑移 2.晶间(晶界)变形 晶粒取向趋于一致而被拉长
Principle of Metal Forming
30
Principle of Metal Forming
Principle of Metal Forming

位错基本理论

位错基本理论
的研究。发现:塑性变形的主要方式是滑移,即在切应力作 用下,晶体相邻部分彼此产生相对滑动。
晶体滑移: 总沿一定的滑移面(密排面)和其上的
一个滑移方向进行,且只有当切应力 达到一定临界值时,滑移才开始。
此切应力被称为临界分切应力,即晶 体的切变强度。
1926年,弗兰克( Frankel)从刚体滑移模型出发,推算晶体的 理论强度。
点缺陷的移动: 晶体中点缺陷并非固定不动,而在不断改变位置的运动中。 空位周围的原子,因热振动能量起伏而获得足够能量而跳入
空位,则在该原子原位置上,形成一个空位。此过程为空位 向邻近结点的迁移。如图
(a)原来位置; (b)中间位置; (c)迁移后位置 空位从位置A迁移到B
当原子在C处时,为能量较高不稳定状态,空位迁移须获足 够能量克服此障碍,称该能量为空位迁移激活能ΔEm。
正刃位错:滑移面上方点阵受压应力,下方点阵受拉应力。 负刃型位错与此相反。
5)在位错线周围的过渡区(畸变区)每个原子具有较大的 平均能量。但只有2~5个原子间距宽,呈狭长的管道。
晶体在外切应力τ作用下,右端晶体上下区在滑移面(ABCD) 发生一个原子间距的切变。
BC为已滑移区与未滑移区的交界处,即位错线。 在BC线和aa'线间的原子失去正常相邻关系,连接则成了一
握位错各种性质的基础。
根据原子滑移方向和位错线取向几何特征不同, 位错:分为刃位错、螺位错和混合位错。
晶体在外切应力 作用下,以ABCD面为滑移面发生滑移,
EFGH面以左发生了滑移,以右尚未滑移,致使ABCD面上 下两部分晶体间产生了原子错排。 EF-将滑移面分成已滑移区和未滑移区,即是“位错”。 EFGH晶面称多余半原子面。
离开平衡位置的原子可有两个去处:

位错基础

位错基础
量等于从体心立方晶体的原点到体心的矢量来 表示,则b=a/2+b/2+c/2,可写成b=a/2[111]。
一般立方晶系中柏氏矢量可表示为 b=a/n<uvw>,其中n为正整数。
通常柏氏矢量的大小(即位错强度)还用下式
来表示。
| b |
a
u2 v2 w2
n
3. 柏氏矢量的守恒性(Conservation)
位错理论的发展历史较短,还存在一些不 完善之处。弗兰克和斯蒂兹(J.W.Steeds)在1975 年的一篇“晶体位错”的评论中指出:位错有 些理论是确切的,因为它们是纯几何的或纯形 貌的。有些部分显然是近似的,然而是可靠的。 但现在有意义的问题是不能确信那些已做的近 似的可靠性,因此必须依靠全部的理论方法以 及观察和推测来谋求进一步发展。除了这些 “近似”之外,在位错领域中迄今还没有完全 解决的主要问题是如何填补单个位错的性质和 位错集团的行为之间的鸿沟。因此,位错理论 尚有待今后进一步发展和完善。
混合型位错线是一条曲线,在A处位错线与滑移矢量 平行,因此是螺型位错;而在C处位错线与滑移矢量垂直, 因此是刃型位错。A与C之间,位错线既不垂直也不平行 于滑移矢量,每一小段位错线都可分解为刃型和螺型两个 部分,因此是混合型位错。
由于位错线是已滑移区与未滑移区的边界 线,因此一根位错线不能终止于晶体内部,而 只能露头于晶体表面或晶界。
1939年柏格斯(J.M.Burgers)提出了螺型位错的概
念和柏氏矢量,使位错的概念普遍化,并发展了位错应 力场的一般理论,接着位错理论得到多方面的发展。 1940年派尔斯(Peierls)提出半点阵模型,到1947年在 纳波罗(Nabarro)的帮助下,计算出使位错滑移所需 的临界切应力(P-N力)。 1949年柯垂尔(A.H.Cottrell) 提出位错与溶质原子的作用问题,用碳原子钉扎位错来 解释钢中屈服点的现象获得成功(Cottrell气团),弗兰 克尔的螺型位错促进晶体生长的理论预告获得了令人信 服的证实。而后许多人几乎同时独立地在显微镜下观察 到了位错的存在及其形状。

晶体塑性变形的位错机制PPT课件

晶体塑性变形的位错机制PPT课件
柯氏气团的形成减少了晶格畸变,降低了溶质原子与位错的弹性交互作用能,使位错处于较稳定的状态,从而减少了可动位错的数目,这就是钉扎作用。若要使位错线运动,脱离开气团的钉扎,就需要更大的外力,从而增加了固溶体合金抵抗塑性变形的能力。
3.2 多相合金塑性变形与位错机制
多相合金的组织主要分为两类:一两相的晶粒尺寸相近,两相的塑性也相近;二是有塑性较好的固溶体基体及其上分布的硬脆第二相组成,这类合金除具有固溶体强化效果外,还有因第二相的存在而引起的第二相强化。 位错对多相合金塑性的影响主要体现在合金中的硬脆相在塑性相中呈颗粒状分布的合金中。 一般来说,颗粒状的硬脆相对塑性的危害比针状和片状要小。
下图是由于位错塞积而在晶界处产生的竹节效应
Ni3Al+0.1%B合金拉伸时滑移带终止于晶界
三、合金的塑性变形
根据合金的组织可以将合金分为两类,一是具有以基体金属为基的单相固溶体组织,称为单相固溶体;二是加入的合金元素量超过了它在基体金属中的饱和溶解度,在显微组织中除了以基体组织为基的固溶体外,还出现了第二相(各组元形成的化合物或以合金元素为基形成的另一固溶体)构成了多相合金。
当位向最有利的晶粒发生塑性变形时 ,这就意味着在它的滑移面上的位错源开动,位错不断地在滑移面上向前运动,但周围晶粒的位向不同,滑移系也不同,运动着的位错不能越过晶界,滑移系就不可能发展到另一个晶粒中。位错就会在晶界处形成平面塞积群,这样就会造成很大的应力集中。 在外加应力及已滑移晶粒内位错平面塞积群所造成的应力集中作用下就会有越来越多的晶粒发生塑性变形。 例如下图是双晶粒的拉伸变形,由于在晶界附近的滑移受阻,变形量较小,而晶粒内部的塑性变形较大,整个晶体的变形是不均匀的。所以呈现出竹节状。
1.2 位错的增殖
随着塑性变形过程的进行,晶体中的位错数目会越来越多,因为晶体中存在着在晶体塑性变形过程中不断增殖位错的位错源。 常见的一种位错增殖机制是弗兰克—瑞德拉位错源机制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有平行于位错线的切应变,无正应变。
• 滑移线的移动方向与滑移方向垂直。 混合位错
不论那种位错,当它们扫过滑移面到达 表面时,晶体产生滑移。
1.2.2 柏氏矢量 准确简便描述位错的性质
其作用:判断位错类型;估算位错应变能; 分析位错反应等。
(1)柏氏矢量 的确定——柏氏回路 (2)柏氏矢量 的性质 • 一条位错线,只有一个柏氏矢量;
• 汇集一点的位错线,它们的柏氏矢量和 为零;
• 一根位错线不能终止在晶体内部,只能 终止在晶体表面。
位错环 b
1.2.3 位错密度——描述位错多少的参数 (1) 定义:单位体积中位错的总长度。
V = L cm/cm3
(2) 位错的形成——液态结晶时形成。晶体 经过塑性变形回复和再结晶及其它热处 理,位错的密度变化。
T=KGb2 当位错线为直线时K=1, 当位错线弯曲时,K=0.5。
1.4 位错的运动及晶体的塑性变形 晶体在宏观上的塑性变形是它在微观上
位错运动的结果。 位错的运动方式有两种:
滑移运动----保守运动,晶体体积不变; 攀移运动----非保守运动,晶体体积变化。
1.4.1 位错的滑移运动
(1)刃位错的滑移运动
式中:
:混合位错柏氏矢量与位错线之间的夹角
R0:位错中心区域的半径 R:位错应力场遍及范围的半径,一般为
10-4cm
b:为点阵常数, 这时单位长度的位错线应变 能为: EK·Gb2
式中K为比例常数,一般为0.51。
可知:E与b的平方成正比,b 错越稳定。
E ,位
1.3.3 位错的线张力
定义:每增加单位长度的位错线所作的功 或增加的位错能。,因此位错线张力T与 位错能在数值上相等,即有
刃型位错 其特征 • 刃型位错不一定是直线,也可以是折线。 • 刃型位错有一多余的半原子面。 • 滑移面只有一个。 • 位错周围的点阵发生弹性畸变,既有切
应变,也有正应变。 • 滑移线的移动方向与滑移方向平行。
螺型位错 特征
• 螺型位错一定是一条直线。 • 螺型位错原子呈轴对称。 • 其滑移面是不定的。 • 螺型位错周围的点阵发生弹性畸变,只
是一个纯切应力场
(2)刃型位错应力场 有正应力也有切应力; 在滑移面上,正应力为零,切应力为最大; 滑移面上方,x轴向上的正应力为压应力。
1.3.2 位错应变能——因位错使晶体增加的 内能。位错的应变能可分为两部分:
一部分E´:位错中心的应变能;
另一部分E0:位错中心以外弹性应变能。 即E总=E`+ E0, 一般E´为E总的10%15%,可忽略。
此时,位错应变能一般指E0。它可通过 在晶体内“制得”一个位错所作的功求 得。
E螺=
Gb2
4
ln
R r0
E刃=
Gb2 ln R
4 (1 ) r0
则 E刃=
1
1
E螺,一般取0.3,
2
所以 E 螺= 3 混合位错
E混=
Gb 2
4 (1 )
E刃 (1-cos2)ln
R r0
(3) 位错的观察和测量 薄膜透射技术和观察试样表面的位错露头。
1.3 位错的应力场和应变场
1.3.1 位错的应力场
其作用:位错的应变能、线张力、相互作 用。
假设:各向异性、不连续并具有点阵结构
的晶体
均匀连续的弹性介质。
适用范围:位错中心区域以外的区域,不 适用于错排严重的位错中心区域。
(1)螺型位错应力场
图1-1
=
4A sin 2x
b
b
4A
设m= b
化简得
G
m= 2
——理想晶体的临界切应力。
一般工程用金属的切变模量G为 1数0量41级05。N而mm一2般, 纯m应金该属为单1晶03体10的4N临m界m切2, 应力只有(100.1)Nmm2,,由此可见, 理论计算值与实测值相差很大。如Al 计 算值为4.3103Nmm2,实测值为0.8Nmm2, 理论值为实测值的5400倍;Zn 计算值为 6.0103Nmm2,而实测值为0.18Nmm2,, 理论值约为实测值的34000倍;Fe理论计 算为13.5103Nmm2,实测值为17Nmm2, 理论值约为实测值的800倍。
金属塑概念的引人
实验发现,晶体塑性变形后表面上出 现明显的滑移台阶。解释塑性变形
1.1.1 经典塑性变形理论
认为滑移台阶是理想的完整晶体在切 应力作用下,上、下两半晶体作刚性整 体移动而造成的,图1-1所示。原子从一 个平衡位置移到下一个平衡位置时,切 应力的变化为:
如1-2图所示,若位错线上的原子沿切 应力方向移动不到一个原子间距,周围其 它原子稍作调整,多余半原子面和位错线 就可以向前移动一个原子间距。可见位 错移动具有易动性。
• 图1-2示出了位错由晶体的一端扫到另一端
(2)螺位错的滑移运动 如图所示位错线上的原子只需在切应
力作用下向前移动一个原子间距的分数倍 的距离,位错线可以向左移动一个原子间 距。
人们放弃了经典理论,设想滑移是一
个逐步进行的过程。
1.1.2 位错理论
1925年,R.Becker提出了一个假设,认 为由于真实晶体中有热应力的存在。热 运动产生了各种频率的弹性波向各个方 向传播,可能在晶体中造成局部的应力 峰,外加应力+应力峰=理论强度,得到
=
m-aT
1 2
此式只说明晶体的强度随温度的升高
体的一边贯通到另一边,而是有时终止 在晶体的中部。
1934年,提出了位错的概念,
1947年低碳钢的屈服效应,位错理论得到 了很大发展,
1950年以后,用电镜直接观察到位错。至 此,位错的存在才最终得到间接证明。 从此以后,位错理论得以迅速发展。它 是一门很重要的基本理论。
1.2 位错模型和柏氏矢量 1.2.1 位错的分类:
而减弱,而未说明晶体强度的差异。
后来,E.Orowan对此理论进行了修正: (1)晶体中存在结构上的缺陷; (2)由热运动可能发生应力的反向运动; (3)考虑到硬化因素,提高强度。 二十年代初到三十年代中说明以下几点
(1)晶体易产生滑移; (2)使晶体产生滑移应力与温度关系不大; (3)晶体表面上的滑移痕迹并不都是从晶
由上述位错的滑移过程可知:
1)位错滑移具有移动性----相同之处。 2)刃位错:位错线的滑移方向与柏氏矢量
相关文档
最新文档