操作系统实验 第五讲 磁盘调度算法讲课讲稿

合集下载

操作系统 -磁盘调度

操作系统 -磁盘调度

磁盘调度算法一、实验目的1、对磁盘调度的相关知识作进一步的了解,明确磁盘调度的原理。

2、加深理解磁盘调度的主要任务。

3、通过编程,掌握磁盘调度的主要算法。

二、实验内容和要求1、对于如下给定的一组磁盘访问进行调度:3、要求给出每种算法中磁盘访问的顺序,计算出平均移动道数。

4、假定当前读写头在90号,向磁道号增加的方向移动。

三、实验报告1、程序中使用的数据结构及符号说明。

2、给出主要算法的流程图。

3、给出程序清单并附上注释。

4、给出测试数据和运行结果。

#include<iostream>#include<iomanip>#include<math.h>using namespace std;const int MaxNumber=100;int TrackOrder[MaxNumber];int MoveDistance[MaxNumber]; //----移动距离;int FindOrder[MaxNumber]; //-----寻好序列。

double AverageDistance; //-----平均寻道长度bool direction; //-----方向 true时为向外,false为向里int BeginNum; //----开始磁道号。

int M; //----磁道数。

int N; //-----提出磁盘I/O申请的进程数int SortOrder[MaxNumber]; //----排序后的序列bool Finished[MaxNumber];void Inith(){cout<<"请输入磁道数(最大磁盘数目):";cin>>M;cout<<"请输入提出磁盘I/O申请的进程数:";cin>>N;cout<<"请依次输入要访问的磁道号:";for(int i=0;i<N;i++)cin>>TrackOrder[i];for(int j=0;j<N;j++)MoveDistance[j]=0;cout<<"请输入开始磁道号:";cin>>BeginNum;for(int k=0;k<N;k++)Finished[k]=false;for(int l=0;l<N;l++)SortOrder[l]=TrackOrder[l];}//=====================排序函数,将各进程申请的磁道按从小到大排列=================void Sort(){ //------冒泡排序int temp;for(int i=N-1;i>=0;i--)for(int j=0;j<i;j++){if(SortOrder[j]>SortOrder[j+1]){temp=SortOrder[j];SortOrder[j]=SortOrder[j+1];SortOrder[j+1]=temp;}}}//============先来先服务=================================void FCFS(){int temp;temp=BeginNum; //--------将BeginNum赋给temp作为寻道时的当前所在磁道号for(int i=0;i<N;i++){MoveDistance[i]=abs(TrackOrder[i]-temp); //-------计算移动磁道数temp=TrackOrder[i]; //-------寻到后,将此道作为当前所在磁道号,赋给tempFindOrder[i]=TrackOrder[i]; //-----寻好的赋给寻好序列}}//========最短寻道法=============================void SSTF(){int temp,n;int A=M;temp=BeginNum; //--------将BeginNum赋给temp作为寻道时的当前所在磁道号for(int i=0;i<N;i++){for(int j=0;j<N;j++) //-------寻找最短的寻道长度{if(abs(TrackOrder[j]-temp)<A&&Finished[j]==false){A=abs(TrackOrder[j]-temp);n=j;}else continue;}Finished[n]=true; //-------将已经寻找到的Finished赋值为trueMoveDistance[i]=A; //-------寻道长度temp=TrackOrder[n]; //-------当前寻道号。

计算机操作系统(第二版)课件:磁盘调度

计算机操作系统(第二版)课件:磁盘调度

6.6 磁盘调度
6.6.2 磁盘调度算法
(4)循环扫描(CSCAN)算法 : (1)磁头单向移动方向访问磁道;如从外往里 (2)欲访问磁道与当前磁道的距离。
假设当前磁道在100号磁道,磁头正向磁道号增加的方向 (由外向里)移动。现依次有如下磁盘请求队列:
23, 376,205,132,61,190, 29,4, 40
1
+
b
a s 2 r rN
6.6 磁盘调度
6.6.2 磁盘调度算法
当有大量磁盘I/O请求时,降低磁盘I/O服务的总时间 移臂调度:当同时有多条磁道访问请求时,确定 磁道访问顺序,以减少平均寻道时间 旋转调度:当一条磁道上有多个扇区访问请求时, 确定扇区访问顺序,以减少旋转延迟时间
6.6 磁盘调度
问题: (1)不能保证平均寻道距离最短; (2)会产生饥饿现象; (3)影响磁盘的机械寿命。
6.6 磁盘调度
6.6.2 磁盘调度算法
(3)扫描(SCAN)算法 :(又称为电梯算法) (1)磁头当前的移动方向; (2)欲访问磁道与当前磁道的距离。 假设当前磁道在100号磁道,磁头正向磁道号增加的方向 (由外向里)移动。现依次有如下磁盘请求队列:
6.6 磁盘调度
6.6.1 磁盘管理概述
2.磁盘访问时间:移动头磁盘 (1)寻道时间
磁头从当前位置移动到指定磁道所需要的时间
Ts=m*n+s s:启动磁臂的时间,2ms~ 3ms m:磁头每移动一条磁道所需要的时间
一般磁盘:0.2~0.3; 高速磁盘:m≤0.1 n:移动的磁道数。
6.6 磁盘调度
的含义、各与哪些因素有关?
6.6 磁盘调度
6.6.1 磁盘管理概述
1. 数据组织和格式

操作系统实验报告—磁盘调度算法

操作系统实验报告—磁盘调度算法

操作系统实验报告—磁盘调度算法操作系统实验报告实验3磁盘调度算法报告日期:20XX-6-17姓名:学号:班级:任课教师:实验3磁盘调度算法一、实验内容模拟电梯调度算法,实现对磁盘的驱动调度。

二、实验目的磁盘是一种高速、大量旋转型、可直接存取的存储设备。

它作为计算机系统的辅助存储器,负担着繁重的输入输出任务,在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请示等待处理。

系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求,这就叫驱动调度,使用的算法称驱动调度算法。

驱动调度能降低为若干个输入输出请求服务所须的总时间,从而提高系统效率。

本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。

三、实验原理模拟电梯调度算法,对磁盘调度。

磁盘是要供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。

当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。

当有多个进程提出输入输出请求处于等待状态,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。

当存取臂仅需移到一个方向最远的所请求的柱面后,如果没有访问请求了,存取臂就改变方向。

假设磁盘有200个磁道,用C语言随机函数随机生成一个磁道请求序列放入模拟的磁盘请求队列中,假定当前磁头在100号磁道上,并向磁道号增加的方向上移动。

请给出按电梯调度算法进行磁盘调度时满足请求的次序,并计算出它们的平均寻道长度。

四、实验过程1.画出算法流程图。

2.源代码#include #include #include int *Init(intarr) {int i = 0;srand((unsignedint)time(0)); for (i = 0; i = num) {a[j+1] = arr[i]; j++; } else {b[k+1] = arr[i]; k++; } }printf(\访问序列:\\n\); for (i = 1; i 0; i--) { printf(\, b[i]); }sum = ((a[j]-100)*2+(100- b[1]))/15;printf(\平均寻道长度:%d\, sum); }int main {int arr[15] = { 0 }; int *ret=Init(arr); two_part(ret); getchar ; return 0;}4运行结果:五、实验小结通过本次实验,我对scan算法更加深入理解,用C语言模拟电梯调度算法,实现对磁盘的驱动调度,这个相比前两个实验实现起来相对简单,理解了算法实现起来尤为简单,程序敲出来之后没有错误,可直接运行,结果验证也无误。

浅谈磁盘调度算法PPT课件

浅谈磁盘调度算法PPT课件
法概述

5.LOOK调度&C-LOOK调度

与SCAN和C-SCAN相似,但是磁头只移动到一个方向上最远的请 求为止,接着,它马上回头,而不是继续到磁盘的尽头。因为它们在 朝一个方向移动会看(look)是否有请求,故以此命名。
2020/2/16
7
三 例题展示
先后次序进行调度。此算法的优点是公平、简单,且每个进程的请求
都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。
此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,
此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各
进程得到服务的响应时间的变化幅度较小。
2020/2/16
对于任何调度算法,其性能主要依赖于请求的数量和类型。
2020/2/16
10
谢谢观看!
2020/2/16
11
2020/2/16
12
2020/2/16
13
3
二 常用调度算法概述
2 .最短寻道时间优先算法(SSTF)

该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁
道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞
吐量,但却不能保证平均寻道时间最短。其缺点是对用户的服务请求
的响应机会不是均等的,因而导致响应时间的变化幅度很大。在服务
请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有
些请求的响应时间将不可预期。
2020/2/16
4
二 常用调度算法概述
3、扫描算法(SCAN)电梯调度
磁臂从磁盘的一端向另一端移动,同时当磁头移过每个柱面时, 处理位于该柱面上的服务请求。当到达另一端时,磁头改变移动方向, 处理继续,磁头在磁盘上来回扫描。由于这种算法中磁头移动的规律 颇似电梯的运行,故又称为电梯调度算法。此算法基本上克服了最短 寻道时间优先算法的服务集中于中间磁道和响应时间变化比较大的缺 点,而具有最短寻道时间优先算法的优点即吞吐量较大,平均响应时 间较小,但由于是摆动式的扫描方法,两侧磁道被访问的频率仍低于 中间磁道。

操作系统课程设计-磁盘调度算法

操作系统课程设计-磁盘调度算法

序止之阳早格格创做纲要:本课程安排的脚段是通过安排一个磁盘调动模拟系统,进而使磁盘调动算法越收局里化,使磁盘调动的特性更简朴明白,那里主要真止磁盘调动的四种算法,分别是:1、先去先服务算法(FCFS)2、最短觅道时间劣先算法(SSTF)3、扫描算法(SCAN)4、循环扫描算法(CSCAN). 开用磁盘真止输进输出支配时,要把移动臂移动到指定的柱里,再等待指定扇区的转动到磁头位子下,而后让指定的磁头举止读写,完毕疑息传递;果此,真止一次输进输出所花的时间有:觅找时间——磁头正在移动臂戴动下移动到指定柱里所花的时间. 延缓时间——指定扇区转动到磁头下所需的时间. 传递时间——由磁头进程读写完毕疑息传递的时间,觅道时间——指估计机正在收出一个觅址下令,到相映目标数据被找到所需时间;其中传递疑息所花的时间,是正在硬件安排时牢固的,而觅找时间战延缓时间是与疑息正在磁盘上的位子有关;而后安排出磁盘调动的安排办法,包罗算法思路、步调,以及要用到的主要数据结构、函数模块及其之间的调用关系等,并给出仔细的算法安排,对付编码举止了尝试与分解. 末尾举止部分归纳与安排体验.关键词汇:最短觅道时间劣先算法、扫描算法、总觅道少度.目录前止22. 课程安排任务及央供42.1 安排任务42.2 安排央供43. 算法及数据结构53.1算法的总体思维(过程)53.2 真止历程中用到的数据结构63.3 真止历程中用到的系统调用114. 步调安排与真止114.1 最短觅道时间劣先算法(SSTF)模块114.1.2 步调证明134.1.3 步调关键代码134.2扫描算法(SCAN)模块144.2.1 步调过程图144.2.2 步调证明164.2.3 步调关键代码164.3 真验截止175. 论断266. 参照文献267. 支获、体验战提议272. 课程安排任务及央供2.1 安排任务1.认识并掌握磁盘调动算法管制系统的安排要领,加强对付所教百般调动算法及相映算法的特性相识.2.掌握磁盘调动的基础观念,深刻体验各个算法的劣缺面,以及算法间的相似面.2.2 安排央供1)定义与算法相关的数据结构,如PCB、行列等;2)真止2种分歧的调动算法(可使用真代码大概过程图举止分解);3)算法真止中断时,应给出总的觅道少度;4)磁道考察序列随机死成,且要谦脚一定的数量央供(很多于100个);5)系统真止必须提供一定的接互性,所需尝试数据应当以文献形式提供大概者由用户正在尝试历程中给出,不可将尝试数据“写死”正在系统真止代码中;6)必须给出脚够的注释,注释量不得少于代码量的一半;7)对付于系统中所使用到的系统调用(API函数),必须给出函数的定义本型、使用要领,参数较为搀纯的,还该当给出参数的简曲形貌;3. 算法及数据结构3.1算法的总体思维(过程)图a SSTF 调动算法示例图用冒泡法对付磁道数组举止排序 返回内侧(中侧)扫描 图b SSTF 算法过程示例图 本磁道号随机组成的数组:cidao[]={55,58,39,18,90,160,150,38,184}; 排序后的数组={18,38,39,5,58,90,150,160,184};输进目前磁道号:now=100;ciidao[]={55,58,39,18,90,160,150,38,184}(可随机死成多个)用户输进目前磁道号now ,比较目前磁道到每个磁道的移动距离,采用最短距离的磁道举止移动.now 指背目前磁道号,将目前磁道号与结余不考察的磁道号举止比较,沉复上述支配.并估计仄衡觅道少度ave.3839 3955 55 5558 58 58 5890 90 90 90 90now值:100 90 58 55 39184160 160150 150 15018 18 18 1838 38 38 3839 39 39 3955 55 55 5558 58 58 5890 90 90 90now值:18 150 160 184图c SSTF算法行列示企图(按磁道考察程序)2.扫描(SCAN)算法图d SCAN算法示例图本磁道号随机组成的数组:cidao[]={55,58,39,18,90,160,150,38,184};排序后的数组={18,38,39,5,58,90,150,160,184};输进目前磁道号:now=100;采用磁道移动目标;以磁道号减少的目标移动为例:5558 5890 90 90184 184 184 184160 160 160 160 160150 150 150 150 150 150now值:100 150 160 184 90 581838 3839 39 3955 55 5558 58 5890 90 90184 184 184160 160 160150 150 150now值:55 39 38图e SCAN算法行列示企图(按磁道考察程序)3.3 真止历程中用到的系统调用系统模块调用关系图4.4.14.1.2①最短②100号柱里上真的柱里为90真止支配的序次时,读写磁头总合移动多个柱里的距离,与先去先服务、算法比较,大幅度天缩小了觅找时间,具备更佳的觅道本能,果而支缩了为各考察者哀供服务的仄衡时间,也便普及了系统效用.但是最短查找时间劣先(SSTF)调动,FCFS 会引起读写头正在盘里上的大范畴移动,SSTF查找距离磁头最短(也便是查找时间最短)的哀供动做下一次服务的对付象.SSTF查找模式有下度局部化的倾背,会推早一些哀供的服务,以至引起无限缓慢(又称饥饥).算法过程:输进磁头初初磁道号,序列少度,磁道号序列.采用磁盘调动算法(最短觅道时间劣先调动(SSTF))大概(扫描调动算法(SCAN))中的任性一个,若采用SSTF,则输出各进程被调动的程序,并估计总的觅道少度战仄衡觅道少度,采用关关则中断磁盘调动.4.1.3 步调关键代码for(i=0;i<m;i++)/*使用冒泡法按从小到大程序排列*/for(j=i+1;j<m;j++){if(array[i]>array[j]){temp=array[i];array[i]=array[j];array[j]=temp;}}if(array[m-1]<=now) /*若目前磁道号大于哀供序列中最大者,则间接由中背内依次赋予各哀供服务*/ {for(i=m-1;i>=0;i--)cout<<array[i]<<" ";sum=now-array[0];}elseif(array[0]>=now) /*若目前磁道号小于哀供序列中最小者,则间接由内背中依次赋予各哀供服务*/ while((l>=0)&&(r<m)) /*目前磁道正在哀供序列范畴内*/{if((now-array[l])<=(array[r]-now)) /*采用与目前磁道迩去的哀供赋予服务*/{cout<<array[l]<<" ";sum+=now-array[l];now=array[l];l=l-1;}扫描算法(SCAN )模块4.2.1 步调过程图4.2.2 ①消了SSTF ②SCAN 法.3位搭客弛10层;弛二正在55.那里是:100号柱里的③SCAN 4.2.3 if {for {cout<<array[j]<<" "; /*输出背内扫描的序列*/}for(j=r;j<m;j++) /*磁头移动到最小号,则改变目标背中扫描已扫描的磁道*/{cout<<array[j]<<" "; /*输出背中扫描的序列*/}sum=now-2*array[0]+array[m-1];}else/*采用移动臂目标背中,则先背中扫描*/{for(j=r;j<m;j++){cout<<array[j]<<" "; /*输出背中扫描的序列*/}for(j=l;j>=0;j--) /*磁头移动到最大号,则改变目标背内扫描已扫描的磁道*/{cout<<array[j]<<" ";}sum=-now-array[0]+2*array[m-1];}ave=(float)(sum)/(float)(m);4.3真验截止运止界里截图及相映代码1.主界里void display(){cout<<"\n\n\n\n Operating Systems Curriculum Design\n";cout<<"\n ╔———————————————————————————————╗"; cout<<"\n ││";cout<<"\n │称呼: 磁盘调动│"; cout<<"\n ││";cout<<"\n │工具: Visual Studio 2010 │"; cout<<"\n ││";cout<<"\n │班级:1205 │"; cout<<"\n ││";cout<<"\n │做家:施静│"; cout<<"\n ││";cout<<"\n │教号:211214020 │"; cout<<"\n ││";cout<<"\n ╚———————————————————————————————╝\n"; system("pause");system("cls");2.序止提示用户此步调真止的算法cout<<"【载进完毕】"<<endl<<endl;cout<<" 序止"<<endl<<endl;cout<<" 欢迎使用『磁盘调动算法系统』,本步调真止了时常使用的磁盘调动算法如下所示:\n\n";cout<<" ①最短觅道时间劣先(SSTF):最短觅道时间劣先算法央供考察的磁盘与目前磁头天圆的\n";cout<<" 磁盘距离迩去,以使屡屡的觅道时间最短.\n\n";cout<<" ②扫描算法(SCAN)电梯调动:扫描算法不但是思量到欲考察的磁道与目前磁道的距离\n";cout<<" 更劣先思量的是磁头的目前移动目标.\n\n";system("pause");system("cls");//浑屏3.用户采用所使用的算法(先随机死成101个磁道号)void showMenu(int cidao[],int n){int choice;while(true){cout<<"请您采用喜欢的算法去真止调动(输进1-3):";cout<<"\n ╔—————————————╗"; cout<<"\n ││";cout<<"\n │ 1.最短觅道时间劣先(SSTF) |"; cout<<"\n ││";cout<<"\n │ 2.扫描算法(SCAN) │"; cout<<"\n ││";cout<<"\n │ 3.退出(EXIT) │"; cout<<"\n ││";cout<<"\n ╚—————————————╝\n"; cout<<endl;while(true){cout<<"目前您采用的算法号是(1-3):";cin>>choice;switch(choice){ /*case 1:FCFS(a,n);break;*/case 1:SSTF(cidao,n);break;case 2:SCAN(cidao,n);break;case 3:cout<<"\n要退出系统了欢迎使用本系统\n";exit(0);}}}}4.最短觅道时间劣先算法/**********************最短觅道时间劣先调动算法********************/ void SSTF(int cidao[],int m){system("cls");int k=1;int now,l,r;int i,j,sum=0;int a;char str[100];float ave;cidao=bubble(cidao,m); //调用冒泡排序算法排序cout<<"请输进目前的磁道号:";C: cin>>str; //对付输进数据举止灵验性推断a=decide(str);if(a==0){cout<<"输进数据的典型过得,请沉新输进!"<<endl;goto C;}elsenow=trans(str,a); //输进目前磁道号if(cidao[m-1]<=now) //若目前磁道号大于哀供序列中最大者,则间接由中背内依次赋予各哀供服务{cout<<"磁盘扫描序列为:";for(i=m-1;i>=0;i--)cout<<cidao[i]<<" ";sum=now-cidao[0];}if(cidao[0]>=now) //若目前磁道号小于哀供序列中最小者,则间接由内背中依次赋予各哀供服务{cout<<"磁盘扫描序列为:";for(i=0;i<m;i++)cout<<cidao[i]<<" ";sum=cidao[m-1]-now;}if(now>cidao[0]&&now<cidao[m-1]) //若目前磁道号大于哀供序列中最小者且小于最大者{cout<<"磁盘扫描序列为:";while(cidao[k]<now) //决定目前磁道正在已排的序列中的位子,后里的算法皆用到了,不妨间接复制后少量建改,节省时间.{k++;}l=k-1;r=k;while((l>=0)&&(r<m)) //目前磁道正在哀供序列范畴内{if((now-cidao[l])<=(cidao[r]-now)) //采用与目前磁道迩去的哀供赋予服务{cout<<cidao[l]<<" ";sum+=now-cidao[l];now=cidao[l];l=l-1;}else{cout<<cidao[r]<<" ";sum+=cidao[r]-now;now=cidao[r];r=r+1;}}if(l==-1) //磁头移动到序列的最小号,返回中侧扫描仍已扫描的磁道{for(j=r;j<m;j++){cout<<cidao[j]<<" ";}sum+=cidao[m-1]-cidao[0];}else//磁头移动到序列的最大号,返回内侧扫描仍已扫描的磁道{for(j=l;j>=0;j--){cout<<cidao[j]<<" ";}sum+=cidao[m-1]-cidao[0];}}ave=(float)(sum)/(float)(m);//供仄衡觅道少度cout<<endl;cout<<"总的觅道少度: "<<sum<<endl;cout<<"仄衡觅道少度: "<<ave<<endl;cout<<"请按任性键返回系统菜单"<<endl;getch();showMenu(cidao,m); //回到主界里}最短觅道时间劣先(SSTF)算法真止界里(2)扫描(SCAN)算法/*****************************扫描调动算法*******************************/ void SCAN(int cidao[],int n)//先要给出目前磁道号战移动臂的移动目标{int temp;int i,j;int now;int sum;for(i=0;i<n;i++) //给磁道号排序for(j=i+1;j<n;j++){if(cidao[i]>cidao[j]){temp=cidao[i];cidao[i]=cidao[j];cidao[j]=temp;}}cout<<"\n按非递减程序排列佳的磁道: \n";for(i=0;i<n;i++) //输出排佳序的磁道号cout<<cidao[i]<<" ";cout<<endl;cout<<"\n请输进目前的磁道号: ";cin>>now; //用户自定义目前磁道号if(cidao[n-1]<=now){for(i=n-1;i>=0;i--)cout<<cidao[i]<<" ";sum=now-cidao[0];}else//cidao[n-1]>nowif(cidao[0]>=now){for(i=0;i<n;i++)cout<<cidao[i]<<" ";sum=cidao[n-1]-now;}else//cidao[0]<now && cidao[n-1]>now{int pointer;int location=1;int left,right;while(cidao[location]<now)location++;left=location-1;right=location;cout<<"\n请输进目前磁头念要移动的目标(1 磁道号减少目标,0 磁道号减小目标): "; loop:cin>>pointer;cout<<"\n磁盘调动程序为: \n";if(pointer==0 || pointer==1){if(pointer==0)//磁头背左移动到最小号,再改变目标背中扫描已扫描的磁道{for(j=left;j>=0;j--)cout<<cidao[j]<<" ";for(j=right;j<n;j++)cout<<cidao[j]<<" ";sum=now+cidao[n-1]-2*cidao[0];cout<<endl;}if(pointer==1)//磁头背左移动到最大号,再改变目标背内扫描已扫描的磁道{for(j=right;j<n;j++)cout<<cidao[j]<<" ";for(j=left;j>=0;j--)cout<<cidao[j]<<" ";sum=2*cidao[n-1]-now-cidao[0];//供总觅道少度cout<<endl;}}else{cout<<"\n输进分歧法!!请输进0大概1:\n"; goto loop;}}cout<<"\n\n需要移动的总磁道数为: "<<sum<<endl; cout<<"请按任性键返回系统菜单"<<endl;getch();showMenu(cidao,n); //回到主界里5.论断(1)用户界里友佳,采与了采用菜单模式,用户只需按“回车键”即可再现主界里;结构浑晰,支配简朴易懂,界里浑爽整净;(2)统制变量对付比,各磁盘调动算法均对付共一组随机磁道号举止调动,但是本去不会改变随机磁道真质,包管了仄衡觅道少度对付比的真正在性、灵验性. (3)百般算法皆有便宜,也各有缺累,需要权衡利弊,使用才搞达到最佳的效验.6.参照文献《估计机支配系统(建订版)》汤子瀛西安电子科技大教出版社《支配系统教程》圆敏编西安电子科技大教出版社《数据结构(C++版)》王白梅、胡明、王涛编著浑华大教出版社7.支获、体验战提议正在搞本次课程安排之前,对付于磁盘调动,尔真足不观念.通过齐力以及分离教授之前道的真质,尔毕竟深刻明白了磁盘调动算法的内涵.正在钻研自己所选的二种算法的共时,对付磁盘调动的四种算法——先去先服务算法(FCFS)、最短觅道时间劣先算法(SSTF)、扫描算法(SCAN)、循环扫描算法(CSCAN)皆有了更深刻的明白战掌握,使尔不妨为磁盘调动采用适合的算法,普及CPU处事效用.安排历程中逢到的艰易正在教授战共教的助闲下乐成办理并通过了查支,尔深刻认识到算法的逻辑性对付步调的要害做用,算法的准确度对付步调运止截止的要害做用,那对付尔以去正在支配系统的教习中有极大助闲.每一次的课程安排皆是对付自己之前所教知识的加强,是一次罕见的教习机会.正在课程安排的每一个步调、每一段代码的真止,皆要反复去斟酌,反复运止调试,一面面的小偏偏好皆市引导波折.果为乐成阻挡易,所以当调试板上隐现“死成乐成”时,谦背的成便感是不问可知的.通过自己的动脚动脑,不但是减少了知识,还给了尔博业知识以及博业技能上的提下,对付普及自己的思维本领战支配本领也有很大的助闲.共时尔也会越收有自疑心,越收齐力,严肃教习,争与正在以去的课程中搞得更佳!。

操作系统实验报告——调度算法

操作系统实验报告——调度算法

操作系统实验报告——调度算法1. 实验目的本实验旨在探究操作系统中常用的调度算法,通过编写代码模拟不同的调度算法,了解它们的特点和应用场景。

2. 实验环境本次实验使用的操作系统环境为Linux,并采用C语言进行编码。

3. 实验内容3.1 调度算法1:先来先服务(FCFS)FCFS调度算法是一种简单且常见的调度算法。

该算法按照进程到达的先后顺序进行调度。

在本实验中,我们使用C语言编写代码模拟FCFS算法的调度过程,并记录每个进程的等待时间、周转时间和响应时间。

3.2 调度算法2:最短作业优先(SJF)SJF调度算法是一种非抢占式的调度算法,根据进程的执行时间来选择下一个要执行的进程。

在本实验中,我们使用C语言编写代码模拟SJF算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。

3.3 调度算法3:轮转调度(Round Robin)Round Robin调度算法是一种经典的时间片轮转算法,每个进程在给定的时间片内依次执行一定数量的时间。

如果进程的执行时间超过时间片,进程将被暂时挂起,等待下一次轮转。

在本实验中,我们使用C语言编写代码模拟Round Robin算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。

4. 实验结果分析通过对不同调度算法的模拟实验结果进行分析,可以得出以下结论:- FCFS算法适用于任务到达的先后顺序不重要的场景,但对于执行时间较长的进程可能会导致下一个进程需要等待较久。

- SJF算法适用于任务的执行时间差异较大的场景,能够提高整体执行效率。

- Round Robin算法适用于时间片相对较小的情况,能够公平地为每个进程提供执行时间。

5. 实验总结本次实验通过模拟不同调度算法的实际执行过程,深入了解了各种调度算法的原理、特点和适用场景。

通过对实验结果的分析,我们可以更好地选择合适的调度算法来满足实际应用的需求。

在后续的学习中,我们将进一步探索更多操作系统相关的实验和算法。

《操作系统》磁盘调度 (1)

《操作系统》磁盘调度 (1)

《操作系统》实验【实验题目】:磁盘调度算法【实验目的】通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN算法的实现方法。

【实验内容】问题描述:设计程序模拟先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN算法的工作过程。

假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。

程序要求如下:1)利用先来先服务FCFS,最短寻道时间优先SSTF,SCAN和循环SCAN算法模拟磁道访问过程。

2)模拟四种算法的磁道访问过程,给出每个磁道访问的磁头移动距离。

3)输入:磁道个数n和磁道访问序列,开始磁道号m和磁头移动方向(对SCAN和循环SCAN算法有效),算法选择1-FCFS,2-SSTF,3-SCAN,4-循环SCAN。

4)输出:每种算法的平均寻道长度。

实现提示:用C++语言实现提示:1)程序中变量定义参考(根据需要可添加)如下:const int MaxNumber=100;int TrackOrder[MaxNumber];int MoveDistance[MaxNumber];double AverageDistance;bool direction;2)页面置换的实现过程如下:变量初始化;接收用户输入磁道个数n和磁盘访问序列,选择算法1-FCFS,2-SSTF,3-SCAN,4-循环SCAN,输入开始磁盘号m和磁头移动方向;根据用户选择的算法进行磁道访问,输出磁盘调度算法的模拟过程;计算选择每次移动的磁头移动距离和算法的平均寻道长度;输出选择算法的平均寻道长度。

实验要求:1) 上机前认真复习磁盘调度算法,熟悉FCFS,SSTF,SCAN和循环SCAN算法的过程;2) 上机时独立编程、调试程序;3) 根据具体实验要求,完成好实验报告(包括实验的目的、内容、要求、源程序、实例运行结果截图)。

操作系统课设 磁盘调度算法程序设计

操作系统课设 磁盘调度算法程序设计

操作系统课设磁盘调度算法程序设计操作系统课设——磁盘调度算法程序设计1:引言1.1 背景1.2 目的和范围1.3 参考文献2:磁盘调度算法概述2.1 磁盘调度的目标2.2 磁盘调度的分类2.3 磁盘调度算法的评价指标3:磁盘调度算法实现3.1 先来先服务(FCFS)算法3.1.1 算法描述3.1.2 算法优缺点3.1.3 算法实现代码示例3.2 最短寻找时间优先(SSTF)算法3.2.1 算法描述3.2.2 算法优缺点3.2.3 算法实现代码示例 3.3 扫描(SCAN)算法3.3.1 算法描述3.3.2 算法优缺点3.3.3 算法实现代码示例 3.4 循环扫描(C-SCAN)算法 3.4.1 算法描述3.4.2 算法优缺点3.4.3 算法实现代码示例 3.5 LOOK算法3.5.1 算法描述3.5.2 算法优缺点3.5.3 算法实现代码示例4:测试与性能评估4.1 测试环境4.2 测试用例设计4.3 对比磁盘调度算法的性能5:结论5.1 结果分析5.2 局限性和未来工作6:附件本文档附带了以下附件:- 磁盘调度算法实现的源代码- 测试用例和数据- 测试结果统计表格7:法律名词及注释7.1 磁盘调度算法:针对磁盘上的存储数据进行调度和访问的算法。

7.2 先来先服务(FCFS)算法:根据请求的到达顺序,依次服务每个请求。

7.3 最短寻找时间优先(SSTF)算法:根据当前磁头位置来寻找最近的请求进行服务。

7.4 扫描(SCAN)算法:磁头从一端开始,向一侧移动并服务请求,直到到达边界,然后返回另一侧。

7.5 循环扫描(C-SCAN)算法:磁头从一端开始,扫描到达边界后回到另一端,重新开始扫描。

7.6 LOOK算法:磁头在服务请求的过程中,只在磁盘上实际存在请求的区域内移动。

(最新整理)操作系统课程设计-磁盘调度算法

(最新整理)操作系统课程设计-磁盘调度算法

(完整)操作系统课程设计-磁盘调度算法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)操作系统课程设计-磁盘调度算法)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)操作系统课程设计-磁盘调度算法的全部内容。

前言摘要:本课程设计的目的是通过设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,使磁盘调度的特点更简单明了,这里主要实现磁盘调度的四种算法,分别是:1、先来先服务算法(FCFS) 2、最短寻道时间优先算法(SSTF) 3、扫描算法(SCAN)4、循环扫描算法(CSCAN)。

启动磁盘执行输入输出操作时,要把移动臂移动到指定的柱面,再等待指定扇区的旋转到磁头位置下,然后让指定的磁头进行读写,完成信息传送;因此,执行一次输入输出所花的时间有: 寻找时间——磁头在移动臂带动下移动到指定柱面所花的时间。

延迟时间——指定扇区旋转到磁头下所需的时间. 传送时间-—由磁头进程读写完成信息传送的时间,寻道时间-—指计算机在发出一个寻址命令,到相应目标数据被找到所需时间;其中传送信息所花的时间,是在硬件设计时固定的,而寻找时间和延迟时间是与信息在磁盘上的位置有关;然后设计出磁盘调度的设计方式,包括算法思路、步骤,以及要用到的主要数据结构、函数模块及其之间的调用关系等,并给出详细的算法设计,对编码进行了测试与分析. 最后进行个人总结与设计体会。

关键词:最短寻道时间优先算法、扫描算法、总寻道长度.目录前言 (1)2. 课程设计任务及要求 (4)2.1 设计任务 (4)2.2 设计要求 (4)3。

算法及数据结构 (4)3.1算法的总体思想(流程) (4)3.2 实现过程中用到的数据结构 (6)3。

第五章_磁盘移臂调度算法

第五章_磁盘移臂调度算法

思考:假设磁盘访问序列: 98, 183, 37, 122, 14, 124, 65, 67 读写头起始位置:53 试安排磁头服务序列,并计算磁头移动总距离(道数)
四、循环扫描算法CSAN(Circular SCAN)(不考) SCAN算法存在这样的问题:当磁头刚从里向外 移动过某一磁道时、恰有进程请求访问此磁道,这 时该进程必须等待,待磁头从里向外.然后再从外 向里扫描完所有要访问的磁道后、才处理该进程的 请求,致使该进程的请求被严重地推迟。为了减少 这种延迟, SSTF的另一个修改版本是循环扫描法 (CSAN)。 该算法规定磁头单向移动。例如,只自里 向外移动,当磁头移到最外的被访问磁道时,磁头 立即返回到最里的欲访磁道,即将最小磁道号紧接 着最大磁道号构成循环,进行扫描。即一个在磁道0 上的I/O请求,将在磁道400上请求之后马上可以得 到满足。
思考:假设磁盘访问序列: 98, 183, 37, 122, 14, 124, 65, 67 读写头起始位置:53 试安排磁头服务序列,并计算磁头移动总距离(道数)
三、扫描(SCAN)算法(电梯调度算法) 具体做法:当设备无访问请求时,磁头不动; 当有访问请求时,磁头按一个方向移动,在移动过 程中对遇到的访问请求进行服务,然后判断该方向 上是否还有访问请求,如果有则继续扫描;否则改 变移动方向,并为经过的访问请求服务,如此反复.
按按此策略完成这组I/O操作需移动磁头的总距 离为490磁道。。(如右下图所示) 当前磁道=100 移动方向=OUT(向0道) 该方法克服了最短 进程号 磁道号 移动距离(磁道数) 寻道优先的缺点,既考 22 56 44 虑了距离,同时又考虑 29 40 16 了方向。 32 29 11 4 19 10 但是,必须说明, 12 19 0 这种修改的SCAN调度 34 18 1 策略并不总是优于纯 17 3 15 7 134 131(移动方向=IN) SSTF调度算法。 14 192 58 由于这种算法中磁 23 205 13 头移动的规律颇似电梯 9 376 171 的运行,故又常称为电 3 396 20 磁头移动的总距离=490 (磁道) 梯调度算法

操作系统-磁盘调度算法

操作系统-磁盘调度算法

操作系统-磁盘调度算法1 一次磁盘读/写操作需要的时间寻找时间(寻道时间)T s:在读/写数据前,需要将磁头移动到指定磁道所花费的时间。

寻道时间分两步:(1) 启动磁头臂消耗的时间:s。

(2) 移动磁头消耗的时间:假设磁头匀速移动,每跨越一个磁道消耗时间为m,共跨越n条磁道。

则寻道时间T s= s + m * n。

磁头移动到指定的磁道,但是不一定正好在所需要读/写的扇区,所以需要通过磁盘旋转使磁头定位到目标扇区。

延迟时间T R:通过旋转磁盘,使磁头定位到目标扇区所需要的时间。

设磁盘转速为r(单位:转/秒,或转/分),则平均所需延迟时间T R=(1/2)*(1/r) = 1/2r。

1/r就是转一圈所需的时间。

找到目标扇区平均需要转半圈,因此再乘以1/2。

传输时间T R:从磁盘读出或向磁盘中写入数据所经历的时间,假设磁盘转速为r,此次读/写的字节数为b,每个磁道上的字节数为N,则传输时间T R= (b/N) * (1/r) = b/(rN)。

每个磁道可存N字节数据,因此b字节数据需要b/N个磁道才能存储。

而读/写一个磁道所需的时间刚好是转一圈的时间1/r。

总的平均时间T a= T s+ 1/2r + b/(rN),由于延迟时间和传输时间都是与磁盘转速有关的,且是线性相关。

而转速又是磁盘的固有属性,因此无法通过操作系统优化延迟时间和传输时间。

所以只能优化寻找时间。

2 磁盘调度算法2.1 先来先服务算法(FCFS)算法思想:根据进程请求访问磁盘的先后顺序进行调度。

假设磁头的初始位置是100号磁道,有多个进程先后陆续地请求访问55、58、39、18、90、160、150、38、184号磁道。

按照先来先服务算法规则,按照请求到达的顺序,磁头需要一次移动到55、58、39、18、90、160、150、38、184号磁道。

磁头共移动了 45 + 3 + 19 + 21 + 72 + 70 + 10 + 112 + 146 = 498个磁道。

操作系统磁盘的驱动调度PPT

操作系统磁盘的驱动调度PPT
“电梯调度”考虑臂的移动方向。 优点:电梯调度算法是一种简单、实用且高效的调度算法。 缺点:由于移动臂改变方向是机械动作,速度相对较慢。
在实现时除了要记住读写磁头的当前位置外,还必须记住 移动臂的移动方向。
9
4.单向扫描调度算法 执行次序为65,67,98,122,124,183、14,37。除了
移动臂由里向外返回(从199返回到0)所用的时间外,读写 磁头还需移动183个柱面的距离。
10
调度算法比较:除了“先来先服务”调度算法外,其余 三种调度算法都是根据欲访问的柱面位置来进行调度的。 在调度过程中可能有新的请求访问者加入,这些新的请 求访问者加入时,如果读写磁头已经超过了它们所要访 问的柱面位置,则只能在以后的调度中被选择执行。
14
(a)
(b)
如果我们把这8条逻辑记录在磁道上的位置重新安排一 下, (b)是这8条逻辑记录的最优分布。处理这8个记录所要 花费的时间为: 8*(2.5+5)=60(ms)。 可见记录的优化分布有 利于减少延迟时间,从而缩短了输入输出操作的时间。
15
个人观点供参考,欢迎讨论!
一、移臂调度
常用的移臂调度算法有:
先来先服务算法
最短寻找时间优先算法
电梯调度算法
单向扫描算法。
5
在例子中假设柱面的编号从0到199。例如,如果现在读 写磁头正在53号柱面上执行输入输出操作,而等待访问者 依次要访问的柱面为98,183,37,122,14,124,65,67。 1.先来先服务调度算法
显然,读一条记录要花2.5毫秒的时间。当花了2.5毫 秒的时间读出第1条记录并花5毫秒时间进行处理后,读写磁 头已经在第4条记录的位置,为了顺序处理第2条记录,必须 等待磁盘把第2条记录旋转到读写磁头位置下面,即要有15毫 秒的延迟时间。于是,处理这8条记录所要花费的时间为 : 8*(2.5十5)十7*15=165(ms)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作系统实验第五讲磁盘调度算法操作系统实验报告哈尔滨工程大学计算机科学与技术学院第六讲磁盘调度算法一、实验概述1. 实验名称磁盘调度算法2. 实验目的(1)通过学习EOS 实现磁盘调度算法的机制,掌握磁盘调度算法执行的条件和时机;(2)观察 EOS 实现的FCFS、SSTF和 SCAN磁盘调度算法,了解常用的磁盘调度算法;(3)编写 CSCAN和 N-Step-SCAN磁盘调度算法,加深对各种扫描算法的理解。

3. 实验类型验证性+设计性实验4. 实验内容(1)验证先来先服务(FCFS)磁盘调度算法;(2)验证最短寻道时间优先(SSTF)磁盘调度算法;(3)验证SSTF算法造成的线程“饥饿”现象;(4)验证扫描(SCAN)磁盘调度算法;(5)改写SCAN算法。

二、实验环境在OS Lab实验环境的基础上,利用EOS操作系统,由汇编语言及C语言编写代码,对需要的项目进行生成、调试、查看和修改,并通过EOS应用程序使内核从源代码变为可以在虚拟机上使用。

三、实验过程1. 设计思路和流程图(1)改写SCAN算法在已有 SCAN 算法源代码的基础上进行改写,要求不再使用双重循环,而是只遍历一次请求队列中的请求,就可以选中下一个要处理的请求。

算法流程图如下图所示。

图 3.1.1 SCAN算法IopDiskSchedule函数流程图(2)编写循环扫描(CSCAN)磁盘调度算法在已经完成的SCAN算法源代码的基础上进行改写,不再使用全局变量ScanInside确定磁头移动的方向,而是规定磁头只能从外向内移动。

当磁头移动到最内的被访问磁道时,磁头立即移动到最外的被访问磁道,即将最大磁道号紧接着最小磁道号构成循环,进行扫描。

算法流程图如下图所示。

图 3.1.2 CSCAN算法IopDiskSchedule函数流程图(3)编写N-Step-SCAN磁盘调度算法在已经完成的 SCAN 算法源代码的基础上进行改写,将请求队列分成若干个长度为 N 的子队列,调度程序按照 FCFS原则依次处理这些子队列,而每处理一个子队列时,又是按照SCAN算法。

算法流程图如下图所示。

图 3.1.3 N-Step-SCAN算法IopDiskSchedule函数流程图2.算法实现(1)改写SCAN算法在一次遍历中,不再关心当前磁头移动的方向,而是同时找到两个方向上移动距离最短的线程所对应的请求,这样就不再需要遍历两次。

在计算出线程要访问的磁道与当前磁头所在磁道的偏移后,可以将偏移分为三种类型:偏移为0,表示线程要访问的磁道与当前磁头所在磁道相同,此情况应该优先被调度,可立即返回该线程对应的请求的指针;偏移大于 0,记录向内移动距离最短的线程对应的请求;偏移小于 0,记录向外移动距离最短的线程对应的请求。

循环结束后,根据当前磁头移动的方向选择同方向移动距离最短的线程,如果在同方向上没有线程,就变换方向,选择反方向移动距离最短的线程。

(2)编写循环扫描(CSCAN)磁盘调度算法由于规定了磁头只能从外向内移动,所以在每次遍历中,总是同时找到向内移动距离最短的线程和向外移动距离最长的线程。

注意,与 SCAN 算法查找向外移动距离最短线程不同,这里查找向外移动距离最长的线程。

在开始遍历前,可以将用来记录向外移动最长距离的变量赋值为0。

在计算出线程要访问的磁道与当前磁头所在磁道的偏移后,同样可以将偏移分为三种类型:偏移为0,表示线程要访问的磁道与当前磁头所在磁道相同,此情况应优先被调度,可立即返回该线程对应的请求的指针;偏移大于 0,记录向内移动距离最短的线程对应的请求;偏移小于 0,记录向外移动距离最长的线程对应的请求。

循环结束后,选择向内移动距离最短的线程,如果没有向内移动的线程,就选择向外移动距离最长的线程。

(3)编写N-Step-SCAN磁盘调度算法在 block.c 文件中的第360 行定义了一个宏 SUB_QUEUE_LENGTH,表示子队列的长度(即N 值)。

目前这个宏定义的值为6。

在第 367行定义了一个全局变量SubQueueRemainLength,表示第一个子队列剩余的长度,并初始化其值为SUB_QUEUE_LENGTH。

在执行 N-Step-SCAN算法时,要以第一个子队列剩余的长度做为计数器,确保只遍历第一个子队列剩余的项。

所以,结束遍历的条件就既包括第一个子队列结束,又包括整个队列结束(如果整个队列的长度小于第一个子队列剩余的长度)。

注意,不要直接使用第一个子队列剩余的长度做为计数器,可以定义一个新的局部变量来做为计数器。

按照 SCAN 算法从第一个子队列剩余的项中选择一个合适的请求。

最后,需要将第一个子队列剩余长度减少1(SubQueueRemainLength减少1),如果第一个子队列剩余长度变为 0,说明第一个子队列处理完毕,需要将子队列剩余的长度重新变为N(SubQueueRemainLength 重新赋值为SUB_QUEUE_LENGTH),从而开始处理下一个子队列。

3.需要解决的问题及解答(1)实验指导P176-3.2验证先来先服务(FCFS)磁盘调度算法,要求请给出在“输出”窗口中的结果。

答:先来先服务(FCFS)磁盘调度算法在“输出”窗口中的结果如下图所示。

图 3.3.1(2)实验指导P177-3.3验证验证最短寻道时间优先(SSTF)磁盘调度算法,要求请给出在“输出”窗口中的结果。

答:最短寻道时间优先(SSTF)磁盘调度算法在“输出”窗口中的结果如下图所示。

图 3.3.2(3)实验指导P178-3.4验证SSTF算法造成的线程“饥饿”现象,要求请给出在“输出”窗口中的结果。

答:SSTF算法造成的线程“饥饿”现象在“输出”窗口中的结果如下图所示。

图 3.3.3(4)实验指导P179-3.5验证扫描(SCAN)磁盘调度算法,要求在非饥饿(即《实验指导》P176-3.2节中的数据)和饥饿(即《实验指导》P178-3.4节中的数据)请给出在“输出”窗口中的结果,并且要求在每次输入两次“ds”命令(注意不要连续输入,要等第一次“ds”命令执行完,再输入第二次“ds”命令),分析结果为什么不同。

答:在非饥饿情况下,“输出”窗口中的结果如下图所示。

图 3.3.4在饥饿情况下,“输出”窗口中的结果如下图所示。

图 3.3.5ScanInside是一个全局变量,当第一次执行“ds”命令时,调用IopDiskSchedule 函数,ScanInside被修改了一次,再次执行“ds”命令时,ScanInside不会被重置,因此输出的结果会不一样。

(5)在执行 SCAN、N-Step-SCAN 磁盘调度算法时,如果在EOS控制台中多次输入“ds”命令,调度的顺序会发生变化,说明造成这种现象的原因(提示:注意这两种算法使用的全局变量)。

尝试修改源代码,使这两种算法在多次执行时,都能确保调度的顺序一致(提示:可以参考 io/block.c 文件中IopReceiveRequest 函数和 IopProcessNextRequest 函数判断磁盘调度算法开始工作和结束工作的方法)。

答:ScanInside是一个全局变量,当第一次执行“ds”命令时,调用IopDiskSchedule 函数,ScanInside被修改了一次,再次执行“ds”命令时,ScanInside不会被重置,因此输出的结果会不一样。

只需在for循环结束后添加如下代码,就能确保调度的顺序一致。

图 3.3.6(6)尝试在 io/block.c 文件中定义一个全局的函数指针变量DiskScheduleFunc,该函数指针初始指向实现了 FCFS 算法的 IopDiskSchedule 函数。

修改 io/block.c 文件中的 IopProcessNextRequest 函数,在该函数中不再直接调用 IopDiskSchedule 函数,而是调用函数指针 DiskScheduleFunc 指向的磁盘调度算法函数;ke/sysproc.c 文件中的 ConsoleCmdDiskSchedule 函数中也不再直接调用IopDiskSchedule函数,也要修改为调用函数指针DiskScheduleFunc指向的磁盘调度算法函数。

最后,添加一个控制台命令“sstf”,该命令使函数指针DiskScheduleFunc 指向实现了 SSTF 算法的函数。

这样,在 EOS启动后默认会执行FCFS 算法,执行控制台命令“sstf”后,会执行SSTF算法。

按照这种方式依次实现“fcfs”、“scan”、“cscan”和“nstepscan”命令。

说明这种在EOS运行时动态切换磁盘调度算法的好处。

答:首先在block.c 中定义一个全局的函数指针变量 DiskScheduleFunc。

图 3.3.7修改IopProcessNextRequest 函数和ConsoleCmdDiskSchedule 函数,使其不再直接调用 IopDiskSchedule 函数而是调用函数指针DiskScheduleFunc指向的磁盘调度算法函数。

图 3.3.8调用函数前先声明。

图 3.3.9添加一个控制台命令“sstf”,该命令使函数指针 DiskScheduleFunc 指向实现了 SSTF 算法的函数。

图 3.3.10 验证结果如下图所示。

图 3.3.11图 3.3.12(7)分析已经实现的各种磁盘调度算法的优缺点,尝试实现更多其它的磁盘调度算法。

答:先来先服务算法是一种比较简单的磁盘调度算法,它根据进程请求访问磁盘的先后次序进行调度,此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况,在对磁盘的访问请求比较多的情况下,致使平均寻道时间可能较长;最短寻道时间优先算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短,其缺点是在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟;扫描算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向,此算法基本上克服了最短寻道时间优先算法的服务集中于中间磁道和响应时间变化比较大的缺点,而具有最短寻道时间优先算法的优点即吞吐量较大,平均响应时间较小,但由于是摆动式的扫描方法,两侧磁道被访问的频率仍低于中间磁道;循环扫描算法是对扫描算法的改进,如果对磁道的访问请求是均匀分布的,当磁头到达磁盘的一端,并反向运动时落在磁头之后的访问请求相对较少;N-Step-SCAN算法是扫描算法和先来先服务算法的一个综合算法,将请求队列分成若干个长度为 N 的子队列,调度程序按照 FCFS原则依次处理这些子队列,而每处理一个子队列时,又是按照SCAN算法,所以它是一种性能比较平均的算法。

相关文档
最新文档