最新2020年江苏省苏州市中学中考数学一模试卷(4月份)解析版

合集下载

2020年江苏省苏州市中考数学试卷(解析版)

2020年江苏省苏州市中考数学试卷(解析版)

2020年江苏省苏州市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.(3分)在下列四个实数中,最小的数是( )A .2-B .13C .0D .32.(3分)某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( )A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.(3分)下列运算正确的是( )A .236a a a =B .33a a a ÷=C .235()a a =D .2242()a b a b =4.(3分)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A .B .C .D .5.(3分)不等式213x -的解集在数轴上表示正确的是( )A .B .C .D .6.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:):s日走时误差0 1 2 3 只数 3 42 1则这10只手表的平均日走时误差(单位:)s 是( )A .0B .0.6C .0.8D .1.17.(3分)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan b a α+D .sin b a α+ 8.(3分)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A .1π-B .12π- C .12π- D .122π- 9.(3分)如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到△AB C ''.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A .18︒B .20︒C .24︒D .28︒10.(3分)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点(3,2)D 在对角线OB 上,反比例函数(0,0)k y k x x =>>的图象经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A .8(4,)3B .9(2,3)C .10(5,)3D .24(5,16)5二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)使1x -在实数范围内有意义的x 的取值范围是 . 12.(3分)若一次函数36y x =-的图象与x 轴交于点(,0)m ,则m = .13.(3分)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是 .14.(3分)如图,已知AB 是O 的直径,AC 是O 的切线,连接OC 交O 于点D ,连接BD .若40C ∠=︒,则B ∠的度数是 ︒.15.(3分)若单项式122m x y -与单项式2113n x y +是同类项,则m n += . 16.(3分)如图,在ABC ∆中,已知2AB =,AD BC ⊥,垂足为D ,2BD CD =.若E 是AD 的中点,则EC = .17.(3分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(4,0)-、(0,4),点(3,)C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n = .18.(3分)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作//AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12D E =,则sin MON ∠= .三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(5分)计算:209(2)(3)π+---.20.(5分)解方程:2111x x x +=--. 21.(6分)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ,求b 的取值范围.22.(6分)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是 .(填“方案一”、“方案二”或“方案三” )(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格” ): 样本容量 平均分 及格率 优秀率 最高分 最低分100 93.5 100% 70% 100 80分数段统计(学生成绩记为)x分数段080x < 8085x < 8590x < 9095x < 95100x 频数 0 5 25 30 40请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A 的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A 的纵坐标.请用树状图或表格列出点A 所有可能的坐标,并求出点A 在坐标轴上的概率.24.(8分)如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA ∆∆∽;(2)若6AB =,4BC =,求DF 的长.25.(8分)如图,二次函数2y x bx =+的图象与x 轴正半轴交于点A ,平行于x 轴的直线l 与该抛物线交于B 、C 两点(点B 位于点C 左侧),与抛物线对称轴交于点(2,3)D -.(1)求b 的值;(2)设P 、Q 是x 轴上的点(点P 位于点Q 左侧),四边形PBCQ 为平行四边形.过点P 、Q 分别作x 轴的垂线,与抛物线交于点1(P x ',1)y 、2(Q x ',2)y .若12||2y y -=,求1x 、2x 的值.26.(10分)问题1:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求证:AB CD BC +=.问题2:如图②,在四边形ABCD 中,45B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求AB CD BC+的值.27.(10分)某商店代理销售一种水果,六月份的销售利润y (元)与销售量()x kg 之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC 所在直线对应的函数表达式. 日期 销售记录6月1日库存600kg ,成本价8元/kg ,售价10元/kg (除了促销降价,其他时间售价保持不变). 6月9日 从6月1日至今,一共售出200kg .6月10、11日这两天以成本价促销,之后售价恢复到10元/kg . 6月12日补充进货200kg ,成本价8.5元/kg .6月30日 800kg 水果全部售完,一共获利1200元.28.(10分)如图,已知90MON ∠=︒,OT 是MON ∠的平分线,A 是射线OM 上一点,8OA cm =.动点P 从点A 出发,以1/cm s 的速度沿AO水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1/cm s 的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O 、P 、Q 三点作圆,交OT 于点C ,连接PC 、QC .设运动时间为()t s ,其中08t <<. (1)求OP OQ +的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)求四边形OPCQ 的面积.2020年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.(3分)在下列四个实数中,最小的数是( )A .2-B .13C .0D .3【解答】解:将2-,13,0,3在数轴上表示如图所示:于是有12033-<<故选:A .2.(3分)某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( )A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯ 【解答】解:60.00000164 1.6410-=⨯,故选:B .3.(3分)下列运算正确的是( )A .236a a a =B .33a a a ÷=C .235()a a =D .2242()a b a b =【解答】解:23235a a a a +==,因此选项A 不符合题意;3312a a a a -÷==,因此选项B 不符合题意;23236()a a a ⨯==;因此选项C 不符合题意;2242()a b a b =,因此选项D 符合题意;故选:D .4.(3分)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )A.B.C.D.【解答】解:从上面看,是一行三个小正方形.故选:C.x-的解集在数轴上表示正确的是()5.(3分)不等式213A.B.C.D.x+,【解答】解:移项得,231x,合并同类项得,24x.x的系数化为1得,2在数轴上表示为:.故选:C.6.(3分)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:):s 日走时误差0123只数3421则这10只手表的平均日走时误差(单位:)s是()A.0B.0.6C.0.8D.1.1【解答】解:142231 1.13421x ⨯+⨯+⨯==+++, 故选:D . 7.(3分)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=;(2)量得测角仪的高度CD a =;(3)量得测角仪到旗杆的水平距离DB b =.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .tan a b α+B .sin a b α+C .tan b a α+D .sin b a α+ 【解答】解:过C 作CF AB ⊥于F ,则四边形BFCD 是矩形,BF CD a ∴==,CF BD b ==,ACF α∠=,tan AF AF CF bα∴==, tan AF b α∴=,tan AB AF BF a b α∴=+=+,故选:A .8.(3分)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA 过AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A .1π-B .12π-C .12π-D .122π- 【解答】解:CD OA ⊥,CE OB ⊥,90CDO CEO AOB ∴∠=∠=∠=︒,∴四边形CDOE 是矩形,连接OC ,点C 是AB 的中点,AOC BOC ∴∠=∠,OC OC =,()COD COE AAS ∴∆≅∆,OD OE ∴=,∴矩形CDOE 是正方形,2OC OA ==,1OE ∴=,∴图中阴影部分的面积9021113602ππ⨯=-⨯=-, 故选:B .9.(3分)如图,在ABC ∆中,108BAC ∠=︒,将ABC ∆绕点A 按逆时针方向旋转得到△AB C ''.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为( )A .18︒B .20︒C .24︒D .28︒【解答】解:AB CB ''=, C CAB '∴∠=∠,2AB B C CAB C ''∴∠=∠+∠=∠,将ABC ∆绕点A 按逆时针方向旋转得到△AB C '',C C '∴∠=∠,AB AB '=,2B AB B C '∴∠=∠=∠,180B C CAB ∠+∠+∠=︒,3180108C ∴∠=︒-︒,24C ∴∠=︒,24C C '∴∠=∠=︒,故选:C .10.(3分)如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点(3,2)D 在对角线OB 上,反比例函数(0,0)k y k x x =>>的图象经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A .8(4,)3B .9(2,3)C .10(5,)3D .24(5,16)5【解答】解:反比例函数(0,0)k y k x x=>>的图象经过点(3,2)D , 23k ∴=, 6k ∴=,∴反比例函数6y x=, 设OB 的解析式为y mx b =+, OB 经过点(0,0)O 、(3,2)D ,∴023b m b =⎧⎨=+⎩, 解得:230m b ⎧=⎪⎨⎪=⎩,OB ∴的解析式为23y x =, 反比例函数6y x=经过点C , ∴设6(,)C a a,且0a >, 四边形OABC 是平行四边形,//BC OA ∴,2OBC OABC S S ∆=平行四边形,∴点B 的纵坐标为6a, OB 的解析式为23y x =, 9(B a ∴,6)a, 9BC a a∴=-, 169()2OBC S a a a∆∴=⨯⨯-, 169152()22a a a ∴⨯⨯⨯-=, 解得:2a =,9(2B ∴,3), 故选:B .二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)使13x-在实数范围内有意义的x的取值范围是1x.【解答】解:由题意得,10x-,解得,1x,故答案为:1x.12.(3分)若一次函数36y x=-的图象与x轴交于点(,0)m,则m=2.【解答】解:一次函数36y x=-的图象与x轴交于点(,0)m,360m∴-=,解得2m=,故答案为2.13.(3分)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是38.【解答】解:若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6,所以该小球停留在黑色区域的概率是63 168=,故答案为:38.14.(3分)如图,已知AB是O的直径,AC是O的切线,连接OC交O于点D,连接BD.若40C∠=︒,则B∠的度数是25︒.【解答】解:AC 是O 的切线,OA AC ∴⊥, 90OAC ∴∠=︒,90904050AOC C ∴∠=︒-∠=︒-︒=︒,OB OD =,OBD ODB ∴∠=∠,而AOC OBD ODB ∠=∠+∠, 1252OBD AOC ∴∠=∠=︒, 即ABD ∠的度数为25︒,故答案为:25.15.(3分)若单项式122m x y -与单项式2113n x y +是同类项,则m n += 4 . 【解答】解:单项式122m x y -与单项式2113n x y +是同类项, ∴1212m n -=⎧⎨+=⎩, 4m n ∴+=,故答案为:4.16.(3分)如图,在ABC ∆中,已知2AB =,AD BC ⊥,垂足为D ,2BD CD =.若E 是AD 的中点,则EC = 1 .【解答】解:设AE ED x ==,CD y =,2BD y ∴=,AD BC ⊥,90ADB ADC ∴∠=∠=︒,在Rt ABD ∆中,22244AB x y ∴=+,221x y ∴+=,在Rt CDE ∆中,2221EC x y ∴=+=,1EC ∴=,故答案为:117.(3分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(4,0)-、(0,4),点(3,)C n 在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n = 145.【解答】解:作CD x ⊥轴于D ,CE y ⊥轴于E ,点A 、B 的坐标分别为(4,0)-、(0,4),点(3,)C n 在第一象限内,则(0,)E n ,(3,0)D , 4BE n ∴=-,3CE =,CD n =,7AD =,//CE OA ,ECA CAO ∴∠=∠,2BCA CAO ∠=∠,BCE CAO ∴∠=∠,在Rt CAD ∆中,tan CD CAO AD ∠=,在Rt CBE ∆中,tan BE BCE CE ∠=, ∴CD BE AD CE =,即4343n n -=+, 解得145n =, 故答案为145.18.(3分)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作//AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12D E =,则sin MON ∠= 2425.【解答】解:如图,连接DB ,过点D 作DH ON ⊥于H .由作图可知,AOD DOE ∠=∠,OA OB =,//AD EO ,ADO DOE ∴∠=∠,AOD ADO ∴∠=∠,AO AD ∴=,AD OB ∴=,//AD OB ,∴四边形AOBD 是平行四边形,OA OB =,∴四边形AOBD 是菱形,10OB BD OA ∴===,//BD OA ,MON DBE ∴∠=∠,BOD BDO ∠=∠,DE OD ⊥,90BOD DEO ∴∠+∠=︒,90ODB BDE ∠+∠=︒,BDE BED ∴∠=∠,10BD BE ∴==,220OE OB ∴==,16OD ∴=,DH OE ⊥, 161248205OD DE DH EO ⨯∴===, 48245sin sin 1025DH MON DBH DB ∴∠=∠===. 故答案为2425. 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(520(2)(3)π---.【解答】20(2)(3)π---.341=+-,6=.20.(5分)解方程:2111x x x +=--. 【解答】解:方程的两边同乘1x -,得(1)2x x +-=,解这个一元一次方程,得32x =, 经检验,32x =是原方程的解. 21.(6分)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ,求b 的取值范围.【解答】解:(1)依题意,得:20250b +=,解得:15b =.(2)1826a ,502a b =-,∴5021850226b b -⎧⎨-⎩, 解得:1216b .答:b 的取值范围为1216b .22.(6分)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是 方案三 .(填“方案一”、“方案二”或“方案三” )(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格” ): 样本容量平均分 及格率 优秀率 最高分 最低分 100 93.5 100% 70% 100 80分数段统计(学生成绩记为)x分数段080x < 8085x < 8590x < 9095x < 95100x 频数 0 5 25 30 40请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.【解答】解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析,是最符合题意的.故答案为:方案三;(2)①样本100人中,成绩从小到大排列后,处在中间位置的两个数都在9095x<,因此中位数在9095x<组中;②由题意得,120070%840⨯=(人),答:该校1200名学生中达到“优秀”的有840人.23.(8分)在一个不透明的布袋中装有三个小球,小球上分别标有数字0、1、2,它们除数字外都相同.小明先从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的横坐标,将此球放回、搅匀,再从布袋中任意摸出一个小球,记下数字作为平面直角坐标系内点A的纵坐标.请用树状图或表格列出点A所有可能的坐标,并求出点A在坐标轴上的概率.【解答】解:用列表格法表示点A所有可能的情况如下:共有9种可能出现的结果,其中点A在坐标轴上有5种,P∴(点A在坐标轴上)59 =.24.(8分)如图,在矩形ABCD中,E是BC的中点,DF AE⊥,垂足为F.(1)求证:ABE DFA∆∆∽;(2)若6AB=,4BC=,求DF的长.【解答】解:(1)四边形ABCD是矩形,//AD BC∴,90B∠=︒,DAF AEB∴∠=∠,DF AE⊥,90AFD B∴∠=∠=︒,ADF EAB∴∆∆∽,ABE DFA∴∆∆∽;(2)E是BC的中点,4BC=,2BE∴=,6AB=,222262210AE AB BE∴=+=+=,四边形ABCD是矩形,4AD BC∴==,ABE DFA∆∆∽,∴AB AE DF AD=,∴6105210AB ADDFAE===.25.(8分)如图,二次函数2y x bx =+的图象与x 轴正半轴交于点A ,平行于x 轴的直线l 与该抛物线交于B 、C 两点(点B 位于点C 左侧),与抛物线对称轴交于点(2,3)D -.(1)求b 的值;(2)设P 、Q 是x 轴上的点(点P 位于点Q 左侧),四边形PBCQ 为平行四边形.过点P 、Q 分别作x 轴的垂线,与抛物线交于点1(P x ',1)y 、2(Q x ',2)y .若12||2y y -=,求1x 、2x 的值.【解答】解:(1)直线与抛物线的对称轴交于点(2,3)D -,故抛物线的对称轴为2x =,即122b =,解得:4b =-, 故抛物线的表达式为:24y x x =-;(2)把3y =-代入24y x x =-并解得1x =或3,故点B 、C 的坐标分别为(1,3)-、(3,3)-,则2BC =,四边形PBCQ 为平行四边形,2PQ BC ∴==,故212x x -=,又21114y x x =-,22224y x x =-,12||2y y -=,故221122|(4)(4)2x x x x ---=,12|4|1x x +-=. 125x x ∴+=或123x x +=-,由211225x x x x -=⎧⎨+=⎩,解得123272xx ⎧=⎪⎪⎨⎪=⎪⎩; 由211223x x x x -=⎧⎨+=⎩,解得121252x x ⎧=⎪⎪⎨⎪=⎪⎩. 26.(10分)问题1:如图①,在四边形ABCD 中,90B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求证:AB CD BC +=.问题2:如图②,在四边形ABCD 中,45B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒.求AB CD BC+的值.【解答】证明:(1)90B APD ∠=∠=︒,90BAP APB ∴∠+∠=︒,90APB DPC ∠+∠=︒,BAP DPC ∴∠=∠,又PA PD =,90B C ∠=∠=︒,()BAP CPD AAS ∴∆≅∆,BP CD ∴=,AB PC =,BC BP PC AB CD ∴=+=+;(2)如图2,过点A 作AE BC ⊥于E ,过点D 作DF BC ⊥于F ,由(1)可知,EF AE DF =+,45B C ∠=∠=︒,AE BC ⊥,DF BC ⊥,45B BAE ∴∠=∠=︒,45C CDF ∠=∠=︒,BE AE ∴=,CF DF =,2AB AE =,2CD DF =,2()BC BE EF CF AE DF ∴=++=+,∴22()AB CD BC AE DF +==+. 27.(10分)某商店代理销售一种水果,六月份的销售利润y (元)与销售量()x kg 之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC 所在直线对应的函数表达式.日期 销售记录6月1日 库存600kg ,成本价8元/kg ,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg . 6月10、11日这两天以成本价促销,之后售价恢复到10元/kg .6月12日补充进货200kg ,成本价8.5元/kg . 6月30日 800kg 水果全部售完,一共获利1200元.【解答】解:(1)200(108)400⨯-=(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B 坐标为(,400)a ,根据题意得:(108)(600)(108.5)2001200400a -⨯-+-⨯=-,解这个方程,得350a =,∴点B 坐标为(350,400),设线段BC 所在直线对应的函数表达式为y kx b =+,则:3504008001200k b k b +=⎧⎨+=⎩,解得16920009k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴线段BC 所在直线对应的函数表达式为16200099y x =-. 28.(10分)如图,已知90MON ∠=︒,OT 是MON ∠的平分线,A 是射线OM 上一点,8OA cm =.动点P 从点A出发,以1/cm s 的速度沿AO 水平向左作匀速运动,与此同时,动点Q 从点O 出发,也以1/cm s 的速度沿ON 竖直向上作匀速运动.连接PQ ,交OT 于点B .经过O 、P 、Q 三点作圆,交OT 于点C ,连接PC 、QC .设运动时间为()t s ,其中08t <<. (1)求OP OQ +的值;(2)是否存在实数t ,使得线段OB 的长度最大?若存在,求出t 的值;若不存在,说明理由.(3)求四边形OPCQ 的面积.【解答】解:(1)由题意可得,8OP t =-,OQ t =,88()OP OQ t t cm ∴+=-+=.(2)当4t =时,线段OB 的长度最大.如图,过点B 作BD OP ⊥,垂足为D ,则//BD OQ .OT 平分MON ∠,45BOD OBD ∴∠=∠=︒,BD OD ∴=,OB =.设线段BD 的长为x ,则BD OD x ==,OB =,8PD t x =--, //BD OQ , ∴PD BD OP OQ =, ∴88t x x t t--=-, 288t t x -∴=.22824)8t t OB t -∴==-+当4t =时,线段OB 的长度最大,最大为.(3)90POQ ∠=︒,PQ ∴是圆的直径.90PCQ ∴∠=︒.45PQC POC ∠=∠=︒,PCQ ∴∆是等腰直角三角形.211221224PCQ S PC QC PQ PQ PQ ∆∴==⨯=. 在Rt POQ ∆中,22222(8)PQ OP OQ t t =+=-+.∴四边形OPCQ 的面积21124POQ PCQ S S S OP OQ PQ ∆∆=+=+, 2211(8)[(8)]24t t t t =-+-+, 221141641622t t t t =-++-=. ∴四边形OPCQ 的面积为216cm .。

精品模拟2020年江苏省苏州市中考数学模拟试卷一解析版

精品模拟2020年江苏省苏州市中考数学模拟试卷一解析版

2020年江苏省苏州市中考数学模拟试卷一一.选择题(共10小题,满分30分,每小题3分)1.计算(﹣1)﹣2018+(﹣1)2017所得的结果是()A.﹣1B.0C.1D.﹣22.下列各式中正确的是()A.|5|=5B.﹣|5|=|﹣5|C.|﹣5|=﹣5D.|﹣1.3|<03.下列说法错误的是()A.必然发生的事件发生的概率为1B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1D.概率很小的事件不可能发生4.在平面直角坐标系中,点(1,﹣2)关于原点对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(2,﹣1)D.(2,1)5.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣36.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y28.关于x的方程=+1无解,则m的值是()A.0B.0或1C.1D.29.在平面直角坐标系中,抛物线y2与直线y1均过原点,直线经过抛物线的顶点(2,4),则下列说法:①当0<x<2时,y2>y1;②y2随x的增大而增大的取值范围是x<2;③使得y2大于4的x值不存在;④若y2=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有320米其中正确的结论有()A.1 个B.2 个C.3 个D.4 个二.填空题(共8小题,满分24分,每小题3分)11.近似数 3.60×105精确到位.12.分解因式:4m2﹣16n2=.13.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.14.在函数y=中,自变量x的取值范围是.15.已知一组数据﹣3,x,﹣2,3,1,6的众数为3,则这组数据的中位数为.16.y=kx﹣6的图象与x,y轴交于B、A两点,与的图象交于C点,CD⊥x轴于D点,如果△CDB的面积:△AOB的面积=1:9,则k=.17.若不等式组有解,则m的取值范围是.18.抛物线y=2x 2+8x+m与x轴只有一个交点,则m=.三.解答题(共10小题,满分76分)19.(6分)计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|20.(6分)解不等式组:21.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.22.(6分)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.23.(7分)某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有1800名学生,估计该校在这次活动中做家务的时间不少于 2.5小时的学生有多少人?24.(8分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B (﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.25.(8分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).(1)小红摸出标有数3的小球的概率是.(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.(3)求点P(x,y)在函数y=﹣x+5图象上的概率.26.(9分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?27.(10分)已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.28.(10分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】直接利用负指数幂的性质化简进而得出答案.【解答】解:原式=1﹣1=0.故选:B.【点评】此题主要考查了负整数指数幂的性质,正确化简各数是解题关键.2.【分析】根据绝对值的意义对各选项进行判断.【解答】解:A、|5|=5,所以A选项的计算正确;B、﹣|5|=﹣5,|﹣5|=5,所以B选项的计算错误;C、|﹣5|=5,所以C选项的计算错误;D、|﹣1.3|=1.3>0,所以D选项的判断错误.故选:A.【点评】本题考查了有理数大小比较:两个负数,绝对值大的其值反而小.也考查了绝对值的意义.3.【分析】利用概率的意义分别回答即可得到答案.【解答】解:A、必然发生的事件发生的概率为1,正确;B、不可能发生的事件发生的概率为0,正确;C、随机事件发生的概率大于0且小于1,正确;D、概率很小的事件也有可能发生,故错误,故选:D.【点评】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义,概率大的事件不一定发生,概率小的事件不一定发生.4.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:点(1,﹣2)关于原点对称的点的坐标是(﹣1,2),故选:B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.5.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,可求得a的取值范围,则可求得答案.【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.6.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.8.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x2﹣2x+1=mx﹣2m+x2﹣3x+2,整理得:(m﹣1)x=2m﹣1,由分式方程无解,得到m﹣1=0且2m﹣1≠0,即m=1;当m≠1时,=1或=2,解得:m=0.故选:B.【点评】此题考查了分式方程的解,分式方程无解即为最简公分母为0.9.【分析】根据图象得出函数解析式为y=a(x﹣2)2+4,再把c=0代入即可得出解析式,根据二次函数的性质得出答案.【解答】解:设抛物线解析式为y=a(x﹣2)2+4,∵抛物线与直线均过原点,∴a(0﹣2)2+4=0,∴a=﹣1,∴y=﹣(x﹣2)2+4,∴由图象得当0<x<2时,y2>y1,故①正确;y2随x的增大而增大的取值范围是x<2,故②正确;∵抛物线的顶点(2,4),使得y2大于4的x值不存在,故③正确;把y=2代入y=﹣(x﹣2)2+4,得若y2=2,则x=2﹣或x=2+,故④不正确.其中正确的有3个,故选:C.【点评】本题考查了二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.10.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②正确,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:B.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二.填空题(共8小题,满分24分,每小题3分)11.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:因为0所在的数位是千位,所以 3.60×105精确到千位.故答案是:千.【点评】本题主要考查科学记数法和有效数字,对于用科学记表示的数,有效数字的计算方法,与精确到哪一位是需要识记的内容,经常会出错.12.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.14.【分析】根据被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:在函数y=中,1﹣x>0,即x<1,故答案为:x<1.【点评】本题考查函数自变量的取值范围,解题的关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.15.【分析】先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据﹣3,x,﹣2,3,1,6的众数为3,∴3出现的次数是2次,∴x=3,数据重新排列是:﹣3,﹣2、1、3、3、6,所以中位数是(1+3)÷2=2.故答案为:2.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.【分析】由于△CDB 的面积:△AOB 的面积=1:9,且两三角形相似,则=,C (,2)代入直线y =kx ﹣6求得k 值.【解答】解:由题意得:△CDB 的面积:△AOB 的面积=1:9,且两三角形相似,则=,又A (0,﹣6),则C (,2),代入直线y =kx ﹣6,可得:k =4.故答案为:4.【点评】本题考查了反比例函数系数k 的几何意义,这里相似三角形的相似比是解决问题的突破口.17.【分析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.【解答】解:由不等式1<x ≤2,要使x >m 与1<x ≤2有解,如下图只有m <2时,1<x ≤2与x >m 有公共部分,∴m <2.【点评】本题考查逆向思维,给出不等式来判断是否存在解得问题,是一道好题.18.【分析】利用判别式的意义得到82﹣4×2×m =0,然后解关于m 的方程即可.【解答】解:∵抛物线y =2x 2+8x+m 与x 轴只有一个交点,∴△=82﹣4×2×m =0,∴m =8.故答案为8.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx+c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.△=b 2﹣4ac 决定抛物线与x 轴的交点个数(△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点).三.解答题(共10小题,满分76分)19.【分析】原式利用乘方的意义,零指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=1+1﹣2+=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x≤﹣1,解不等式②得:x>﹣7,∴原不等式组的解集为﹣7<x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.21.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)?=?=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.【分析】把A与B代入A﹣2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m 与n的值,代入原式计算即可得到结果.【解答】解:∵A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,∴A﹣2B=2x2﹣xy+my﹣8+2nx2﹣2xy﹣2y﹣14=(2+2n)x2﹣3xy+(m﹣2)y﹣22,由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,则原式=1﹣2=﹣1.【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.23.【分析】(1)根据D组人数及其所占百分比即可得出总人数;(2)总人数乘以C组的百分比求得C组人数,总人数减去其余各组人数求得B人数人数即可补全条形图;(3)总人数乘以样本中E组人数所占比例可得.【解答】解:(1)学生会调查的学生人数为10÷20%=50(人),故答案为:50;(2)∵1.5≤x<2的人数为50×40%=20人,∴1≤x<1.5的人数为50﹣(3+20+10+4)=13人,补全图形如下:(3)1800×=144(人),答:估计该校在这次活动中做家务的时间不少于 2.5小时的学生有144人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.25.【分析】(1)根据概率公式求解;(2)利用树状图展示所有12种等可能的结果数;(3)利用一次函数图象上点的坐标特征得到在函数y=﹣x+5的图象上的结果数,然后根据概率公式求解.【解答】解:(1)小红摸出标有数3的小球的概率是;故答案为;(2)画树状图为:由列表或画树状图可知,P点的坐标可能是(1,2)(1,3)(1,4)(2,1)(2,3),(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种情况,(3)共有12种可能的结果,其中在函数y=﹣x+5的图象上的有4种,即(1,4)(2,3)(3,2)(4,1)所以点P(x,y)在函数y=﹣x+5图象上的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了一次函数图象上点的坐标特征.26.【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值,即可确定销售单价应控制在什么范围内.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点评】本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程,再求解.27.【分析】(1)把A(﹣2,0),B(0,4)代入y=kx+b,根据待定系数法即可求得;(2)作PC⊥y轴于C,证得△ABO≌△BPC,从而得出AO=BC=2,BO=PC=4,根据图象即可求得点P的坐标;(3)①由题意可知Q点在经过P1点且垂直于直线l的直线上,得到点Q所在的直线平行于直线AB,设点Q所在的直线为y=2x+n,代入P1(﹣4,6),求得n的值,即可求得点Q所在的直线为y=2x+14,代入Q(a,b)即可得到b=2a+14;②由QA=QB,根据勾股定理得出(a+2)2+b2=a2+(b﹣4)2,进一步得到(a+2)2+(2a+14)2=a2+(2a+14﹣4)2,解方程即可求得a的值,从而求得Q点的坐标.【解答】解:(1)把A(﹣2,0),B(0,4)代入y=kx+b中得:,解得:,则直线AB解析式为y=2x+4;(2)如图1所示:作PC⊥y轴于C,∵直线l经过点B,并且与直线AB垂直.∴∠ABO+∠PBC=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠PBC,∵△ABP是等腰直角三角形,∴AB=PB,在△ABO和△BPC中,∴△ABO≌△BPC(AAS),∴AO=BC=2,BO=PC=4,∴点P的坐标(﹣4,6)或(4,2);(3)①∵点Q(a,b)在第二象限,且S△QAB=S△PAB.∴Q点在经过P1点且垂直于直线l的直线上,∴点Q所在的直线平行于直线AB,∵直线AB解析式为y=2x+4,∴设点Q所在的直线为y=2x+n,∵P1(﹣4,6),∴6=2×(﹣4)+n,解得n=14,∴点Q所在的直线为y=2x+14,∵点Q(a,b),∴b=2a+14;A(﹣2,0),B(0,4)②∵QA=QB,∴(a+2)2+b2=a2+(b﹣4)2,∵b=2a+14,∴(a+2)2+(2a+14)2=a2+(2a+14﹣4)2,整理得,10a=﹣50,解得a=﹣5,b=4,∴Q的坐标(﹣5,4).【点评】本题是一次函数的综合题,考查了待定系数法求一次函数的解析式,等腰三角形的性质,三角形全等的判定和性质,两直线平行的性质等.28.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.。

2024年江苏省苏州中学中考数学一模试卷及答案解析

2024年江苏省苏州中学中考数学一模试卷及答案解析

2024年江苏省苏州中学中考数学一模试卷一、单选题(本大题共8小题,共24分)1.(3分)的倒数是()A.B.C.D.2.(3分)下列运算正确的是()A.(2a2)3=6a6B.a3•a2=a5C.2a2+4a2=6a4D.(a+2b)2=a2+4b23.(3分)今年春节电影《热辣滚烫》《飞驰人生2》《熊出没⋅逆转时空》《第二十条》在网络上持续引发热议,据国家电影局2月18日发布数据,我国2024年春节档电影票房达8016000000元,创造了新的春节档票房纪录.其中数据8016000000用科学记数法表示为()A.80.16×108B.80.16×1010C.0.8016×1010D.8.016×1094.(3分)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为()A.=+1B.=C.=﹣1D.=5.(3分)已知,CD是△ABC的角平分线,直线AE∥BC,若∠ABC=62°,∠EAC=50°,则∠ADC的度数为()A.68°B.81°C.87°D.90°6.(3分)一个圆锥的母线长为3cm,侧面展开图扇形的圆心角为120°,则这个圆锥的底面圆半径为()A.1cm B.2cm C.3cm D.cm7.(3分)如图,四边形ABCD是矩形,分别以点B,D为圆心,线段BC,DC长为半径画弧,两弧相交于点E,连接BE,DE,BD.若AB=4,BC=8,则∠ABE的正切值为()A.B.C.D.8.(3分)如图,在平面直角坐标系xOy中,点A(x1,y1),点B(x2,y2)在双曲线上,且0<x1<x2,分别过点A,点B作x轴的平行线,与双曲线分别交于点C,点D.若△AOB的面积为,则的值为()A.B.C.D.二、填空题(本大题共8小题,共24分)9.(3分)函数y=的自变量x的取值范围是.10.(3分)若一组数据1、3、x、5、8的众数为8,则这组数据的中位数为.11.(3分)因式分解:2x2﹣4x+2=.12.(3分)已知△ABC中,D、E分别是AB、AC的中点,则S△ADE:S△ABC =.13.(3分)如图,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,BC=2CD,则∠BAD的度数是°.14.(3分)定义:一个三角形的一边长是另一边长的3倍,这样的三角形叫做“3倍长三角形”.若等腰△ABC是“3倍长三角形”,底边BC的长为3,则等腰△ABC的周长为.15.(3分)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为.16.(3分)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.三、解答题(本大题共11小题,共82分)17.(5分)计算:tan45°+﹣()﹣1﹣.18.(5分)解不等式组:.19.(6分)化简求值:(1﹣)÷,并从﹣1,0,1中任意选一个数代入求值.20.(6分)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.(1)求证:△ABE≌△DFE;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.21.(8分)为了解某地区九年级学生的视力情况,从该地区九年级学生中抽查了部分学生,根据调查结果,绘制了如下两幅不完整的统计图.根据以上信息,解决下列问题:(1)此次调查的样本容量为;(2)扇形统计图中A对应圆心角的度数为°;(3)请补全条形统计图;(4)若该地区九年级学生共有25000人,请估计其中视力正常的人数.22.(6分)在5张相同的小纸条上,分别写有:①;②;③1;④乘法;⑤加法.将这5张小纸条做成5支签,①、②、③放在不透明的盒子A中搅匀,④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到无理数的概率是;(2)先从盒子A中任意抽出2支签,再从盒子B中任意抽出1支签.求抽到的2个实数进行相应的运算后结果是无理数的概率.23.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于点A (4,1)和点B(2,n).(1)求一次函数和反比例函数解析式;(2)过点B作BC⊥y轴于点C,连接OA,求四边形OABC的面积;(3)根据图象直接写出使成立的x的取值范围.24.(8分)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.25.(8分)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)26.(10分)如图,已知O是△ABC边AB上的一点,以O为圆心、OB为半径的⊙O与边AC相切于点D,且BC=CD,连接OC,交⊙O于点E,连接BE并延长,交AC于点F.(1)求证:BC是⊙O切线;(2)求证:OA•AB=AD•AC;(3)若AC=16,tan∠BAC=,F是AC中点,求EF的长.27.(12分)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断+是否存在最大值.若存在,求出最大值;若不存在,请说明理由.2024年江苏省苏州中学中考数学一模试卷参考答案与试题解析一、单选题(本大题共8小题,共24分)1.【分析】根据倒数的定义求解.【解答】解:的倒数是;故选:D.【点评】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则和完全平方公式分解因式得出答案.【解答】解:A、(2a2)3=8a6,故此选项错误;B、a3•a2=a5,正确;C、2a2+4a2=6a2,故此选项错误;D、(a+2b)2=a2+4ab+4b2,故此选项错误;故选:B.【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算和完全平方公式,正确应用运算法则是解题关键.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:8016000000=8.016×109,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.4.【分析】根据题意可知:步行的时间=牛车用的时间+1,然后即可列出相应的方程.【解答】解:∵学生步行的速度为每小时x里,牛车的速度是步行的1.5倍,∴牛车的速度是1.5x里,由题意可得:+1,故选:A.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.5.【分析】由AE∥BC,利用“两直线平行,内错角相等”,可求出∠ACB的度数,结合CD 平分∠ACB,可求出∠BCD的度数,再利用三角形的外角性质,即可求出∠ADC的度数.【解答】解:∵AE∥BC,∴∠ACB=∠EAC=50°,∵CD平分∠ACB,∴∠BCD=∠ACB=×50°=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠DBC+∠BCD=62°+25°=87°.故选:C.【点评】本题考查了平行线的性质、三角形的外角性质以及角平分线的定义,牢记“两直线平行,内错角相等”及“三角形的一个外角等于和它不相邻的两个内角的和”是解题的关键.6.【分析】根据弧长公式求出圆锥的底面圆的周长==2π(cm),设这个圆锥的底面圆的半径为r cm,根据圆的周长公式得出2πr=2π,再求出r即可.【解答】解:圆锥的底面圆的周长==2π(cm),设这个圆锥的底面圆的半径为r cm,则2πr=2π,解得:r=1,即这个圆锥的底面圆半径为1cm,故选:A.【点评】本题考查了圆锥的计算,能熟记弧长公式是解此题的关键,已知扇形的圆心角为n°,半径为r,那么扇形所对的弧的长度是.7.【分析】先根据SSS证明△CBD≌△EBD,可得∠CBD=∠EBD,设AO=x,则OD=8﹣x,根据勾股定理列方程可得AO的长,最后由正切的定义可解答.【解答】解:∵BE=BC,DE=CD,BD=BD,∴△CBD≌△EBD(SSS),∴∠CBD=∠EBD,∵四边形ABCD是矩形,∴AD∥BC,AD=BC=8,∠A=90°,∴∠ADB=∠CBD,∴∠ADB=∠EBD,∴OB=OD,设AO=x,则OD=8﹣x,∴OB=8﹣x,由勾股定理得:AB2+AO2=OB2,∴42+x2=(8﹣x)2,∴x=3,∴tan∠ABE==.故选:C.【点评】本题考查了全等三角形的判定和性质,矩形的性质,三角函数,勾股定理等知识,证明OB=OD是解题的关键.8.【分析】过点A作AF⊥x轴于点F,过点B作BH⊥x轴于点H,由A(x1,y1),点B(x2,y2)在双曲线y=上,可得AF=,BH=,FH=x2﹣x1,S△AOF==S△BOH,即=FH•(AF+BH)=(x2﹣x1)(+),根据△AOB的面积为,可得S梯形ABHF得(x2﹣x1)(+)=,即有﹣=,设t=,则t﹣=,解得:t=2或t=﹣(舍去),故=2,又AC∥BD∥x轴,点C,点D在双曲线y=图象上,可得AC=2x1﹣x1=x1,BD=2x2﹣x2=x2,从而==.【解答】解:如图,过点A作AF⊥x轴于点F,过点B作BH⊥x轴于点H,∵A (x 1,y 1),点B (x 2,y 2)在双曲线y =上,∴AF =,BH =,FH =x 2﹣x 1,S △AOF ==S △BOH ,∴S 梯形ABHF =FH •(AF +BH )=(x 2﹣x 1)(+),∵S △AOB =S △AOF +S 梯形ABHF ﹣S △BOH =+(x 2﹣x 1)(+)﹣=(x 2﹣x 1)(+),∴(x 2﹣x 1)(+)=,∴﹣=x 1x 2,∴﹣=,设t =,则t ﹣=,解得:t =2或t =﹣(舍去),∴=2,∵AC ∥BD ∥x 轴,点C ,点D 在双曲线y =图象上,∴点C (2x 1,),点D (2x 2,),∴AC =2x 1﹣x 1=x 1,BD =2x 2﹣x 2=x 2,∴==,故选:C .【点评】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,分式方程,一元二次方程的知识,解题的关键是熟练掌握反比例函数系数k 的几何意义.二、填空题(本大题共8小题,共24分)9.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,解得x ≥0且x ≠1.故答案为:x≥0且x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.【分析】根据众数和中位数的概念求解.【解答】解:∵数据1、3、x、5、8的众数为8,∴x=8,则数据重新排列为1、3、5、8、8,所以中位数为5,故答案为:5.【点评】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.【分析】先提取2,然后用完全平方公式分解即可.【解答】解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2故答案为2(x﹣1)2.【点评】此题主要考查了提取公因式和公式法分解因式,解本题的关键是提取公因式2.12.【分析】由题可知△ADE∽△ABC,根据相似比,即可求出相似比.【解答】解:∵D、E分别是AB、AC的中点,∴AD=AB,DE∥BC,∴△ADE∽△ABC,∴,:S△ABC=.即S△ADE【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.13.【分析】连接OD,根据等边三角形的性质得到∠C=60°,再根据圆内接四边形的性质计算,得到答案.【解答】解:如图,连接OD,∵BC是⊙O的直径,BC=2CD,∴OC=OD=CD,∴△COD为等边三角形,∴∠C=60°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∴∠BAD=120°,故答案为:120.【点评】本题考查的是圆内接四边形的性质、等边三角形的判定和性质,掌握圆内接四边形的对角互补是解题的关键.14.【分析】由等腰△ABC是“3倍长三角形”,可知AB=3BC或BC=3AB,若AB=3BC=9,可得AB的长为9;若BC=3AB=3,因为1+1<3,故此时不能构成三角形,这种情况不存在;再根据周长的多余即可得答案.【解答】解:∵等腰△ABC是“3倍长三角形”,∴AB=3BC或BC=3AB,若AB=3BC=9,则△ABC三边分别是9、9、3,符合题意,等腰三角形ABC的周长为9+9+3=21;若BC=3AB=3,则AB=1,△ABC三边分别是1、1、3,∵1+1<3,∴此时不能构成三角形,这种情况不存在;综上所述,等腰三角形ABC的周长为21.故答案为:21.【点评】本题考查了等腰三角形的定义以及三角形三边关系,读懂题意,理解“3倍长三角形”是解本题的关键.15.【分析】设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,求出x,再求出8分钟后的放水时间,可得结论.【解答】解:设出水管每分钟排水x升.由题意进水管每分钟进水10升,则有80﹣5x=20,∴x=12,∵8分钟后的放水时间==,8+=,∴a=,故答案为:.【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题.16.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD=90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE=5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.【点评】此题重点考查菱形的性质、轴对称的性质、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.三、解答题(本大题共11小题,共82分)17.【分析】先计算二次根式、负整数指数幂、和特殊角的三角函数值,再计算加减.【解答】解:tan45°+﹣()﹣1﹣=1+﹣1﹣2﹣=﹣2.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.18.【分析】先分别解两个不等式,再求出不等式组的解集即可.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集为:﹣1≤x<3.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.19.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出m的值,代入计算即可求出值.【解答】解:原式=•=m+1,当m=1时,原式=1+1=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.【分析】(1)可用AAS证明△ABE≌△DFE;(2)四边形ABDF是平行四边形,可用对角线互相平分的四边形是平行四边形证明.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CF.∴∠1=∠2,∠3=∠4∵E是AD的中点,∴AE=DE.∴△ABE≌△DFE(AAS).(2)解:四边形ABDF是平行四边形.∵△ABE≌△DFE,∴AB=DF又∵AB∥DF∴四边形ABDF是平行四边形.【点评】此题主要考查平行四边形的判定和全等三角形的判定.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.21.【分析】(1)用C的人数除以C所占百分比可得样本容量;(2)用360°乘A所占比例可得答案;(3)用样本容量分别减去其它三部分的人数,可得B的人数,进而补全条形统计图;(4)用该地区九年级学生总人数乘样本中A所占比例即可.【解答】解:(1)此次调查的样本容量为:117÷26%=450,故答案为:450;(2)扇形统计图中A对应圆心角的度数为:360°×=36°,故答案为:36;(3)样本中B的人数为:450﹣45﹣117﹣233=55(人),补全条形统计图如下:(4)25000×=2500(人),答:其中视力正常的人数大约为2500人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【分析】(1)由概率公式可得答案;(2)用画树状图法求出所有情况数,再用概率公式列式计算.【解答】解:(1)在①;②;③1中,无理数有两个,∴从盒子A中任意抽出1支签,抽到无理数的概率是;故答案为:;(2)画树状图如下:共有12种等可能的结果,其中抽到的2个实数进行相应的运算后结果是无理数的有:①②⑤,①③④,①③⑤,②①⑤,②③④,②③⑤,③①④,③①⑤,③②④,③②⑤共10种,∴抽到的2个实数进行相应的运算后结果是无理数的概率为=.【点评】本题考查列表法与树状图法求概念,解题的关键是能用列表法与树状图法求出所有的可能情况数.23.【分析】(1)采用待定系数法求函数解析式.先将点A的坐标代入反比例函数解析式,求出m值,再将点B代入反比例函数解析式求出nn值,然后将A、B点坐标代入一次函数解析数即可.(2)四边形OABC的面积可由一次函数与坐标轴围成的三角形减去两个小三角形的面积得到,求出一次函数与坐标轴的交点即可求出面积.(3)结合图象确定x的取值范围即可.【解答】解:(1)将点A(4,1)代入中,得,解得m=4,故;将点B(2,n)代入,可得,将A(4,1),B(2,2)代入y1=kx+b,得,解得,故;(2)如图所示,对于一次函数,令x=0,则y1=3,即E(0,3)令y1=0,则x=6,即D(6,0),∴OD=6,OE=3,∵B(2,2),BC⊥y轴,∴BC=2,CE=3﹣2=1,设△AOD的高为h,由A(4,1)可知h=1,S四边形OABC=S△DOE﹣S△BOE﹣S△AOD===5;(3)结合图象可知,当时,x的取值范围为0<x<2或x>4.【点评】本题主要考查反比例函数和一次函数的图象性质、待定系数法等综合知识,解决本题的关键是求得正确的点的坐标,将四边形OABC放在大三角形中求解面积.24.【分析】(1)设购买绿萝x盆,吊兰y盆,利用总价=单价×数量,结合购进两种绿植46盆共花费390元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买绿萝m盆,则购买吊兰(46﹣m)盆,根据购进绿萝盆数不少于吊兰盆数的2倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设购买两种绿植的总费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设购买绿萝x盆,吊兰y盆,依题意得:,解得:.∵8×2=16,16<38,∴符合题意.答:购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,则购买吊兰(46﹣m)盆,依题意得:m≥2(46﹣m),解得:m≥.设购买两种绿植的总费用为w元,则w=9m+6(46﹣m)=3m+276,∵3>0,∴w随m的增大而增大,又∵m≥,且m为整数,∴当m=31时,w取得最小值,最小值=3×31+276=369.答:购买两种绿植总费用的最小值为369元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.25.【分析】(1)过点A作AE⊥CB,垂足为E,在Rt△ABE中,由AB=5m,∠ABE=37°,可求AE和BE,即可得出AC的长;(2)过点A作AF⊥CD,垂足为F,在Rt△ACF中,由勾股定理可求出AF,即OD的长.【解答】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.【点评】本题考查了解直角三角形的应用、勾股定理等知识;正确作出辅助线构造直角三角形是解题的关键.26.【分析】(1)连接OD,由切线的性质可知∠ODC=90°.又易证△OBC≌△ODC(SSS),即得出∠OBC=∠ODC=90°,即OB⊥CB,说明BC是圆O的切线;(2)由题意易证△AOD∽△ACB,即得出,整理得AO⋅AB=AC⋅AD;(3)由正切的定义结合题意可设AB=3x,则BC=4x.再由勾股定理可列出关于x的等式,解出x的值,即得出AB=,BC=.可设OD=4y,则OB=4y,AD=3y,即可求出OA=5y,从而得出AB=9y=,解出y的值,即可求出OB=,即⊙O半径为.由直角三角形斜边中线的性质得出AF=CF=BF=AC=8,结合等边对等角,得出∠ABF=∠BAF,进而可证△OBE∽△FBA,得出,代入数据,即可求出BE =,最后由EF=BF﹣EF求解即可.【解答】(1)证明:如图,连接OD,∵AC与圆O相切于点D,∴OD⊥AC,即∠ODC=90°,∵BC=CD,BC=DC,CO=CO,∴△OBC≌△ODC(SSS),∴∠OBC=∠ODC=90°,即OB⊥CB,∴BC是圆O的切线;(2)证明:∵OD⊥AC,∴∠ADO=90°.∵∠OBC=90°,∴∠ADO=∠ABC.又∵∠BAC=∠DAO,∴△AOD∽△ACB,∴,∴AO⋅AB=AC⋅AD;(3)解:∵∠OBC=90°,∴,设AB=3x,则BC=4x.∵AB2+BC2=AC2,∴(3x)2+(4x)2=162,解得:x=(舍去负值),∴AB=,BC=.∵OD⊥AC,∴,设OD=4y,则OB=4y,AD=3y,∴,∴AB=OA+OB=9y=,解得:y=,∴OB=,即⊙O半径为.∵F是AC中点,∴AF=CF=BF=AC=8,∴∠ABF=∠BAF.∵OB=OE,∴∠OBE=∠OEB,∴∠ABF=∠BAF=∠OBE=∠OEB,∴△OBE∽△FBA,∴,即,解得:BE=,∴EF=BF﹣EF=8﹣=.【点评】本题考查切线的性质与判定,三角形全等的判定与性质,三角形相似的判定和性质,等腰三角形的性质,直角三角形斜边中线的性质,勾股定理,解直角三角形等知识.在解圆的相关题型中,连接常用的辅助线是解题关键.27.【分析】(1)将点A,B的坐标代入二次函数的解析式,利用待定系数法求解即可;(2)利用待定系数法求出直线AB的解析式,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,可分别表达△OAB和△PAB的面积,根据题意列出方程求出PN的长,设出点P的坐标,表达PN的长,求出点P的坐标即可;(3)由PD∥OB,可得△DPC∽△BOC,所以CP:CO=CD:CB=PD:OB,所以=,=,则+=.设直线AB交y轴于点F.则F(0,),过点P 作PH⊥x轴,垂足为H,PH交AB于点G,易证PDG∽△OBF,所以PD:OB=PG:OF,设P(n,﹣n2+n)(1<n<4),由(2)可知,PG=﹣n2+n﹣,所以+===PG=﹣(n﹣)2+.利用二次函数的性质可得出最值.【解答】解:(1)将A(4,0),B(1,4)代入y=ax2+bx,∴,解得.∴抛物线的解析式为:y=﹣x2+x.(2)设直线AB的解析式为:y=kx+t,将A(4,0),B(1,4)代入y=kx+t,∴,解得.∵A(4,0),B(1,4),=×4×4=8,∴S△OAB=2S△P AB=8,即S△P AB=4,∴S△OAB过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,=S△PNB+S△PNA=PN×BE+PN×AM=PN=4,∴S△P AB∴PN=.设点P的横坐标为m,∴P(m,﹣m2+m)(1<m<4),N(m,﹣m+),∴PN=﹣m2+m﹣(﹣m+)=.解得m=2或m=3;∴P(2,)或(3,4).(3)∵PD∥OB,∴∠DPC=∠BOC,∠PDC=∠OBC,∴△DPC∽△BOC,∴CP:CO=CD:CB=PD:OB,∵==,==,∴+=.设直线AB交y轴于点F.则F(0,),过点P作PH⊥x轴,垂足为H,PH交AB于点G,如图,∵∠PDC=∠OBC,∴∠PDG=∠OBF,∵PG∥OF,∴∠PGD=∠OFB,∴△PDG∽△OBF,∴PD:OB=PG:OF,设P(n,﹣n2+n)(1<n<4),由(2)可知,PG=﹣n2+n﹣,∴+===PG=﹣(n﹣)2+.∵1<n<4,∴当n=时,+的最大值为.【点评】本题考查一次函数和二次函数的图象与性质、三角函数、三角形面积、相似三角形的判定与性质等基础知识,考查数形结合、函数与方程,函数建模等数学思想方法,考查运算能力、推理能力、空间观念与几何直观、创新意识等数学素养。

2020年江苏省苏州市高新区中考数学一模试卷 (解析版)

2020年江苏省苏州市高新区中考数学一模试卷 (解析版)

2020年苏州市高新区中考数学一模试卷一、选择题1.9的算术平方根为()A.3B.±3C.﹣3D.812.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×106 3.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个4.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣1B.x<﹣1C.x=﹣1D.x≠﹣15.一组数据1,3,6,1,2的众数和中位数分别是()A.1,6B.1,1C.2,1D.1,26.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x 的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=5 7.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P 在其北偏西30°方向,保持航向不变,又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.40海里D.20海里8.如图,有一块边长为2的正方形厚纸板ABCD,做成如图①所示的一套七巧板(点O为正方形纸板对角线的交点,点E、F分别为AD、CD的中点,CE∥BI,IH∥CD),将图①所示七巧板拼成如图②所示的“鱼形”,则“鱼尾”MN的长为()A.2B.2C.3D.9.如图,点A的坐标是(﹣1,0),点B的坐标是(0,6),C为OB的中点,将△ABC 绕点B逆时针旋转90°后得到△A'BC.若反比例函数y=的图象恰好经过A'B的中点D,则k的值是()A.19B.16.5C.14D.11.510.如图,扇形OAB中,∠AOB=90°,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则的值为()A.B.C.D.二.填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.计算a3÷a2的结果等于.12.分解因式:2a2+4a+2=.13.五边形的内角和是°.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.15.如图,圆锥的底面半径为3cm,母线长为6cm,那么这个圆锥的侧面积是cm2(结果保留π).16.如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则△OAB平移的距离是.17.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠,使点B落在点F 处,连接FC,若∠DAF=18°,则∠DCF=度.18.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔. 19.计算:﹣|﹣2|+()﹣1﹣2cos45°20.解不等式组:.21.先化简,再求值:,其中a=.22.甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)(2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率.23.为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,﹣1).(1)求反比例函数与一次函数的函数表达式;(2)在反比例函数的图象上找点P,使得点A,O,P构成以AP为底的等腰三角形,请求出所有满足条件的点P的坐标.26.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)27.如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B 运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P、Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s).△APQ的面积为y(cm2),y关于x的函数图象由C1、C2两段组成(其中C1、C2均为抛物线的一部分).如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围,28.在平面直角坐标系中,抛物线y=mx2﹣2mx﹣3m与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)点A的坐标为,点B的坐标为.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若S1=S2,求m的值.参考答案一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔填涂在答题卡相应的位置上.1.9的算术平方根为()A.3B.±3C.﹣3D.81【分析】首先根据算术平方根的定义求出,然后再求出它的算术平方根即可解决问题.解:∵=3,而9的算术平方根即3,∴9的算术平方根是3.故选:A.2.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196 000米.196 000用科学记数法表示应为()A.1.96×105B.19.6×104C.1.96×106D.0.196×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:196 000=1.96×105,故选:A.3.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形、中心对称图形的定义即可判断.解:第1个图形是中心对称图形,也是轴对称图形,符合题意;第2个图形不是中心对称图形,是轴对称图形,不符合题意;第3个图形是中心对称图形,也是轴对称图形,符合题意;第4个图形是中心对称图形,也是轴对称图形,符合题意.共3个图形符合题意.故选:B.4.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣1B.x<﹣1C.x=﹣1D.x≠﹣1【分析】根据分式有意义的条件即可求出答案.解:由分式有意义的条件可知:x+1≠0,∴x≠﹣1,故选:D.5.一组数据1,3,6,1,2的众数和中位数分别是()A.1,6B.1,1C.2,1D.1,2【分析】根据众数和中位数的定义分别进行解答即可.解:∵1出现了2次,出现的次数最多,∴众数是1,把这组数据从小到大排列1,1,2,3,6,最中间的数是2,则中位数是2;故选:D.6.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x 的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=5【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.7.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P 在其北偏西30°方向,保持航向不变,又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.40海里D.20海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:C.8.如图,有一块边长为2的正方形厚纸板ABCD,做成如图①所示的一套七巧板(点O 为正方形纸板对角线的交点,点E、F分别为AD、CD的中点,CE∥BI,IH∥CD),将图①所示七巧板拼成如图②所示的“鱼形”,则“鱼尾”MN的长为()A.2B.2C.3D.【分析】依据勾股定理即可得到AC的长,进而得出FI=EI=1,EF=2,即可得到“鱼尾”MN的长.解:∵等腰直角三角形ACD中,AD=CD=2,∴AC=4,又∵AG=GO=OH=CH,∴FI=EI=1,EF=2,∴NM=2+1=3,故选:C.9.如图,点A的坐标是(﹣1,0),点B的坐标是(0,6),C为OB的中点,将△ABC 绕点B逆时针旋转90°后得到△A'BC.若反比例函数y=的图象恰好经过A'B的中点D,则k的值是()A.19B.16.5C.14D.11.5【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.解:作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(﹣1,0),点B的坐标是(0,6),∴OA=1,OB=6,∴BH=OA=1,A′H=OB=6,∴OH=5,∴A′(6,5),∵BD=A′D,∴D(3,5.5),∵反比例函数y=的图象经过点D,∴k=16.5.故选:B.10.如图,扇形OAB中,∠AOB=90°,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则的值为()A.B.C.D.【分析】如图,连OD、AB、BC,延长AD交BC于H点,由旋转的性质可得BD=BO =OD=CD=OA,∠BDC=90°,可证△ABC是等边三角形,由线段垂直平分线的性质可得AH垂直平分BC,由等腰直角三角形的性质和等边三角形的性质可得AC=2CH,AD=CH﹣CH,即可求解.解:如图,连OD、AB、BC,延长AD交BC于H点,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,∴BD=BO=OD=CD=OA,∠BDC=90°∴∠OBD=60°,即旋转角为60°,∴∠ABC=60°,又可知AB=BC,∴△ABC是等边三角形,∵AB=AC,BD=CD,∴AH垂直平分BC,∴∠CAH=30°,∴AC=2CH,AH=CH,∵BD=CD,∠BDC=90°,DH⊥BC,∴DH=CH,∴AD=CH﹣CH,∴=.故选:A.二.填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上. 11.计算a3÷a2的结果等于a.【分析】利用同底数幂的性质直接运算即可.解:a3÷a2=a3﹣2=a,故答案为:a.12.分解因式:2a2+4a+2=2(a+1)2.【分析】原式提取2,再利用完全平方公式分解即可.解:原式=2(a2+2a+1)=2(a+1)2,故答案为:2(a+1)2.13.五边形的内角和是540°.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.解:(5﹣2)•180°=540°,故答案为:540°.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.解:抬头看信号灯时,是绿灯的概率为.故答案为:.15.如图,圆锥的底面半径为3cm,母线长为6cm,那么这个圆锥的侧面积是18πcm2(结果保留π).【分析】圆锥的侧面积=底面周长×母线长÷2.解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×6=18πcm2.16.如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则△OAB平移的距离是6.【分析】根据等腰直角三角形的性质求得点BC、OC的长度,即点B的纵坐标,表示出B′的坐标,代入函数解析式,即可求出答案.解:y=x﹣2,当y=0时,x﹣2=0,解得:x=4,即OA=4,过B作BC⊥OA于C,∵△OAB是以OA为斜边的等腰直角三角形,∴BC=OC=AC=2,即B点的坐标是(2,2),设平移的距离为a,则B点的对称点B′的坐标为(a+2,2),代入y=x﹣2得:2=(a+2)﹣2,解得:a=6,即△OAB平移的距离是6,故答案为:6.17.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠,使点B落在点F 处,连接FC,若∠DAF=18°,则∠DCF=36度.【分析】由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE =∠FAE=36°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=18°,∴∠BAE=∠FAE=(90°﹣18°)=36°,∴∠AEF=∠AEB=90°﹣36°=54°,∴∠CEF=180°﹣2×54°=72°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=(180°﹣72°)=54°,∴∠DCF=90°﹣∠ECF=36°;故答案为:36.18.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是 3.5.【分析】当B、C、P三点共线,且点C在PB之间时,PB最大,而OQ是△ABP的中位线,即可求解.解:令y=x2﹣4=0,则x=±4,故点B(4,0),设圆的半径为r,则r=2,当B、C、P三点共线,且点C在PB之间时,PB最大,而点Q、O分别为AP、AB的中点,故OQ是△ABP的中位线,则OE=BP=(BC+r)=(+2)=3.5,故答案为3.5.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔. 19.计算:﹣|﹣2|+()﹣1﹣2cos45°【分析】直接利用二次根式的性质以及负指数幂的性质和特殊角的三角函数值分别化简求出答案.解:原式=2﹣2+3﹣2×=2+1﹣=+1.20.解不等式组:.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.解:∵解不等式①得:x>﹣4,解不等式②得:x≤,∴不等式组的解集是﹣4<x≤.21.先化简,再求值:,其中a=.【分析】首先运用提取公因式及完全平方公式和平方差公式对分式进行化简,然后代入求值.解:原式=﹣×=﹣==,当a=﹣2时,原式==.22.甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)(2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能性结果数,再找出满足条件的结果数,然后根据概率公式求解.解:(1)∵共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,∴P(恰好选中乙同学)=;(2)画树状图得:∵所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=.23.为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是100;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.【分析】(1)根据百分比=计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可;解:(1)本次抽样调查中的样本容量=30÷30%=100,故答案为100.(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=800人.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.25.如图,反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,﹣1).(1)求反比例函数与一次函数的函数表达式;(2)在反比例函数的图象上找点P,使得点A,O,P构成以AP为底的等腰三角形,请求出所有满足条件的点P的坐标.【分析】(1)利用待定系数法求得一次函数与反比例函数的解析式;(2)利用等腰三角形的性质和两点距离公式可求解.解:(1)∵A(1,3)在反比例函数图象上,∴k=3,∴反比例函数的函数表达式为:y=,∵B在y=的图象上,∴n=﹣3.∵A(1,3),B(﹣3,﹣1)在一次函数图象上,∴,解得m=1,b=2.∴一次函数的函数表达式为:y=x+2;(2)设点P(a,),∵点A,O,P构成以AP为底的等腰三角形,∴OA=OP,∴OA2=OP2,∴(3﹣0)2+(1﹣0)2=(x﹣0)2+(﹣0)2,∴x1=1(舍去),x2=﹣1,x3=﹣3,x4=3,∴点P(﹣1,﹣3)或(﹣3,﹣1)或(3,1).26.如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.解法二:证明:连接AC.∵OA=OC∴∠BAC=∠ACO,∵CD平行AF,∴∠FAC=∠ACD,∴∠FAC=∠CAO,∵CF⊥AF,CE⊥AB,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM =a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.27.如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B 运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P、Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s).△APQ的面积为y(cm2),y关于x的函数图象由C1、C2两段组成(其中C1、C2均为抛物线的一部分).如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围,【分析】(1)过点P作PD⊥AB于D,根据直角三角形的性质得到PD=AP=x,根据三角形的面积公式得到函数解析式,代入计算即可;(2)根据当x=6时,y=,求出sin B,得到图象C2段的函数表达式;(3)求出y=x2的最大值,根据二次函数的性质计算即可.解:(1)如图1,过点P作PD⊥AB于D,∵∠A=30°,∴PD=AP=x,∴y=AQ•PD=ax•2x=ax2,由图象可知,当x=1时,y=,∴×a×12=,解得,a=1;(2)如图2,由(1)知,点Q的速度是1cm/s,∵AC+BC<2AB,而点P的速度时2cm/s,所以点P先到达B点,作PD⊥AB于D,由图象可知,PB=7×2﹣2x=14﹣2x,PD=PB•sin B=(14﹣2x)•sin B,∴y=×AQ×PD=x×(14﹣2x)•sin B,∵当x=6时,y=,∴×6×(14﹣2×6)•sin B=,解得,sin B=,∴y=x×(14﹣2x)×=﹣x2+x;即C2段的函数表达式为y=﹣x.(3)x2=﹣x2+x,解得,x1=0,x2=2,由图象可知,当x=2时,y=x2有最大值,最大值是×22=2,∴﹣x2+x=2,解得,x1=2,x2=5,∴当2<x<5时,点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积.28.在平面直角坐标系中,抛物线y=mx2﹣2mx﹣3m与x轴交于A、B两点(点A在点B 左侧),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)点A的坐标为(﹣1,0),点B的坐标为(3,0).(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若S1=S2,求m的值.【分析】(1)抛物线的表达式为:y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),即可求解;(2)证明△CPD∽△DQB,即可求解;(3)S2=S△AOC=×1×(﹣3m)=﹣m,而S1=S△BOD=×DO×MB=OM×MB,由S1=S2即可求解.解:(1)抛物线的表达式为:y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),故点A、B的坐标分别为:(﹣1,0)、(3,0),故答案为:(﹣1,0)、(3,0);(2)过点B作y轴的平行线BQ,过点D作x轴的平行线交y轴于点P、交BQ于点Q,设:D(1,n),点C(0,﹣3m),∵∠CDP+∠PDC=90°,∠PDC+∠QDB=90°,∴∠QDB=∠DCP,又∵∠CPD=∠BQD=90°,∴△CPD∽△DQB,∴==,其中:CP=n+3m,DQ=3﹣1=2,PD=1,BQ=n,CD=﹣3m,BD=3,将以上数值代入比例式并解得:m=±,∵m<0,故m=﹣,故抛物线的表达式为:y=﹣x2+x+;(3)y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),∴C(0,﹣3m),CO=﹣3m.∵A(﹣1,0),B(3,0),∴AB=4,∴S2=S△AOC=×1×(﹣3m)=﹣m,设OD交BC于点M,由轴对称性,BC⊥OD,OD=2OM,在Rt△COB中,BC==3,由面积法得:OM==﹣,∴tan∠COB==﹣m,则cos∠COB=,MB=OB•cos∠COB=,∴S1=S△BOD=×DO×MB=OM×MB=﹣,又S1=S2,∴m2+1=(m<0),故m=﹣.。

2020年江苏省苏州市中考数学一模试卷及解析

2020年江苏省苏州市中考数学一模试卷及解析

2020年江苏省苏州市中考一模试卷数学试卷一、选择题(本大题共10小题,共30分)1.下列四个实数中,最大的实数是()A. |−2|B. −1C. 0D. √22.下列四个图案中,不是中心对称图案的是()A. B. C. D.3.下列运算正确的是()A. a3+a2=a5B. a3÷a2=aC. a3⋅a2=a6D. (a3)2=a94.关于x的一元二次方程x2−(m+2)x+m=0根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定5.在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A. 10B. 15C. 20D. 246.如图,△ABC是一块直角三角板,∠C=90°,∠A=30°,现将三角板叠放在一把直尺上,AC与直尺的两边分别交于点D、E,AB与直尺的两边分别交于点F、G,若∠1=40°,则∠2的度数为()A. 40°B. 50°C. 60°D. 70°7.若在实数范围内有意义,则x的取值范围是()√x+1A. x>−1B. x<−1C. x≥−1D. x≥−1且x≠08.如图,四边形ABCD内接于⊙O,连接OA,OC.若OA//BC,∠BCO=70°.则∠ABC的度数为()A. 110°B. 120°C. 125°D. 135°9.如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为()A. 40√3海里B. (20√3+20)海里C. 80海里D. (20√3+20√2)海里10.小明骑自行车去上学途中,经过先上坡后下坡的一段路,在这段路上所骑行的路程S(米)与时间(分钟)之间的函数关系如图所示.下列结论:①小明上学途中下坡路的长为1800米;②小明上学途中上坡速度为150米/分,下坡速度为200米/分;③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,则小明返回时经过这段路比上学时多用1分钟;④如果小明放学后按原路返回,返回所用时间与上学所用时间相等,且返回时下坡速度是上坡速度的1.5倍,则返回时上坡速度是160米/分,其中正确的有()A. ①④B. ②③C. ②③④D. ②④二、填空题(本大题共8小题,共24分)11.53的倒数是______.12.DNA分子的直径只有0.000 000 2cm,将0.000 000 2用科学记数法表示为______.13.已知一组数据:5,x,3,6,4的众数是4,则该组数据的中位数是______.14.因式分解:2x2−8=______.15.已知点P(a,b)是一次函数y=x−1的图象与反比例函数y=2x的图象的一个交点,则a2+b2的值为______.16.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为______.17.如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上一点(点D不与点B,C重合),将△ACD沿AD翻折,点C的对应点是E,AE交BC于点F,若DE//AB,则DF的长为______.18.如图,四边形ABCD中,∠ABC=∠D=90°,AB=BC=3√5,CD=3,AC是对角线,以CD为边向四边形内部作正方形CDEF,连接BF,则BF的长为______.三、计算题(本大题共1小题,共6分)19.先化简,再求值:2x−1x2−2x+1÷(x2x−1−x+1),其中x=√2+1.四、解答题(本大题共9小题,共70分)20.计算:2019°−3tan30°+|−√3|−(√22)2.21.解不等式组:{5(x+1)>2x−113x−1≥12(x−3),并把它的解集在数轴上表示出来.22.如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.23.今年4月22日是第50个世界地球日,某校在八年级5个班中,每班各选拔10名学生参加“环保知识竞赛”并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求本次竞赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)已知甲、乙、丙、丁4位同学获得一等奖,学校将采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”知识竞赛,请求出抽到的2人恰好是甲和乙的概率(用画树状图或列表等方法求解).24.为了丰富校园文化生活,促进学生积极参加体育运动,某校准备成立校排球队,现计划购进一批甲、乙两种型号的排球,已知一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;如果购买6个甲种型号排球和5个乙种型号排球,一共需花费780元.(1)求每个甲种型号排球和每个乙种型号排球的价格分别是多少元?(2)学校计划购买甲、乙两种型号的排球共26个,其中甲种型号排球的个数多于乙种型号排球,并且学校购买甲、乙两种型号排球的预算资金不超过1900元,求该学校共有几种购买方案?25.如图,在平面直角坐标系中,矩形ABCD的顶点B,C在x轴的正半轴上,AB=8,(x>0)的图象经过点E,分BC=6.对角线AC,BD相交于点E,反比例函数y=kx别与AB,CD交于点F,G.(1)若OC=8,求k的值;(2)连接EG,若BF−BE=2,求△CEG的面积.26.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求AD⏜的长(结果保留π);②当sinB=√6时,求线段AF的长.427.如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B,C重合),点F是线段BA延长线上一动点,连接DE,EF,DF,EF交AD于点G.设BE=x,AF=y,已知y与x之间的函数关系如图②所示.(1)求图②中y与x的函数表达式;(2)求证:DE⊥DF;(3)是否存在x的值,使得△DEG是等腰三角形?如果存在,求出x的值;如果不存在,说明理由.28.如图1,二次函数y=ax2−3ax−4a的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,−3).(1)求二次函数的表达式及点A、点B的坐标;S△ABC,求点D的横坐标;(2)若点D在二次函数图象上,且S△DBC=45(3)将直线BC向下平移,与二次函数图象交于M,N两点(M在N左侧),如图2,过M作ME//y轴,与直线BC交于点E,过N作NF//y轴,与直线BC交于点F,当MN+ME的值最大时,求点M的坐标.答案和解析1.【答案】A【解析】解:∵|−2|>√2>0>−1,∴所给的四个实数中,最大的实数是|−2|.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】C【解析】解:A、B、D是中心对称图形,C不是中心对称图形,故选:C.根据中心对称图形的概念求解.本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】B【解析】【分析】本题考查了同底数幂的乘除法、幂的乘方、合并同类项,熟记法则并根据法则计算是解题关键.根据同底数幂的乘法,底数不变指数相加;同底数幂的除法底数不变指数相减;幂的乘方底数不变指数相乘,可得答案.【解答】解:A.a3与a2不是同类项,不能合并,故A不符合题意;B.同底数幂的除法底数不变指数相减,故B符合题意;C.同底数幂的乘法底数不变指数相加,故C不符合题意;D.幂的乘方底数不变指数相乘,故D不符合题意.故选B.4.【答案】A【解析】【分析】此题考查了根的判别式,弄清根的判别式与方程根的关系是解本题的关键.先计算根的判别式,再判断判别式的正负即可确定出方程根的情况.【解答】解:由关于x的一元二次方程x2−(m+2)x+m=0,得到a=1,b=−(m+2),c=m,△=(m+2)2−4m=m2+4m+4−4m=m2+4>0,则方程有两个不相等的实数根,故选:A.5.【答案】D【解析】【分析】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.25左右得到比例关系,列出方程求解即可.【解答】=0.25,解:根据题意得6a解得:a=24,经检验:a=24是分式方程的解,故选:D.6.【答案】D【解析】解:∵DF//EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选:D.依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.7.【答案】A在实数范围内有意义,【解析】解:若√x+1则x+1>0,解得:x>−1.故选A.直接利用二次根式有意义的条件分析即可.此题主要考查了二次根式有意义的条件,正确把握二次根式有意义的条件是解题关键.8.【答案】C【解析】【分析】根据平行线的性质求出∠AOC,根据圆周角定理求出∠D,根据圆内接四边形的性质计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.【解答】解:∵OA//BC,∴∠AOC=180°−∠BCO=110°,∠AOC=55°,由圆周角定理得,∠D=12∵四边形ABCD 内接于⊙O ,∴∠ABC =180°−∠D =125°,故选:C .9.【答案】B【解析】【分析】本题考查了解直角三角形的应用−方位角问题,正确的作出辅助线是解题的关键.过A 作AD ⊥BC 于D ,解直角三角形即可得到结论.【解答】解:过A 作AD ⊥BC 于D ,在Rt △ABD 中,∠ABD =30°,AB =40,∴AD =12AB =20,BD =√32AB =20√3, 在Rt △ACD 中,∵∠C =45°,∴CD =AD =20,∴BC =BD +CD =(20√3+20)海里,故选:B .10.【答案】C【解析】解:①小明上学途中下坡路的长为1800−600=1200(米).②小明上学途中上坡速度为:600÷4=150(米/分),下坡速度为:1200÷6=200(米/分).③如果小明放学后按原路返回,且往返过程中,上、下坡的速度都相同,小明返回时经过这段路所用时间为:600÷200+1200÷150=11(分钟),所以小明返回时经过这段路比上学时多用1分钟;④设上坡速度为x(米/分),根据题意得,1200x +6001.5x =10,解得x =120,经检验,x =160是原方程的解.所以返回时上坡速度是160米/分.综上所述,正确的有②③④.故选:C .①根据题意和函数图象可以得到下坡路的长度;②利用路程除以时间求得上坡速度和下坡的速度;③根据“路程除以速度=时间”求解即可;④设上坡速度为x(米/分),根据题意列方程即可求解.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决. 11.【答案】35【解析】解:53的倒数是35.根据倒数的定义可知.主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 12.【答案】2×10−7【解析】解:0.0000002=2×10−7.故答案为:2×10−7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】4【解析】【分析】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.先根据众数定义求出x ,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据5,x ,3,6,4的众数是4,∴x =4,则数据重新排列为3,4,4,5,6,所以中位数是4,故答案为:4.14.【答案】2(x +2)(x −2)【解析】【分析】观察原式,找到公因式2,提出后再对括号内运用平方差公式分解即可得出答案. 本题考查提公因式法和公式法分解因式,是基础题.【解答】解:2x 2−8=2(x 2−4)=2(x +2)(x −2).15.【答案】5【解析】解:根据题意得:{y =x −1y =2x, 解得:{x =−1y =−2或{x =2y =1, 即{a =−1b =−2或{a =2b =1, 则a 2+b 2=(−1)2+(−2)2=5或a 2+b 2=22+12=5,即a 2+b 2的值为5,故答案为:5.一次函数y =x −1与反比例函数y =2x 联立,求出a 和b 的值,代入a 2+b 2,计算求值即可.本题考查了反比例函数与一次函数的交点问题,正确掌握实数的运算法则是解题的关键.16.【答案】120°【解析】【分析】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.设该圆锥侧面展开图所对应扇形圆心角的度数为n°,圆锥的母线长为l,底面圆的半径为r,利用扇形面积公式得到12⋅2πr⋅l=3⋅πr2,所以l=3r,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得2πr=n⋅π⋅3r180,再解关于n的方程即可.【解答】解:设该圆锥侧面展开图所对应扇形圆心角的度数为n°,圆锥的母线长为l,底面圆的半径为r,所以12⋅2πr⋅l=3⋅πr2,则l=3r,因为2πr=n⋅π⋅3r180,所以n=120°.故答案为120°.17.【答案】158【解析】解:AB=AC=5,∴∠B=∠C,∵DE//AB,∴∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,∴∠B=∠BAF=∠E=∠EDF,∴AF=BF,EF=DF,∴BD=AF=AC=5,∴ED=CD=BC−BD=3,∵DE//AB,∴△EDF∽△ABF,∴DFBF =EDAB,即DF5−DF=35,解得:DF=158;故答案为:158.由等腰三角形的性质和平行线的性质得出∠B=∠C,∠BAF=∠E,∠B=∠EDF,由折叠的性质得:∠E=∠C,AE=AC=5,ED=CD,得出∠B=∠BAF=∠E=∠EDF,证出AF=BF,EF=DF,得出BD=AF=AC=5ED=CD=BC−BD=3,由平行线得出△EDF∽△ABF,得出比例式,即可得出结果.本题考查了翻折变换的性质、相似三角形的判定与性质、等腰三角形的判定与性质;熟练掌握翻折变换和等腰三角形的性质,证明三角形相似是解题的关键.18.【答案】3√2【解析】【分析】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理、相似三角形的判定与性质;熟练掌握正方形的性质和勾股定理,证明三角形相似是解题的关键.连接CE,由等腰直角三角形的性质得出AC=√2BC=3√10,∠ACB=45°,由勾股定理得出AD=√AC2−CD2=9,由正方形的性质得出DE=CD=3,∠DCF=90°,∠ECF=45°,CE=√2CF,求出AE=AD−DE=6,证明△BCF∽△ACE,得出BFAE =BCAC=1√2,即可得出结果.【解答】解:连接CE,如图所示:∵∠ABC=90°,AB=BC=3√5,∴AC=√2BC=3√10,∠ACB=45°,∵∠D=90°,CD=3,∴AD=√AC2−CD2=√(3√10)2−32=9,∵四边形CDEF是正方形,∴DE=CD=3,∠DCF=90°,∠ECF=45°,CE=√2CF,∴AE=AD−DE=6,∴∠ACB=∠ECF=45°,∴∠BCF=∠ACE,∵ACBC =CECF=√2,∴△BCF∽△ACE,∴BFAE =BCAC=√2,∴BF=√2=√2=3√2;故答案为:3√2.19.【答案】解:2x−1x2−2x+1÷(x2x−1−x+1)=2x−1(x−1)2÷x2−(x−1)(x−1)x−1=2x−1(x−1)2⋅x−1x2−x2+2x−1=2x−1x−1⋅12x−1=1x−1,当x =√2+1时,原式=2+1−1=2=√22.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】解:原式=1−3×√33+√3−12=1−√3+√3−12=12.【解析】直接利用特殊角的三角函数值和绝对值的性质和零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:{5(x +1)>2x −1①13x −1≥12(x −3)②, 解①得:x >−2,解②得:x ≤3,故不等式组的解集是:−2<x ≤3, 表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可. 本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 22.【答案】(1)证明:∵四边形ABCD 是平行四边形, ∴AD//BC ,AD =BC , ∴∠ADB =∠CBD ,∵O 是对角线BD 的中点, ∴OB =OD ,在△BOF 和△DOE 中,{∠CBD =∠ADBOB =OD∠BOF =∠DOE ,∴△BOF≌△DOE(ASA), ∴DE =BF ,∴DE =AD =BF −BC , ∴AE =CF ;(2)解:OC//DF ,且OC =12DF ,理由如下: ∵AE =BC ,AE =CF , ∴CF =BC , ∵OB =OD ,∴OC 是△BDF 的中位线,∴OC//DF ,且OC =12DF .【解析】(1)由平行四边形的性质得出AD//BC ,AD =BC ,得出∠ADB =∠CBD ,证明△BOF≌△DOE ,得出DE =BF ,即可得出结论;(2)证出CF =BC ,得出OC 是△BDF 的中位线,由三角形中位线定理即可得出结论. 本题考查了平行四边形的性质、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键. 23.【答案】解:(1)本次竞赛获奖的总人数为4÷20%=20(人), 补全图形如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数360°×620=108°; (3)画树形图得:则P(抽取的两人恰好是甲和乙)=16.【解析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)由一等奖人数及其所占百分比可得总人数,再求出二等奖人数即可补全图形; (2)用360°乘以对应的百分比即可得; (3)利用列举法即可求解.24.【答案】解:(1)设每个甲种型号排球的价格是x 元,每个乙种型号排球的价格是y 元,依题意,得:{x +y =1406x +5y =780,解得:{x =80y =60.答:每个甲种型号排球的价格是80元,每个乙种型号排球的价格是60元. (2)设购买甲种型号排球m 个,则购买乙种型号排球(26−m)个, 依题意,得:{m >26−m80m +60(26−m)≤1900,解得:13<m ≤17. 又∵m 为整数,∴m 的值为14,15,16,17.答:该学校共有4种购买方案.【解析】(1)设每个甲种型号排球的价格是x元,每个乙种型号排球的价格是y元,根据“一个甲种型号排球的价格与一个乙种型号排球的价格之和为140元;购买6个甲种型号排球和5个乙种型号排球,一共需花费780元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种型号排球m个,则购买乙种型号排球(26−m)个,根据甲种型号排球的个数多于乙种型号排球且学校购买甲、乙两种型号排球的预算资金不超过1900元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出购买方案的个数.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.25.【答案】解:(1)∵在矩形ABCD的顶点B,AB=8,BC=6,而OC=8,∴B(2,0),A(2,8),C(8,0),∵对角线AC,BD相交于点E,∴点E为AC的中点,∴E(5,4),把E(5,4)代入y=kx得k=5×4=20;(2)∵AC=√62+82=10,∴BE=EC=5,∵BF−BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,∴k=7t=28,∴反比例函数解析式为y=28x,当x=10时,y=2810=145,∴G(10,145),∴△CEG的面积=12×3×145=215.【解析】(1)先利用矩形的性质和线段中点坐标公式得到E(5,4),然后把E点坐标代入y=kx可求得k的值;(2)利用勾股定理计算出AC=10,则BE=EC=5,所以BF=7,设OB=t,则F(t,7),E(t+3,4),利用反比例函数图象上点的坐标得到7t=4(t+3),解得t=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG 的面积.本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.26.【答案】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD//AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EFA,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴AD⏜的长=72⋅π×4180=8π5;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵sinB=√64,∴AD8=√64,∴AD=2√6,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴AHAD =ADAC,∴AH2√6=2√68,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∵OD//AC ,∴∠EAF =∠FOD ,∠E =∠FDO , ∴△AEF∽△ODF , ∴AFOF =AEOD , ∴AF4−AF =24, ∴AF =43.【解析】本题考查了等腰三角形的性质和判定、切线的性质和判定、三角形相似的性质和判定、圆周角定理,弧长的计算,锐角三角函数函数的定义,正确的作出辅助线是解题的关键.(1)根据同圆的半径相等和等边对等角证明:∠ODB =∠OBD =∠ACB ,则DH ⊥OD ,DH 是圆O 的切线;(2)①根据等腰三角形的性质的∠EAF =∠EFA ,设∠B =∠C =α,得到∠EAF =∠EFA =2α,根据三角形的内角和得到∠B =36°,求得∠AOD =72°,根据弧长公式即可得到结论;②连接AD ,根据圆周角定理得到∠ADB =∠ADC =90°,解直角三角形得到AD =2√6,根据相似三角形的性质得到AH =3,于是得到结论.27.【答案】解:(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4, 代入得:{k +b =2b =4,{k =−2b =4,∴y =−2x +4(0<x <2);(2)方法一:∵BE =x ,BC =2 ∴CE =2−x , ∴CE AF =2−x 4−2x =12,CD AD =12, ∴CE AF=CD AD,∵四边形ABCD 是矩形,∴∠C =∠DAF =90°, ∴△CDE∽△ADF , ∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°, ∴DE ⊥DF ;方法二:∵四边形ABCD 是矩形, ∴∠C =∠DAF =∠B =90°, ∴根据勾股定理得:在Rt △CDE 中,DE 2=CD 2+CE 2=1+(2−x)2=x 2−4x +5,在Rt △ADF 中,DF 2=AD 2+AF 2=4+(4−2x)2=4x 2−16x +20, 在Rt △BEF 中,EF 2=BE 2+BF 2=x 2+(5−2x)2=5x 2−20x +25, ∴DE 2+DF 2=EF 2,∴△DEF 是直角三角形,且∠EDF =90°,(3)假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD//BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,{∠FDE=∠B∠DEF=∠BEF EF=EF,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2−x,∴在Rt△CDE中,由勾股定理得:1+(2−x)2=x2,x=54;②若DE=EG,如图①,作EH//CD,交AD于H,∵AD//BC,EH//CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2−x,EH⊥DG,∴HG=DH=2−x,∴AG=2x−2,∵EH//CD,DC//AB,∴EH//AF,∴△EHG∽△FAG,∴EHAF =HGAG,∴14−2x =2−x2x−2,x1=5−√52,x2=5+√52(舍),③若DG=EG,则∠GDE=∠GED,方法一:∵AD//BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴CECD =DEDF,∵△CDE∽△ADF,∴DE DF =CD AD =12, ∴CECD =12, ∴2−x =12,x =32,方法二:∵∠EDF =90°,∴∠FDG +∠GDE =∠DFG +∠DEG =90°, ∴∠FDG =∠DFG , ∴FG =DG , ∴FG =EG , ∵AD//BC ,∴∠FGA =∠FEB ,∠FAG =∠B , ∴△FAG∽△FBE , ∴FA FB=FG FE=12, ∴4−2x5−2x =12,x =32, 综上,x =54或5−√52或32.【解析】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键. (1)利用待定系数法可得y 与x 的函数表达式;(2)方法一:证明△CDE∽△ADF ,得∠ADF =∠CDE ,可得结论;方法二:分别表示△DEF 三边的长,计算三边的平方,根据勾股定理的逆定理得:△DEF 是直角三角形,从而得:DE ⊥DF ; (3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH//CD ,交AD 于H , ③若DG =EG ,则∠GDE =∠GED , 分别列方程计算可得结论. 28.【答案】解:(1)y =ax 2−3ax −4a 与y 轴交于点C(0,−3), ∴a =34,∴y =34x 2−94x −3,与x 轴交点A(−1,0),B(4,0); (2)设直线BC 的解析式为y =kx +b , ∴{4k +b =0b =−3,∴{k =−34b =−3, ∴y =34x −3;过点D作DH//y轴,与直线BC交于点H,设H(x,34x−3),D(x,34x2−94x−3),∴DH=|34x2−3x|,∵S△ABC=12×5×3=153,∴S△DBC=45×152=6,∴S△DBC=2×|34x2−3x|=6,∴x=2+2√2,x=2−2√2,x=2;∴D点的横坐标为2+2√2,2−2√2,2;(3)过点M作MG//x轴,交FN的延长线于点G,设M(m,34m2−94m−3),N(n,34n2−94n−3),则E(m,34m−3),F(n,34n−3),∴ME=−34m2+3m,NF=−34n2+3n,∵EF//MN,ME//NF,∴四边形MNFE是平行四边形,∴ME=NF,∴−34m2+3m=−34n2+3n,∴m+n=4,∴MG=n−m=4−2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=MGMN =OBBC,∵B(4,0),C(0,−3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=54(n−m)=54(4−2m)=5−52m,∴ME+MN=−34m2+3m+5−52m=−34(m−13)2+6112,∵−34<0,∴当m=13时,ME+MN有最大值,∴M(1,−11)【解析】(1)求出a,即可求解;(2)求出直线BC的解析式,过点D作DH//y轴,与直线BC交于点H,根据三角形面积的关系求解;(3)过点M作MG//x轴,交FN的延长线于点G,设M(m,34m2−94m−3),N(n,34n2−94n−3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=−34m2+3m+5−52m=−34(m−13)2+6112,即可求M;本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式的方法,结合三角形的性质解题;。

2020届中考复习江苏省苏州市吴中区中考数学模拟试题(4月份)有配套答案

2020届中考复习江苏省苏州市吴中区中考数学模拟试题(4月份)有配套答案

江苏省苏州市吴中区中考数学模拟试卷(4月份)一.选择题(共10小题,满分30分)1.如果m的倒数是﹣1,那么m2018等于()A.1B.﹣1C.2018D.﹣20182.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×105 3.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1C.a2•a3=a6D.(+)2=5 4.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48.则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3B.0.4C.0.5D.0.65.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2C.4D.37.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.70 8.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米9.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个10.已知反比例函数y=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2二.填空题(共8小题,满分24分,每小题3分)11.分解因式:x2﹣1= .12.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.13.若正多边形的一个外角是40°,则这个正多边形的边数是.14.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.15.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为.16.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为平方单位.三.解答题(共10小题,满分76分)19.(8分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.20.(8分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:21.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.22.(6分)一个不透明的袋子中,装有标号分别为1、﹣1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.23.(6分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.24.(8分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地1800元1600元区B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.25.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)26.(8分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t 秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.27.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB 点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.28.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵m的倒数是﹣1,∴m=﹣1,∴m2018=1.故选:A.2.解:1.21万=1.21×104,故选:C.3.解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.4.解:仰卧起坐个数不少于50个的有52、50、50、61、72共5个,所以,频率==0.5.故选:C.5.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.6.解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.7.解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.8.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.9.解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE =S△CPF,∴四边形AEPF =S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,故选:C.10.解:A、把(﹣2,1)代入解析式得:左边=右边,故本选项正确,不符合题意;B、因为﹣2<0,图象在第二、四象限,故本选项正确,不符合题意;C、当x<0,且k<0,y随x的增大而增大,故本选项正确,不符合题意;D、在第三象限时,当x>﹣1时,y>2,故本选项错误,符合题意.故选:D.二.填空题(共8小题,满分24分,每小题3分)11.解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.13.解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.14.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.15.解:∵DE∥BC,∴=,∵AD=1,BD=2,∴AB=3,∴=,故答案为:.16.解:∵关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,∴△=b2﹣4ac>0,即4﹣4×(a﹣1)×1>0,解这个不等式得,a<2,又∵二次项系数是(a﹣1),∴a≠1.故a的取值范围是a<2且a≠1.17.解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.18.解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四边形AB′OD =2S△AOD=2××=2,∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.三.解答题(共10小题,满分76分)19.解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.20.解:(1)x2﹣4x=3,x2﹣4x+4=7(x﹣2)2=7x=2±(2)由x﹣3(x﹣2)≤4,解得x≥1,由>x﹣1,解得x<4∴不等式组的解集为:1≤x<4 21.解:(1)∵AD=2,∠DAE=90°,∴弧DE的长 l1==π,同理弧EF的长 l2==2π,弧FG的长 l3==3π,所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.(2)GB=DF.理由如下:延长GB交DF于H.∵C D=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴GB=DF.22.解:(1)从中任意取一个球,可能的结果有3种:1、﹣1、2,其中为正数的结果有2种,∴标号为正数的概率是,故答案为:;(2)列表如下:1﹣121y=x+1y=x﹣1y=x+2﹣1y=﹣x+1y=﹣x﹣1y=﹣x+22y=2x+1y=2x﹣1y=2x+2其中直线y=kx+b经过一、二、三象限的有4种情况,∴一次函数y=kx+b的图象经过一,二,三象限的概率=.23.解:(1)EH2+CH2=AE2,如图1,过E作EM⊥AD于M,∵四边形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME与△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE与△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.24.解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x ≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时y=80000,∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.25.解:(1)过点P作PE⊥AB于E,PH⊥BD于H,设PH=5x米,CH=12x米,在Rt△ABC中,∠ACB=63.4°,BC=90米,则tan63.4°=,AB=180米,在Rt△AEP中,∠APE=53°,=,解得x=,5x=5×=≈14.3.故此人所在位置点P的铅直高度约是14.3米;(2)在Rt△PHC中,PC==13x=,故此人从所在位置点P走到建筑物底部B点的路程是+90=≈127.1米.26.解:(1)∵正方形OABC的面积为9,∴点B的坐标为:(3,3),∵点B在反比例函数y=(k>0,x>0)的图象上,∴3=,即k=9,∴该反比例函数的解析式为:y=(x>0);(2)根据题意得:P(t,),分两种情况:①当点P在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);1若S=,则﹣3t+9=,解得:t=;②当点P在点B的右侧时,则S=(t﹣3)•=9﹣;2若S=,则9﹣=,解得:t=6;∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)存在.若OB=BF=3,此时CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,则3=,解得:t=;若BF=OF,此时点F与C重合,t=3;∴当t=或或3时,使△FBO为等腰三角形.27.(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.28.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。

【2020精品中考数学提分卷】苏州市初三数学一模试卷()+答案

【2020精品中考数学提分卷】苏州市初三数学一模试卷()+答案

2020年苏州市中考数学模拟试卷(试卷满分:130分 考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.12的相反数是( ) A. 2 B.12 C. –2 D. –122.下列图形中,不是轴对称图形的是( )3.为了支援贫困地区学生,某“爱心小组”的七位同学为贫困地区捐款,捐款金额分别为60,75,60,75,120,60,90(单位:元),那么这组数据的众数是( ) A. 60元 B. 7 5元 C. 90元 D. 120元4.计算26a a 的结果是( )A. 6aB. 12aC. 12aD. 8a 5.点(2,5)P -关于y 轴对称的点的坐标是( )A. ( 2,5)B.(–2,5)C. (–2,–5)D. (–5,2)6.如图,直线//a b ,射线DC 与直线a 相交于点C ,过点D 作DE b ⊥于点E .已知125∠=︒,则2∠的度数为( )A. 115ºB. 125ºC. 155ºD. 165º7.将二次函数212y x =的图像向左平移1个单位长度,再向下平移2个单位长度后所得函数的关系式为( ) A. 21(1)22y x =+- B. 21(1)22y x =-- C. 21(1)22y x =++ D. 21(1)22y x =-+ 8.如图,在矩形纸片ABCD 中,3AB =.点E 在边BC 上.将ABE ∆沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若EAC ECA ∠=∠,则AC 的长是( )A. B. 6 C. 4 D. 59.在全民健身环城越野赛中,甲、乙两选手的行程y (km)随时间x (h)变化的图像(全程)如图所示.有下列说法: ①起跑后1h 内,甲在乙的前面; ②第1h 两人都跑了10 km; ③甲比乙先到达终点; ④两人都跑了20 km. 其中正确的说法有( )A. 1个B. 2个C. 3个D. 4个10.如图,已知在矩形ABCD 中,4,2AB BC ==,点M 、E 在AD 上,点F 在边AB 上.并且1DM =.现将AEF ∆沿着直线EF 折叠,使点A 落在边CD 上的点P 处,则当PB PM +的和最小时,ME 的长度为( )A.13 B. 49 C. 59 D. 23二、填空题(本大题共8小题,每小题3分,共24分) 11.分解因式:22ab b -= .12.x 的取值范围是 .13.甲、乙、丙三位选手各10次射击成绩的平均数均为9.3环,方差(单位:环2)依次分别为0.026,0.015,0.032,则射击成绩最稳定的选手是 (填“甲”“乙”或“丙”).14.若2210x x --=,则代数式2243x x -+的值为 .15.如图,ABC ∆的顶点是正方形网格的格点,则sin A 的值为 .16.已知C 、D 是线段AB 的两个黄金分割点,2AB =,则CD 的长是 (用含根号的式子表示) 17.如图,用一个半径为30 cm 、面积为300πcm 2的扇形铁皮,制作一个无底的圆锥(不计损耗).则圆锥的底面半径r 为 .18.如图,在四边形ABCD 中,90BAD ACB ∠=∠=︒,,4AB AD AC BC ==.设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是 .三、解答题(本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明) 19. (5分)计算: 0231)(2)--+-.20. ( 5分)解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解.21. (6分)先化简,再求值:21(1)1xxx +-,其中1x =.22. (6分)如图,要设计一本画册的封面,封面长40cm ,宽30cm ,正中央是一个与整个封面长、宽比例相同的矩形画、如果要使四周的边衬所占面积是封面面积的15,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留一位小数,参考数据 2.236≈).23. (8分)如图,AB AC =,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 相交于点O .(1)求证:AD AE =;(2)若10,6AB AE ==,求BO 的长.24. (8分)苏州一中综合实践活动艺体课程组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢排球的所对应扇形的圆心角度数;(3)若调查到爱好乒乓球的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或画树状图的方法,求出刚好抽到一男一女的概率.25. (8分)如图,已知等腰三角形ABC 的底角为30º,以BC 为直径的⊙O 与底边AB 交于点D ,过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为⊙O 的切线;(2)连接OE ,若4BC =,求OEC ∆的面积.26.(10分)(1)如图①,已知ABC ∆三个顶点的坐标分别为(1,4),(4,1),(4,4)A B C ,若双曲线ky x=(0x >)与ABC ∆有公共点,则k 的取值范围是 .(2)把图①中的ABC ∆沿直线AB 翻折后得到1ABC ∆,若双曲线my x=(0x >)与1ABC ∆有公共点,求m 的取值范围.小明借助一元二次方程根的判断式圆满地解决了这个问题,小芳借助二次函数模型也圆满地解决了这个问题.请你先在图2中画出1ABC ∆,再写出自己的解答过程.(3)如图③,已知点A (1,2),B(4,1),若双曲线ny x=(0x >)与线段AB 有公共点,则n 的取值范围是 .27. (10分)如图,二次函数的图像经过(3,0),(4,0),(0,4)A B C --三点. (1)求该抛物线的解析式; (2)求该抛物线的对称轴;(3)该抛物线的对称轴上有一点D ,在该抛物线上是否存在一点E ,使得以D 、E 、B 、C 为顶点的四边形是平行四边形?若存在,求出点E 的坐标;若不存在,请说明理由.28. (10分)如图,在矩形ABCD 中,12,AB BC ==,点O 是AB 的中点,点P 在AB 的延长线上,且6BP =.一动点E 从点O 出发,以每秒1个单位长度的速度沿OA 匀速运动.到达点A 后,立即以原速度沿AO 返回;另一动点F 从点P 出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发.当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边三角形EFG .使 EFG ∆和矩形ABCD 在射线PA 的同侧,设运动的时间为t s(0t ≥).(1)当t = 时,等边三角形EFG 的边FG 恰好经过点C ;(2)在整个运动过程中.设等边三角形和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;∆是等腰三角形?若存在, (3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使AOH求出对应的t的值;若不存在,请说明理由.参考答案一、选择题1. D2. A3. A4. D5. C6. A7. A8. B9. C 10. B二、填空题b a b-11.(2)12.2x ≥ 13. 乙 14. 516. 4 17. 10cm 18. 225y x =三、解答题19. 原式3146=-+=20.∵不等式组的解为32x -<≤,∴不等式组的所有整数解2,1,0,1,2-- 21. 21(1)1x x x +-11x =-代入1x =,原式=5. 22. 上、下边衬宽度为2.1 cm ,左、右边衬宽度为1.6 cm. 23. (1)点拨:证明ADC AEB ∆≅∆ (2)5BO =,点拨:证明BDOBEA ∆∆,可得BD BOBE AB=24. (1)由喜欢足球的有40人,占比20%,可得总人数为200人, 可计算出喜欢篮球的有80人,喜欢排球的有20人 条形统计图如图所示(2)喜欢排球的所对应扇形的圆心角度数为36º(3)列表如下由图可知刚好抽到一男一女的概率是3525. (1)点拨,连接,OD CD ,可得OD 是ABC ∆的中位线.(2) OEC S ∆=. 26.(1) 416k ≤≤(2) 2514m ≤≤ (3) 49212n ≤≤ 27. (1) 211433y x x =-- (2) 12x =(3) 点E 的坐标为713(,)212-,95(,)24或75(,)24-. 点拨:分BC 为平行四边形边和对角线两种情况讨论 28. (1)2 s【2020年中考数学——精品提分卷】第 1 页 / 共 11 页 (2)当02t ≤<时,S =+当26t ≤<时,22S t =-++ 当68t ≤<时,S =-+当812t ≤<时,2S =-+.(3)当6t =-6t =+,4t =,8t =或0t =时,AOH ∆是等腰三角形. 点拨:分AH AO =,HA HO =,OH OA =三种情况讨论。

2020年江苏省苏州市姑苏区中考数学一模试卷(附答案详解)

2020年江苏省苏州市姑苏区中考数学一模试卷(附答案详解)

2020年江苏省苏州市姑苏区中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.2020的相反数是()A. 2020B. −2020C. 12020D. −120202.有一组数据:2、4、4、5、8,这组数据的众数是()A. 2B. 4C. 5D. 83.若分式xx−3在实数范围内有意义,则x的取值范围为()A. x>3B. x≠3C. x≥0D. x≠0且x≠34.据央视网消息,全国广大共产党员积极响应党中央号召,踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至2020年3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元.76.8亿用科学记数法可表示为()A. 7.68×108B. 0.768×1010C. 7.68×109D. 76.8×1085.如图,△ABC中,∠C=90o,tanA=2,则cos A的值为()A. √32B. √55C. 12D. 2√556.如图,△ABC中,∠ACB=90°,∠A=30o,顶点C在直线b上,若a//b,∠1=92°,则∠2的度数为()A. 28°B. 30°C. 32°D. 46°7.如图,扇形OAB中,∠AOB=90°,以AO为直径作半圆,若AO=1,则阴影部分的周长为()A. πB. π+1C. 2π+1D. 2π+28.若一次函数y=−x+m的图象经过点(−1,2),则不等式−x+m≥2的解集为()A. x≥0B. x≤0C. x≥−1D. x≤−19.宽和长的比为√5−12的矩形称为黄金矩形,如图,黄金矩形ABCD中,宽AB=2,将黄金矩形ABCD沿EF折叠,使得点C落在点A处,点D落在点D′处,则△AEF的面积为()A. √5B. √5−1C. √5+1D. 3−√510.如图,在平面直角坐标系中,点A的坐标为(−8,0),点B的坐标为(0,4),点C从点A出发以2个单位长度/s的速度沿线段AO向点O匀速移动,同时点D从点O 出发以1个单位长度/s的速度沿线段OB向点B匀速移动,点P为线段CD的中点,在点C从点A移动到点O的过程中,点P移动的路径长为()A. 4B. 2√5C. πD. 2π二、填空题(本大题共8小题,共24.0分)11.计算:a⋅3a2=______.12.分解因式:x2−3xy=______.13.若ab =23,则a+b2a−b=______.14.二次函数y=x2−4x+7的顶点坐标是______ .15.转动如图所示被等分为8份的转盘一次,指针指向阴影部分的概率为______.16.如图,△ABC内接于⊙O,C为弧BD的中点,若∠A=30°,则∠BCD=______°.17.如图,△ABC中,∠ACB=90°,AC=4,BC=3,射线CD与边AB交于点D,E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则m+n的最大值为______.18.如图,折线AB−BC中,AB=3,BC=5,将折线AB−BC绕点A按逆时针方向旋转,得到折线AD−DE,点B的对应点落在线段BC上的点D处,点C的对应点落在点E处,连接CE,若CE⊥BC,则tan∠EDC=______.三、解答题(本大题共10小题,共76.0分)19.计算:√12−|tan60°−1|−(2020−π)0.20.解不等式x+12<x−13+1,并把它的解集在数轴上表示出来.21. 先化简,再求值:(1+5x−2)÷x 2−9x 2−4x+4,其中x =3+√2.22. 如图,△ABC 中,D 、E 分别为边BC 、AC 中点,连接DE 并延长至点F ,使得EF =DE ,连接AF .(1)求证:△AEF≌△CED ;(2)若AB =12,BC =14,求四边形ABDF 的周长.23. 新学期复学后,学校为了保障学生的出行安全,随机调查了部分学生的上学方式(每位学生从乘私家车、坐公交、骑车和步行4种方式中限选1项),根据调查数据制作了如图所示的不完整的统计表和扇形统计图.上学方式统计表(1)本次学校共调查了______名学生,a=______,m=______;(2)求扇形统计图中“步行”对应扇形的圆心角;(3)甲、乙两位同学住在同一小区,且都坐公交车上学,有A、B、C三路公交车途径该小区和学校,假设甲、乙两位同学坐这三路公交车是等可能的,请用列表或画树状图的方法求某日甲、乙两位同学坐同一路公交车到学校的概率.24.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措.小明家先后两次在同一电商平台以相同的单价免邮购买了A、B两种型号的口罩.第一次购买20个A型口罩,30个B型口罩,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元.(1)求A、B两种型号口罩的单价;(2)“五一”期间,该电商平台举行促销活动,小明发现同样花费160元购买B型口罩,以活动价购买可以比原价多买8个,求“五一”期间B型口罩的活动价.(x>0)的图象上,顶点C 25.如图,△ABC中,顶点A、B在反比例函数y=kx在x轴的正半轴上,∠ACO=60°.(1)若AC=OC=4,求k的值;(2)若∠A=30°,∠ACB=90°,k=3√3,求点C的坐标.26.如图,AB为⊙O的直径,BC为⊙O的切线,AD//OC,交⊙O于点D,E为弧AB的中点,连接DE,交AB于点F.(1)求证:CD为⊙O的切线;(2)求证:AD⋅OC=2OA2;(3)若cosA=3,求tan E.527.如图①,△ABC中,∠ACB=90°,BC=6cm.动点P在△ABC的边上按C→A的路线匀速移动,当点P到达A点时停止移动;动点Q以2cm/s的速度在△ABC的边上按A→B→C的路线匀速移动,当点Q到达C点时停止移动.已知点P、点Q同时开始移动,同时停止移动(即同时到达各自的终止位置).设动点P移动的时间为t(s),△CPQ的面积为S(cm2),S与t的函数关系如图②所示.(1)图①中AB=______cm,图②中n=______cm2;(2)求S与t的函数表达式;(3)当t为何值时,△CPQ为等腰三角形.28.如图,二次函数y=−x2+(m−1)x+m(其中m>1)的图象与x轴交于A、B两点,与y轴交于点C.(1)点A的坐标为______,∠ABC=______°;(2)若D为△ABC的外心,且△ACD与△BCO的面积之比为5:9,求m的值;(3)在(2)的条件下,试探究抛物线y=−x2+(m−1)x+m上是否存在点E,使得∠CBE=∠DAB,若存在,求出点E的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了相反数,正确把握相反数的定义是解题关键.直接利用相反数的定义得出答案.【解答】解:2020的相反数是:−2020.故选B.2.【答案】B【解析】解:这组数据中4出现了2次,次数最多,故这组数据的众数是4.故选:B.一组数据中出现次数最多的数据叫做众数,结合所给数据即可得出答案.此题考查了众数的定义,属于基础题,解答本题的关键是掌握众数的定义.3.【答案】B【解析】解:∵分式x在实数范围内有意义,x−3∴x−3≠0,∴x≠3故选:B.分式有意义的条件是分母不等于零.根据分式意义的条件即可求出答案.本题考查分式有意义的条件,解题的关键正确理解分式有意义的条件.4.【答案】C【解析】解:76.8亿=7680000000=7.68×109,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题主要考查科学记数法的表示方法.表示时关键要正确确定a的值以及n的值.5.【答案】B【解析】解:∵△ABC中,∠C=90o,∴tanA=CBAC=2,∴设CB=2k,AC=k,∴AB=√AC2+BC2=√5k,∴cosA=ACAB =√5k=√55,故选:B.根据tanA=CBAC=2,于是设CB=2k,AC=k,由勾股定理得到AB=√AC2+BC2=√5k,于是得到结论.本题考查了同角三角函数的关系,熟练掌握锐角三角函数的定义是解题的关键.6.【答案】A【解析】解:如图所示,∵∠1是△ADE的外角,∴∠ADE=∠1−∠A=92°−30°=62°,∵a//b,∴∠ACF=∠ADE=62°,又∵∠ACB=90°,∴∠2=90°−62°=28°,故选:A.依据三角形外角性质即可得到∠ADE的度数,根据平行线的性质即可得出∠ACF的度数,进而得到∠2的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.【答案】B【解析】解:∵扇形OAB中,∠AOB=90°,AO=1,∴阴影部分的周长=12×π+90⋅π×1180+1=π+1,故选:B.根据弧长的计算公式即可得到结论.本题考查了弧长的计算,熟练掌握弧长的计算公式是解题的关键.8.【答案】D【解析】【分析】本题考查了一次函数与一元一次不等式,先把(−1,2)代入y=−x+m中求出m,然后解不等式−x+m≥2即可.【解答】解:把(−1,2)代入y=−x+m得1+m=2,解得m=1,所以一次函数解析式为y=−x+1,解不等式−x+1≥2得x≤−1.故选:D.9.【答案】A【解析】解:∵黄金矩形ABCD中,宽AB=2,∴ABBC =√5−12,即BC=4√5−1=√5+1,设AF=CF=x,则BF=√5+1−x,∵∠B=90°,∴Rt△ABF中,AB2+BF2=AF2,即22+(√5+1−x)2=x2,解得x=√5,∴AF=√5,又∵AD′=CD=AB=2,∴△AEF的面积=12AF×AD′=12×√5×2=√5,故选:A.依据黄金矩形ABCD中,宽AB=2,可得BC的长,设AF=CF=x,则BF=√5+1−x,再根据勾股定理即可得到AF的长,进而得出△AEF的面积.本题主要考查了矩形的性质以及折叠的性质,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.10.【答案】B【解析】解:∵点C从点A出发以2个单位长度/s的速度沿线段AO向点O匀速移动,同时点D从点O出发以1个单位长度/s的速度沿线段OB向点B匀速移动,∴AC=2t,DO=t,∴点C(−8+2t,0),点D(0,t),∵点P为线段CD的中点,),∴点P(−4+t,t2x+2上运动,∴点P在直线y=12当点C与点A重合时,则点P(−4,0),当点C与点O重合时,则点P(0,2),∴点P移动的路径长=√(−4−0)2+(0−2)2=√16+4=2√5,故选:B.x+2上运动,由特殊位置可求解.由中点坐标公式可求点P坐标,可得点P在直线y=12本题考查了轨迹,坐标与图形的性质,确定点P的轨迹是本题的关键.11.【答案】3a3【解析】解:a⋅3a2=3a2+1=3a3,故答案为:3a3.根据单项式与单项式相乘的法则计算.本题考查的是单项式乘单项式,单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.12.【答案】x(x−3y)【解析】解:x2−3xy=x(x−3y).故答案为:x(x−3y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】5【解析】解:由ab =23得b=3a2,∴a+b2a−b =a+3a22a−3a2=5a2a2=5a2⋅2a=5.故答案为:5.由ab =23可得b=3a2,再代入所求式子计算即可.本题主要考查了比例的性质,会用其中一个字母的代数式表示出另一个字母是解答本题的关键.14.【答案】(2,3)【解析】解:∵y=x2−4x+7=x2−4x+4+3=(x−2)2+3,∴二次函数y=x2−4x+7的顶点坐标为(2,3).故答案为(2,3).先把y=x2−4x+7进行配方得到抛物线的顶点式y=(x−2)2+3,根据二次函数的性质即可得到其顶点坐标.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:二次函数的顶点式y=a(x−b 2a )2+4ac−b24a,其顶点坐标为(−b2a,4ac−b24a).15.【答案】12【解析】解:转动如图所示的转盘一次,指针指向阴影部分的概率为48=12,故答案为:12.用阴影部分的扇形个数除以这样的扇形总个数即可得.本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.16.【答案】120【解析】解:由圆周角定理得,∠BDC=∠A=30°,∵C为弧BD的中点,∴CB⏜=CD⏜,∴CB=CD,∴∠CBD=∠BDC=30°,∴∠BCD=180°−30°−30°=120°,故答案为:120.根据圆周角定理求出∠BDC,根据圆心角、弧、弦之间的关系定理得到CB=CD,根据等腰三角形的性质、三角形内角和定理计算,得到答案.本题考查的是三角形的外接圆与外心,掌握圆周角定理、圆心角、弧、弦之间的关系定理是解题的关键.17.【答案】2.5【解析】解:∵△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=√42+32=5,∵E、F分别为AD、BD中点,AB=2.5,∴EF=12由垂线段最短可求CD⊥AB时,m+n有最大值2.5.故答案为:2.5.根据勾股定理可求AB,再根据垂线段最短可求CD⊥AB时,m+n有最大值.考查了勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.18.【答案】247【解析】解:如图,连接AC ,AE ,过点A 作AF ⊥BC 于F ,作AH ⊥EC 于H ,∵CE ⊥BC ,AF ⊥BC ,AH ⊥EC ,∴四边形AFCH 是矩形,∴AF =CH ,∵将折线AB −BC 绕点A 按逆时针方向旋转,得到折线AD −DE ,∴AD =AB =3,BC =DE =5,∠ABC =∠ADE ,∴△ABC≌△ADE(SAS),∴AC =AE ,∵AC =AE ,AB =AD ,AF ⊥BC ,AH ⊥EC ,∴BF =DF ,CH =EH ,∵AB 2=AF 2+BF 2,DE 2=DC 2+CE 2,∴9=AF 2+BF 2,25=(5−2BF)2+4AF 2,∴BF =95,AF =125,∴EC =2CH =2AF =245,CD =5−2×95=75, ∴tan∠EDC =EC CD =247, 故答案为:247.连接AC ,AE ,过点A 作AF ⊥BC 于F ,作AH ⊥EC 于H ,可证四边形AFCH 是矩形,可得AF =CH ,由旋转的性质可得AD =AB =3,BC =DE =5,∠ABC =∠ADE ,由“SAS ”可证△ABC≌△ADE ,可得AC =AE ,由等腰三角形的性质和勾股定理可得BF =95,AF =125,由三角函数可求解.本题考查了旋转的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,利用勾股定理求出BF ,AF 的长是本题的关键.19.【答案】解:原式=2√3−(√3−1)−1=2√3−√3+1−1=√3.【解析】原式利用二次根式性质,绝对值的代数意义,特殊角的三角函数值,以及零指数幂法则计算即可求出值.此题考查了实数的运算,零指数幂,绝对值的代数意义,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.【答案】解:去分母得:3(x+1)<2(x−1)+6,去括号得:3x+3<2x−2+6,移项合并得:x<1.【解析】不等式去分母,去括号,移项合并,把x系数化为1,确定出解集,表示在数轴上即可.此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握不等式的解法是解本题的关键.21.【答案】解:原式=x−2+5x−2⋅(x−2)2 (x−3)(x+3)=x+3x−2⋅(x−2)2 (x−3)(x+3)=x−2x−3,当x=3+√2时,原式=√2−23+√2−3=√2+22.【解析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.22.【答案】证明:(1)∵点E是AC的中点,∴AE=EC,又∵DE=EF,∠AEF=∠DEC,∴△AEF≌△CED(SAS),(2)∵D、E分别为边BC、AC中点,∴DE//AB,AB=2DE,∴DF=2DE=AB,∴四边形ABDF是平行四边形,∵BC=14,点D是BC中点,∴BD=CD=7,∴四边形ABDF的周长=2(AB+BD)=38.【解析】(1)由“SAS”可证△AEF≌△CED;(2)由三角形中位线定理可得DE//AB,AB=2DE,可证四边形ABDF是平行四边形,由平行四边形的性质可求解.本题考查了全等三角形的判定和性质,三角形中位线定理,平行四边形的判定和性质等知识,灵活运用这些性质进行推理是本题的关键.23.【答案】150 24 28【解析】解:(1)本次学校共调查了54÷36%=150名学生,a=150×16%=24(名),m=42150×100=28;故答案为:150,24,28;(2)扇形统计图中“步行”对应扇形的圆心角为360°×(1−36%−28%−16%)=72°;(3)画树状图如图所示,∵共有9种等可能的结果,甲、乙两位同学坐同一路公交车的有3种情况,∴甲、乙两位同学坐同一路公交车的概率为39=13.(1)依据乘公交车的人数以及百分比,即可得到本次调查共抽取的人数,根据本次调查共抽取的人数乘以骑车的百分比即可得到结论;(2)依据“步行”的百分比乘以360°,即可得到结论;(3)根据题意画树状图即可得到结论.本题考查的是统计表与扇形统计图、用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.24.【答案】解:(1)设A 、B 两种型号口罩的单价分别是x 元,y 元,由题意可得{20x +30y =19030x +20y =160, 解得:{x =2y =5, 答:A 、B 两种型号口罩的单价分别是2元,5元,(2)设五一”期间B 型口罩的活动价为a 元,由题意可得:a(1605+8)=160,∴a =4,答:五一”期间B 型口罩的活动价为4元.【解析】(1)设A 、B 两种型号口罩的单价分别是x 元,y 元,由“第一次购买20个A 型口罩,30个B 型口罩,共花费190元;第二次购买30个A 型口罩,20个B 型口罩,共花费160元”,列出方程组,可求解;(2)设五一”期间B 型口罩的活动价为a 元,由单价×数量=160,可列方程,即可求解. 本题考查了二元一次方程组的应用,找到正确的相等关系是本题的关键.25.【答案】解:(1)过点A 作AE ⊥OC 于E ,∵∠ACO =60°,AE ⊥OC ,∴∠EAC =30°,∴EC =12AC =2,AE =√3EC =2√3,∴OE =OC −EC =2,∴点A(2,2√3),∵点A在反比例函数y=kx(x>0)的图象上,∴k=2×2√3=4√3;(2)如图,过点A作AE⊥OC于E,过点B作BF⊥OC于F,∵∠CAB=30°,∠ACB=90°,∴AC=√3BC,设BC=a,AC=√3a,点C(m,0),∵∠ACO=60°,AE⊥OC,∴∠EAC=30°,∴EC=12AC=√32a,AE=√3EC=32a,∴点A(m−√32a,32a),∵∠ACO=60°,∠ACB=90°,∴∠BCF=30°,∴BF=12BC=12a,CF=√3BF=√32a,∴点B(m+√32a,12a),∵点A、B在反比例函数y=kx(x>0)的图象上,∴(m−√32a)×32a=3√3,(m+√32a)×12a=3√3,∴a=2,m=2√3,∴点C(2√3,0).【解析】(1)过点A作AE⊥OC于E,由直角三角形的性质可求EC=12AC=2,AE=√3EC=2√3,可得点A坐标,代入解析式可求解;(2)过点A作AE⊥OC于E,过点B作BF⊥OC于F,设BC=a,AC=√3a,点C(m,0),利用参数a,m表示点A,点B坐标,代入解析式可求解.本题是反比例函数综合题,考查了反比例函数的性质,直角三角形的性质,利用参数表示点A,点B坐标是本题的关键.26.【答案】(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD//OC,∴∠DOC=∠ODA,∠BOC=∠OAD,∴∠DOC=∠BOC,在△CDO和△CBO中,{CO=CO∠DOC=∠BOC OD=OB,∴△CDO≌△CBO(SAS),∴∠ODC=∠OBC,∵BC为⊙O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠ODC=90°,即OD⊥CD,∴CD为⊙O的切线;(2)证明:连接BD,∵AB为⊙O的直径,∴∠ADB=∠ABC=90°,∵∠BOC=∠OAD,∴△ABD∽△OCB,∴ADOB =ABOC,∵AB=2OB=2OA,OA=OB,∴AD⋅OC=2OA2;(3)解:作DG⊥AB于点G,设AB=5a,则OE=OD=AO=5a2,∵∠ADB=90°,cosA=35,∴AD=3a,∵∠ADB=90°,DG⊥AB,∴AD2=AG⋅AB,∴AG=9a5,∴OG=AO−AG=7a10,DG=2−OG2=12a5,∵E为弧AB的中点,∴∠AOE=∠DGO=90°,∴DG//OE,∴△DGF∽△EOF,∴GFFO =DGOE=12a55a2=2425,∴FO=2549OG=2549×7a10=5a14,∴tanE=OFOE =5a145a2=17.【解析】(1)连接OD,根据等腰三角形的性质和平行线的性质得到相等的边和角,利用SAS证得△CDO≌△CBO,得到∠ODC=90°,即可证得CD为⊙O的切线;(2)连接BD,根据“AB为⊙O的直径”得到∠ADB是直角,证得△ABD∽△OCB,得到AD OB =ABOC,再对比例式进行变形即可得到AD⋅OC=2OA2;(3)作DG⊥AB于点G,设AB=5a,求得AG、OG、DG,根据“E为弧AB的中点”,得到∠AOE=∠DGO=90°,进而得到DG//OE,可得△DGF∽△EOF,利用比例式求得FO,即可得到tan E.本题是圆的综合题,主要考查了切线的判定定理,全等三角形的判定与性质,圆周角定理及推论,相似三角形的判定与性质,勾股定理和垂径定理等,解题的关键是正确作出辅助线.27.【答案】10 15【解析】解:(1)由图②可知:t=5s时,点Q运动到点B,∴AB=2×5=10(cm),由勾股定理得:AC=√AB2−BC2=√102−62=8(cm),设点P的运动速度为v,∵点P、点Q同时开始移动,同时停止移动(即同时到达各自的终止位置),∴8v =10+62,∴v =1(cm/s),当t =5s 时,CP =5×1=5,S △CPQ =12BC ⋅CP =12×6×5=15(cm 2), ∴n =15cm 2, 故答案为:10,15; (2)当0≤t ≤5时,点Q 在AB 上,则CP =t ,AQ =2t , 过点Q 作QH ⊥AC 于H ,如图①所示:sinA =QH AQ =BC AB =610=35,∴QH =35AQ =35×2t =65t ,S =12CP ⋅QH =12×t ×65t =35t 2;当5<t ≤8时,点Q 在BC 上,如图③所示:∵AB +BQ =2t ,∴CQ =10+6−2t =16−2t ,∵CP =t ,∴S =12CP ⋅CQ =12×t ×(16−2t)=−t 2+8t ,综上所述:S ={35t 2(0≤t ≤5)−t 2+8t(5<t ≤8);(3)①当Q 在AB 上时,如图④所示:过点Q 作QH ⊥AC 于H ,此时,CP =t ,AQ =2t ,sinA =QH AQ =BCAB =610=35,∴QH =35AQ =35×2t =65t ,∵t <65t ,∴CP =PQ =t 和CP =CQ =t ,不成立;当CQ =PQ 时,则CH =PH =12CP =12t ,cosA =AH AQ =AC AB =810=45,∴AH =45AQ =45×2t =85t ,∴AC =CH +AH =8,即12t +85t =8,解得:t=8021(s);②当Q在BC上时,如图⑤所示:∵∠ACB=90°,∴只有CQ=CP一种情况,当CQ=CP=t时,2t+t=10+6,∴t=163(s);综上所述,当t为8021s或163s时,△CPQ为等腰三角形.(1)由图②可知t=5s时,点Q运动到点B,则AB=10,由勾股定理得AC=8,设点P的运动速度为v,则8v =10+62,得出v=1,当t=5时,CP=5,由S△CPQ=12BC⋅CP即可得出结果;(2)当0≤t≤5时,点Q在AB上,则CP=t,AQ=2t,过点Q作QH⊥AC于H,sinA=QH AQ =BCAB=35,得出QH=65t,S=12CP⋅QH=35t2;当5<t≤8时,点Q在BC上,AB+BQ=2t,则CQ=16−2t,CP=t,S=12CP⋅CQ=−t2+8t;(3)①当Q在AB上时,过点Q作QH⊥AC于H,此时,CP=t,AQ=2t,求出QH=65t,得出CP=PQ=t和CP=CQ=t,不成立;当CQ=PQ时,则CH=PH=12CP=12t,求出AH=85t,则12t+85t=8,得出t=8021;②当Q在BC上时,当CQ=CP=t时,2t+t=10+6,得出t=163.本题是三角形综合题,主要考查了函数关系图象、勾股定理、三角函数、三角形面积计算、分类讨论等知识;熟练掌握函数关系图象与分类讨论是解题的关键.28.【答案】(−1,0)45【解析】解:(1)∵0=−x2+(m−1)x+m,∴x1=−1,x2=m,∴点A(−1,0),点B(m,0),∴OB=m,当x=0时,y=m,∴点C(0,m),∴OB=OC=m,∴∠ABC=∠OCB=45°,故答案为(−1,0),45;(2)∵D为△ABC的外心,∴∠ADC=2∠ABC=90°,AD=CD,∴∠DAC=∠DCA=45°,∴∠DAC=∠DCA=∠OBC=∠OCB=45°,∴△ACD∽△BCO,∴S△ACDS△BCO =(ACBC)2=AC2BC2,∵点A(−1,0),点B(m,0),点C(0,m),∴AC2=m2+1,BC2=2m2,∵△ACD与△BCO的面积之比为5:9,∴m2+12m2=59,∴m1=3,m2=−3(舍去),∴m=3;(3)当m=3时,抛物线的解析式为y=−x2+2x+3,∴点A(−1,0),点B(3,0),点C(0,3),∴点D(1,1),BC2=18,∴BC=3√2,如图,过点D作DH⊥AB于H,过点C作BC的垂线交BE于点Q,交BE′于点P,∴DH=1,AH=2,直线PQ的解析式为y=x+3,∵∠CBE′=∠DAB,∠DHA=∠PCB=90°,∴△DAH∽△PBC,∴PCDH =BCAH,∴PC 1=3√22, ∴PC =3√22, 设点P(n,n +3),∴(n −0)2+(n +3−3)2=(3√22)2, ∴n =±32,∴点P(−32,32),点Q(32,92),∴直线BP 解析式为y =−13x +1,直线BQ 解析式为y =−3x +9,联立方程组可得:{y =−13x +1y =−x 2+2x +3, 解得:{x 1=−23y 1=119,{x 2=3y 2=0, ∴点E′坐标为(−23,119),联立方程组得:{y =−3x +9y =−x 2+2x +3, 解得:{x 1=2y 1=3,{x 2=3y 2=0, ∴点E 坐标为(2,3),综上所述:点E 坐标为(−23,119)或(2,3).(1)解方程可求点A 坐标,由等腰三角形的性质可求∠ABC =45°;(2)通过证明△ACD∽△BCO ,可得S △ACD S △BCO =(AC BC )2=AC 2BC 2,即可求解; (3)通过证明△DAH∽△PBC ,可求PC 的长,由两点距离公式可求点P ,点Q 坐标,联立方程组可求解.本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.。

2020年江苏省苏州市吴中区中考数学模拟试卷(4月份)有答案

2020年江苏省苏州市吴中区中考数学模拟试卷(4月份)有答案

2020年江苏省苏州市吴中区中考数学模拟试卷(4月份)一.选择题(共10小题,满分30分)1.如果m的倒数是﹣1,那么m2018等于()A.1B.﹣1C.2018D.﹣20182.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2020年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×105 3.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1C.a2•a3=a6D.(+)2=5 4.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48.则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3B.0.4C.0.5D.0.65.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2C.4D.37.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.70 8.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米9.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个10.已知反比例函数y=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2二.填空题(共8小题,满分24分,每小题3分)11.分解因式:x2﹣1=.12.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.13.若正多边形的一个外角是40°,则这个正多边形的边数是.14.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.15.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为.16.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为平方单位.三.解答题(共10小题,满分76分)19.(8分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.20.(8分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:21.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.22.(6分)一个不透明的袋子中,装有标号分别为1、﹣1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.23.(6分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.24.(8分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地1800元1600元区B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.25.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)26.(8分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t 秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.27.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.28.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵m的倒数是﹣1,∴m=﹣1,∴m2018=1.故选:A.2.解:1.21万=1.21×104,故选:C.3.解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.4.解:仰卧起坐个数不少于50个的有52、50、50、61、72共5个,所以,频率==0.5.故选:C.5.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.6.解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.7.解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.8.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.9.解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF =S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,故选:C.10.解:A、把(﹣2,1)代入解析式得:左边=右边,故本选项正确,不符合题意;B、因为﹣2<0,图象在第二、四象限,故本选项正确,不符合题意;C、当x<0,且k<0,y随x的增大而增大,故本选项正确,不符合题意;D、在第三象限时,当x>﹣1时,y>2,故本选项错误,符合题意.故选:D.二.填空题(共8小题,满分24分,每小题3分)11.解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.13.解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.14.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.15.解:∵DE∥BC,∴=,∵AD=1,BD=2,∴AB=3,∴=,故答案为:.16.解:∵关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,∴△=b2﹣4ac>0,即4﹣4×(a﹣1)×1>0,解这个不等式得,a<2,又∵二次项系数是(a﹣1),∴a≠1.故a的取值范围是a<2且a≠1.17.解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.18.解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt △ADO ≌Rt △AB′O , ∴∠OAD=∠OAB′=30°, ∴OD=OB′=,S 四边形AB′OD =2S △AOD =2××=2,∴S 阴影部分=S 正方形﹣S 四边形AB′OD =6﹣2.三.解答题(共10小题,满分76分) 19.解:(1)原式=3﹣4﹣2×+4=2; (2)原式=•=x ﹣y .20.解:(1)x 2﹣4x=3, x 2﹣4x +4=7 (x ﹣2)2=7 x=2±(2)由x ﹣3(x ﹣2)≤4,解得x ≥1, 由>x ﹣1,解得x <4∴不等式组的解集为:1≤x <4 21.解:(1)∵AD=2,∠DAE=90°, ∴弧DE 的长 l 1==π,同理弧EF 的长 l 2==2π,弧FG 的长 l 3==3π,所以,点D 运动到点G 所经过的路线长l=l 1+l 2+l 3=6π. (2)GB=DF .理由如下:延长GB 交DF 于H . ∵C D=CB ,∠DCF=∠BCG ,CF=CG ,∴△FDC≌△GBC.∴GB=DF.22.解:(1)从中任意取一个球,可能的结果有3种:1、﹣1、2,其中为正数的结果有2种,∴标号为正数的概率是,故答案为:;(2)列表如下:1﹣121y=x+1y=x﹣1y=x+2﹣1y=﹣x+1y=﹣x﹣1y=﹣x+22y=2x+1y=2x﹣1y=2x+2其中直线y=kx+b经过一、二、三象限的有4种情况,∴一次函数y=kx+b的图象经过一,二,三象限的概率=.23.解:(1)EH2+CH2=AE2,如图1,过E作EM⊥AD于M,∵四边形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME与△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE与△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.24.解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x ≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时y=80000,∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.25.解:(1)过点P作PE⊥AB于E,PH⊥BD于H,设PH=5x米,CH=12x米,在Rt△ABC中,∠ACB=63.4°,BC=90米,则tan63.4°=,AB=180米,在Rt△AEP中,∠APE=53°,=,解得x=,5x=5×=≈14.3.故此人所在位置点P的铅直高度约是14.3米;(2)在Rt△PHC中,PC==13x=,故此人从所在位置点P走到建筑物底部B点的路程是+90=≈127.1米.26.解:(1)∵正方形OABC的面积为9,∴点B的坐标为:(3,3),∵点B在反比例函数y=(k>0,x>0)的图象上,∴3=,即k=9,∴该反比例函数的解析式为:y=(x>0);(2)根据题意得:P(t,),分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);若S=,则﹣3t+9=,解得:t=;②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;若S=,则9﹣=,解得:t=6;∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)存在.若OB=BF=3,此时CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,则3=,解得:t=;若BF=OF,此时点F与C重合,t=3;∴当t=或或3时,使△FBO为等腰三角形.27.(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.28.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。

江苏省苏州市吴江区三区联考2020届中考数学一模试卷 (含解析)

江苏省苏州市吴江区三区联考2020届中考数学一模试卷 (含解析)

江苏省苏州市吴江区三区联考2020届中考数学一模试卷 一、选择题(本大题共10小题,共30.0分) 1. 下列各数中,最小的数是( )A. 3B. −4C. 4D. −5 2. 据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为( )A. 37×105B. 3.7×105C. 3.7×106D. 0.37×107 3. 下列图形中,属于中心对称图形,但不属于轴对称图形的是( )A. B.C. D.4. 某班抽6名同学参加体能测试,成绩分别是80,90,75,75,80,80.则这组同学的测试成绩的中位数是( )A. 75B. 80C. 85D. 90 5. 如图,已知AD//BC ,∠B =40°,DB 平分∠ADE ,则∠DEC 等于( )A. 80°B. 70°C. 60°D. 40° 6. 化简分式:(1−a 2+8a 2+4a+4)÷4a−4a 2+2a 的结果为( ) A. a+2a B. a a+2C. a−2aD. a a−2 7. 若关于x 的方程2x 2=3x +a 没有实数根,则a 的取值范围是( ) A. a <98 B. a >98 C. a <−98 D. a >−98 8. 如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C ,若CE =2,则图中阴影部分的面积是( )A. 34π−√3B. πC. π−√3D. π9. 如图,一艘轮船在A 处测得灯塔C 在北偏西15∘的方向上,该轮船又从A 处向正东方向行驶40海里到达B 处,测得灯塔C 在北偏西60∘的方向上,则轮船在B 处时与灯塔C 之间的距离(即BC 的长)为( )A. 40√3海里B. (20√3+20)海里C. 80海里D. (20√3+20√2)海里10. 如图,⊙O 是△ABC 的外接圆,BC 为直径,AD 平分∠BAC 交⊙O 于D ,点P为△ABC 的内心,PD =5√2,AB =8.下列结论:①∠BAD =45°;②PD =PB ;③PD =√22BC ;④S △APC =6.其中正确结论的个数是( ) A. 4 B. 3 C. 2 D. 1二、填空题(本大题共8小题,共24.0分)11. −2014的相反数______ .12. 函数y =1x−2+√3−x 的自变量x 的取值范围是______.13. 如果代数式x +2y +3的值是0,则代数式2x +4y +5的值是______.14. 如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ACD =40°,则∠BCD =________,∠BOD =________.15. 从227、√16、π2、−√93、0.6⋅中,任取一个数,取到无理数的概率是_____. 16. 如图,将△ABC 绕点C 顺时针旋转至△DEC ,使点D 落在BC 的延长线上,已知∠A =27°,∠B =40°,则∠ACE =______.17. 如图,已知菱形ABCD 的边长为4,∠B =60°,点O 为对角线AC的中点,⊙O半径为1,点P 为CD 边上一动点,PE 与⊙O 相切于点E ,则PE的最小值是______.18. 甲、乙两人分别从相距2380米的A ,B 两地出发,相向而行,甲先出发5分钟,乙再出发.在整个行走过程中,甲、乙两人均保持匀速行走,两人相遇后,依然按照原速度原方向继续行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则当乙到达A 地时,甲与B 地的距离是______米.三、计算题(本大题共1小题,共10.0分)19. 如图,在⊙O 中,直径AB 垂直弦CD 于E ,过点A 作∠DAF =∠DAB ,过点D 作AF 的垂线,垂足为F ,交AB 的延长线于点P ,连接CO 并延长交⊙O 于点G ,连接EG .(1)求证:DF 是⊙O 的切线;(2)若AD =DP ,OB =3,求BD⏜的长度; (3)若DE =4,AE =8,求线段EG 的长.四、解答题(本大题共9小题,共66.0分)20. 计算:√9+(√93−2)0−|−3|−(13)−121.解不等式组:{5x−6>4, ①x−8<4x+1. ②22.如图,在△ABC和△ADE中,∠C=∠E,∠BAD=∠CAE,AB=AD.求证:BC=DE.23.我市2014年中考的体育考试项目和实验考试项目采用抽签方式决定,规定:实验抽考测密度、欧姆定律、二氧化碳制取三个实验项目中的一个(用纸签A、B、C表示).体育从跳绳、篮球运球投篮、立定跳远三个项目(用纸签D、E、F表示)中抽取一项进行考试.在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)聪聪抽到B和F(记作事件M)的概率是多少?24.某学校随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题阅读时间(小时)频数(人)频率1≤x<2180.122≤x<3a m3≤x<4450.34≤x<536n5≤x<6210.14合计b1(1)a=______b=______m______,n=______;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.25.我市某社会团体组织人员参观古滇印象展,主办方对团体购票实行优惠:在原定票价的基础上,每张降价40元,则按原定票价需花费6000元购买门票,现在只花了4000元.(1)求每张门票原定的票价;(2)在展览期间,平均每天可售出个人票2000张,现主办方决定对个人购票也采取优惠措施,发现原定票价每降低2元,平均每天可多售出个人票40张,若要使平均每天的个人票收入达到241500元,且能有效控制游览人数,则票价应降低多少元?26.如图,点A的坐标为(0,2√3),△AOB是等边三角形,AC⊥AB,直线AC与x轴和直线OB分别经过点B.相交于点C和点D,双曲线y=kx(1)求k的值;(2)判断点D是否在双曲线y=k上,并说明理由.xx2+x+4与x轴交于A、B两点,与y轴交于点C.27.如图,二次函数y=−12(1)求点A、B、C的坐标;(2)M为线段AB上一动点,过点M作MD//BC交线段AC于点D,连接CM.①当点M的坐标为(1,0)时,求点D的坐标;②求△CMD面积的最大值.28.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+ BG2的值是定值,请求出这个定值.。

2020年江苏省苏州市吴中区、相城区、吴江区中考一模数学试卷(word版含答案解析)

2020年江苏省苏州市吴中区、相城区、吴江区中考一模数学试卷(word版含答案解析)

2020年江苏省苏州市吴中区、相城区、吴江区中考一模数学试卷一、选择题(共10小题;共40分)1. 下列各数中,最小的数是A.2. 根据公布数据显示,年苏州市户籍人口约7220000人.数据“”用科学记数法表示为A. B. C. D.3. 下列图案中,是轴对称图形但不是中心对称图形的是A. B.C. D.4. 在新年晚会的投飞镖游戏环节中,名同学投掷的成绩(单位:环)分别是,,,,,,,则这组数据的中位数是A. B. C. D.5. 如图,平分,在上,,,则等于A. B. C. D.6. 化简分式:的结果为A. B. C.7. 已知关于的方程有两个不相等的实数根,则的取值范围是A. B.C. 且D. 且8. 如图,,在上,连接,,,若,劣弧的度数是,.则图中阴影部分的面积是A. B. C. D.9. 如图,一艘海轮位于灯塔的北偏东方向,距离灯塔海里的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处,则这时海轮所在的处距离灯塔的距离是A. B. C. D.10. 如图,四边形是正方形,是等腰直角三角形,的平分线过点交于,是的中点,对于下面四个结论:① ;② ,且;③ ;④ 的外接圆圆心和它的内切圆圆心都在直线上.其中表述正确的个数是A. B. C. D.二、填空题(共8小题;共32分)11. 的相反数为.12. 函数中,自变量的取值范围为.13. 已知,那么代数式的值是.14. 如图,,是上的两点,是直径,若,则度.15. 如图,在的正方形网格中有个格点,已知取定点和,在余下的个点中任取一点,使为直角三角形的概率是.16. 如图,中,,绕点顺时针旋转得,当落在上时,连接,取的中点,连接,则的值为.17. 如图,菱形中,对角线和相交于点,,,动点在边上运动,以点为圆心,为半径作,切于点,则在点运动过程中,的长的最大值为.18. 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.乙回到学校用了分钟.三、解答题(共10小题;共80分)19. 计算:.20. 解不等式组:21. 已知和位置如图所示,,,.(1)求证:;(2)求证:.22. 小张用张相同的小纸条做成甲、乙、丙、丁支签,放在一个盒子中,搅匀后先从盒子中任意抽出支签(不放回),再从剩余的支签中任意抽出支签.(1)小张第一次抽到的是乙签的概率是;(2)求抽出的两支签中,支为甲签、支为丙签的概率(用画树状图或列表法求解).23. 苏州市某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.(1),;(2)补全频数分布直方图;(3)请估计该校名初中学生中,约有多少学生在小时以内完成家庭作业.24. 在某次商业足球比赛中,门票销售单位对团体购买门票实行优惠,决定在原定票价基础上每张降价元,这样按原定票价需花费元购买的门票张数,现在只花费了元.(1)求每张门票的原定票价;(2)根据实际情况,组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为元,求平均每次降价的百分率.25. 如图,是平面直角坐标系中第一象限内一点,过点作轴于点,以为边在右侧作等边,已知点的纵坐标为,连接交于,.(1)求点的坐标;(2)如图,若过点的双曲线与过点垂直于轴的直线交于,连接.求.26. 如图,中,,为上的一点,以为直径的交于,连接交于,交于,连接,.(1)求证:与相切;(2)若,,则的半径;(3)若,,求(用的代数式表示).27. 如图,在平面直角坐标系中,二次函数的图象与坐标轴交于,,三点,其中点的坐标为、点的坐标是.(1)求该二次函数的表达式及点的坐标;(2)若点的坐标是,点为该二次函数在第四象限内图象上的动点,连接,,以,为邻边作平行四边形,设平行四边形的面积为.①求的最大值;②在点的运动过程中,当点落在该二次函数图象上时,请求出点的坐标.28. 如图,点从菱形的顶点出发,沿的长是;图是点运动时,的面积随时间变化的函数图象.(1)点的运动速度是;(2)求的值;(3)如图,在矩形中,,,若点,,分别从点,,三点同时出发,沿矩形的边按逆时针方向匀速运动,当点到达点(即点与点重合)时,三个点随之停止运动;若点不改变运动速度,且点,,的运动速度的比为,在运动过程中,关于直线的对称图形是,设点,,的运动时间为(单位:).①当时,四边形为正方形;②是否存在,使与相似,若存在,求的值;若不存在,请说明理由.答案第一部分1. D ,故选:D.2. A 【解析】.3. B 【解析】A、既是轴对称图形也是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、不是轴对称图形也不是中心对称图形,故此选项不合题意;D、既是轴对称图形也是中心对称图形,故此选项不合题意;故选:B.4. C 【解析】按从小到大的顺序排列为,,,,,,,最中间的数是,故这组数据的中位数是.故选:C.5. A【解析】,,,平分,.6. B 【解析】7. A 【解析】将方程整理为一般式得,根据题意知,解得,故选:A.8. C 【解析】设与相交于点,如图,劣弧的度数是,,,,,劣弧的度数是,,,,在中,,,.9. C 【解析】如图,过点作于点.由题意知.在中,,.点在点的北偏东方向上,.在中,.,(海里).10. D【解析】四边形是正方形,,,是等腰直角三角形,,,在和中,,,,,,,,故①正确;是的平分线,,是等腰三角形,,又是的中点,是的中位线,,且,故②正确;设和相交于点,如图所示:设,则,设等腰边长是,则,,,,,即,,解得:或(舍去),,则,故③正确;平分,的内切圆圆心在直线上,垂直平分,的外接圆圆心在直线上,的外接圆圆心和它的内切圆圆心都在直线上,故④正确;故选:D.第二部分【解析】的相反数为12.【解析】根据题意得,解得:.【解析】,.14.【解析】,,,是直径,,,,,,.【解析】取定点和,在余下的个点中任取一点,使为直角三角形的有种情况,使【解析】设,,,,,,,,是等边三角形,,,,是等边三角形,,,,,,.17.【解析】连接,切于点,,,,四边形ABCD是菱形,,,,,是定值,则当最小时,最大,即最小时,最大,当时,最大,此时,.18.【解析】由图象可得,甲的速度为:(米/分钟),乙的速度为:(米/分钟),则乙回到学校用了:(分钟).第三部分19.20.解不等式①得:解不等式②得:则不等式组的解集是21. (1)在和中,,.(2),,即,由()得:,,在ACM和中,,.22. (1)(2)画树状图如图:所有等可能的情况有种,其中支为甲签、支为丙签的情况有种,支为甲签、支为丙签的概率.23. (1);【解析】调查的总人数是:(人),则(人),.(2)根据()求出的频数,补全统计图如下:(3)根据题意得:(人).答:该校名初中学生中,约有名学生在小时以内完成家庭作业.24. (1)设每张门票的原定票价为元,则团体票价为元,依题意,得:解得:经检验,是原分式方程的解,且符合题意.答:每张门票的原定票价为元.(2)设平均每次降价的百分率为,依题意,得:解得:答:平均每次降价的百分率为.25. (1)过作轴于点,则,是等边三角形,,轴,,,,,,,.(2)设的延长线与过点平行于轴的直线交于点,双曲线过点,,双曲线的解析式为:,又,点的纵坐标为,,在中,.26. (1)因为,所以,因为,,所以,因为,所以,即,所以,所以与相切.(2)【解析】因为,,所以,因为,所以,所以,所以,所以,所以的半径.(3)因为为的直径,所以,所以,又因为,所以,所以,因为,所以,所以,所以,所以,所以,又,所以,即,因为.所以.27. (1)二次函数的图象过、点,,,二次函数的表达式为,令,则,解得:,X=8 点的坐标为.(2)①连接,,设,四边形为平行四边形,当时,的面积有最大值,最大值为,的最大值为;② 四边形为平行四边形,,,点向左平移个单位,再向上平移个单位得到点,点向左平移个单位,再向上平移个单位得到点,即,在抛物线上,,解得,,,.28. (1)【解析】由图点从点运动到点,,点的运动速度.(2)如图,作于点.当点在上时,,四边形为菱形,点的运动速度为,,,解得,在中,,,在中,,即,解得.(3)①②存在.点的运动速度,点,,的运动速度的比为,点的运动速度,点的运动速度,,,,点的运动速度,,当时,,即,解得;当时,,即,解得(舍去),,综上所述,当时,与相似.【解析】① 点的运动速度,点,的运动速度的比为点的运动速度.由题意得,,,,,,由翻转变换的性质可知,,,当时,,四边形为菱形,又,四边形为正方形,,即时,四边形为正方形,。

2024年江苏省苏州市吴中区、吴江区、相城区中考数学一模试卷及答案解析

2024年江苏省苏州市吴中区、吴江区、相城区中考数学一模试卷及答案解析

2024年苏州市吴中区、吴江区、相城区中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.(3分)﹣的相反数是()A.B.﹣C.D.﹣2.(3分)今年3月12日是我国第46个植树节,全国绿化委员会办公室公布的《中国国土绿化状况公报》显示,2023年,我国完成造林5997万亩.5997万用科学记数法表示是()A.5.997×106B.5.997×107C.0.5997×108D.5997×104 3.(3分)整数a满足,则a的值为()A.3B.4C.5D.64.(3分)若一次函数y=(k+1)x﹣3的函数值y随x的增大而增大,则k值可能是()A.0B.﹣1C.﹣2D.﹣35.(3分)学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12.下列关于这组数据描述正确的是()A.众数为10B.平均数为10C.方差为2D.中位数为96.(3分)有一个正n边形绕旋转中心旋转90°后与自身重合,则n的值可能为()A.6B.9C.10D.127.(3分)如图,在矩形ABCD中,分别以点A,C为圆心,大于AC的长为半径作弧,两弧相交于点M,N作直线MN,交BC于点E,交AD于点F,若BE=3,AF=5,则矩形的周长为()A.24B.12C.8D.368.(3分)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c 与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c<0;③若(﹣2,y1)与是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是()A.2B.3C.4D.5二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)计算:(3a)2=.10.(3分)计算(+1)(﹣1)的结果等于.11.(3分)若有意义,则x的取值范围是.12.(3分)方程x2﹣3x+2=0的根是.13.(3分)有五张看上去无差别的卡片,正面分别写着,,﹣0.5,π,0.背面朝上混合后随机抽取一张,取出的卡片正面的数字是无理数的概率是.14.(3分)如图,正方形ABCD的边长为1,对角线AC,BD相交于点O,以点B为圆心,对角线BD的长为半径画弧,交BC的延长线于点E,则图中阴影部分的面积为.15.(3分)如图,四边形OABC是平行四边形,点O是坐标原点,点C在y轴上,点B在反比例函数的图象上,点A在反比例函数的图象上,若平行四边形OABC的面积是9,则k=.16.(3分)如图,已知△ABC中,∠ACB=90°,AC=5,BC=4,点E是AC边上的动点,以CE为直径作⊙F,连接BE交⊙F于点D,则AD的最小值=.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(5分)计算:|﹣6|+(3﹣π)0﹣2sin30°.18.(5分)解关于x的不等式组:.19.(6分)已知x+2y﹣1=0,求代数式的值.20.(6分)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.21.(6分)一只不透明的袋子中装有3个小球,分别标有编号1,2,3,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为;(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求两次摸到的小球编号的和是偶数的概率是多少?(用列表或画树状图的方法说明)22.(8分)3月5日,某学校师生积极参加“学雷锋志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有人,请补全条形统计图;(2)在扇形统计图中,求“文明宣传”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“敬老服务”项目的师生人数.23.(8分)如图,某学习小组在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E、C、B在同一水平线上).(1)求从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).24.(8分)如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于A(3,1),B (﹣1,n)两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.25.(10分)3月12日植树节,某中学需要采购一批树苗开展种植活动.据了解,市场上每捆A种树苗的价格是树苗基地的倍,用300元在市场上购买的A种树苗比在树苗基地购买的少2捆.(1)求树苗基地每捆A种树苗的价格.(2)树苗基地每捆B种树苗的价格是40元.学校决定在树苗基地购买A,B两种树苗共100捆,且A种树苗的捆数不超过B种树苗的捆数.树苗基地为支持该校活动,对A、B两种树苗均提供八折优惠.求本次购买最少花费多少钱.26.(10分)【问题初探】如图1,在⊙O的内接四边形ABCD中,DB=DC,∠DAE是四边形ABCD的一个外角.求证:∠DAE=∠DAC.【拓展研究】如图2,已知⊙O内接△ABC,AC>BC,点M是的中点,过点M作MD⊥AC,垂足为点D.求证:BC+CD=AD.【解决问题】如图3,已知等腰三角形ABC内接于⊙O,AB=AC,D为上一点,连接DB、DC,tan∠ACD=,△BDC的周长为24+4,BC=4,求AC的长.27.(10分)如图,在平面直角坐标系中,抛物线y=ax2﹣8ax+10a﹣1(a<0)与x轴的交点分别为A(x1,0),B(x2,0),其中(0<x2<x1),且AB=4,与y轴的交点为C,直线CD∥x轴,在x轴上有一动点E(t,0),过点E作直线l⊥x轴,与抛物线、直线CD 的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以C、P、Q为顶点的三角形与△OBC相似?若存在,求出此时t的值;若不存在,请说明理由.2024年江苏省苏州市吴中区、吴江区、相城区中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上)1.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣的相反数等于:﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:5997万=59970000=5.997×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】根据算术平方根的定义估算无理数的大小即可.【解答】解:∵=4,∴4<a<,∵5<<6,∴5<a<6,∴整数a的值为5.故选:C.【点评】本题考查估算无理数的大小,掌握算术平方根的定义是正确解答的关键.4.【分析】根据一次函数的性质,若y随x的增大而增大,则比例系数大于0.【解答】解:∵一次函数y=(k+1)x﹣3的函数值y随x的增大而增大,∴k+1>0,∴k>﹣1,则k的值可能是0,故选:A.【点评】本题考查了一次函数的性质,要知道,在直线y=kx+b中,当k>0时,y随x 的增大而增大;当k<0时,y随x的增大而减小.5.【分析】分别根据众数、平均数、方差以及中位数的定义判断即可.【解答】解:在10,11,9,10,12中,10出现的次数最多,故众数为10;把数据10,11,9,10,12从小到大排列,排在中间的数是10,故中位数是10;数据10,11,9,10,12的平均数为=10.4,方差为:[2×(10﹣10.4)2+(11﹣10.4)2+(9﹣10.4)2+(12﹣10.4)2]=1.04,所以这组数据描述正确的是众数为10.故选:A.【点评】本题主要考查众数、平均数、中位数以及方差,解题的关键是掌握众数、中位数、平均数和方差的定义.6.【分析】直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十五边形旋转90°后不能与自身重合,不符合题意;D.正十二边形旋转90°后能与自身重合,合题意;故选:D.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.7.【分析】根据作图过程可得,MN是AC的垂直平分线,再由矩形的性质可以证明△AFO ≌△CEO,可得AF=CE=AE=5,再根据勾股定理可得AB的长,进而可得矩形的周长.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴∠FAC=∠ECA,根据作图过程可知:MN是AC的垂直平分线,∴∠FOA=∠EOC=90°,AO=CO,在△AFO和△CEO中,,∴△AFO≌△CEO(ASA),∴AF=CE,连接AE,∵AE=CE,∴AE=CE=AF=5,∴BC=BE+CE=3+5=8,在Rt△ABE中,根据勾股定理,得AB==4,∴矩形的周长为2(AB+BC)=2(4+8)=24.故选:A.【点评】本题考查了作图﹣基本作图、线段垂直平分线的性质、矩形的性质,解决本题的关键是掌握基本作图方法.8.【分析】利用图象的信息与已知条件求得a,b的关系式,利用待定系数法和二次函数的性质对每个结论进行逐一判断即可得出结论.【解答】解:∵抛物线的开口方向向下,∴a<0.∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,b<0.∵a<0,b<0,∴ab>0,∴①的结论正确;∵抛物线y=ax2+bx+c经过点(﹣3,0),∴9a﹣3b+c=0,∴9a﹣3×2a+c=0,∴3a+c=0.∴4a+c=a<0,∴②的结论正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①②④,故选:B.【点评】本题主要考查了二次函数的性质,二次函数图象上点的坐标的特征,一次函数的性质,一次函数图象上点的坐标的特征,二次函数与一元二次方程的联系,利用图象的信息与已知条件求得a,b的关系式是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】利用积的乘方的性质求解即可求得答案.【解答】解:(3a)2=9a2.故答案为:9a2.【点评】此题考查了积的乘方.此题比较简单,注意掌握积的乘方的性质的应用是解题的关键.10.【分析】根据平方差公式即可求出答案.【解答】解:原式=()2﹣12=19﹣1=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.11.【分析】根据二次根式的被开方数是非负数列出不等式x﹣1≥0,解不等式即可求得x 的取值范围.【解答】解:根据题意得x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.12.【分析】由题已知的方程进行因式分解,将原式化为两式相乘的形式,再根据两式相乘值为0,这两式中至少有一式值为0,求出方程的解.【解答】解:因式分解得,(x﹣1)(x﹣2)=0,解得x1=1,x2=2.故答案为:1或2.【点评】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.13.【分析】背面朝上混合后随机抽取一张有5种等可能结果,其中取出的卡片正面的数字是无理数的有1种结果,再根据概率公式求解即可.【解答】解:背面朝上混合后随机抽取一张有5种等可能结果,其中取出的卡片正面的数字是无理数的有1种结果,所以取出的卡片正面的数字是无理数的概率是,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.14.【分析】先根据锐角三角函数求出BD,再根据扇形面积公式和三角形面积公式即可求出阴影部分的面积.【解答】解:∵四边形ABCD是正方形,∴∠BCD=90°,∠DBC=45°,∵AB=1,∴BC=1,BD=,==,∴阴影部分的面积:S=S扇形BDE故答案为:.【点评】本题考查有关扇形面积的相关计算、正方形的性质,掌握扇形面积公式和矩形的性质的应用,其中根据锐角三角函数求出BC、BD是解题关键.15.【分析】连接OB,根据反比例函数系数k的几何意义得到|k|+4=9,进而即可求得k的值.【解答】解:连接OB,∵四边形OABC是平行四边形,∴AB∥OC,∴AB⊥x轴,=|k|,S△BOD=2,∴S△AOD=S△AOD+S△BOD=|k|+2,∴S△AOB=2S△AOB=|k|+4,∴S平行四边形OABC∵平行四边形OABC的面积是9,∴|k|=5,∵在第四象限,∴k=﹣5,故答案为:﹣5.【点评】本题考查了反比例系数k的几何意义、平行四边形的面积,熟知在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|是解答此题的关键.16.【分析】连接DC,由以CE为直径作⊙F,BC=4,AC=5,得∠CDE=90°,∠CDB =90°,即可得动点D在以BC中点O为圆心,2为半径的圆上运动,当A,D,O在一直线上时,AO==,故AD≥AO﹣OD=﹣2.【解答】解:连接DC,由以CE为直径作⊙F,BC=4,AC=5,得∠CDE=90°,∠CDB=90°,得动点D在以BC中点O为圆心,2为半径的圆上运动,当A,D,O在一直线上时,AO==,故AD≥AO﹣OD=﹣2,即AD的最小值=﹣2,故答案为:﹣2.【点评】本题主要考查了圆中动点问题,解题关键是动中抓不变.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】首先计算零指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|﹣6|+(3﹣π)0﹣2sin30°=6+1﹣2×=6+1﹣1=6.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.18.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由3x<x+4得:x<2,由<x+2得:x>0,则不等式组的解集为0<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【分析】根据已知可得x+2y=1,然后利用分式的基本性质化简分式,再把x+2y=1代入化简后的式子进行计算即可解答.【解答】解:∵x+2y﹣1=0,∴x+2y=1,∴====2,∴的值为2.【点评】本题考查了分式的值,熟练掌握因式分解是解题的关键.20.【分析】(1)根据两角相等可得两三角形相似;(2)根据(1)中的相似列比例式可得结论.【解答】(1)证明:∵四边形ABCD为菱形,∴∠ACD=∠BCA,∵∠ACD=∠ABE,∴∠BCA=∠ABE,∵∠BAC=∠EAB,∴△ABC∽△AEB;(2)解:∵△ABC∽△AEB,∴=,∵AB=6,AC=4,∴=,∴AE==9.【点评】本题考查了菱形的判定与性质,相似三角形的判定与性质,掌握相似三角形的性质和判定是解本题的关键.21.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及两次摸到的小球编号的和是偶数的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意得,搅匀后从中任意摸出1个球,这个球的编号是2的概率为.故答案为:.(2)列表如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)共有9种等可能的结果,其中两次摸到的小球编号的和是偶数的结果有:(1,1),(1,3),(2,2),(3,1),(3,3),共5种,∴两次摸到的小球编号的和是偶数的概率为.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.22.【分析】(1)将清洁卫生的人数除以其所占百分比,即可求出本次调查的师生共有多少人;将调查总人数减去参加其他三项的人数即可求出文明宣传的人数,再补全条形统计图即可;(2)将文明宣传所占百分比乘以360°即可求出“文明宣传”对应的圆心角度数;(3)将参加“敬老服务”项目所占百分比乘以1500,再乘以80%即可估计参加“敬老服务”项目的师生人数.【解答】解:(1)60÷20%=300(人),故答案为:300;参加“文明宣传”的人数为:300﹣60﹣120﹣30=90(人),补全条形统计图如下:(2)在扇形统计图中,“文明宣传”对应的圆心角度数为:×360°=108°,答:“文明宣传”对应的圆心角度数为108°;(3)=480(人),答:估计参加“敬老服务”项目的师生人数为480人.【点评】本题考查条形统计图,扇形统计图,用样本估计总体,能从统计图中获取有用信息是解题的关键.23.【分析】(1)过点D作DG⊥BE,垂足为G,根据已知可设DG=x米,则CG=3x米,然后在Rt△DCG中,利用勾股定理进行计算,即可解答;(2)过点D作DH⊥AB,垂足为H,根据题意可得:DG=BH=3米,DH=BG,然后设BC=x米,则DH=BG=(x+9)米,分别在Rt△ABC和Rt△ADH中,利用锐角三角函数的定义求出AB和AH的长,从而列出关于x的方程,进行计算即可解答.【解答】解:(1)过点D作DG⊥BE,垂足为G,∵斜坡CF的坡比为i=1:3,∴=,∴设DG=x米,则CG=3x米,在Rt△DCG中,CD===x(米),∵CD=3米,∴x=3,解得:x=3,∴DG=3米,CG=9米,∴从点C到点D的过程中上升的高度为3米;(2)过点D作DH⊥AB,垂足为H,由题意得:DG=BH=3米,DH=BG,设BC=x米,∵CG=9米,∴DH=BG=CG+BC=(x+9)米,在Rt△ABC中,∠ACB=45°,∴AB=BC•tan45°=x(米),在Rt△ADH中,∠ADH=30°,∴AH=DH•tan30°=(x+9)米,∵AH+BH=AB,∴(x+9)+3=x,解得:x=6+9,∴AB=(6+9)米,∴大树AB的高度为(6+9)米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.【分析】(1)把A(3,1)代入y=可得m=3,即得反比例函数关系式为y=,从而B(﹣1,﹣3),将A(3,1),B(﹣1,﹣3)代入y=kx+b即可得一次函数的关系式为y=x﹣2;(2)在y=x﹣2中得C(0,﹣2),设M(m,),N(n,n﹣2),而O(0,0),由CM、ON中点重合列方程组可得M(,)或M(﹣,﹣).【解答】解:(1)把A(3,1)代入y=得:1=,∴m=3,∴反比例函数关系式为y=;把B(﹣1,n)代入y=得:n==﹣3,∴B(﹣1,﹣3),将A(3,1),B(﹣1,﹣3)代入y=kx+b得:,解得,∴一次函数的关系式为y=x﹣2;答:反比例函数关系式为y=,一次函数的关系式为y=x﹣2;(2)在y=x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),设M(m,),N(n,n﹣2),而O(0,0),∵四边形OCNM是平行四边形,∴CM、ON为对角线,它们的中点重合,,解得或,∴M(,)或(﹣,﹣);【点评】本题考查一次函数与反比例函数的综合应用,涉及待定系数法,平行四边形性质及应用等,解题的关键是熟练掌握待定系数法,能根据平行四边形对角线互相平分列方程组解决问题.25.【分析】(1)设树苗基地每捆A种树苗的价格是x元,则市场上每捆A种树苗的价格是x元,利用数量=总价÷单价,结合用300元在市场上购买的A种树苗比在树苗基地购买的少2捆,可列出关于x的分式方程,解之经检验后,即可得出结论;(2)设购买m捆A种树苗,则购买(100﹣m)捆B种树苗,根据购买A种树苗的捆数不超过B种树苗的捆数,可列出关于m的一元一次不等式,解之可得出m的取值范围,设本次购买共花费w元,利用总价=单价×数量,可找出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设树苗基地每捆A种树苗的价格是x元,则市场上每捆A种树苗的价格是x元,根据题意得:﹣=2,解得:x=30,经检验,x=30是所列方程的解,且符合题意,答:树苗基地每捆A种树苗的价格是30元;(2)设购买m捆A种树苗,则购买(100﹣m)捆B种树苗,根据题意得:m≤100﹣m,解得:m≤50.设本次购买共花费w元,则w=30×0.8m+40×0.8(100﹣m),即w=﹣8m+3200,∵﹣8<0,∴w随m的增大而减小,∴当m=50时,w取得最小值,最小值=﹣8×50+3200=2800(元).答:本次购买最少花费2800元钱.【点评】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w关于m的函数关系式.26.【分析】【问题初探】根据已知得出,进而可得∠DCB=∠DAC,根据圆内接四边形对角互补,进而得出∠EAD=∠DCB,等量代换即可得证;【拓展研究】在AD上取点C′,使得AC′=BC,证明△MAC′≌△MBC(SAS),得出MC′=MC,根据等腰三角形的性质得出C′D=CD,进而即可得证;【解决问题】过点A作AH⊥CD于点H,得出A为的中点,根据(2)的结论可得,进而根据,可得,由勾股定理进一步求解即可.【解答】【问题初探】证明:∵DB=DC,∴,∴∠DCB=∠DAC,∴∠EAD+∠DAB=180°,∠DCB+∠DAB=180°,∴∠EAD=∠DCB,∴∠EAD=∠DAC;【拓展研究】证明:在AD上取点C′,使得AC′=BC,连接AM、CM、C′M、BM,如图2,∵M是的中点,∴,则AM=BM,∴,∴∠MAC′=∠MBC,又∵MA=MB,AC′=BC,∴△MAC′≌△MBC(SAS),∴MC′=MC,∵MD⊥AC,∴C′D=CD,∴AD=AC′+C′D=CD+BC,【解决问题】解:过点A作AH⊥CD于点H,如图3,∵AB=AC,∴A为的中点,由(2)可得CH=DH+DB∵△BDC的周长为,BC=4,∴,∴,∴,∴,∴.【点评】本题考查了同弧所对的圆周角相等,圆内接四边形对角互补,全等三角形的性质与判定,等腰三角形的性质,解直角三角形,熟练掌握以上知识是解题的关键.27.【分析】(1)由待定系数法即可求解;(2)由△APC面积=PH×AO=2×|(﹣t2+4t﹣6﹣t+6)|=|﹣t2+3t|,即可求解;(3)以C、P、Q为顶点的三角形与△OBC相似时,tan∠PCQ=或3,即可求解.【解答】解:(1)由抛物线的表达式知,其对称轴为直线x=4,∵AB=4,则点A、B的坐标分别为:(2,0)、(6,0);则抛物线的表达式为:y=a(x﹣2)(x﹣6)=a(x2﹣8x+12)=ax2﹣8ax+10a﹣1,则12a=10a﹣1,解得:a=﹣,则抛物线的表达式为:y=﹣x2+4x﹣6;(2)由抛物线的表达式知,点C(0,﹣6),由点A、C的坐标得,直线AC的表达式为:y=x﹣6,设PQ交AC于点H,设点P(t,﹣t2+4t﹣6),则点H(t,t﹣6),则△APC面积=PH×AO=2×|(﹣t2+4t﹣6﹣t+6)|=|﹣t2+3t|,当点P在x轴上方时,则△APC面积=﹣t2+3t,∵<0,故△APC面积有最大值,当t=3时,△APC面积最大值为:;当点P在x轴上方时,则△APC面积=t2﹣3t,∵6<t≤8,在t>3时,△APC面积随t的增大而增大,∴当t=8时,△APC面积最大,最大值为24,综上,△APC面最大值24.(3)存在,理由:设点P(t,﹣t2+4t﹣6),则点Q(t,0),在Rt△BCO中,tan∠OBC==,则以C、P、Q为顶点的三角形与△OBC相似时,tan∠PCQ=或3,即tan∠PCQ===3或,解得:t=2(舍去)或14或或.【点评】本题考查的是二次函数综合运用涉及到三角形相似、解直角三角形、面积的计算等知识,分类求解是解题的关键。

2020年江苏省苏州市姑苏区五校联考中考数学一模试卷(解析版)

2020年江苏省苏州市姑苏区五校联考中考数学一模试卷(解析版)

2020年江苏省苏州市姑苏区五校联考中考数学一模试卷一.选择题(共10小题)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列运算正确的是()A.m•m=2m B.(mn)3=mn3C.(m2)3=m6D.m6÷m2=m3 3.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分4.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:15.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定6.小明在学了尺规作图后,通过“三弧法“作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是()A.∠A=60°B.△ACD是直角三角形C.BC=CD D.点B是△ACD的外心7.如图,在一笔直的海岸线l上有相距3km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是()km.A.B.C.D.28.如图,点A、B、C、D、E在⊙O上,的度数为60°,则∠B+∠D的度数是()A.180°B.120°C.100°D.150°9.对于抛物线y=ax2+2ax,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2二.填空题(共8小题)11.若在实数范围内有意义,则x的取值范围是.12.分解因式:4x2﹣1=.13.2019年岁末,新冠病毒肆虐中国,极大的危害了人民群众的生命健康,据统计,截至2020年3月28日23时中国累计确诊人数约为83000人,83000用科学记数法可表示为.14.已知圆锥的母线长为6,侧面积为12π,则圆锥的半径长为.15.如图,点E在正方形ABCD的边AB上,以CE为边向正方形ABCD外部作正方形CEFG,连接AF,P、Q分别是AF、AB的中点,连接PQ.若AB=6,CE=4,则PQ=.16.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.17.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为.18.如图,在△ABC中,AB=AC=10,BC=8,D为边AC上一动点(C点除外),把线段BD绕着点D沿着顺时针的方向旋转90°至DE,连接CE,则△CDE面积的最大值为.三.解答题(共10小题)19.计算:(﹣1)0+|﹣3|﹣.20.解不等式组:,并把解集在数轴上表示出来.21.先化简,再求值:(),其中x=.22.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.23.某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班学生人数有人;(2)将条形统计图补充完整;(3)若该校共有学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.24.我市某中学计划购进若干个甲种规格的排球和乙种规格的足球.如果购买20个甲种规格的排球和15个乙种规格的足球,一共需要花费2050元;如果购买10个甲种规格的排球和20个乙种规格的足球,一共需要花费1900元.(1)求每个甲种规格的排球和每个乙种规格的足球的价格分别是多少元?(2)如果学校要购买甲种规格的排球和乙种规格的足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个乙种规格的足球?25.如图,在平面直角坐标系中,已知△ABC,∠ABC=90°,顶点A在第一象限,B、C 在x轴的正半轴上(C在B的右侧),BC=3,AB=4.若双曲线y=(k≠0)交边AB 于点E,交边AC于中点D.(1)若OB=2,求k;(2)若AE=AB,求直线AC的解析式.26.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,点F为AC延长线上一点,且∠BAC=2∠CDF.(1)求证:DF是⊙O的切线;(2)连接DE,求证:DE=DB;(3)若cos B=,CF=2,求⊙O的半径.27.如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与点C和点A重合),连接PB,过点P作PF⊥PB交射线DA于点F,连接BF.已知AD=3,CD=3,设CP 的长为x.(1)线段PB的最小值,当x=1时,∠FBP=;(2)如图,当动点P运动到AC的中点时,AP与BF的交点为G,FP的中点为H,求线段GH的长度;(3)当点P在运动的过程中:①试探究∠FBP是否会发生变化?若不改变,请求出∠FBP大小;若改变,请说明理由;②当x为何值时,△AFP是等腰三角形?28.如图,二次函数y=﹣x2+bx+8的图象与x轴交于点A、B,与y轴交于点C,点B的坐标为(2,0),点D(0,2)在y轴上,连接AD.(1)b=;(2)若点P是抛物线在第二象限上的点,过点P作PF⊥x轴,垂足为F,PF与AD交于点E.是否存在这样的点P,使得PE=7EF?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P在抛物线上,且点P的横坐标大于﹣4,过点P作PH⊥AD,垂足为H,直线PH与x轴交于点K,且S△HKA=S△PHA,求点P的坐标.2020年江苏省苏州市姑苏区五校联考中考数学一模试卷参考答案与试题解析一.选择题(共10小题)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:B.2.下列运算正确的是()A.m•m=2m B.(mn)3=mn3C.(m2)3=m6D.m6÷m2=m3【分析】根据同底数幂的乘法,积的乘方等于乘方的积,幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、幂的乘方底数不变指数相乘,故C符合题意;D、同底数幂的除法底数不变指数相减,故D不符合题意;故选:C.3.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.4.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:1【分析】可证明△DFE∽△BF A,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BF A,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BF A=9:16.故选:B.5.将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.6.小明在学了尺规作图后,通过“三弧法“作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是()A.∠A=60°B.△ACD是直角三角形C.BC=CD D.点B是△ACD的外心【分析】根据等边三角形的判定和性质,直角三角形的判定和性质,三角形的外心等知识一一判断即可.【解答】解:由作图可知:AB=BC=AC,∴△ABC是等边三角形,∴∠A=60°,∵BA=BC=BD,∴△ACD是直角三角形,∴点B是△ACD的外心.故选:C.7.如图,在一笔直的海岸线l上有相距3km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是()km.A.B.C.D.2【分析】过点C作CD⊥AB于点D,然后根据含30度角的直角三角形的性质即可求出答案.【解答】解:过点C作CD⊥AB于点D,根据题意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°,∴∠ACB=∠CBD﹣∠CAD=30°,∴∠CAB=∠ACB,∴BC=AB=3km,在Rt△CBD中,∴CD=BC•sin60°=3×(km).∴船C到海岸线l的距离是km.故选:C.8.如图,点A、B、C、D、E在⊙O上,的度数为60°,则∠B+∠D的度数是()A.180°B.120°C.100°D.150°【分析】连接AB、DE,先求得∠ABE=∠ADE=25°,根据圆内接四边形的性质得出∠ABE+∠EBC+∠ADC=180°,即可求得∠EBC+∠ADC=150°.【解答】解:连接AB、DE,则∠ABE=∠ADE,∵的度数为60°,∴∠ABE=∠ADE=30°,∵点A、B、C、D在⊙O上,∴四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∴∠ABE+∠EBC+∠ADC=180°,∴∠EBC+∠ADC=180°﹣∠ABE=180°﹣30°=150°.故选:D.9.对于抛物线y=ax2+2ax,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据当x=1时,y=a+2a=3a>0,确定a>0,求出顶点坐标,即可求解.【解答】解:当x=1时,y=a+2a=3a>0,函数的对称轴为:x=﹣1,顶点纵坐标为:0﹣=﹣a<0,故顶点的横坐标和纵坐标都为负数,故选:C.10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E,由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a,∴BC•DE=AD•DE=a•DE=a,∴DE=2,当点F从D到B时,用s,∴BD=,Rt△DBE中,BE===1,∵ABCD是菱形,∴EC=a﹣1,DC=a,Rt△DEC中,a2=22+(a﹣1)2,解得a=,故选:A.二.填空题(共8小题)11.若在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.12.分解因式:4x2﹣1=(2x+1)(2x﹣1).【分析】直接利用平方差公式分解因式即可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:4x2﹣1=(2x+1)(2x﹣1).故答案为:(2x+1)(2x﹣1).13.2019年岁末,新冠病毒肆虐中国,极大的危害了人民群众的生命健康,据统计,截至2020年3月28日23时中国累计确诊人数约为83000人,83000用科学记数法可表示为8.3×104.【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【解答】解:83000=8.3×104,故答案为:8.3×104.14.已知圆锥的母线长为6,侧面积为12π,则圆锥的半径长为2.【分析】设圆锥的底面圆的半径为r,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,所以根据扇形的面积公式得到×2πr×6=12π,然后解关于r的方程即可.【解答】解:设圆锥的底面圆的半径为r,根据题意得×2πr×6=12π,解得r=2,即圆锥的底面圆的半径为2.故答案为2.15.如图,点E在正方形ABCD的边AB上,以CE为边向正方形ABCD外部作正方形CEFG,连接AF,P、Q分别是AF、AB的中点,连接PQ.若AB=6,CE=4,则PQ=.【分析】连接BF,则PQ为△ABF的中位线,根据勾股定理求出BF长即可求出PQ的长.【解答】解:连接BF,∵正方形ABCD和正方形CEFG中,AB=6,CE=4,∴GF=GC=4,BC=6,∴BG=GC+BC=4+6=10,∴BF=,∵P、Q分别是AF、AB的中点,∴PQ=BF=.故答案.16.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是60≤v≤80.【分析】先根据函数图象求出甲车的速度,再根据甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,乙车9点出发,要在10点至11点之间(含10点和11点)追上甲车列出不等式组,求解即可.【解答】解:根据图象可得,甲车的速度为120÷3=40(千米/时).由题意,得,解得60≤v≤80.故答案为60≤v≤80.17.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为.【分析】连接AF,由矩形的性质得AD∥BC,AD=BC,由平行线的性质得∠AEF=∠GFE,由折叠的性质得∠AFE=∠GFE,AF=FG,推出∠AEF=∠AFE,则AF=AE,AE =FG,得出四边形AFGE是平行四边形,则AF∥EG,得出∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB==,即可得出结果.【解答】解:连接AF,如图所示:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折叠的性质可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四边形AFGE是平行四边形,∴AF∥EG,∴∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB===,∴cos∠EGF=,故答案为:.18.如图,在△ABC中,AB=AC=10,BC=8,D为边AC上一动点(C点除外),把线段BD绕着点D沿着顺时针的方向旋转90°至DE,连接CE,则△CDE面积的最大值为32.【分析】如图,过点E作EF⊥AC于F,作BH⊥AC于点H,由勾股定理可求可求AH =8,由旋转的性质可求BD=DE,∠BDE=90°,由AAS可证△BDH≌△DEF,可得EF=DH,由三角形面积公式和二次函数的性质可求解.【解答】解:如图,过点E作EF⊥AC于F,作BH⊥AC于点H,∴∠EFD=∠BHD=90°,∵BH2=BC2﹣CH2,BH2=AB2﹣AH2,∴320﹣(10+AH)2=100﹣AH2,∴AH=8,∵将线段BD绕D点顺时针旋转90°得到线段ED,∴BD=DE,∠BDE=90°,∴∠BDF+∠EDF=90°,且∠EAF+∠AEF=90°,∴∠AEF=∠BDF,又∵∠EFD=∠BHD=90°,BD=DE,∴△BDH≌△DEF(AAS),∴EF=DH,∵△CDE面积=CD×EF=×CD×(16﹣CD)=﹣(CD﹣8)2+32,∴当CD=8时,△CDE面积的最大值为32,故答案为:32.三.解答题(共10小题)19.计算:(﹣1)0+|﹣3|﹣.【分析】原式利用零指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+3﹣2=2.20.解不等式组:,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣1≤5,得:x≤3,解不等式1﹣<,得:x>﹣2,则不等式组的解集为﹣2<x≤3,将不等式组的解集表示在数轴上如下:21.先化简,再求值:(),其中x=.【分析】先算括号里面的,再算除法,把x的值代入进行计算即可.【解答】解:原式=•=•=•=,当x=2+时,原式==﹣.22.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.【分析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA,利用三角形外角的性质可求得∠AEB,再利用全等三角形的性质可求得∠BDC.【解答】(1)证明:∵∠ABC=90°,∴∠DBC=90°,在△ABE和△CBD中∴△ABE≌△CBD(SAS);(2)解:∵AB=CB,∠ABC=90°,∴∠BCA=45°,∴∠AEB=∠CAE+∠BCA=30°+45°=75°,∵△ABE≌△CBD,∴∠BDC=∠AEB=75°.23.某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班学生人数有50人;(2)将条形统计图补充完整;(3)若该校共有学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【分析】(1)利用B的人数和所占的百分比计算出全班人数;(2)利用C、E的百分比计算出C、E的人数,则用全班人数分别减去B、C、D、E的人数得到A的人数;(3)根据样本估计总体,用40%表示全校学生对足球感兴趣的百分比,然后用3500乘以40%即可得到选修足球的人数;(4)先利用树状图展示所有20种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.【解答】解:(1)该班学生人数有8÷16%=50(人),故答案为:50;(2)C项目人数为50×24%=12(人),E项目的人数为50×8%=4(人),则A项目的人数为50﹣(8+12+6+4)=20(人),补全图象如下:(3)3500×=1400(人),答:估计有1400人选修足球;(4)画树状图:共有20种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占6种,所以选出的2人恰好1人选修篮球,1人选修足球的概率==24.我市某中学计划购进若干个甲种规格的排球和乙种规格的足球.如果购买20个甲种规格的排球和15个乙种规格的足球,一共需要花费2050元;如果购买10个甲种规格的排球和20个乙种规格的足球,一共需要花费1900元.(1)求每个甲种规格的排球和每个乙种规格的足球的价格分别是多少元?(2)如果学校要购买甲种规格的排球和乙种规格的足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个乙种规格的足球?【分析】(1)设每个甲种规格的排球的价格为x元,每个乙种规格的足球的价格为y元,根据“如果购买20个甲种规格的排球和15个乙种规格的足球,一共需要花费2050元;如果购买10个甲种规格的排球和20个乙种规格的足球,一共需要花费1900元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设学校购买m个乙种规格的足球,则购买(50﹣m)个甲种规格的排球,根据总价=单价×数量结合预算总费用不超过3210元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设每个甲种规格的排球的价格为x元,每个乙种规格的足球的价格为y 元,依题意,得:,解得:.答:每个甲种规格的排球的价格为50元,每个乙种规格的足球的价格为70元.(2)设学校购买m个乙种规格的足球,则购买(50﹣m)个甲种规格的排球,依题意,得:50(50﹣m)+70m≤3210,解得:m≤35.又∵m为整数,∴m的最大值为35.答:该学校至多能购买35个乙种规格的足球.25.如图,在平面直角坐标系中,已知△ABC,∠ABC=90°,顶点A在第一象限,B、C 在x轴的正半轴上(C在B的右侧),BC=3,AB=4.若双曲线y=(k≠0)交边AB 于点E,交边AC于中点D.(1)若OB=2,求k;(2)若AE=AB,求直线AC的解析式.【分析】(1)当OB=2=m时,点D(,2),即可求解;(2)AE=AB,则EB=AB=,故点E(m,),而点E、D都在反比例函数上,故k=2×(m+)=m×,求得m=6,进而求出点A、C的坐标,即可求解.【解答】解:设点B(m,0),则点C(m+3,0),点A(m,4),由中点公式得,点D(m+,2);(1)当OB=2=m时,点D(,2),将点D的坐标代入反比例函数表达式得:k=×2=7;(2)AE=AB,则EB=AB=,故点E(m,),∵点E、D都在反比例函数上,故k=2×(m+)=m×,解得:m=6,过点A、C的坐标分别为:(6,4)、(9,0),设直线AC的表达式为:y=kx+b,则,解得,故直线AC的表达式为:y=﹣x+12.26.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,点F为AC延长线上一点,且∠BAC=2∠CDF.(1)求证:DF是⊙O的切线;(2)连接DE,求证:DE=DB;(3)若cos B=,CF=2,求⊙O的半径.【分析】(1)连接AD,OD,根据圆周角定理得到∠ADC=90°,求得∠ADO+∠CDO =90°,根据等腰三角形的性质得到∠BAD=∠CAD,等量代换得到∠CAD=∠CDF,于是得到结论;(2)根据等腰三角形的性质得到∠B=∠ACD,等量代换得到∠BED=∠B,于是得到DE=DB;(3)根据相似三角形的性质得到==,设CD=k,AC=3k,得到AD==2k,求得AF=16,于是得到结论.【解答】(1)证明:连接AD,OD,∵AC为⊙O的直径,∴∠ADC=90°,∴∠ADO+∠CDO=90°,∵AB=AC,∴∠BAD=∠CAD,∴∠BAC=2∠CAD,∵∠BAC=2∠CDF,∴∠CAD=∠CDF,∴∠ODC+∠CDF=90°,∴∠ODF=90°,∴DF是⊙O的切线;(2)证明:∵AB=AC,∴∠B=∠ACD,∵∠BED=∠ACD,∴∠BED=∠B,∴DE=DB;(3)解:∵∠DAC=∠CDF,∠F=∠F,∴△ADF∽△DCF,∴==,∵cos B=cos ACB=,∴设CD=k,AC=3k,∴AD==2k,∴===,∵CF=2,∴DF=4,∴AF=16,∴AC=AF﹣CF=14,∴AO=OC=7,∴⊙O的半径是7.27.如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与点C和点A重合),连接PB,过点P作PF⊥PB交射线DA于点F,连接BF.已知AD=3,CD=3,设CP 的长为x.(1)线段PB的最小值,当x=1时,∠FBP=30°;(2)如图,当动点P运动到AC的中点时,AP与BF的交点为G,FP的中点为H,求线段GH的长度;(3)当点P在运动的过程中:①试探究∠FBP是否会发生变化?若不改变,请求出∠FBP大小;若改变,请说明理由;②当x为何值时,△AFP是等腰三角形?【分析】(1)根据勾股定理求出AC,根据垂线段最短得到BP⊥AC时,线段PB的值最小,根据三角形的面积公式求出BP,根据相似三角形的性质、正切的定义求出∠FBP;(2)证明△ABP为等边三角形,得到∠ABP=60°,证明Rt△ABF≌Rt△PBF,得到∠ABF=∠PBF=30°,AP⊥BF,根据直角三角形的性质求出GH;(3)分F A=FP、AP=AF、P A=PB三种情况,根据等腰三角形的性质解答即可.【解答】解:(1)∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==6,当BP⊥AC时,线段PB的值最小,S△ABC=×AB×BC=×AC×BP,即3×3=BP×6,解得,BP=,过点P作PM⊥交AD于M,交BC于N,则PN∥AB,∴△CPN∽△CAB,∴==,即==,解得,PN=,CN=,∴PM=3﹣=,BN=3﹣=,∵∠BPF=90°,∠PMF=90°,∴△FMP∽△PNB,∴==,∴tan∠PBF==,∴∠FBP=30°,故答案为:;30°;(2)在Rt△ABC中,AP=PC,∴BP=BC=3,∴BA=BP=AP,∴△ABP为等边三角形,∴∠ABP=60°,在Rt△ABF和Rt△PBF中,,∴Rt△ABF≌Rt△PBF(HL),∴∠ABF=∠PBF=30°,AP⊥BF,∴PF=BP•tan∠BPF=,在Rt△FGP中,FH=HP,∴GH=PF=;(3)①∠FBP=30°,理由如下:由(1)可知,△FMP∽△PNB,∴==,∴tan∠PBF==,∴∠FBP=30°;②当F A=FP时,BA=BP,∴△ABP为等边三角形,∴AP=AB=3,∴x=CP=3,当P A=PF时,∠APF=120°>90°,不合题意;当AP=AF时,∠CBP=∠CPB=75°,∴∠CBP=∠CPB=75°,∴CP=CB=3,即x=3,综上所述,x=3或3时,△AFP是等腰三角形.28.如图,二次函数y=﹣x2+bx+8的图象与x轴交于点A、B,与y轴交于点C,点B的坐标为(2,0),点D(0,2)在y轴上,连接AD.(1)b=﹣2;(2)若点P是抛物线在第二象限上的点,过点P作PF⊥x轴,垂足为F,PF与AD交于点E.是否存在这样的点P,使得PE=7EF?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P在抛物线上,且点P的横坐标大于﹣4,过点P作PH⊥AD,垂足为H,直线PH与x轴交于点K,且S△HKA=S△PHA,求点P的坐标.【分析】(1)把点B坐标代入二次函数解析式即求得b的值.(2)设出P点坐标,求出直线AD的解析式,进而求出线段PE,EF的长度,根据所给关系列出等式,即可求出P点坐标;(3)延长AD交抛物线于T,过P作PF⊥x轴于F,交AD于E,根据同角的余角相等易证cos∠F AD=cos∠EPH=,进而求得PH=PE,根据已知的面积的关系式可求得PK=PH,进而求得PE,PF关系,设P点横坐标为t,可用t表示PE,PF,可列得关于t的方程,求得的t值即可得出答案.【解答】解:(1)∵二次函数y=﹣x2+bx+8的图象与x轴交于点B(2,0),∴﹣4+2b+8=0,解得:b=﹣2,故答案为:﹣2.(2)∵二次函数y=﹣x2﹣2x+8的图象与x轴交于点A、B,∴y=0时,x=2或﹣4,∴A(﹣4,0),设直线AD的解析式为y=kx+m,∴,解得:,∴直线AD的解析式为y=,设P(t,﹣t2﹣2t+8),则E,∴PE=,EF=,∵PE=7EF,∴,解得:t1=﹣2,t2=﹣4(舍去),∴P(﹣2,8).故存在这样的点P,使得PE=7EF,点P的坐标为(﹣2,8);(3)如图,延长AD交抛物线于T,过点P作PF⊥x轴于点F,交AD于点E,①若点P在直线AT上方,∵OA=4,OD=2,∠AOD=90°,∴AD==2,∵AH⊥PH,∴∠F AD+∠AEF=90°,∠EPH+∠PEH=90°,∠AEF=∠PEH,∴∠F AD=∠EPH,∴cos∠F AD===cos∠EPH=,∴PH=,∴cos,∴PK=PF,∵,∴,∴PK=PH,∴,∴,设P(t,﹣t2﹣2t+8),则5(﹣t2﹣2t+8)=6(),解得t=﹣1或t=﹣4(舍去),∴P(﹣1,9).②若P在直线AT的下方,且在x轴上方,此时S△HKA>S△PHA,不合题意,舍去.③若P在x轴下方,可得2PE=5PF,∴,解得:t=或t=﹣4(舍去),∴P(,﹣).综合以上可得,满足条件的点P的坐标为(﹣1,9)或(,﹣).。

2020年江苏省苏州市中考数学模拟检测试卷附解析

2020年江苏省苏州市中考数学模拟检测试卷附解析

2020年江苏省苏州市中考数学模拟检测试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.圆的切线( )A .垂直于半径B .平行于半径C .垂直于经过切点的半径D .以上都不对2.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。

其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。

市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( )A .31B .32C .61D .91 3.如图是一束从教室窗户射入的平行的光线的平面示意图,光线与地面所成的∠AMC=30°,在教室地面的影长 MN=23m ,若窗户的下檐到教室地面的距离 BC=lm ,则窗户的上檐到教室地面的距离AC 为( )A .23mB . 3 mC . 3.2 mD . 332m4.在锐角三角形ABC 中,若sinA=22,∠B=750,则tanC=( ) A 3 B .33 C .22 D .15.如图,D 是∠BAC 内部一点,DE ⊥AB ,DF ⊥AC ,DE=DF ,则下列结论不正确...的是( )A .AE=AFB .∠DAE=∠DAFC .△ADE ≌△ADFD .DE=12AE6.下列事件中,不可能发生的是()A.异号两数相加和为正数B.从 1、3、5、7、.9中任取一个数是偶数C.任意抛掷一只纸杯,杯口朝上D.任意投掷一枚正方体骰子,朝上一面的数字小于77.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,•除颜色外其他全部相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的概率为15%和45%,则口袋中白色球的个数很可能是()A.6 B.16 C.18 D.248.下面给出的是一些产品的商标图案,从几何图形的角度看(不考虑文字和字母),既是轴对称图形又能旋转180°后与原图重合的是()9.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x·40%×80%=240 B.x(1+40%)×80%=240C.240×40%×80%=x D.x·40%=240×80%10.某市出租车的收费标准是:起步价7元(即行驶距离不超过3 km都需付7元车费),超过3 km以后,每增加l km,加收2.4元(不足l km按1 km计).某人乘这种出租车从甲地到乙地共付车费19元,设此人从甲地到乙地的路程是x(km),那么x的最大值是()A.11 B.8 C.7 D.511.某一天,早晨的气温是-3℃,中午的气温比早晨上升了8℃,晚上的气温比中午下降了9℃,那么晚上的气温是()A.1℃B.-4℃C.-12℃D.-2℃二、填空题12.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了,这是因为.13.如图,⊙O 内切△ABC 于D、E、F点,AB=7,BC= 5,BE=2,则 AC= .14.从-2,-1,1,2这四个数中任取两个不同的数作为一次函数y=kx+b的系数k,b,所得一次函数)y=kx+b的图象不经过第四象限的概率是 .15.已知点P(x-1,x+3),那么点P不可能在第象限.16.若1x a=+是不等式1122x-<的解,则a.17.2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的(填“平均数”或“中位数”或“众数”).18.在△ABC中AB=3,BC=7则AC的取值范围是.4 <AC<1019.在一幅扇形统计图中,所有扇形的百分比之和是 .三、解答题20.根据三视图求几何体的表面积,并画出物体的展形图.21.如图,晚上,小亮在广场上乘凉.图中线段AB表示站在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.⑴请你在图中画出小亮在照明灯(P)照射下的影子;⑵如果灯杆高PO=12m,小亮的身高AB=1.6m,小亮与灯杆的距离BO=13m,请求出小亮影子的长度.B C A E D22.如图,∠PAQ 是直角,⊙O 与 AP 相切于点 T ,与 AQ 交于B 、C 两点.(1)BT 是否平分∠OBA ?说明你的理由.(2)若已知 AT=4,弦 BC=6,试求⊙O 的半径R.23.二次函数 y=ax 2+c(a,c 为已知常数),当x 取值x 1,x 2时(x 1≠x 2),函数值相等,求当x =x 1+x 2时函数的值24.已知: 如图, 在梯形ABCD 中, AD ∥BC, AB=CD, E 是底边BC 的中点, 连接AE 、DE. 求证: △ADE 是等腰三角形.25.为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5 线路 弯路(宁波一杭州一上海) 直路(宁波跨海大桥一上海)路程316 km196 km过路费140元180元(1)若小车的平均速度为80 km/h,则小车走直路比走弯路节省多少时间?(2)若小车每公里的油耗为x(L),汽油价格为5.80元/升,问x为何值时,走哪条线路的总费用较少(总费用=过路费+油耗费)?(3)据杭州湾跨海大桥管理部门统计:从宁波经跨海大桥到上海的小车中,其中五类不同油耗的小车平均每小时通过的车辆数,得到如图所示的频数分布直方图,请你估算1天内这五类小车走直路比走弯路共节省多少升汽油?26.如图,菱形ABCD中,E,F是BC,DC上的点,∠EAF=∠B=60°=∠AEF.求证:BE=CF.27.某工厂有甲、乙两个相邻的长方体的水池,甲池的水均匀地流人乙池;如图,是甲、乙两个水池水的深度y(m)与水流动时间t(h)的函数关系的图象.(1)分别求两个水池水的深度y(m)与水流动时间x(h)的函数解析式,并指出变量x的取值范围;(2)求水流动几小时后,两个水池的水深度相同.28.某班组织一次数学测试,全班学生分为两组,这两组成绩(单位:分)的分布情况如下图所示.(1)全班学生数学成绩的众数是分.全班学生数学成绩为众数的有人,全班学生数学成绩的中位数是分;(2)分别计算这两个小组超过全班数学成绩中位数的人数占全班人数的百分比.29.解下列程组:(1)245x yx y+=⎧⎨-=⎩(2)⎪⎩⎪⎨⎧=-+=+.11)1(2,231yxyx30.如果想剪出如图所示的图案,你怎样剪?设法使剪的次数尽可能少.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.B4.A5.D6.B7.B8.C9.B10.B11.B二、填空题12.盲区增大13.814. 1615. 四16.<517.众数18.19.1三、解答题20.由三视图可知此几何体是圆锥和圆柱的组合体,所以展开图如解图所示,20102552225252S ππππ=⨯++⨯+表()21.解:⑴连结PA 并延长交地面于点C ,线段BC 就是小亮在照明灯(P )照射下的影子. ⑵在△CAB 和△CPO 中,∵∠C=∠C ,∠ABC=∠POC=90°,∴△CAB ∽△CPO ∴CO CB PO AB =,∴BCCB +=13126.1,∴BC=2,∴小亮影子的长度为2m . 22.(1) BT 平分∠OBA .理由如下:连结 OT ,则 OT ⊥AP.∵∠PAQ=90°,∴∠PAQ+∠OTA=180°∴OT ∥AQ ,∴∠OTB=∠ABT ,又∠OTB=∠OBT ,∴∠ABT=∠0BT ,∴BT 平分∠0BA(2)作 OE ⊥BC 于E 点,则 BE=3,四边形 AEOT 是矩形,∴ OE=AT=4, ∴22435R =+=23.ax 12+c =ax 22+c ,则x 1+x 2=0,所以y =c .24.证: ∵ABCD 是等腰梯形 ,∴∠B=∠C, AB=CD∵E 是BC 中点 ,∴BE=CE ,∴△ABE ≌△DCE,∴AE=DE∴△AED 是等腰三角形25.(1)32h (2)①当587x =时,小车走直路的总费用与走弯路的总费用相等;③当587x <时,小车走弯路的总费用较少;③当587x >时,小车走直路的总费用较少 (3) (316-196)×(100×0.06+200×0.08+500×0.10+500×0.12+100×0.18)×24=432000 L26.连结AC ,证△BAE ≌△CAF27.(1)243y x =-+甲(0≤x ≤6),123y x =+乙(0≤x ≤6);(2)2小时 28.(1)95,20,92.5;(2)第一组超过全班数学成绩中位数的人数占全班人数的百分比为111100%24%50+⨯=,第二组超过全班数学成绩中位数的人数占全班人数的百分比为94100%26%50+⨯=. 29.(1)⎩⎨⎧-==23y x ,(2)⎩⎨⎧==15y x 30.由于该图是轴对称图形,所以先把纸对折,然后沿折痕把对称轴的一侧图画上,再进行剪。

江苏省苏州市昆山市2020年中考数学一模试卷(含解析)

江苏省苏州市昆山市2020年中考数学一模试卷(含解析)

江苏省苏州市昆山市2020年中考数学一模试卷一、选择题(每题3分,共30分,答案直接填在答题卡相应位置上)1.下列各数中,相反数是的是()A.﹣B.C.﹣2 D.22.下列运算正确的是()A.a3+a3=2a6B.a6÷a﹣3=a3C.a3•a2=a6D.(﹣2a2)3=﹣8a63.世界卫生组织通报说,沙特阿拉伯报告新增5例中东呼吸系统综合征冠状病毒(新型冠状病毒)确诊病例.全球新型冠状病毒确诊病例已达176例,其中死亡74例.冠状病毒颗粒的直径60﹣200nm,平均直径为100nm,新型冠状病毒直径为178nm,呈球形或椭圆形,具有多形性.如果1nm=10﹣9米,那么新型冠状病毒的半径约为()米A.1.00×10﹣7 B.1.78×10﹣7 C.8.90×10﹣8D.5.00×10﹣8 4.如图,AB∥CD,EF⊥BD垂足为F,∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°5.如图,四边形ABCD是平行四边形,用直尺和圆规作∠BAD的平分线AG交BC于点E,若AB=5,BF=6,则AE的长为()A.8 B.10 C.11 D.126.下列立体图形中,主视图和左视图不一样的是()A.B.C.D.7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25 B.20 C.15 D.108.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2D.2πm29.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>010.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=﹣与一次函数y=﹣bx+c 在同一坐标系中的大致图象是()A.B.C.A.D.二、填空题(每题3分,共24分,答案直接填在答题卡相应位置上)11.(3分)若式子在实数范围内有意义,则x的取值范围是.12.(3分)分解因式:x3﹣x=.13.(3分)底面周长为8πcm,母线长为5cm的圆锥的侧面积为cm2.14.(3分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.15.(3分)设a=,b=2+,c=,则a、b、c从小到大的顺序是.16.(3分)如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF 为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是.17.(3分)如图,点A、B在反比例函数y=(k≠0)的图象上,过点A、B作x轴的垂线,垂足分别为M.N,延长线段AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积为6,k的值为.18.(3分)如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH.若正方形的边长为4,则线段DH长度的最小值是.三、解答题(共76分)19.(4分)(1)计算:(π)0+()﹣2+﹣9tan30°;(2)解方程:+1=.20.(5分)先化简,再求值:,其中a是方程x2﹣x=6的根.21.(5分)解不等式组:,并写出该不等式组的整数解.22.(7分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE的高度,他们在这棵古树的正前方一平房顶A点处测得古树顶端D的仰角为30°,在这棵古树的正前方C处,测得古树顶端D的仰角为60°,在A点处测得C点的俯角为30°.已知BC为4米,且B、C、E三点在同一条直线上.(1)求平房AB的高度;(2)请求出古树DE的高度(根据以上条件求解时测角器的高度忽略不计)23.(6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图所示,请你根据图中的信息回答问题.(其中社区服务占14%,社会调查占16%)(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人?(2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名?24.(6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.25.(8分)如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数y=(x>0)的图象经过点B、D.且AO:BC=3:2.(1)求点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点为A′,试判断点A′是否恰好落在直线BD上,为什么?26.(7分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x件.(1)当x=12时,小丽购买的这种服装的单价为;(2)小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?27.(11分)如图,在直角梯形ABCD中,AB∥CD,∠C=90°,以AD为直径的⊙O与BC相切于点E,交CD于点F,连接DE.(1)证明:DE平分∠ADC;(2)已知AD=4,设CD的长为x(2<x<4).①当x=2.5时,求弦DE的长度;②当x为何值时,DF•FC的值最大?最大值是多少?28.(13分)如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点A(0,4),与x轴负半轴交于B,与正半轴交于点C(8,0),且∠BAC=90°.(1)求该二次函数解析式;(2)若N是线段BC上一动点,作NE∥AC,交AB于点E,连结AN,当△ANE面积最大时,求点N的坐标;(3)若点P为x轴上方的抛物线上的一个动点,连接PA、PC,设所得△PAC的面积为S.问:是否存在一个S的值,使得相应的点P有且只有2个?若有,求出这个S的值,并求此时点P的横坐标;若不存在,请说明理由.2020年江苏省苏州市昆山市三校联考中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共30分,答案直接填在答题卡相应位置上)1.下列各数中,相反数是的是()A.﹣B.C.﹣2 D.2【分析】根据只有符号不同的两个数是互为相反数,求出的相反数,然后选择即可.解:∵的相反数是,∴相反数等于的是.故选:B.2.下列运算正确的是()A.a3+a3=2a6B.a6÷a﹣3=a3C.a3•a2=a6D.(﹣2a2)3=﹣8a6【分析】根据合并同类项法则、同底数幂相除、同底数幂相乘及幂的乘方解:A、a3+a3=2a3,此选项错误;B、a6÷a﹣3=a9,此选项错误;C、a3•a2=a5,此选项错误;D、(﹣2a2)3=﹣8a6,此选项正确;故选:D.3.世界卫生组织通报说,沙特阿拉伯报告新增5例中东呼吸系统综合征冠状病毒(新型冠状病毒)确诊病例.全球新型冠状病毒确诊病例已达176例,其中死亡74例.冠状病毒颗粒的直径60﹣200nm,平均直径为100nm,新型冠状病毒直径为178nm,呈球形或椭圆形,具有多形性.如果1nm=10﹣9米,那么新型冠状病毒的半径约为()米A.1.00×10﹣7 B.1.78×10﹣7 C.8.90×10﹣8D.5.00×10﹣8【分析】先求出新型冠状病毒的半径,然后根据科学记数法即可求出答案.解:=89nm,新型冠状病毒的半径约为8.90×10﹣8米,故选:C.4.如图,AB∥CD,EF⊥BD垂足为F,∠1=40°,则∠2的度数为()A.30°B.40°C.50°D.60°【分析】根据两直线平行,同位角相等即可求出∠D的度数,再由EF⊥BD,结合三角形内角和为180°即可得出结论.解:∵AB∥CD,∴∠D=∠1=40°.∵EF⊥BD,∴∠DFE=90°,∴∠2=180°﹣∠DFE﹣∠D=50°.故选:C.5.如图,四边形ABCD是平行四边形,用直尺和圆规作∠BAD的平分线AG交BC于点E,若AB=5,BF=6,则AE的长为()A.8 B.10 C.11 D.12【分析】先求AB=BE=5,利用勾股定理求AH=EH=4,得AE=8.解:∵AG平分∠BAD,∴∠BAG=∠DAG,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠DAG,∴∠BAG=∠AEB,∴AB=BE=5,由作图可知:AB=AF,∠BAE=∠FAE,∴BH=FH=3,BF⊥AE,由勾股定理得:AH=EH=4,∴AE=8,故选:A.6.下列立体图形中,主视图和左视图不一样的是()A.B.C.D.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.解:A、圆柱的主视图和左视图均为全等的长方形,不符合题意;B、圆锥的主视图和左视图均为全等的等腰三角形,不符合题意;C、正方体的主视图和左视图均为全等的正方形,不符合题意;D、这个三棱柱的主视图是正方形,左视图是三角形,符合题意;故选:D.7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25 B.20 C.15 D.10【分析】设索长x尺,竿子长y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x,y的二元一次方程组,解之即可得出结论.解:设索长x尺,竿子长y尺,依题意,得:,解得:.故选:B.8.如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2D.2πm2【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.解:连接AC,∵从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2m,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=m,∴阴影部分的面积是=(m2),故选:A.9.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【分析】由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.10.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=﹣与一次函数y=﹣bx+c 在同一坐标系中的大致图象是()A.B.C.A.D.【分析】先根据二次函数的图象开口向下可知a<0,再由函数图象经过原点可知c=0,利用排除法即可得出正确答案.解:∵二次函数的图象开口向下,∴反比例函数y=﹣的图象必在一、三象限,故B、D错误;∵二次函数的图象经过原点,∴c=0,∴一次函数y=﹣bx+c的图象必经过原点,故D错误.故选:A.二、填空题(每题3分,共24分,答案直接填在答题卡相应位置上)11.【解答】解:由题意得:x+2≥0且x≠0,解得:x≥﹣2且x≠0,故答案为:x≥﹣2且x≠0.12.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.【解答】解:侧面积是:×8π×5=20πcm2.故答案是:20π.14.【解答】解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.15.【解答】解:c===+;∵2=>,∴b>c,又∵a2=()2=7,c2=(+)2=5+2,且>1,∴a2<c2,∴a<c,∴a<c<b.故答案为a<c<b.16.【解答】解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°﹣60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=6×=3,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEFG的面积=6×3﹣=18﹣9π.故答案为:18﹣9π.17.【解答】解:设OM=a,则OM=MN=NC=a,∵点A、B在反比例函数y=的图象上,AM⊥OC、BN⊥OC,∴AM=,BN=,∵S△AOC=S△AOM+S四边形AMNB+S△BNC,∴×3a×=k+6+×a×,解得,k=8,故答案为:8.18.【解答】解:如图,取AB的中点O,连接OH、OD,则OH=AO=AB=2,在Rt△AOD中,OD===2,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,DH的最小值=OD﹣OH=2﹣2.故答案为:2﹣2.三、解答题(共76分)19.【解答】解:(1)原式=1+9+3﹣9×=10;(2)去分母得:﹣2x+x2﹣3x=2x﹣6,即x2﹣7x+6=0,解得:x=1或x=6,经检验x=1和x=6都为分式方程的解.20.【解答】解:原式====.∵a是方程x2﹣x=6的根,∴a2﹣a=6,∴原式=.21.【解答】解:,解不等式①得,x<﹣3,解不等式②得,x≥﹣5,所以,不等式组的解集是﹣5≤x<﹣3,所以,不等式组的整数解为﹣5、﹣4.22.【解答】解:(1)在Rt△ABC中,∵BC=4m,∠ACB=30°,∴tan30°=,∴AB=m.(2)在Rt△ACB中,易知AC=2AB=m,在Rt△ACD中,∵∠ACD=90°,∠DAC=60°,∴CD=AC=8,在Rt△CDE中,sin60°=,∴DE=4m.23.【解答】解:(1)480+420+150=1050(人).1050×(1﹣60%﹣16%﹣14%)=105(人).故参加综合实践活动的1050人,科技活动的有105人.(2)(30000÷1500)×1050×10%=2100(人).故有2100人参加科技活动.24.【解答】解:(1)方法一画树状图得:方法二列表得:甲乙丙丁/ 甲、乙甲、丙甲、丁甲乙乙、甲/ 乙、丙乙、丁丙丙、甲丙、乙/ 丙、丁丁丁、甲丁、乙丁、丙/ ∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:=;(2)∵一共有3种等可能性的结果,其中恰好选中乙同学的有1种,∴恰好选中乙同学的概率为:.25.【解答】解:(1)∵AO:BC=3:2,BC=2,∴OA=3,∵点B、C的横坐标都是3,∴BC∥AO,∴B(3,1),∵点B在反比例函数y=(x>0)的图象上,∴1=,解得k=3,∵AC∥x轴,∴设点D(t,3),∴3t=3,解得t=1,∴D(1,3);(2)结论:点A′不在直线BD上.理由:过点A′作EF∥OA交AC于E,交x轴于F,连接OA′(如图所示),∵AC∥x轴,∴∠A′ED=∠A′FO=90°,∵∠OA′D=90°,∴∠A′DE=∠OA′F,∴△DEA′∽△A′FO,设A′(m,n),∴=,又∵在Rt△A′FO中,m2+n2=9,∴m=,n=,即A′(,),∵经过点D(1,3),点B(3,1)的直线函数关系式为y=﹣x+4,∴当x=时,y=﹣+4=≠,∴点A′不在直线BD上.26.【解答】解:(1)80﹣(12﹣10)×2=76元.(2)设小丽购买了x件这种服装,由题意得x[80﹣2(x﹣10)]=1200解得:x1=20,x2=30当x=20时,80﹣2(20﹣10)=60当x=30时,80﹣2(30﹣10)=40<50(不符合题意,舍去)答:小丽购买了20件这种服装.27.【解答】(1)证明:如图,连接OE.∴BC是⊙O的切线,∴OE⊥BC,∵AB∥CD,∠C=90°,∴∠B=90°,∴AB⊥BC,CD⊥BC,∴AB∥OE∥CD,∴∠OED=∠CDE,∵OD=OE,∴∠OED=∠ODE,∴∠ODE=∠CDE,∴ED平分∠ADC.(2)①连接AF交OE于H.∵AB∥OE∥CD,AO=OD,∴BE=EC,∴OE=(AB+CD),∵OE=2,CD=2.5,∴AB=1.5,∵AD是⊙O的直径,∴∠AFD=90°,∵∠B=∠C=9°,∴四边形ABCF是矩形,∴AF∥BC,∵OE⊥BC,∴OE⊥AF,∴AH=FH,AB=CF=HE=1.5,∴OH=OE﹣EH=0.5,∴AH===,∴AH=FH=CE=,∴DE===.②设AB=CF=m,∵OE=(AB+CD),∴x+m=4,∴m=4﹣x,∴DF•CF=((4﹣x)(2x﹣4)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,∵﹣2<0,∴x=3时,DF•CF的值最大,最大值为2.28.【解答】解:(1)∵∠BAC=90°,∠AOC=90°,∴由射影定理可得出:OA2=OB•OC,由题意知:OA=4,OC=8,∴42=OB•8,∴OB=2,∴B(﹣2,0),将A、B、C三点坐标代入即得:,解得:,∴抛物线解析式为:y=﹣x2+x+4;(2)设N(n,0),则BN=n+2,BA=10,∵NE∥AC,∴△BNE∽△BAC,∴=()2,∵S△BAC=×10×4=20,∴=()2,S△BEN=(n+2)2,∵S△BAN=×(n+2)×4=2n+4,∴S△ANE=(2n+4)﹣(n+2)2=﹣(n﹣3)2+5,∵a=﹣,∴当n=3时,最大值S△ANE=5,此时N的坐标为:(3,0);(3)设直线AC对应的函数解析式为:y=kx+b,则,解得:,∴直线AC对应的函数解析式为:y=﹣x+4,如图,过P作PH⊥OC,垂足为H,交直线AC于点Q;设P(m,﹣m2+m+4),则Q(m,﹣m+4).①当0<m<8时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,S=S△APQ+S△CPQ=×8×(﹣m2+2m)=﹣(m﹣4)2+16,∴0<S≤16;②当﹣2≤m<0时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,S=S△CPQ﹣S△APQ=×8×(m2﹣2m)=(m﹣4)2﹣16,∴0<S<20;∴当0<S<16时,0<m<8中有m两个值,﹣2≤m<0中m有一个值,此时有三个;当16<S<20时,﹣2≤m<0中m只有一个值;当S=16时,m=4或m=4﹣4这两个.故当S=16时,相应的点P有且只有两个.。

2019-2020学年江苏省苏州市吴中区中考数学模拟试卷(4月份)有标准答案

2019-2020学年江苏省苏州市吴中区中考数学模拟试卷(4月份)有标准答案

江苏省苏州市吴中区中考数学模拟试卷(4月份)一.选择题(共10小题,满分30分)1.如果m的倒数是﹣1,那么m2018等于()A.1B.﹣1C.2018D.﹣20182.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×105 3.下列运算正确的是()A.a2+a3=a5B.(a3)2÷a6=1C.a2•a3=a6D.(+)2=5 4.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48.则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3B.0.4C.0.5D.0.65.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2C.4D.37.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.50 4.60 4.65 4.70 4.75 4.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.70 8.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米9.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个10.已知反比例函数y=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2二.填空题(共8小题,满分24分,每小题3分)11.分解因式:x2﹣1= .12.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.13.若正多边形的一个外角是40°,则这个正多边形的边数是.14.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.15.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为.16.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是.17.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.18.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为平方单位.三.解答题(共10小题,满分76分)19.(8分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化简:.20.(8分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:21.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.22.(6分)一个不透明的袋子中,装有标号分别为1、﹣1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.23.(6分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.24.(8分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:每台甲型收割机的租金每台乙型收割机的租金A地1800元1600元区B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.25.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)26.(8分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t 秒.(1)求该反比例函数的解析式.(2)求S与t的函数关系式;并求当S=时,对应的t值.(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.27.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB 点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.28.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C 的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵m的倒数是﹣1,∴m=﹣1,∴m2018=1.故选:A.2.解:1.21万=1.21×104,故选:C.3.解:A、a2与a3不能合并,所以A选项错误;B、原式=a6÷a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误.故选:B.4.解:仰卧起坐个数不少于50个的有52、50、50、61、72共5个,所以,频率==0.5.故选:C.5.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.6.解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.7.解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.8.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.9.解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正确;∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE =S△CPF,∴四边形AEPF =S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,故选:C.10.解:A、把(﹣2,1)代入解析式得:左边=右边,故本选项正确,不符合题意;B、因为﹣2<0,图象在第二、四象限,故本选项正确,不符合题意;C、当x<0,且k<0,y随x的增大而增大,故本选项正确,不符合题意;D、在第三象限时,当x>﹣1时,y>2,故本选项错误,符合题意.故选:D.二.填空题(共8小题,满分24分,每小题3分)11.解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.13.解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.14.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.15.解:∵DE∥BC,∴=,∵AD=1,BD=2,∴AB=3,∴=,故答案为:.16.解:∵关于x的一元二次方程(a﹣1)x2﹣2x+l=0有两个不相等的实数根,∴△=b2﹣4ac>0,即4﹣4×(a﹣1)×1>0,解这个不等式得,a<2,又∵二次项系数是(a﹣1),∴a≠1.故a的取值范围是a<2且a≠1.17.解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.18.解:设B′C′和CD的交点是O,连接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四边形AB′OD =2S△AOD=2××=2,∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.三.解答题(共10小题,满分76分)19.解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.20.解:(1)x2﹣4x=3,x2﹣4x+4=7(x﹣2)2=7x=2±(2)由x﹣3(x﹣2)≤4,解得x≥1,由>x﹣1,解得x<4∴不等式组的解集为:1≤x<4 21.解:(1)∵AD=2,∠DAE=90°,∴弧DE的长 l1==π,同理弧EF的长 l2==2π,弧FG的长 l3==3π,所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.(2)GB=DF.理由如下:延长GB交DF于H.∵C D=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴GB=DF.22.解:(1)从中任意取一个球,可能的结果有3种:1、﹣1、2,其中为正数的结果有2种,∴标号为正数的概率是,故答案为:;(2)列表如下:1﹣121y=x+1y=x﹣1y=x+2﹣1y=﹣x+1y=﹣x﹣1y=﹣x+22y=2x+1y=2x﹣1y=2x+2其中直线y=kx+b经过一、二、三象限的有4种情况,∴一次函数y=kx+b的图象经过一,二,三象限的概率=.23.解:(1)EH2+CH2=AE2,如图1,过E作EM⊥AD于M,∵四边形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME与△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案为:EH2+CH2=AE2;(2)如图2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠D EH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等边三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE与△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.24.解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x ≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时y=80000,∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.25.解:(1)过点P作PE⊥AB于E,PH⊥BD于H,设PH=5x米,CH=12x米,在Rt△ABC中,∠ACB=63.4°,BC=90米,则tan63.4°=,AB=180米,在Rt△AEP中,∠APE=53°,=,解得x=,5x=5×=≈14.3.故此人所在位置点P的铅直高度约是14.3米;(2)在Rt△PHC中,PC==13x=,故此人从所在位置点P走到建筑物底部B点的路程是+90=≈127.1米.26.解:(1)∵正方形OABC的面积为9,∴点B的坐标为:(3,3),∵点B在反比例函数y=(k>0,x>0)的图象上,∴3=,即k=9,∴该反比例函数的解析式为:y=(x>0);(2)根据题意得:P(t,),分两种情况:①当点P在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);1若S=,则﹣3t+9=,解得:t=;②当点P在点B的右侧时,则S=(t﹣3)•=9﹣;2若S=,则9﹣=,解得:t=6;∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)存在.若OB=BF=3,此时CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,则3=,解得:t=;若BF=OF,此时点F与C重合,t=3;∴当t=或或3时,使△FBO为等腰三角形.27.(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.28.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F 1(,8),F2(,4),F3(,6+),F4(,6﹣).。

2020年江苏省苏州市高新区中考一模数学试卷(word版含答案解析)

2020年江苏省苏州市高新区中考一模数学试卷(word版含答案解析)

2020年江苏省苏州市高新区中考一模数学试卷一、选择题(共10小题;共30分)1. 的算术平方根为A. B. D.2. 年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为米.用科学记数法表示应为A. B. C. D.3. 下列图形中,既是轴对称图形又是中心对称图形的有A. 个B. 个C. 个D. 个4. 若分式在实数范围内有意义,则实数的取值范围是A. B. C. D.5. 一组数据,,,,的众数和中位数分别是A. ,B. ,C. ,D. ,6. 若二次函数的图象的对称轴是经过点且平行于轴的直线,则关于的方程的解为A. ,B. ,C. ,D. ,7. 如图,某海监船以海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至处时,测得岛屿恰好在其正北方向,继续向东航行小时到达处,测得岛屿在其北偏西方向,保持航向不变,又航行小时到达处,此时海监船与岛屿之间的距离(即的长)为A. 海里B. 海里C. 海里D. 海里8. 如图,有一块边长为的正方形厚纸板,做成如图①所示的一套七巧板(点为正方形纸板对角线的交点,点,分别为,的中点,,),将图①所示七巧板拼成如图②所示的“鱼形”,则“鱼尾”NM的长为A. B. C. D.9. 如图,点的坐标是,点的坐标是,为的中点,将绕点逆时针旋转后得到.若反比例函数的图象恰好经过的中点,则的值是A. B. C. D.10. 如图,扇形中,,将扇形绕点逆时针旋转,得到扇形,若点刚好落在弧上的点处,则的值为二、填空题(共8小题;共40分)11. 计算的结果等于.12. 分解因式:.13. 五边形的内角和是.14. 某十字路口的交通信号灯每分钟红灯亮秒,绿灯亮秒,黄灯亮秒,当你抬头看信号灯时,是绿灯的概率为.15. 如图,圆锥的底面半径为,母线长为,那么这个圆锥的侧面积是(结果保留).16. 如图,直线与轴交于点,以为斜边在轴上方作等腰直角三角形,将沿轴向右平移,当点落在直线上时,则平移的距离是.17. 如图,矩形中,为的中点,将沿直线折叠,使点落在点处,连接,若,则度.18. 如图,抛物线与轴交于,两点,是以点为圆心,为半径的圆上的动点,是线段的中点,连接.则线段的最大值是.三、解答题(共10小题;共80分)19. 计算:.20. 解不等式组:21. 先化简,再求值:,其中.22. 甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)(2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率.23. 为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.24. 如图,在菱形中,对角线,相交于点,过点作对角线的垂线交的延长线于点.(1)证明:四边形是平行四边形;(2)若,,求的周长.25. 如图,反比例函数的图象与一次函数的图象交于两点,.(1)求反比例函数与一次函数的函数关系式;(2)在反比例函数的图象上找点,使得点,,构成等腰三角形,直接写出两个满足条件的点的坐标.26. 如图,是的直径,,点为线段上一点(不与,重合),作,交于点,垂足为点,作直径,过点的切线交的延长线于点,于点,连接.(1)求证:是的平分线;(2)求证:;(3)当时,求劣弧的长度(结果保留)27. 如图,在中,,点从点出发以的速度沿折线运动,点从点出发以的速度沿运动,,两点同时出发,当某一点运动到点时,两点同时停止运动.设运动时间为.的面积为,关于的函数图象由,两段组成(其中,均为抛物线的一部分).如图所示.(1)求的值;(2)求图中图象段的函数表达式;(3)当点运动到线段上某一段时的面积,大于当点在线段上任意一点时的面积,求的取值范围.28. 在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),与轴交于点,连接,,将沿所在的直线翻折,得到,连接.(1)点的坐标为,点的坐标为.(2)如图,若点落在抛物线的对称轴上,且在轴上方,求抛物线的解析式.(3)设的面积为,的面积为,若,求的值.答案第一部分1. A 【解析】,而[LatexErr]的算术平方根即,的算术平方根是.2. A 【解析】.3. B 【解析】第个图形是中心对称图形,也是轴对称图形,符合题意;第个图形不是中心对称图形,是轴对称图形,不符合题意;第个图形是中心对称图形,也是轴对称图形,符合题意;第个图形是中心对称图形,也是轴对称图形,符合题意.共个图形符合题意.4. D 【解析】由分式有意义的条件可知:,.5. D【解析】出现了次,出现的次数最多,众数是,把这组数据从小到大排列,,,,,最中间的数是,则中位数是;故选:D.6. D 【解析】对称轴是经过点且平行于轴的直线,,解得:,解方程,解得,.7. C 【解析】在中,,,由题意,,,,,,,(海里).8. C 【解析】等腰直角三角形中,,,又,,,.9. B 【解析】作轴于.,,,,,,,,点的坐标是,点的坐标是,,,,,,,,,反比例函数的图象经过点,[LatexErr].10. A【解析】如图,连,,,延长交于点,将扇形绕点逆时针旋转,得到扇形,若点刚好落在弧上的点处,,.,即旋转角为,,又可知,是等边三角形,,,垂直平分,,,,,,,,,.故选:A.第二部分11.【解析】.12.【解析】,故答案为:.13.【解析】五边形的内角和度数为.14.【解析】抬头看信号灯时,是绿灯的概率为.15.【解析】底面圆的半径为,则,.16.【解析】,当时,,解得:,即,过作于,是以为斜边的等腰直角三角形,,即点的坐标是,设平移的距离为,则点的对称点的坐标为[LatexErr],代入得:,解得:,即平移的距离是.17.【解析】四边形是矩形,,由折叠的性质得:,,,,,,[LatexErr],为的中点,,,,.18.【解析】令,则,故点,设圆的半径为,则,当,,三点共线,且点在之间时,最大,而点,分别为,的中点,故是的中位线,则.第三部分19.20.解不等式①得:解不等式②得:不等式组的解集是21.当时,22. (1)共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,;(2)画树状图得:所有出现的等可能性结果共有种,其中满足条件的结果有种..23. (1)【解析】.(2)其他有(人),打球有(人),条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为(人).24. (1)四边形是菱形,,,,,,即,,,四边形是平行四边形;(2)四边形是菱形,,,,,,四边形是平行四边形,,,的周长为.25. (1)把代入,得,把代入,得,解得,.把,代入,得解得反比例函数的函数关系式是,一次函数的函数关系式是.(2)点的坐标可以是或(答案不唯一).26. (1)因为,所以,因为是的切线,,所以,所以,,所以,所以平分.(2)连接.因为是直径,所以,所以,,因为,所以,因为,,所以,所以.【解析】解法二:连接.因为,所以,因为平行,所以,所以,因为,,所以.(3)作于.则,设,,,因为,,所以,因为是直径,,所以,所以,所以,所以,所以,所以,所以,所以,所以的长.27. (1)如图,过点作于.,,,由图象可知,当时,,,解得.(2)如图,由()知,点的速度是,,而点的速度时,点先到达点,作于,由图象可知,,[LatexErr],,当时,,,解得,,即段的函数表达式为.(3),解得,.由图象可知,当时,有最大值,最大值是,,解得,.当时,点运动到线段上某一段时的面积,大于当点在线段上任意一点时的面积.28. (1);【解析】抛物线的表达式为:,故点,,.(2)过点作轴的平行线,过点作轴的平行线交轴于点,交于点,设:,点,,,,又,,,其中:,,,[LatexErr],,,将以上数值代入比例式并解得:,,故,故抛物线的表达式为:.(3),,,,,,,设交于点,由轴对称性,,,在中,,由面积法得:,,则,,,又,,故.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2020年江苏省苏州市中学中考数学一模试卷(4月份)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.(x2y)2的结果是()A.x6y B.x4y2C.x5y D.x5y23.如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°4.下列二次根式中是最简二次根式的是()A.B.C.D.5.下列因式分解正确的是()A.x2﹣xy+x=x(x﹣y)B.a3+2a2b+ab2=a(a+b)2C.x2﹣2x+4=(x﹣1)2+3D.ax2﹣9=a(x+3)(x﹣3)6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分7.设有x个人共种m棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是()A.﹣2=+6B.+2=﹣6C.=D.=8.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.B.C.D.9.下列说法正确的是()A.每一条线段有且只有一个黄金分割点B.黄金分割点分一条线段为两段,其中较短的一段是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC是AB和BC的比例中项D.黄金分割点分一条线段为两段,其中较短的一段与较长的一段的比值约为0.61810.如图,在平面直角坐标系中,点A的坐标为(5,0),点D的坐标为(0,1),以OA为边在第一象限内作菱形OABC,且对角线OB=4,OB上有一动点P,当△CPD的周长最小时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)二.填空题(共8小题,满分24分,每小题3分)11.已知ab=a+b+1,则(a﹣1)(b﹣1)=.12.日地最近距离:147 100 000千米,用科学记数法表示为.13.抛物线y=2x2﹣4x+1的对称轴为直线.14.分式方程=1﹣的解是.15.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是.16.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则的长为.17.如图,在▱ABCD中,E是边BC上的点,分别连结AE、BD相交于点O,若AD=10,=,则EC=.18.如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图象于点M、N,则四边形PMON面积的最大值是.三.解答题(共10小题,满分76分)19.(5分)计算:﹣12018+37×3﹣5+2﹣2+(π﹣2018)020.(5分)解不等式组,并在数轴上表示其解集.21.(6分)先化简,再求值(1﹣)÷,其中x=4.22.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?23.(8分)王强与李刚两位同学在学习“概率”时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数123456出现次数69581610(1)请计算出现向上点数为3的频率及出现向上点数为5的频率;(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错;(3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.24.(8分)探究:如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于点D,CE⊥m于点E,求证:△ABD≌△CAE.应用:如图②,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE.25.(8分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?26.(10分)如图,在平面直角坐标系中,直线y=﹣2x+4与坐标轴交于A,B两点,动点C在x 轴正半轴上,⊙D为△AOC的外接圆,射线OD与直线AB交于点E.(1)如图①,若OE=DE,求=;(2)如图②,当∠ABC=2∠ACB时,求OC的长;(3)点C由原点向x轴正半轴运动过程中,设OC的长为a,①用含a的代数式表示点E的横坐标x E;②若x E=BC,求a的值.27.(10分)已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB =S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】直接利用积的乘方运算法则计算得出答案.【解答】解:(x2y)2=x4y2.故选:B.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选:C.【点评】此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键.4.【分析】根据最简二次根式的定义选择即可.【解答】解:A、是最简二次公式,故本选项正确;B、=3不是最简二次根式,故本选项错误;C、=3不是最简二次根式,故本选项错误;D、=2不是最简二次根式,故本选项错误;故选:A.【点评】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.5.【分析】直接利用提取公因式法以及公式法分解因式,进而分析即可.【解答】解:A、x2﹣xy+x=x(x﹣y+1),故此选项错误;B、a3+2a2b+ab2=a(a+b)2,正确;C、x2﹣2x+4=(x﹣1)2+3,不是因式分解,故此选项错误;D、ax2﹣9,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.6.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.【分析】根据题意可得人数=或,根据人数不变可得方程.【解答】解:由题意得:=,故选:C.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系列出方程.8.【分析】按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC =2,符合条件的点C有2个,再根据概率公式求出概率即可.【解答】解:可以找到4个恰好能使△ABC的面积为1的点,则概率为:4÷16=.故选:C.【点评】此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.9.【分析】根据比例中项和黄金分割的概念分析各个说法.【解答】解:A、每一条线段有两个黄金分割点,错误;B、黄金分割点分一条线段为两段,其中较长的一段是这条线段的0.618倍,错误;C、若点C把线段AB黄金分割,则AC是AB和BC的比例中项,正确;D、黄金分割点分一条线段为两段,其中较长的一段与这条线段的比值约为0.618,错误;故选:C.【点评】此题考查黄金分割问题,理解比例中项、黄金分割的概念,是解题的关键.10.【分析】如图作BH⊥x轴于H.设AH=x,BH=y.因为四边形ABCD是菱形,所以A、C关于OB对称,连接AD交OB于P,此时△PDC的周长最小.求出直线OB、AD的解析式,利用方程组求出点P坐标即可;【解答】解:如图作BH⊥x轴于H.设AH=x,BH=y.∵四边形ABCD是菱形,∴A、C关于OB对称,连接AD交OB于P,此时△PDC的周长最小.由题意可得:,解得,∴B(8,4),∴直线OB的解析式为y=x,∵A(5,0),D(0,1),∴直线AD的解析式为y=﹣x+1,由,解得,∴P(,),故选:D.【点评】本题考查轴对称﹣最短问题、坐标与图形的性质、菱形的性质、二元二次方程组、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用轴对称解决最短问题,学会构建一次函数,利用方程组解决交点问题,属于中考选择题中的压轴题.二.填空题(共8小题,满分24分,每小题3分)11.【分析】将ab=a+b+1代入原式=ab﹣a﹣b+1合并即可得.【解答】解:当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.【点评】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.12.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:147 100 000=1.471×108.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动8位,应该为1.471×108.13.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).14.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=2x﹣1+2,解得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:x=﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.【分析】连接CE,根据∠DCE=90°,F是DE的中点,可得CF=DE,再根据当AD⊥BC 时,AD最短,此时DE最短,根据直角三角形的面积以及相似三角形的性质,求得DE的最小值,即可得出CF的最小值.【解答】解:如图,连接CE,∵△ABC∽△ADE,∴∠ACD=∠AEG,又∵∠AGE=∠DGC,∴△AGE∽△DGC,∴=,又∵∠AGD=∠EGC,∴△AGD∽△EGC,∴∠ADG=∠ECG,又∵Rt△ADE中,∠ADG+∠AEG=90°,∴∠ECG+∠ACD=90°,即∠DCE=90°,∵F是DE的中点,∴CF=DE,∵△ABC∽△ADE,∴当AD⊥BC时,AD最短,此时DE最短,当AD⊥BC时,AD==4.8,∵=,即=,∴DE=8,∴CF=×8=4.故答案为:4.【点评】本题主要考查了相似三角形的判定与性质,以及直角三角形斜边上中线的性质的应用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是利用垂线段最短得到线段的最小值.16.【分析】连接OA、OC,根据圆内接四边形的性质求出∠D,根据圆周角定理求出∠AOC,利用弧长公式计算即可.【解答】解:连接OA、OC,∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠B=45°,∴∠AOC=90°,∴的长==2π,故答案为:2π.【点评】本题考查的是圆内接四边形的性质、弧长的计算,掌握圆内接四边形的对角互补是解题的关键.17.【分析】根据平行四边形的性质得到AD∥BC,AD=BC,推出△BEO∽△DAO,根据相似三角形的性质得到,求得BE=6,即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEO∽△DAO,∴,∵AD =10,∴BE =6, ∴CE =10﹣6=4,故答案为:4.【点评】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟练掌握相似三角形的判定和性质是解题的关键.18.【分析】由点A 、B 的坐标利用待定系数法即可求出一次函数与反比例函数的解析式,设出点P 的坐标为(n ,﹣2n +14)(1<n <6).由反比例的函数解析式表示出来M 、N 点的坐标,分割矩形OCPD ,结合矩形的面积及反比例函数k 的几何意义即可得出结论.【解答】解:设反比例函数解析式为y =,一次函数解析式为y =kx +b ,由已知得:12=和, 解得:m =12和.∴一次函数解析式为y =﹣2x +14,反比例函数解析式为y =. ∵点P 在线段AB 上,∴设点P 的坐标为(n ,﹣2n +14)(1<n <6).∴S四边形PMON =S 矩形OCPD ﹣S △ODN ﹣S △OCM =n (﹣2n +14)﹣×12﹣×12=﹣2n 2+14n ﹣12=﹣2+.∴当n =时,四边形PMON 面积最大,最大面积为. 故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及反比例函数k 的几何意义,解题的关键是利用分割法求出四边形PMON 面积关于点P 横坐标的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据分割法找出面积的函数关系式,再结合函数的性质(单调性、二次函数的顶点之类)来解决最值问题.三.解答题(共10小题,满分76分)19.【分析】原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可求出值.【解答】解:原式=﹣1+9++1=9.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】分别解两个不等式,找出其解集的公共部分即不等式组的解集,再把不等式组的解集在数轴上表示出来即可.【解答】解:解不等式①,得:x<3,解不等式②,得:x>﹣1,则不等式组的解集为﹣1<x<3,将不等式的解集表示在数轴上如下:【点评】本题考查解一元一次不等式组和在数轴上表示不等式的解集,正确掌握解不等式组的方法是解决本题的关键.21.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=(﹣)÷=•=,当x=4时,原式==.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.【分析】(1)用C品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A品牌的百分比乘以360°计算即可求出圆心角的度数;(2)求出B品牌鸡蛋的数量,然后条形补全统计图即可;(3)用B品牌所占的百分比乘以1500,计算即可得解.【解答】解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.【分析】(1)利用频数除以总数即可得到频率;(2)由于骰子是均匀的,每一面向上的概率均为;(3)列举出所有情况,让向上点数之和为3的倍数的情况数除以总情况数即为所求的概率.【解答】解:(1)向上点数为3的频率=;向上点数为5的频率=;(2)王强的说法不对;李刚的说法不对.点数为5向上的概率为,如果抛540次,那么出现向上点数为6的次数正大约是540×=90次;(3)由表可知共有36种可能结果,其中和为3的倍数的有12种,∴P(点数之和为3的倍数)=.【点评】本题考查了概率公式和概率的意义,由于骰子是均匀的,与试验次数无关.24.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA.(2)设∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS);(2)设∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE =AE +AD =BD +CE .【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;得出∠CAE =∠ABD 是解题关键.25.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x 的代数式表示出y 1、y 2即可;(3)把x =50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A 、B 两种品牌的计算器的单价分别为x 、y 元,由题意得,,解得.答:A 、B 两种品牌的计算器的单价分别为30元、32元;(2)y 1=24x ,y 2=160+(x ﹣5)×32×0.7=22.4x +48;(3)当x =50时,y 1=24x =1200,y 2=22.4x +48=1168,∵1168<1200,∴买B 品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.26.【分析】(1)根据三角形的面积公式计算;(2)作OF ⊥AC 于点F ,根据一次函数的性质求出OA 、OB ,根据正切的定义得到tan ∠ODC =2,设DF =m ,根据勾股定理用m 表示出OD ,计算即可;(3)①作EH ⊥AO 于点H ,根据相似三角形的性质列式计算,得到答案;②分C 在点B 右侧、C 在点B 左侧两种情况,分别列出方程,解方程即可.【解答】解:(1)∵OE =DE ,∴S △AOE =S △ADE ,∵AD =CD ,∴S △CDE =S △ADE ,∴=,故答案为:;(2)作OF⊥AC于点F,对于直线y=﹣2x+4,当y=0时,x=2,当x=0时,y=4,则A的坐标为(0,4),点B的坐标为(2,0),即OA=4,OB=2,∵∠ABC=2∠ACB,∴∠ADO=∠ABC,∴∠ODC=∠ABO,∴tan∠ODC=tan∠ABO=2,设DF=m,则OF=2m,由勾股定理得,OD==m,∴CF=(﹣1)m,∴tan∠OCD=,∴=,即=,解得,OC=2﹣2;(3)①设直线OD交⊙D另一点为G,连结AG,作EH⊥AO于点H,则EH∥AG,∴=,=,∴+=+=1,即+=1,解得,x E=;②当C在点B右侧时,BC=x E,即a﹣2=x E,∴a﹣2=,解得,a1=1+,a2=1﹣(舍去),当C在点B左侧时,BC=x E,即2﹣a=x E,∴2﹣a=,解得,a1=﹣1+,a2=﹣1﹣(舍去),所以a的值为±1.【点评】本题考查的是一次函数图象上点的坐标特征、圆周角定理、相似三角形的判定和性质,掌握圆周角定理、灵活运用分情况讨论思想是解题的关键.27.【分析】(1)把A(﹣2,0),B(0,4)代入y=kx+b,根据待定系数法即可求得;(2)作PC⊥y轴于C,证得△ABO≌△BPC,从而得出AO=BC=2,BO=PC=4,根据图象即可求得点P的坐标;(3)①由题意可知Q点在经过P1点且垂直于直线l的直线上,得到点Q所在的直线平行于直线AB,设点Q所在的直线为y=2x+n,代入P1(﹣4,6),求得n的值,即可求得点Q所在的直线为y=2x+14,代入Q(a,b)即可得到b=2a+14;②由QA=QB,根据勾股定理得出(a+2)2+b2=a2+(b﹣4)2,进一步得到(a+2)2+(2a+14)2=a2+(2a+14﹣4)2,解方程即可求得a的值,从而求得Q点的坐标.【解答】解:(1)把A(﹣2,0),B(0,4)代入y=kx+b中得:,解得:,则直线AB解析式为y=2x+4;(2)如图1所示:作PC⊥y轴于C,∵直线l经过点B,并且与直线AB垂直.∴∠ABO+∠PBC=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠PBC,∵△ABP是等腰直角三角形,∴AB=PB,在△ABO和△BPC中,∴△ABO≌△BPC(AAS),∴AO=BC=2,BO=PC=4,∴点P的坐标(﹣4,6)或(4,2);(3)①∵点Q(a,b)在第二象限,且S△QAB =S△PAB.∴Q点在经过P1点且垂直于直线l的直线上,∴点Q所在的直线平行于直线AB,∵直线AB解析式为y=2x+4,∴设点Q所在的直线为y=2x+n,∵P1(﹣4,6),∴6=2×(﹣4)+n,解得n=14,∴点Q所在的直线为y=2x+14,∵点Q(a,b),∴b=2a+14;A(﹣2,0),B(0,4)②∵QA=QB,∴(a+2)2+b2=a2+(b﹣4)2,∵b=2a+14,∴(a+2)2+(2a+14)2=a2+(2a+14﹣4)2,整理得,10a=﹣50,解得a=﹣5,b=4,∴Q的坐标(﹣5,4).【点评】本题是一次函数的综合题,考查了待定系数法求一次函数的解析式,等腰三角形的性质,三角形全等的判定和性质,两直线平行的性质等.28.【分析】(1)把A点坐标代入可得到关于a的方程,可求得a的值;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使=,可证得△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2化为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时有最小值,则可求得答案.【解答】解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=﹣;(2)由(1)可知抛物线解析式为y=﹣x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x轴,∴△OAB∽△PAN,∴=,即=,∴PN=(4﹣m),∵M在抛物线上,∴PM=﹣m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴﹣m2+m+2=4×(4﹣m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,由(2)可知P1(3,0),且OB=2,∴=,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴=,∴当Q(0,)时QP2=BP2,∴AP2+BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值为.【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、勾股定理、三角形三边关系等知识.在(2)中用m分别表示出PN和PM是解题的关键,在(3)确定出取得最小值时的位置是解题的关键.本题考查知识点较多,综合性较强,特别是(3)中构造三角形相似,难度较大.。

相关文档
最新文档