色谱分析 毛细管电泳

合集下载

第五章 高效毛细管电泳和电动色谱

第五章 高效毛细管电泳和电动色谱
4
1.40 1.60 1.80 2.00 t/min 2.20 2.40 2.60 2.80
36
35
34 32 33
31
30
29
28
27
26
25
24
23
22
20
21
19
18 17 16
15
14
9
13 10
11
12
786
5 2
3Leabharlann 101三、毛细管凝胶电泳
毛细管凝胶电泳 CGE):按照试样中各个组 分相对分子质量的大小进行分离的方法。 用途:常用于蛋白质、寡聚核苷酸、核糖核 酸、DNA片段的分离和测序及聚合酶链反应产 物的分析。CGE能达到CE中最高的柱效。
• 毛细管等电聚焦是基于不同蛋白质或多肽之 间等电点的差异进行分离的电泳技术。 • 毛细管等电聚焦最具特色的应用是测定蛋白 质的等电点。在异构酶鉴定、单克隆抗体、 多克隆抗体、血红蛋白亚基等研究中,经常 用毛细管等电聚焦。
五、亲和毛细管电泳
亲和毛细管电泳是利用配体与受体之间存在特异性 相互作用,可以形成具有不同荷-质比的配合物而达 到分离目的。
梯度升压方式对毛细管电泳分离的影响 A. 2kV至25kV,0min,一步升压;B.2kV至25kV,5min,线性梯度 升压. 样品:β-乳球蛋白A,溶菌酶,细胞色素C,肌红蛋白,微白蛋白
二、毛细管及其温度控制
毛细管电泳柱作为分离分析的载体,其材料、 形状、内径、柱长、温度对分离度和重现性都 有影响。
缓冲液中加入添加剂,并让缓冲液与毛 细管充分平衡.如加入阳离子表面活性剂 十四烷基三甲基溴化铵(tetradecyl trimethyl ammonium bromide ,TTAB), 能在内壁形成物理吸附层,使EOF反向. 添加剂还有聚乙烯亚胺、甲基纤维素 (MC)、十六烷基溴化铵(CTAB)等。

药物分析中的毛细管电泳法测定药物含量

药物分析中的毛细管电泳法测定药物含量

药物分析中的毛细管电泳法测定药物含量毛细管电泳法(Capillary Electrophoresis,CE)是一种常用于药物分析的高效分离技术。

它基于药物在电场中的电荷迁移速率不同,通过毛细管内的电场驱动,实现对药物的定量分析。

本文将详细介绍药物分析中的毛细管电泳法测定药物含量的原理、方法和应用,以及该技术在药物分析中的优势。

一、原理毛细管电泳法测定药物含量,是利用毛细管的微小通道对药物进行分离和测量的一种分析技术。

它利用药物分子在电场作用下受到电荷的影响,从而在毛细管内发生电泳迁移,实现对药物的分离和定量测定。

其原理主要包括三个方面:1. 药物分子的电荷特性:药物分子可以分为带正电荷、带负电荷和无电荷的三类。

根据药物的电荷特性,调整毛细管内的电荷环境,使药物分子在电场中按照不同的电荷迁移速率进行分离。

2. 毛细管的表面电荷:毛细管内壁会带有一定的电荷,称为表面电荷。

表面电荷与药物分子的电荷有相互作用,影响药物在毛细管内的迁移速率。

3. 毛细管内的电场:在毛细管内施加电场,通过电泳迁移,使药物分子按照不同速率进行分离。

二、方法毛细管电泳测定药物含量的方法主要包括前处理、样品准备、色谱条件设置、电泳分离和定量测定等步骤。

下面将简要介绍这些步骤的具体操作:1. 前处理:对于复杂的样品,如血液、尿液等,需要进行前处理。

常用的前处理方法包括样品提取、样品净化等。

2. 样品准备:将提取的药物样品溶解于适宜的溶剂中,得到适宜的药物浓度。

3. 色谱条件设置:选择合适的色谱柱、毛细管和分离液,调整电泳分析的条件,如缓冲液的浓度、pH值等。

4. 电泳分离:将样品注入毛细管中,施加电场,使药物分子在毛细管内发生电泳迁移,实现对药物的分离。

5. 定量测定:通过荧光检测、紫外吸收等方法,测定药物的峰面积或峰高,从而确定药物的含量。

三、应用毛细管电泳法作为一种高效的药物分析技术,广泛应用于药物研发、生产和质量控制等领域。

说明毛细管电泳特点及应用

说明毛细管电泳特点及应用

说明毛细管电泳特点及应用
毛细管电泳是一种高效液相色谱技术,其基本原理是利用电场将带电粒子在毛细管中的移动速率和荷电量的差异进行分离和富集。

毛细管电泳具有高分离效率、快速分离、小量样品、自动化程度高等特点,已经成为了化学、生物、环境学等领域的一个重要分析工具。

其主要应用领域和特点如下:
1.分离生化分子
毛细管电泳可以用于分离和富集DNA、RNA、蛋白质、糖类和小分子有机物等生物分子。

这些生物分子在酸碱性、水解、氧化还原等条件下有不同的化学性质和电荷性质,可以被毛细管电泳技术精确分离和定量。

例如在DNA分离和定量方面,毛细管电泳已经成为PCR扩增产物检测、基因测序、DNA指纹鉴定等分子生物学技术中的重要手段。

2.分析环境污染物
毛细管电泳可以用于环境监测和食品安全检测等领域,可以对水、空气、土壤和食品中的有机和无机污染物进行快速准确定量分析。

例如利用毛细管电泳技术可以分析环境中的氨、硝酸盐、荧光增白剂、PESTICIDE 等有害物质含量,以及酒类中的苯甲酸、乙酸等有害物质。

3.分析药品和代谢产物
毛细管电泳可以快速、灵敏地分离和鉴定药品和代谢产物,具有药动学和毒理学研究的重要意义。

毛细管电泳技术节省反应时间,减少实验操作时间,可对液-液、液-固、固-液等反应进行分离和分析,得到精确的数据和结果。

如利用毛细管电泳技术,可以分析身体内的有机酸、氨基酸、代谢产物等物质。

总之,毛细管电泳技术在化学分析和生物分析中均有广泛应用,且已成为学术研究和工业生产的一种重要分离分析手段。

毛细管电泳和毛细管电色谱

毛细管电泳和毛细管电色谱
用于水体、土壤、空气等环境 样品中污染物和农药残留的检 测,有助于环境保护和治理。
其他领域
毛细管电泳还应用于食品分析 、冶金、地质等领域,可用于 金属离子、矿物成分等的分离
和检测。
02 毛细管电泳技术
CHAPTER
进样技术
压力进样
通过施加压力使样品进 入毛细管,适用于大体
积样品。
电动进样
利用电场力驱动样品进 入毛细管,适用于低粘
电解质浓度
影响电场强度和离子迁移率。
温度
影响分子热运动和扩散系数。
毛细管材料和内壁处理
影响样品在毛细管内的吸附和分离效 果。
03 毛细管电泳实验
CHAPTER
实验流程
安装毛细管
选择合适的毛细管,将其插入 仪器,确保密封良好。
运行实验
设定合适的实验参数,如电压、 温度、检测波长等,开始实验。
准备毛细管电泳仪
进系统
用于将样品注入到毛细管中。
实验材料
毛细管
具有微米级内径的玻璃或石英管,是电泳的分离通道。
电解质溶液
用于提供电泳所需的离子环境。
样品
待测物质,需进行适当预处理。
清洗液
用于清洗毛细管和仪器,保持实验的准确性。
04 毛细管电色谱简介
CHAPTER
定义与原理
定义
毛细管电色谱(CEC)是一种将高效电泳分离与高效液相色谱的固定相相结合 的分离技术。
亲和电泳
利用特异性亲和作用进行分离 ,如抗体-抗原、酶-抑制剂等

检测方法
紫外可见光谱
利用紫外可见光谱检测分离出的组分。
电化学检测
利用电化学方法对分离出的组分进行检测。
荧光检测
利用荧光物质标记待测组分,通过荧光信号 进行检测。

高效毛细管电泳色谱仪的介绍

高效毛细管电泳色谱仪的介绍

高效毛细管电泳色谱仪的介绍前言高效毛细管电泳色谱仪(High Performance Capillary Electrophoresis)简称CE,是一种用于分离、检测和定量小分子有机化合物及生物大分子(如蛋白质、核酸等)的分析仪器。

与传统的色谱技术相比,CE具有分离速度快、分离效果好、耗时少、消耗试剂和样品量少等优点,因此广泛应用于医药、生物、环境等领域的分析和检测。

原理CE是利用毛细管中的电泳作用使样品离子在电场力下向电极运移,通过毛细管壁上的化学修饰、填充剂和区带电荷来实现分离,并通过荧光检测器等检测器来检测和定量分离后的样品成分。

优点分离速度快毛细管内径小,距离相对短,使得样品离子的迁移速率快,从而实现快速分离。

分离效果好毛细管表面可以进行化学修饰和填充剂处理,通过组分间的电荷、氢键、范德华等相互作用,进一步增强样品分离能力。

耗时少样品分离后直接进行检测,无需进一步净化、萃取等操作,减少了样品制备的时间。

消耗试剂和样品量少毛细管内径小,所需样品量和试剂量大大减少,节约了分析成本。

系统组成CE主要由毛细管容器、高压电源、检测器、数据采集系统等四部分组成。

毛细管容器毛细管容器是对样品进行分离的主体,通常是具有内径为5-75μm的管(通过融离池、拉伸等方法得到),通过氧化铟、二氧化硅等材料修饰表面,增加毛细管和分离物之间的作用力和优化分离效果。

毛细管容器通过两端接口一个容纳高压电源的阳光非金属管,并与检测器连接。

高压电源高压电源主要是为毛细管提供足够的驱动力,使样品能够快速通过毛细管,一般的工作电压为2-30kV之间。

检测器检测器通常使用荧光检测器、紫外检测器、折射率检测器和质谱检测器等,常见的是荧光检测器。

荧光探测器最适用于无色或淡黄色的样品,因为它可以通过激发荧光产生亮丽的蓝光来检测和定量测量毛细管中的分离样品。

数据采集系统数据采集系统主要用于记录和处理从检测器输出的信号,并将其转换为可读的图形或数字信号,以便进一步分析和研究。

毛细管电泳的分离原理

毛细管电泳的分离原理

毛细管电泳的分离原理
毛细管电泳(CE)是一种基于电动力和色谱分离原理的分析技术。

它利用毛细管中载带电荷的离子在电场作用下的迁移速率的差异来实现分离。

在毛细管电泳中,首先将样品注入到一条非常细的毛细管内,然后通过使毛细管两端施加电场来产生电动力。

当电场施加到毛细管上时,带电的分析物会受到电场力的作用而在毛细管内迁移。

不同的物质由于自身的特性,比如大小、电荷等,会以不同的速率迁移。

具体来说,有两种常用的毛细管电泳模式:
1. 毛细管凝胶电泳(CGE):在该模式下,毛细管内填充了哑离子聚合物凝胶,通过凝胶的孔道来实现分离。

样品中的离子在电场作用下,根据尺寸的不同,在凝胶中迁移速度也不同,从而实现分离。

2. 毛细管毛细管区带电泳(CZE):在该模式下,毛细管内不填充任何分离介质。

样品中的离子自行在毛细管中迁移,根据大小和电荷的不同,迁移速度也不同,从而实现分离。

总的来说,毛细管电泳的分离原理是利用样品中离子在电场作用下的迁移速率差异,根据大小和电荷特性,在毛细管中实现分离。

色谱分析法第九章 毛细管电泳法简介-精品文档

色谱分析法第九章 毛细管电泳法简介-精品文档

5)CGE中使用改性剂
9.5.4毛细管等电聚焦(CIEF) 1)毛细管等电聚焦原理
毛细管等电聚焦属于毛细管电泳中的一种聚焦技术类型,其溶
质通常是蛋白质,分离基于蛋白质等电点(PI)的差异。毛细管内充 满两性电解质和蛋白质溶液,加上一个电场,在毛细管中产生一个
pH梯度。各种蛋白质因为它们的等电点不同,而在毛细管内聚焦为
图9.6 溶质通过毛细管的顺序
图9.7阳离子、中性分子、阴离子 的电泳谱图
8页
退出
色谱分析法
出版社 社文分社
1)电渗流的作用 2)电渗流的产生
图9.8 电渗流的产生
9页
退出
色谱分析法
出版社 社文分社
图9.9 不同驱动力的流型和相应的谱带峰形 3)电渗流的速度和迁移率 (1)电场强度
(2)缓冲液的pH值
子的尺寸和离子所带电荷的大小和符号。
2页
退出
色谱分析法
出版社 社文分社
图9.1 毛细管电泳示意图 9.1.2区带电泳 9.1.3引起区带扩散的因素 9.1.4管的直径对对流扩散的影响
9.1.5介质中的电泳
9.1.6毛细管电泳
3页
退出
色谱分析法
出版社 社文分社
9.2毛细管电泳体系 9.2.1概述 从概念上来讲,毛细管电泳体系比较简单。如图9.2所示,其 主要组成有样品池、入口池、出口池、毛细管、检测器、高压电 源、数字结果处理设备,如一台分析仪或一台计算机。
许多狭小的区带。毛细管内的溶液在动力作用下通过检测器而产生 电泳图。
15 页
退出
色谱分析法
出版社 社文分社
2)毛细管内形成pH梯度 3)等电聚焦
图9.13 CIEF分离机理示意图

高效毛细管电泳色谱仪电泳基本概念

高效毛细管电泳色谱仪电泳基本概念

高效毛细管电泳色谱仪电泳基本概念一、简介高效毛细管电泳色谱仪(Capillary Electrophoresis, CE)是一种利用电场对带电化合物进行分离的技术。

它可以用来分离带正电荷、负电荷或无电荷的化合物,且在分离过程中不需要添加外部成分,如胶体或分离介质,因此不会改变样品的组成。

CE具有分离速度快、样品消耗少、自动化程度高和分离精度高等特点,在生物、医药和环境等领域得到了广泛应用。

二、电泳原理在CE中,带电荷的样品离子在电场中移动,移动速度与带电离子的电荷数和电场力大小成正比。

由于样品分子的大小、形状和电荷都不相同,它们在电场中的移动速度也各不相同,因此分离出不同成分的样品提供了可能。

CE通过在一根毛细管内施加高电场,使带电离子向着管底方向移动,借此实现所有样品分子的分离。

三、电泳参数CE基本的电泳参数包括电场强度、毛细管内液体pH值、毛细管壁面涂层、电容耦合、温度等。

1.电场强度:CE中的电场强度通常在10-100 kV/m之间,由于呈现出非线性的行为,这个参数对电泳速度和分离能力有着重要的影响。

2.pH值:毛细管内液体pH值的选择和调整是CE中的一个重要环节。

通常选择分析物理化性质相似的缓冲液,以使质氢或氢氧离子浓度在毛细管内始终保持一定水平。

3.微粒衬底:在一些情况下,添加微粒衬底可以增加分离能力和电泳效率,但是同样也会使分辨率降低。

4.温度:温度对分离速度、分离度和电泳峰形都有影响,通常情况下,温度越高,电泳速度会越快。

四、毛细管电泳色谱仪毛细管电泳色谱仪(Capillary Electrophoresis Instrument, CEI)包括注射器、毛细管、高压电源、检测器和控制软件等部件。

其中,注射器和毛细管是CE中最关键的部件。

毛细管通常是由非活性材料制成的,如硅胶或石英玻璃。

常用的检测器包括荧光检测器、紫外-可见光检测器、电化学检测器和质谱检测器等。

五、应用CE在分析各种样品中有着广泛的应用,包括各种生物分子、有机和无机化合物、药物、食品、环境和化妆品样品。

毛细管电泳仪使用说明书

毛细管电泳仪使用说明书

毛细管电泳仪使用说明书尊敬的用户:感谢您选择购买我们的毛细管电泳仪。

为了帮助您更好地使用该仪器,我们特别提供了以下使用说明书,请您仔细阅读,并按照说明进行操作。

一、仪器介绍毛细管电泳仪是一种用于分离和分析化合物的高效液相色谱仪器。

它主要由电泳槽、高压电源、检测器和数据处理系统等部分组成。

1. 电泳槽:电泳槽由两个并列的金属板构成,中间通过绝缘材料隔开。

电泳槽用于保持电场稳定以及支撑毛细管。

2. 高压电源:高压电源为仪器提供电场,使溶液中的化合物在毛细管中移动。

3. 检测器:毛细管电泳仪配备了多种检测器,包括紫外-可见吸收检测器、荧光检测器和电导检测器等,您可以根据实际需要选择使用。

4. 数据处理系统:数据处理系统可以实时监测和记录电泳结果,并提供数据分析和报告功能,便于您的后续研究。

二、使用步骤1. 准备工作在操作前,请确保仪器已正确接通电源,并检查各部分连接是否紧固。

同时,根据实验需要,选择合适的电泳缓冲液,并通过滤器过滤以去除杂质。

最后,准备好待测样品,并稀释至适当的浓度。

2. 将毛细管装入电泳槽首先,将尾端截平的毛细管插入电泳槽的两个极板之间,确保毛细管的两端均能延伸到电泳槽外。

然后,通过调整槽中绝缘材料的位置,使毛细管保持在水平状态。

3. 调整高压电源参数根据实验需要,设置合适的电压和电流值,确保电泳能够正常进行。

注意,过高的电压可能会导致电泳带宽过宽或毛细管损坏,因此请务必谨慎调整参数。

4. 注射样品使用注射器将待测样品缓慢注入毛细管,避免产生气泡。

注射结束后,迅速切断样品进入毛细管的通路,以免影响分离效果。

5. 启动电泳在确认样品已经注入毛细管后,启动电泳,并开始记录数据。

您可以根据实际需要选择自动采集数据或手动记录数据。

6. 数据处理电泳结束后,您可以通过仪器提供的数据处理系统对结果进行处理和分析。

不同的检测器可能需要不同的数据处理方式,请根据实际检测器选择相应的处理方法。

三、注意事项1. 请在使用仪器前仔细阅读使用说明书,并根据说明书进行正确操作。

氨基酸的分析方法

氨基酸的分析方法

氨基酸的分析方法
氨基酸的分析方法主要包括色谱分析、电泳分析和光谱分析。

1. 色谱分析:氨基酸的色谱分析主要包括气相色谱(GC)和高效液相色谱(HPLC)。

气相色谱通常使用气相色谱质谱联用技术(GC-MS)来鉴定和定量氨基酸。

高效液相色谱可以应用于复杂样品的分离和定量分析。

2. 电泳分析:氨基酸的电泳分析包括毛细管电泳(CE)和聚丙烯酰胺凝胶电泳(PAGE)。

毛细管电泳是一种高效、快速的氨基酸分析方法,常用于药物、食品等领域的检测。

聚丙烯酰胺凝胶电泳可用于分析氨基酸的线性序列。

3. 光谱分析:氨基酸的光谱分析主要包括紫外-可见光谱(UV-Vis)、红外光谱(IR)和核磁共振光谱(NMR)。

紫外-可见光谱用于测定氨基酸的吸收特性,红外光谱可用于检测氨基酸的官能团,核磁共振光谱可提供氨基酸的结构信息。

这些方法可以单独应用或联合使用,以提供对氨基酸的定性和定量分析。

色谱法在药物分析中的应用

色谱法在药物分析中的应用

色谱法在药物分析中的应用
色谱法是一种用于分离和分析混合物中各种成分的化学分析方法。

在药物分析中,色谱法已经成为一种常用的技术,因为药物中可能含有多种成分,并且这些成分需要被准确地定量和分离。

其中,常用的色谱法有气相色谱、液相色谱和毛细管电泳等。

1. 气相色谱法
液相色谱法是一种将药物样品溶于溶剂并通过色谱柱分离的技术。

该方法可以根据药物溶液中不同成分的亲水性和疏水性来进行分离和定量。

液相色谱法广泛应用于药物质量控制、生产监管和药物分析等领域。

其中,常用的液相色谱法有高效液相色谱法和超高效液相色谱法等。

3. 毛细管电泳法
毛细管电泳法是一种高分辨率的药物分析方法,它可以根据物质的电荷量、大小和形状等特性来分离不同的化合物。

毛细管电泳法具有灵敏度高,分离速度快,样品准备简单等优点。

因此,在药物分析中,毛细管电泳法已经成为一种受欢迎的技术。

总的来说,色谱法在药物分析中具有很大的应用前景。

随着新药研究的不断发展以及药物产业的不断壮大,色谱法不断完善和发展,将促进药物分析的进一步发展。

色谱分析法第九章 毛细管电泳法简介26页PPT

色谱分析法第九章 毛细管电泳法简介26页PPT

出版社 社文分社
图9.13 CIEF分离机理示意图 4)聚焦区带的活动化 5)CIEF的应用 9.5.5毛细管等速电泳(CITP) 1)CITP的原理
CITP是一种置换色谱的电泳配对物。
16 页 退出
色谱分析法
出版社 社文分社
图9.14 CITP分离机理示意图 2)等速电泳图的外观
图9.15 等速电泳谱图
一恒定电场、恒定电流或恒定功率,并且有电场反向功能的模块。
9.2.7数据处理
9.3 毛细管电泳与其他分离技术的比较
高效液相色谱(HPLC)和气相色谱(GC)与毛细管电泳相似,在于
这三种方法中数据表示、数据处理和自动化基本相同。Jorgenson
曾经将毛细管电泳描述为“电泳的高效分离机理与色谱的设备和自
EOF)。在正常模式中,电渗流的方向是由正极向着负极,缓冲液从
入口池通过毛细管和检测器到达出口池。
图9.6 溶质通过毛细管的顺序
图9.7阳离子、中性分子、阴离子 的电泳谱图
8 页 退出
色谱分析法
1)电渗流的作用 2)电渗流的产生
出版社 社文分社
图9.8 电渗流的产生
9 页 退出
色谱分析法
出版社 社文分社
色谱分析法
出版社 社文分社
第九章 毛细管电泳法简介
1 页 退出
色谱分析法
出版社 社文分社
9.1.1简介 电泳(Electrophoresis)是指带电粒子或分子在电场的作用下
在导电液体通常是水介质中的运动。毛细管电泳(Capillary Electrophoresis,CE)是在毛细管中实现电泳分离的技术。如图 9.1所示,充满了电解质或缓冲液的水性介质的玻璃管的两端与装 有相同缓冲液的容器连接在一起,并在这两个容器中插入连有高压 电源的两个铂电极。假设有一个样品含有分子大小不同的中性分子 和带电离子,而且带电的离子带有不同的电荷。将样品放置在玻璃 管的正极端,在整个体系中加上电场,则样品中的离子就趋向于以 不同的速度沿不同的方向在管内迁移。迁移的速度和方向取决于离 子的尺寸和离子所带电荷的大小和符号。

色谱分析法和毛细管电泳分析法的基本原理与应用

色谱分析法和毛细管电泳分析法的基本原理与应用

色谱分析法和毛细管电泳分析法的基本原理与应用在现代化学中,分析技术是不可或缺的一部分。

众所周知,分析技术有很多种类,例如,质谱分析、放射性分析、光谱分析等等。

然而,本篇文章将重点讨论色谱分析法和毛细管电泳分析法这两种分析技术的基本原理与应用。

一、色谱分析法的基本原理与应用色谱分析法是一种从杂质混合物中分离纯化化学物质的技术。

它基于不同组分在特定条件下通过固定相和移动相之间的相互作用,实现组分的分离和定量化分析。

在色谱分析法中,样品溶液被喷洒到固定相上,然后通过移动相流动,不同化学物质因其物理化学性质差异,从而可能在固定相上停留不同的时间,从而被分离。

色谱分析法又分为气相色谱和液相色谱两个主流技术。

1. 气相色谱气相色谱是一种以气体作为载体的色谱技术。

它基于杂质在蒸汽状态下通过固定相时与它相互作用的特定适配关系,实现杂质的分离和定量化分析。

分离组分是根据它们的挥发性、极性、分子量、化学反应性等从样品中引导到固定相上的微小涂层上,通过气流来驱动气溶胶在涂层上的流动。

2. 液相色谱液相色谱是一种以液体作为载体的色谱技术。

它基于样品在液相中分离和移动的特性,通过以固定相对其它组分有不同的吸附性能,完成对有机化合物、药物等成分的分离和提纯。

具体而言,液相色谱的分离过程通过在移动相中加入一种固定相,通过样品流动的压力差在二者中达成交换,样品分子成分被吸附在不同程度的高校固定相上。

那么,色谱分析法有哪些具体应用呢?1. 生物医学分析色谱分析法广泛应用于生物医学分析,并成功用于药物的分析,纯化和鉴定。

比如进口药物中已知的有毒成分,利用气相色谱可以进行快速检测,而液相色谱则可用于肝炎病毒和细胞生化结构的分析。

2. 环境分析色谱技术在环境分析中也有着不可替代的作用。

如有机物质、金属离子、化学反应物等的分离和测定。

其中,危险废物的色谱分离技术得到广泛的应用。

3. 食品质量检测色谱技术在食品质量检测中也有所应用。

它可以用来进行食品添加剂和有害物质的检测。

化学反应中的色谱分析与电泳分析

化学反应中的色谱分析与电泳分析

色谱分析和电泳分析是化学反应过程中常用的两种分析方法。

它们通过不同的原理和手段,可以准确地测定和分离化学反应中的物质,为我们提供了重要的实验数据和研究基础。

首先,色谱分析是一种基于分离技术的方法,它利用不同物质在固定相或液态移动相中的分布系数差异,通过分离和检测来确定各个物质的含量或结构。

在化学反应过程中,许多物质都会产生,其中一些物质可能是我们感兴趣的反应产物或副产物。

通过色谱分析,我们可以将这些物质进行有效地分离,并确定它们的含量和结构特征。

常见的色谱分析方法包括气相色谱(GC)和液相色谱(LC)等。

气相色谱主要适用于挥发性物质的分离和分析,液相色谱则适用于非挥发性或极性物质的分析。

通过色谱分析,我们可以了解反应产物的种类、含量和纯度,从而对化学反应的结果进行准确的评估。

其次,电泳分析是一种基于电场作用的分离技术,它利用物质在电场中的迁移速度差异来分离和检测不同的物质。

在化学反应中,一些分子会带电,它们在电场中会受到不同的电荷和电场力的作用,从而产生不同的迁移速度。

通过电泳分析,我们可以将这些带电物质进行有效分离,并确定它们的含量和电荷特征。

常见的电泳分析方法包括凝胶电泳和毛细管电泳等。

凝胶电泳主要适用于大分子的分离和分析,毛细管电泳则适用于小分子或离子的分析。

通过电泳分析,我们可以详细了解化学反应中物质的电荷、分子量和结构特征,为后续反应机制和过程的研究提供有力的数据支持。

综上所述,色谱分析和电泳分析是化学反应中重要的分析方法,它们通过不同的原理和手段,可以准确地测定和分离化学反应中的物质。

色谱分析利用分离技术,根据物质的分布系数差异进行分离和检测;电泳分析利用电场作用,根据物质的迁移速度差异进行分离和检测。

通过这两种分析方法,我们可以了解化学反应产物的种类、含量、结构和电荷特征,从而为反应机制和过程的研究提供重要的实验数据和理论支持。

在今后的研究中,我们可以进一步发展和完善这两种分析方法,提高它们在化学反应中的应用效果。

毛细管电泳和毛细管电色谱(ppt)

毛细管电泳和毛细管电色谱(ppt)

度量电渗流大小是单位电场下的电渗流速率即电渗淌度
(eo)或电渗速率(ueo),可用Smoluchowski 方程表示:
eo
o w
ueoeoEowE
u eo
Ld t0
eouE eoL t0d
1Ld E to
Lt U
3.1.3. 电渗流
以电场力驱动产生的溶液EOF,与高效液相色谱中由高压 泵产生的液体流型不同:
3.1.5. 分离原理
电泳和电渗流并存,在不考虑相互作用的前提下,粒子在 毛细管内电介质中的迁移速率是两种速率的矢量和:
uuep ueo (epe)oE
令µapp=µep + µeo,称之为表观淌度,即从毛细管电泳测量 中得到的淌度为粒子自身的电泳淌度和由电渗引起的淌度之
和,并有
ap pepeou/EL trdU Lt
目前有三种方法可以让样品直接进入毛细管:
电动法、压力法和浓差扩散法。
3.2.3. 电源及其回路
电流回路系统包括高压电源、电极、电极槽、导线和电 解质缓冲溶液等。CE和CEC一般采用0 ~ ±30 kV连续可 调的直流高压电源。理想的电源应具备: 1.能输出单极直流高压(一端接地); 2.电压、电流、功率输出模式任意可选; 3.能控制电压、电流或电功率的梯度; 4.电压输出精度应高于1%。 CE的电极通常由直径0.5~l mm的铂丝制成。 电极槽,即缓冲液瓶,通常是带螺口的小玻璃瓶或塑料 瓶(1~5mL不等),要便于密封。缓冲液内含电解质,充于 电极槽和毛细管中,通过电极、导线与电源连通,一同 构成整个电流回路。
毛细管电色谱由于引入了色谱机制,其保留机理包括两个 方面:
其一,如同HPLC,基于溶质在固定相和流动间分配过程; 其二,如同CE,基于溶质电迁移过程。CEC容量因子可 用下式表示:

毛细管电色谱

毛细管电色谱

毛细管电色谱1. 介绍毛细管电色谱(Capillary Electrophoresis,简称CE)是一种利用玻璃毛细管内的电流和电场力来实现物质分离和分析的方法。

它结合了毛细管电泳和色谱技术的优点,具有高分离效率、快速分析速度、小样本体积和无需柱填充物等优势。

2. 工作原理毛细管电色谱的工作原理基于溶液中离子的迁移速度差异,通过在毛细管内加上电场来引导有电荷的离子在电场中运动。

不同离子由于大小、电荷、空间结构和溶液pH等因素的影响,会以不同的速度游离迁移。

通过测量这些离子的迁移时间和峰面积,可以得到溶液中各组分的含量信息。

3. 仪器结构毛细管电色谱仪主要由电场供应器、样品注射器、分离柱和检测器等部分组成。

•电场供应器:提供所需的电压和电流,用于产生分析电场。

•样品注射器:用于在毛细管内引入待分析的样品,常使用自动进样器实现定量和连续进样。

•分离柱:通过对毛细管内壁表面进行涂覆或改性使其具有特定的分离能力,用于分离混合物中的组分。

•检测器:用于监测分离出的各组分的信号,常见的检测器有紫外吸收检测器和荧光检测器。

4. 分析步骤1.样品准备:将待分析的样品溶解在合适的缓冲液中,同时进行必要的前处理,如蛋白质的还原和糖类的酶解等。

2.样品进样:将样品注射到毛细管中,一般可以使用自动进样器来实现精确的样品进样。

3.分离:通过在毛细管内施加电场,使样品中的离子在电场力和溶液流动力的共同作用下,沿毛细管内壁迁移,实现样品分离。

4.检测:通过检测器监测样品分离过程中形成的信号,如紫外吸收和荧光等,获取样品分离和定量分析的结果。

5.数据分析:根据检测到的峰面积或峰高,结合标准曲线,计算样品中各组分的浓度或含量。

5. 应用领域毛细管电色谱在生物医药、环境监测、食品检测与安全等领域具有广泛的应用。

•生物医药:用于药物分析、蛋白质分析、核酸分析等。

•环境监测:可以分析水体中的微量重金属和有机污染物等。

•食品检测与安全:可以分析食品中的添加剂、农药残留和食品中的有害物质等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电泳的影响因素:
2 6r 3
0 ep
电渗流的影响因素:
q
veo eo eo E
0 ep a a ep
i
0 ep ai ri ep
eo
介质的介电常数↑ 介质的黏度↓ Zeta电位↑ •双电层厚度↑ •界面有效电荷密度↑ •介电常数↓
电渗流速度 毛细管有效长度
电渗流流出时间 电场强度
毛细管柱气相色谱
填充柱气相色谱
纯电泳状态
+
-
tm (min)
0
电渗流的意义
电泳过程中,伴随着电渗现象 电渗流的速度比电泳速度快5-7倍 带电粒子的迁移速度等于电泳和电渗流二者的矢量和 利用电渗流在一次电泳操作中同时完成正、负离子与 中性分子的分离分析,洗脱顺序是: 正离子 > 中性分 子 > 负离子 电渗流是毛细管电泳分离的重要参数
Δυ:相邻两区带的迁移速度差
υ平:为两者的平均速度 Δυ/υ平:表示分离选择性 n:柱效
Rs = 2 (tm2 - tm1 ) / ( W1 + W2 )
tm1、tm2 分别为两个组份的迁移时间 W 为峰底的宽度
影响分离效率的因素 :
1. 2. 3. 4. 焦耳热 进样 电泳扩散 毛细管壁对组分的吸附
• 在典型的毛细管电泳分离中,若有电渗存在,离 子的洗脱顺序是: 首先是最快的阳离子,紧接着是 依次减慢的阳离子,然后是全部的中性分子在一 个区域出现,最后是最慢的阴离子,紧接着的是 依次加快的阴离子。
• • •
µ eo正比于Zeta电势和介质的介电常数
反比于介质的黏度 Zeta电势正比于双电层厚度和界面有效电荷密度 ,反比于介质的介电常数
利用电渗流可将正、负离子或中性分子一起 向同一方向,产生差速迁移,在一次电泳操 作中同时完成正、负离子的分离分析 电渗流是毛细管电泳分离的重要参数,控制 电渗流的大小和方向,可提高毛细管电泳分 离的效率、重现性、分离度。
• 带电粒子在毛细管内电解质溶液中的迁移速度等 于电泳和电渗流二者的矢量和。
基本构造 高压电源、毛细管、检测器和缓冲液贮瓶 毛细管 电极 检测器 电极 数据处理
试样
缓冲液 缓冲液
高压电源
(可高至30KV)
优点
• • • • • • 高灵敏度,10-13-10-15 mol 高柱效 分析速度快,几十秒 进样量少,纳升 成本低 应用范围广
基本概念
• 电泳 electrophoresis 是指在电解质溶液中,带电粒子在
Zeta电势-ζ
• 与固液界面的双电层有着密切的关系
• CE所用的石英毛细管,pH值大于3时,内表 面带负电,和溶液接触形成一双电层 • 在毛细管壁双电层的扩散层中的阳离子, 相对于毛细管壁的负电荷表面,形成一个 圆筒形的阳离子鞘
电渗流的意义
电泳过程中,伴随着电渗现象
电渗流的速度比电泳速度快5-7倍
分离效率
柱效可以用理论塔板数n表示
n = (µ ep+µ eo) V /(2D)
理论塔板高度 H =L / n n = 5.54 (χ/ W½)2
χ为电泳图上从起点至电泳峰最大值之间的距离 W½为电泳峰的半高峰宽
分离度
电泳中两峰的分离度( Rs),也称为分辨率,它表示了 淌度相近的组分分开的能力,可表达为 Rs= (n 1/2/4)×( Δυ /υ平 )
离子所带电荷↑ 解离度↑ 体积↓ 溶液的黏度↓
电渗流的影响因素:
eo
veo eo eo E
改变电渗流的方法:
1. 2. 3. 4. 5. 改变外加径向电场 改变缓冲液成分和浓度 改变缓冲液pH 加入添加剂 改变温度
介质的介电常数↑ 介质的黏度↓ Zeta电位↑ •双电层厚度↑ •界面有效电荷密度↑ •介电常数↓
电场作用下,以不同的速度向所带电荷相反的方向发生迁 移的电动现象。
• 电渗 (eletroosmosis) 是指在电场作用下,毛细管或固相
多孔物质内液体沿固体表面移动的现象。
• 淌度(mobility)是指带电粒子在单位电场下的移动速度。
电泳
• 带电粒子在电场作用下于一定介质中所发生的定 向运动 • 电泳淌度(μep):单位电场 (E)下的电泳速度(υ ) μep= υep /E μep = υep﹒ (L /V) = ( l / t )﹒(L /V)
• 高效毛细管电泳
• 以毛细管为分离通道,以高压直流电场为驱动力,以样品的多种特性( 电荷、大小、等电点、极性、亲和行为、相分配特性等)为根据的液相 微分离分析技术。
毛细管 检测器
数据处理
样品 缓冲液贮瓶 缓冲液贮瓶
高压直流电源 10-30KV
焦耳热
细内径(<100µm),粗外径的毛细管柱
– 进样 试样导入毛细管柱时,总有一定的试样区带长度。 细内径的毛细管柱时,进样操作的要求更为严格。 一般进样区带控制在柱长的1%
– 电泳扩散
试样区带中的缓冲溶液浓度或电阻率与毛细管其它 地方的浓度或电阻率不相等时,因两个区域电场强度 的差异,而引起区带电分散。
一、分离的一般过程
• • • • • • • • 萃取、沉淀、结晶 升华 蒸馏 过滤 二、数学描述 • 差速运动过程 • L = v tR • tR = L/v
三、基本原理
• 高压电场为驱动力, 样品中各组分之间淌度和 分配行为的差异,而实现分离的液相分离技术 • 基本构造 高压电源、毛细管、柱上检测器和缓冲液贮瓶
• capillary electrophresis, CE, • 高效毛细管电泳 • high performance capillary electrophresis, HPCE • 以毛细管为分离通道,以高压直流电场为驱动力 ,以样品的多种特性(电荷、大小、等电点、极性 、亲和行为、相分配特性等)为根据的液相微分离 分析技术。
第七章
capillary electrophresis
Finding Whoa at Office 2.0
1
• • • • • • • •
概述 毛细管电泳分离的一般过程 毛细管电泳分离的基本原理 基本概念 毛细管电泳的分类 毛细管电泳分离方式 毛细管电泳柱技术 毛细管电泳进样和检测技术
概述
• 毛细管电泳
改变电渗流的方法:
1. 2. 3. 4. 5. 改变外加径向电场 改变缓冲液成分和浓度 改变缓冲液pH 加入添加剂 粘度 改变温度
Zeta电势
区带宽度及其展宽因素
区带宽度
时间宽度
Ws =(Wt﹒l/tm)-Wd
空间宽度 检测器的窗口宽度
• 毛细管电泳
• • capillary electrophresis, CE , high performance capillary electrophresis, HPCE
– 毛细管壁对组分的吸附 电泳峰拖尾或变形,甚至消失。
抑制吸附作用常用的方法有: 1. 使用极端pH条件 2. 加入中性盐或两性离子化合物 3. 对毛细管内壁进行涂层处理 需要注意:方法也会抑制或改变电渗流
• • • • • • • •
概述 毛细管电泳分离的一般过程 毛细管电泳分离的基本原理 基本概念 毛细管电泳的分类 毛细管电泳分离方式 毛细管电泳柱技术 毛细管电泳检测技术
l :毛细管有效长度, L:毛细管总长度 t:迁移时间 V:电压
电渗 eletroosmosis
• 电渗流
• electroosmotic flow, EOF
• pH > 3时,石英毛细管内壁带负电荷,吸引溶液中的阳离 子形成双电层,在电场作用下,溶剂化了的阳离子,带动 溶剂一起向阴极迁移,便形成了电渗流 • 电渗淌度(μeo) μeo =υeo / E = l /( teo﹒E )
• • • • •
1981,75μm内径的毛细管,高电压 1984,毛细管胶束电动色谱 1987,毛细管等电聚焦 1988-1989,CE商品仪器 1989,第一届国际毛细管电泳会议
• • • • • • • •
概述 毛细管电泳分离的一般过程 毛细管电泳分离的基本原理 基本概念 毛细管电泳的分类 毛细管电泳分离方式 毛细管电泳柱技术 毛细管电泳检测技术
相关文档
最新文档