万有引力与航天

合集下载

万有引力与航天公式

万有引力与航天公式

万有引力与航天公式
嘿,让我来给你讲讲万有引力与航天公式那些超厉害的公式呀!
首先就是那个大名鼎鼎的万有引力公式:F=GMm/r²。

比如说,就像地球和月球,地球的质量很大,月球的质量也有那么一些,它们之间的距离也确定,哇塞,那它们之间的引力就可以通过这个公式算出来啦!这就好像是一个神秘的纽带把它们紧紧联系在一起呢!
还有向心加速度公式a=v²/r。

想象一下,卫星在绕着地球转呀转,它的速度和轨道半径决定了它的向心加速度呢,如果速度很快很快,轨道又比较小,那向心加速度不就超大啦,卫星可就得超快地转啦!
再有向心力公式F=mv²/r。

就好比一辆赛车在弯道上飞驰,车速和弯道半径就决定了它需要多大的向心力来保持不飞出去呀!
哎呀,这些公式是不是超级神奇呀!它们可是打开航天世界大门的钥匙呢,让我们能更好地探索宇宙的奥秘呀!你说是不是很了不起呢?。

万有引力与航天知识点总结

万有引力与航天知识点总结

万有引力与航天知识点总结————————————————————————————————作者:————————————————————————————————日期:ﻩ332T=2.GM GM GM r M v a Gr r r ωπ=== , , ,万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。

即: 其中G =6. 67×10-11N·m 2/kg 2②适用条件1.可看成质点的两物体间,r 为两个物体质心间的距离。

2.质量分布均匀两球体间,r为两球体球心间距离。

③运用万有引力与重力的关系:重力是万有引力的一个分力,一般情况下, 可认为重力和万有引力相等。

忽略地球自转可得:二. 重力和地球的万有引力:1.地球对其表面物体的万有引力产生两个效果:(1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。

由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。

(2)重力约等于万有引力:在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。

说明:如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不能再认为重力等于万有引力了。

如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。

在地球的同一纬度处,g 随物体离地面高度的增大而减小,即2)('h R GM g +=。

强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。

2.绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。

万有引力与航天科学知识点总结

万有引力与航天科学知识点总结

万有引力与航天科学知识点总结1. 万有引力的定义和原理- 万有引力是指质点之间的引力相互作用力,由牛顿于17世纪提出的普适物理定律。

- 万有引力的原理是质点间的引力与它们的质量成正比,与它们之间的距离成反比。

2. 万有引力公式- 万有引力公式表达了两个质点间的引力大小与它们质量和距离的关系:`F = G * (m1 * m2) / r^2`。

- 其中,F表示引力的大小,m1和m2分别是两个质点的质量,r是它们之间的距离,G为万有引力常数。

3. 航天科学中的万有引力应用- 万有引力是航天科学中至关重要的概念,对行星运行、地球轨道等都具有重要影响。

- 宇宙飞行器与地球的相对位置和角度,以及运动轨迹的计算都需要考虑万有引力的作用。

- 万有引力也是行星探测任务中的重要影响因素,科学家通过研究行星的引力场,获得行星的质量、结构和组成信息。

4. 航天科学的其他知识点除了万有引力,航天科学还涉及许多其他重要知识点,如:- 轨道力学:研究天体运动的力学原理和方法。

- 航天器设计:包括航天器的结构、推进系统、导航和控制等设计原理与技术。

- 火箭发动机:研究和设计用于航天器推进的火箭发动机。

- 航天器轨道控制:保持航天器在特定轨道上的运动稳定与精确控制。

5. 航天科学的前沿领域- 航天科学作为一个不断发展的领域,目前还有许多前沿研究领域,如:- 卫星导航与定位技术- 空间站和深空探测任务- 火星和月球探测- 太阳风与地球磁层相互作用研究以上是对万有引力与航天科学的知识点进行了简要总结。

了解这些基本概念和相关领域的发展情况,有助于更好地理解和探索航天科学的奥秘与魅力。

高中物理第四章《第四节万有引力与航天》教学课件

高中物理第四章《第四节万有引力与航天》教学课件

8
2.星体表面上的重力加速度 (1)设在地球表面附近的重力加速度为 g(不考虑地球自转),由 mg=GmRM2 ,得 g=GRM2 . (2)设在地球上空距离地心 r=R+h 处的重力加速度为 g′,由 mg′=(RG+Mhm)2,得 g′=
GM (R+h)2 所以gg′=(R+R2h)2.
上一页
返回导航
们的向心加速度大小分别为 a 金、a 地、a 火,它们沿轨道运行的速率分别为 v 金、v 地、v 已 火.
知它们的轨道半径 R 金<R 地<R 火,由此可以判定
()
A.a 金>a 地>a 火
B.a 火>a 地>a 金
C.v 地>v 火>v 金
D.v 火>v 地>v 金
上一页
返回导航
下一页
第四章 曲线运动 万有引力与航天
A.5×109 kg/m3
B.5×1012 kg/m3
C.5×1015 kg/m3
D.5×1018 kg/m3
解析:选 C.毫秒脉冲星稳定自转时由万有引力提供其表面物体做圆周运动的向心力,根
据 GMRm2 =m4πT22R,M=ρ·43πR3,得 ρ=G3Tπ2,代入数据解得 ρ≈5×1015 kg/m3,C 正确.
地球引力,能够描述 F 随 h 变化关系的图象是
()上一页返回Fra bibliotek航下一页
第四章 曲线运动 万有引力与航天
12
[解析] 在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律,可知随着 h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述 F 随 h 变化 关系的图象是 D. [答案] D
Mm G R2

航天飞行器的飞行原理

航天飞行器的飞行原理

航天飞行器的飞行原理
航天飞行器的飞行原理是通过利用牛顿第三定律——作用与反作用,以及万有引力定律以实现飞行。

首先,航天飞行器利用火箭发动机产生巨大的推力。

火箭发动机通过喷射高速喷射物,如燃料和氧化剂的燃烧产生的高温高压气体,来产生推力。

根据牛顿第三定律,喷射的高速气体将推动火箭反方向产生的反作用力,从而推动整个航天飞行器向前飞行。

其次,航天飞行器借助地球的引力来进行轨道飞行。

根据万有引力定律,物体之间存在着万有引力,地球对航天飞行器施加的引力使其保持在围绕地球的轨道上。

为了保持轨道飞行,航天飞行器必须具有适当的速度和方向。

当航天飞行器的速度达到一定值时,它将进入地球上的轨道,并继续围绕地球飞行。

另外,航天飞行器可以利用姿态控制系统来实现航向和飞行姿势的调整。

姿态控制系统可以通过推力矢量控制或姿态调整推进器等方式,改变航天飞行器的速度和方向,从而使其能够精确进入轨道并进行飞行任务。

总之,航天飞行器的飞行原理是基于牛顿第三定律和万有引力定律的,通过产生推力和借助引力,以及利用姿态控制系统来实现飞行。

这些原理的运用使得航天飞行器能够在太空中安全地进行各种任务。

张如鹏(万有引力与航天)

张如鹏(万有引力与航天)
科学家普遍认为,我们的宇宙由普通物质、 暗物质和能量组成。而我们平常看不见的暗 物质很可能占有宇宙所有物质总量的95%。



经典力学的基础是牛顿运动定律 经典力学只适用于宏观物体的低速运动 经典力学是相对论与量子力学的特殊情形
广义相对论:将引力描述 成因时空中的物质与能量 而弯曲的时空,以取代传 统对于引力是一种力的看 法。 实例:这也就解释了为什 么水星的轨道飘忽不定。
M
m
Mm v G 2 m r r GM \v r
2
7.9 km / s
R
v2 或者mg m 所以v gR 7.9km/ s R
黑洞:质量很大﹑半径很小的天体。 黑洞的脱离速度:
2GM v c R
言外之意就是一旦进入了黑洞的引力范围之内,连光 都无法逃脱其束缚而被完全吞噬掉!
黑洞的产生过程:某一个恒星准备灭亡,其核心在自身重力的作
用下迅速地收缩,塌陷,发生强力爆炸。 紧接着被压缩成一个 密实的星体,同时也 压缩了内部的空间和 时间。剩下来的是一 个密度高到难以想象 的物质。 高质量微体积的黑洞 在吞噬万物的同时也 会释放一部分物质, 射出两道纯能量—— γ射线。
那么黑洞是如何诞生的呢?
月球受地球的引力F月=GM地m月/r地月2
则:地面附近自由落体加速度g=GM地/R地2
月球向心加速度a月=GM地/r地月2
又:r地月≈60R地,那么g=3600a月
由此我们便可以以科学的视角来观察和研究月球的运动规律!
应用二:测地球的质量

首先若不考虑地球自转,地表物体的重力为:
Mm mg G 2 R
m
m0 v2 1 2 c
m:物体在速度为 v时的质量, m :物体静止时的质量 0

近六年2024-2025年新课标全国卷高考物理试题分类汇总-专题5:万有引力与航天

近六年2024-2025年新课标全国卷高考物理试题分类汇总-专题5:万有引力与航天

2024-2025年新课标全国卷专题分类汇总专题5:万有引力与航天1.(2024课标Ⅱ卷·19题·6分· 中)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M所用的时间等于T 04B .从Q 到N 阶段,机械能渐渐变大C .从P 到Q 阶段,速率渐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功1.(2024年新课标全国卷III)关于行星运动的规律,下列说法符合史实的是A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星根据这些规律运动的缘由D .开普勒总结出了行星运动的规律,发觉了万有引力定律2.(2024年新课标全国卷II)由于卫星的放射场不在赤道上,同步卫星放射后须要从转移轨道经过调整再进入地球同步轨道。

当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。

已知同步卫星的环绕速度约为3.1×103m/s ,某次放射卫星飞经赤道上空时的速度为 1.55×103m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为 A .西偏北方向,1.9×103m/s B .东偏南方向,1.9×103m/s C .西偏北方向,2.7×103m/s D .东偏南方向,2.7×103m/s 3.(2024年新课标全国卷)假设地球是一半径为R 、质量分布匀称的球体。

一矿井深度为d 。

已知质量分布匀称的球壳对壳内物体的引力为零。

矿井底部和地面处的重力加速度大小之比为 A .1- B .1+ C .D .4.(2024年新课标全国卷II)假设地球可视为质量匀称分布的球体。

万有引力与航天公式总结

万有引力与航天公式总结

万有引⼒与航天公式总结万有引⼒与航天重点规律⽅法总结⼀.三种模型1.匀速圆周运动模型:⽆论是⾃然天体(如地球、⽉亮)还是⼈造天体(如宇宙飞船、⼈造卫星)都可看成质点,围绕中⼼天体(视为静⽌)做匀速圆周运动 2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引⼒提供各⾃转动的向⼼⼒。

3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。

⼆.两种学说1.地⼼说:代表⼈物是古希腊科学家托勒密 2/⽇⼼说:代表⼈物是波兰天⽂学家哥⽩尼三.两个定律1.开普勒定律:第⼀定律(⼜叫椭圆定律):所有的⾏星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的⼀个焦点上第⼆定律(⼜叫⾯积定律):对每⼀个⾏星⽽⾔,太阳和⾏星的连线,在相等时间内扫过相同的⾯积。

第三定律(⼜叫周期定律):所有⾏星绕太阳运动的椭圆轨道的半长轴R 的三次⽅跟公转周期T 的⼆次⽅的⽐值都相等。

表达式为:)4(223πGM K K T R == k 只与中⼼天体质量有关的定值与⾏星⽆关2.⽜顿万有引⼒定律1687年在《⾃然哲学的数学原理》正式提出万有引⼒定律⑴.内容:宇宙间的⼀切物体都是相互吸引的.两个物体间引⼒的⽅向在它们的连线上,引⼒的⼤⼩跟它们的质量的乘积成正⽐,跟它们之间的距离的⼆次⽅成反⽐. ⑵.数学表达式:rF MmG2=万⑶.适⽤条件:a.适⽤于两个质点或者两个均匀球体之间的相互作⽤。

(两物体为均匀球体时,r 为两球⼼间的距离)b. 当0→r 时,物体不可以处理为质点,不能直接⽤万有引⼒公式计算a.普遍性:任何客观存在的有质量的物体之间都有这种相互作⽤⼒b.相互性:两个物体间的万有引⼒是⼀对作⽤⼒和反作⽤⼒,⽽不是平衡⼒关系。

c.宏观性:在通常情况下万有引⼒⾮常⼩,只有在质量巨⼤的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引⼒只与它们本⾝的质量、它们之间的距离有关.与所在空间的性质⽆关,与周期及有⽆其它物体⽆关.(5)引⼒常数G :①⼤⼩:kg m N G 2211/67.610=-,由英国科学家卡⽂迪许利⽤扭秤测出②意义:表⽰两个质量均为1kg 的物体,相距为1⽶时相互作⽤⼒为:N 101167.6-?四.两条思路:即解决天体运动的两种⽅法1. 万有引⼒提供向⼼⼒:F F 向万= 即:222224n Mm vF G ma m mrmr rrTπω=====万2.天体对其表⾯物体的万有引⼒近似等于重⼒:g m R MmG=2即 2gR GM =(⼜叫黄⾦代换式)注意:+=2')(h R GM g9.8m/s 2③关系:22')(h R gRg+=五.万有引⼒定律的应⽤1.计算天体运动的线速度、⾓速度、周期、向⼼加速度。

完整版)万有引力与航天公式总结

完整版)万有引力与航天公式总结

完整版)万有引力与航天公式总结在天体运动中,可以采用匀速圆周运动模型、双星模型和“天体相遇”模型三种模型来描述。

其中,匀速圆周运动模型是指天体围绕中心天体做匀速圆周运动,双星模型是指两颗彼此距离较近的恒星相互之间的万有引力提供各自转动的向心力,而“天体相遇”模型则是指两天体相距最近的情况。

2.地心说和XXX说是两种关于宇宙结构的学说,地心说由古希腊科学家XXX提出,认为地球是宇宙的中心,而日心说则由波兰天文学家哥XXX提出,认为太阳是宇宙的中心。

3.开普勒定律是关于行星运动的三个定律之一。

第一定律指出,所有行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上;第二定律指出,对于每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积;第三定律则指出,所有行星绕太阳运动的椭圆轨道的半长轴R的三次方跟公转周期T的二次方的比值都相等。

4.牛顿万有引力定律是描述宇宙间物体相互作用的定律。

该定律指出,宇宙间的一切物体都是相互吸引的,两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比。

该定律适用于两个质点或者两个均匀球体之间的相互作用,与它们所在空间的性质无关,只与它们本身的质量、它们之间的距离有关。

引力常数G是表示两个质量均为1kg的物体,相距为1米时相互作用力的大小,其值为6.67×10^-11 N·m/kg。

5.解决天体运动问题的两种方法,一种是采用万有引力提供向心力的思路,即认为天体运动的向心力由万有引力提供;另一种是采用角动量守恒的思路,即认为天体在运动过程中角动量守恒,从而推导出天体运动的规律。

万有引力定律是描述质点间引力作用的基本定律,它表明任何两个质点之间都存在引力,且这个引力与它们的质量和距离有关。

在地球表面,万有引力近似等于重力,其大小为10^-11N,即F万=G(Mm/r^2),其中G为万有引力常数,M为地球质量,m为物体质量,r为物体到地心的距离。

物理万有引力与航天重点知识归纳

物理万有引力与航天重点知识归纳

万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。

(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。

其中k 值与太阳有关,与行星无关。

中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。

2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。

(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。

(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。

(4) 两个物体间的万有引力也遵循牛顿第三定律。

3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。

①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。

由以上分析可知,重力和重力加速度都随纬度的增加而增大。

(2) 物体受到的重力随地面高度的变化而变化。

在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。

考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。

第4讲 万有引力定律与航天

第4讲  万有引力定律与航天

6.4×106
m/s
=7.9×103 m/s。 方法二:由 mg=mvR21得
v1= gR= 9.8×6.4×106 m/s=7.9× 103 m/s。 第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速
度,此时它的运行周期最短,Tmin=2π Rg=5 075 s≈85 min。
2.宇宙速度与运动轨迹的关系 (1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动。 (2)7.9 km/s<v 发<11.2 km/s,卫星绕地球运动的轨迹为椭圆。 (3)11.2 km/s≤ v 发<16.7 km/s,卫星绕太阳做椭圆运动。 (4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间。
二、万有引力定律 1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线
上,引力的大小与物体的质量 m1 和 m2 的 乘积成正比、与它们之间 距离 r 的 二次方 成反比。
2.表达式:F=Gmr1m2 2,G 为引力常量,其值为 G=6.67×10-11N·m2/kg2。
3.适用条件:(1)公式适用于 质点 间的相互作用。当两个物体
解析:近地轨道卫星的轨道半径稍大于地球半径,由万有引力提供向心力,可
得 GMr2m=mvr2,解得线速度 v=
GrM,由于地球静止轨道卫星的轨道半径大
于近地轨道卫星的轨道半径,所以地球静止轨道卫星的线速度较小,选项 B 错
误;由万有引力提供向心力,可得 GMr2m=mr2Tπ2,解得周期 T=2π GrM3 ,所
答案:D
对点清
1. 四个分析 “四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半
径的关系。
GMr2m=mmmωvar→22→r→av=ω=G=rM2

万有引力与航天知识点归纳

万有引力与航天知识点归纳

万有引力与航天知识点归纳一、万有引力定律1. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量和的乘积成正比,与它们之间距离的平方成反比。

2. 公式,其中,称为引力常量。

3. 适用条件适用于两个质点间的相互作用。

当两个物体间的距离远大于物体本身的大小时,物体可视为质点。

对于质量分布均匀的球体,为两球心间的距离。

二、万有引力定律的应用1. 计算天体质量对于中心天体和环绕天体,根据万有引力提供向心力。

若已知环绕天体的线速度和轨道半径,则。

若已知环绕天体的角速度和轨道半径,则。

若已知环绕天体的周期和轨道半径,则。

2. 计算天体密度对于质量为、半径为的天体,若有一颗卫星绕其做匀速圆周运动,轨道半径为。

由,天体的体积。

当卫星绕天体表面运行时,则。

三、人造卫星1. 卫星的动力学方程万有引力提供向心力,即。

2. 卫星的线速度由可得,说明卫星的线速度与轨道半径的平方根成反比,轨道半径越大,线速度越小。

3. 卫星的角速度由可得,轨道半径越大,角速度越小。

4. 卫星的周期由可得,轨道半径越大,周期越大。

5. 地球同步卫星特点:周期,与地球自转周期相同。

轨道平面与赤道平面重合。

高度,线速度。

四、宇宙速度1. 第一宇宙速度定义:卫星在地面附近绕地球做匀速圆周运动的速度。

计算:由(为地球半径),可得。

这是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大环绕速度。

2. 第二宇宙速度,当卫星的发射速度大于而小于时,卫星绕地球运行;当卫星的发射速度等于或大于时,卫星将脱离地球的引力束缚,成为绕太阳运行的人造行星。

3. 第三宇宙速度,当卫星的发射速度等于或大于时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去。

五、双星系统1. 特点两颗星绕它们连线上的某一点做匀速圆周运动,它们之间的万有引力提供各自做圆周运动的向心力。

2. 规律对于质量分别为、的两颗星,轨道半径分别为、,两星之间的距离为()。

万有引力与航天专题(2024高考真题及解析)

万有引力与航天专题(2024高考真题及解析)

万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。

沪科版高中物理高一物理必修二《万有引力与航天》评课稿

沪科版高中物理高一物理必修二《万有引力与航天》评课稿

沪科版高中物理高一物理必修二《万有引力与航天》评课稿一、课程背景与目标1.1 课程背景《万有引力与航天》是高中物理必修二的一门重要课程,该课程通过介绍万有引力的基本概念和航天技术的基本原理,帮助学生深入了解天体运动和航天工程相关知识,拓宽学生的科学视野。

1.2 课程目标本课程旨在:•培养学生对万有引力的正确理解,能够运用牛顿定律解决和分析天体运动问题;•培养学生对航天技术的了解,使他们能够掌握基本的航天原理和航天器的运行方式;•激发学生对宇宙的好奇心和探索精神,培养他们对航天事业的热爱和追求。

二、教学内容与方法2.1 教学内容本课程包括以下几个方面的内容:1.万有引力–牛顿引力定律的基本原理和公式推导;–引力的性质和特点;–地球的重力加速度及其应用。

2.行星的运动与轨道–行星的运动规律和椭圆轨道的性质;–开普勒三个定律的基本概念和推导;–行星轨道的计算和分析。

3.人造卫星与空间站–人造卫星的定义和分类;–人造卫星的工作原理和应用;–空间站的构造和运行方式。

4.航天器的发射与返回–航天器的发射方法和装置;–航天器的返回方法和装置;–航天器的再入大气层的原理和保护措施。

2.2 教学方法本课程采用多种教学方法,以提高学生的学习兴趣和参与度:1.讲授与演示:通过教师的讲述和演示,详细介绍万有引力和航天技术的相关原理和应用,加深学生的理解。

2.实验与观察:设置相关实验,让学生亲自参与实验操作和观察现象,巩固学习内容,培养科学实验能力。

3.讨论与合作:组织学生分组讨论和小组合作,解决问题和完成任务,促进学生思维的开拓和合作精神的培养。

4.案例与应用:引入一些实际案例和应用场景,帮助学生将所学知识应用到实际生活中,增加学习的实用性和趣味性。

三、教学评价和调整3.1 教学评价方式为了评价学生对《万有引力与航天》课程的掌握程度和教学效果,将采用以下评价方式:1.知识测试:通过写作业、小测验等方式,检测学生对课程内容的理解和记忆。

万有引力与航天公式总结

万有引力与航天公式总结

万有引力与航天公式总结引力是宇宙中最基本的力之一,它负责许多天文现象的发生,包括行星绕太阳运动、卫星绕地球运动等等。

万有引力定律是关于物体间引力的数量关系的数学描述,由英国物理学家牛顿在17世纪提出。

在航天领域,我们经常使用万有引力定律来计算和预测天体的运动轨迹以及飞船的航行路径。

万有引力定律可以表述为:两个物体之间的引力与它们的质量呈正比,与它们的距离的平方成反比。

数学上可以表示为:F=G*(m1*m2)/r^2其中,F代表两个物体之间的引力,m1和m2分别是两个物体的质量,r是两个物体之间的距离,G是一个常数,称为万有引力常数。

万有引力常数的数值为:G = 6.67 * 10^-11 N * m^2 / kg^2这个定律表明,当两个物体的质量增加时,它们之间的引力也增大;当两个物体的距离增加时,它们之间的引力减小。

在航天领域,我们经常使用万有引力定律来计算天体的运动轨迹。

例如,当我们想要将卫星送入预定轨道时,可以通过计算卫星和地球之间的引力,确定所需的发射速度和角度。

我们也可以通过万有引力定律来计算行星围绕太阳的轨道,探索行星的运动规律。

除了万有引力定律,航天领域还有其他一些重要的公式。

我们来看一下其中一些。

1.逃逸速度公式逃逸速度是指使物体能够从天体表面完全逃离的最低速度。

逃逸速度可以通过以下公式计算:v = sqrt(2 * G * M / r)其中,v是逃逸速度,G是万有引力常数,M是天体的质量,r是天体的半径。

2.圆周运动公式在行星绕太阳运动、卫星绕地球运动等情况下,天体的运动轨迹通常是一个圆形或近似圆形。

此时,可以使用以下公式计算运动的速度:v = sqrt(G * M / r)其中,v是天体的速度,G是万有引力常数,M是天体的质量,r是天体与其所绕物体的距离。

3.牛顿第二定律与万有引力定律的结合牛顿第二定律是力与物体的质量和加速度之间的关系。

当我们将牛顿第二定律与万有引力定律结合起来,可以得到更复杂的模型来描述天体的运动。

高中物理万有引力与航天(解析版)

高中物理万有引力与航天(解析版)
12.(2021年湖南卷7题)2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道。根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造。核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的 。下列说法正确的是( )
A.核心舱进入轨道后所受地球的万有引力大小约为它在地面时的 倍
【答案】BC
14.2016年8月16日1时40分,我国在酒泉卫星发射中心成功将世界首颗量子卫星“墨子号”发射升空,在距离地面h高度的轨道上运行。设火箭在点火后时间t内竖直向上匀加速飞行,速度增大到v,起飞质量为m,忽略时间t内火箭的质量变化,不考虑空气阻力,重力加速度为g,引力常量为G,地球半径为R,下列说法正确的是()。
A.M与N的密度相等
B.Q的质量是P的3倍
C.Q下落过程中的最大动能是P的4倍
D.Q下落过程中弹簧的最大压缩量是P的4倍
【答案】AC
【解析】A、由a–x图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有: ,变形式为: ,该图象的斜率为 ,纵轴截距为重力加速度 。根据图象的纵轴截距可知,两星球表面的重力加速度之比为: ;又因为在某星球表面上的物体,所受重力和万有引力相等,即: ,即该星球的质量 。又因为: ,联立得 。故两星球的密度之比为: ,故A正确;B、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡, ,即: ;结合a–x图象可知,当物体P和物体Q分别处于平衡位置时,弹簧的压缩量之比为: ,故物体P和物体Q的质量之比为: ,故B错误;C、物体P和物体Q分别处于各自的平衡位置(a=0)时,它们的动能最大;根据 ,结合a–x图象面积的物理意义可知:物体P的最大速度满足 ,物体Q的最大速度满足: ,则两物体的最大动能之比: ,C正确;D、物体P和物体Q分别在弹簧上做简谐运动,由平衡位置(a=0)可知,物体P和Q振动的振幅A分别为 和 ,即物体P所在弹簧最大压缩量为2 ,物体Q所在弹簧最大压缩量为4 ,则Q下落过程中,弹簧最大压缩量时P物体最大压缩量的2倍,D错误;故本题选AC。

五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析

五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析

专题05 万有引力定律与航天【2024年】1.(2024·新课标Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A. 0.2B. 0.4C. 2.0D. 2.5【答案】B【解析】设物体质量为m ,则在火星表面有1121M mF GR 在地球表面有2222M mF GR 由题意知有12110M M 1212R R = 故联立以上公式可得21122221140.4101F M R F M R ==⨯=,故选B 。

2.(2024·新课标Ⅱ)若一匀称球形星体的密度为ρ,引力常量为G ,则在该星体表面旁边沿圆轨道绕其运动的卫星的周期是()D.【答案】A【解析】卫星在星体表面旁边绕其做圆周运动,则2224GMm m R R T, 343V R π= ,M Vρ=知卫星该星体表面旁边沿圆轨道绕其运动的卫星的周期T =3.(2024·新课标Ⅲ)“嫦娥四号”探测器于2024年1月在月球背面胜利着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍。

已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g 。

则“嫦娥四号”绕月球做圆周运动的速率为( )A.RKgQPB.RPKgQC.RQgKPD.RPgQK【答案】D【解析】假设在地球表面和月球表面上分别放置质量为m 和m 0的两个物体,则在地球和月球表面处,分别有2Mm Gmg R =,002M m QG m g R P '=⎛⎫⎪⎝⎭解得2P g g Q'= 设嫦娥四号卫星的质量为m 1,依据万有引力供应向心力得1212Mm v QG m R R KK P P =⎛⎫ ⎪⎝⎭解得RPgv QK=,故选D 。

4.(2024·浙江卷)火星探测任务“天问一号”的标识如图所示。

(完整版)万有引力与航天 课件PPT

(完整版)万有引力与航天 课件PPT

课堂探究
【突破训练 3】已知地球质量为 M,半径为
R,自转周期为 T,地球同步卫星质量为
m,力常量为 G.有关同步卫星,下列
表述正确的是
( BD )
A.卫星距地面的高度为
3
GMT2 4π2
B.卫星的运行速度小于第一宇宙速度
C.卫星运行时受到的向心力大小为
Mm G R2 D.卫星运行的向心加速度小于地球表面 的重力加速度
上信息下列说法正确的是
()
A.月球的第一宇宙速度为 gr
B.“嫦娥四号”绕月运行的速度为
gr2 R
C.万有引力常量可表示为ρ3Tπ2rR33
D.“嫦娥四号”必须减速运动才能返回地球
课堂探究
【突破训练 2】2013 年 6 月 13 日,神州十号与天宫一号成功实现自 动交会对接.对接前神州十号与天宫一号都在各自的轨道上做匀
卫星运行参量的比较和运算
为r,运行速率为v1,向心加速度为a1;地球 解析指导
赤道上的物体随地球自转的向心加速度为a2, 求比值→找到物理量的联系点
第一宇宙速度为v2,地球半径为R,则下列
比值正确的是( AD)
A. a1 r
a2 R
B. a1 ( R )2
a2 r
C. v1 r
v2 R
D. v1 R
时,弹簧测力计的示数为 N.已知引
力常量为 G,则这颗行星的质量为
(B )
mv2 A. GN
Nv2 C.Gm
mv4 B. GN
Nv4 D.Gm
考点定位
天体质量的计算
解析指导
表面附近→轨道半径=星球 半径
卫星绕行星运动:
G
M 行m卫 R2
m卫

万有引力与航天公式总结

万有引力与航天公式总结

万有引力与航天公式总结一、万有引力万有引力是物理学中一个重要的基本定理,由英国科学家牛顿在17世纪提出并经过实验证实。

万有引力的表达式为:F=G(m1*m2/r²)其中,F表示两个物体之间的引力,G为万有引力常数,m1和m2分别为两个物体的质量,r为两个物体之间的距离。

万有引力的几个重要特点:1.引力是质点之间的相互作用,即作用力具有相互性和等效性;2.引力是中心力,即引力的作用方向始终指向两个物体的质心连线上;3.引力与物体的质量成正比,质量越大引力越大;4.引力与物体的距离的平方成反比,距离越远引力越小。

万有引力的应用:1.行星运动:根据万有引力定律,可以解释行星间的相互吸引和轨道运动,揭示了太阳系的运行规律。

2.地球运动:地球与其他物体之间的引力使得地球以椭圆轨道绕太阳运行,并形成了地球的四季变化。

3.卫星轨道:根据万有引力定律,可以计算出人造卫星的轨道和速度,保证卫星能够稳定运行。

二、航天公式航天公式是理论力学中与航天器质量和燃料消耗相关的重要公式,用于计算航天器的速度变化。

航天公式的表达式为:Δv = Ve * ln (m0 / mf)其中,Δv表示航天器的速度变化,Ve为航天器推进剂的有效喷射速度,m0为航天器的初始质量,mf为航天器的最终质量。

航天公式的几个关键点:1.航天器的速度变化与有效喷射速度成正比,有效喷射速度越大速度变化越大;2.航天器的速度变化与初始质量和最终质量的比值的自然对数成正比,初始质量越大或最终质量越小速度变化越大;3.航天公式可以用来计算航天器的最终速度、燃料消耗量以及推进剂的选择等问题。

航天公式的应用:1.轨道变更:根据航天公式,可以计算航天器进行轨道变更所需的速度变化和燃料消耗,指导航天器的轨道规划和飞行控制。

2.火箭发射:航天公式可以用来计算火箭发射时的速度变化和燃料消耗量,从而确定火箭的设计和推进剂的选择。

结论:万有引力定律和航天公式是现代物理学中两个重要的定律和公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【2015·全国新课标Ⅰ·21】(多选)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落。

已知探测器的质量约为1.3×109kg ,地球质量约为月球的81倍,地球半径为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s 2。

则次探测器: ( )
A .在着陆前瞬间,速度大小约为8.9m/s
B .悬停时受到的反冲作用力约为2×103N
C .从离开近月圆轨道到着陆这段时间内,机械能守恒
D .在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度
【答案】BD 【解析】星球表面万有引力提供重力即2GMm mg R =,重力加速度2GM g R =,地球表面229.8/GM g m s R ==,则月球表面221 3.7 3.7181'1816()3.7G
M GM g g R R ⨯==⨯=,则探测器重力1'13009.8/20006
G mg kg N kg N ==⨯⨯≈,选项B 对,探测器自由落体,末速度42'9.88.93
v g h =≈⨯≠,选项A 错。

关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,所以机械能不守恒,选项C 错。

近月轨道即万有引力提供
向心力1 3.7811813.7
G
M GM GM v R R R ==<,小于近地卫星线速度,选项D 对。

【名师点睛】万有引力提供向心力是基础,注意和运动学以及功能关系结合
2.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。

下列说法正确的是: ( )
A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长
B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小
C .天宫二号由椭圆形轨道进入近圆形轨道需要减速
D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道
【答案】D
【名师点睛】本题主要考查了万有引力定律、牛顿第二定律、离心运动的应用问题,关键死
知道万有引力充当向心力,列出22
224G Mm v m m r ma r r T
π===即可进行讨论;属于中档题。

学科@网
3.【2015·山东·15】如图,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。

据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动。

以1a 、2a 分别表示该空间站和月球向心加速度的大小,3a 表示地球同步卫星向心加速度的大小。

以下判断正确的是: ( )
A .231a a a >>
B .213a a a >>
C .312a a a >>
D .321a a a >>
【答案】D
【解析】因空间站建在拉格朗日点,故周期等于月球的周期,根据2
24a r T
π=可知,a 2>a 1;对空间站和地球的同步卫星而言,因同步卫星周期小于空间站的周期则,同步卫星的轨道半径较小,根据'2GM a r
=可知a 3>a 2,故选项D 正确。

地球
【名师点睛】此题考查了万有引力定律的应用;关键是知道拉格朗日点与月球周期的关系以及地球同步卫星的特点.学科@网
4.2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国
家.如图所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动,则此飞行器的()
A.线速度大于地球的线速度B.向心加速度大于地球的向心加速度
C.向心力仅由太阳的引力提供D.向心力仅由地球的引力提供
答案:AB;飞行器与地球同步绕太阳做圆周运动,所以ω飞= ω地,由圆周运动线速度和角速度的关系v = rω得v飞>v地,选项A正确;由公式a= rω2知,a飞>a地,选项B正确;飞行器受到太阳和地球的万有引力,方向均指向圆心,其合力提供向心力,故C、D选项错.
5.【2017·天津市和平区高三上学期期末质量调查】中国航天局在2015年年底发射了高分四号卫星,这是中国首颗地球同步轨道高时间分辨率对地观测卫星;如图所示,A是静止在赤道上随地球自转的物体;B、C是同在赤道平面内的两颗人造卫星,B位于离地高度等于地球半径的圆形轨道上,C是高分四号卫星.则下列关系正确的是:()
A.物体A随地球自转的角速度大于卫星B的角速度
B.卫星B的线速度小于卫星C的线速度
C.物体A随地球自转的向心加速度小于卫星C的向心加速度
D.物体A随地球自转的周期大于卫星C的周期
【答案】C
【名师点睛】地球赤道上的物体与同步卫星具有相同的角速度和周期,根据v=rω,a=rω2比较线速度的大小和向心加速度的大小,根据万有引力提供向心力比较b、c的线速度、角速度、周期和向心加速度大小。

6.【福建省厦门第一中学2016届高三下学期周考】嫦娥五号探测器是我国研制中的首个实施无人月面取样返回的航天器,预计在2017年由长征五号运载火箭在中国文昌卫星发射中
心发射升空,自动完成月面样品采集,并从月球起飞返回地球,航天器返回地球开始阶段运行的轨道可以简化为:发射时,先将探测器发射至近月圆轨道1上,然后变轨到椭圆轨道2上,最后由轨道2进入圆形轨道3,忽略介质阻力,则以下说法正确的是:()
A、探测器在轨道2上经过近月点A处的加速度大于在轨道1上经过近月点A处的加速度
B、探测器在轨道2上从近月点A向远月点B运动的过程中速度减小,机械能增大
C、探测器在轨道2上的运行周期小于在轨道3上的运行周期,且由轨道2变为轨道3需要在近月点A处点火加速
D、探测器在轨道2上经过远月点B处的运行速度小于在轨道3上经过远月点B处的运行速度
【答案】D
【名师点睛】在轨道2上运行时,根据万有引力做功情况判断A、B两点的速度大小,通过比较万有引力的大小,根据牛顿第二定律比较经过A点的加速度大小,从轨道2上A点进入轨道3需加速,使得万有引力等于向心力。

学科@网
7.[2016·天津卷] 我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()
图1-
A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接
B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接
D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接。

相关文档
最新文档