图形认识初步练习题

合集下载

《图形认识初步》练习题

《图形认识初步》练习题
)


下 列 说 法 巾 正 确 的个数 是 (


① 角是 南两 条射线 组 成 的 图形 ② 凡 是 直角都 相 等

③如果线段 A B A C 的 中点 ④两个锐角的和

=
BC

那么 点
B
叫做线 段
A 5


B 15
. 一

C 20


D 12 5


定是 锐 角
C 13 30

9 D 4



. . . .
)

A 六 棱 柱 B 五 棱 柱 C 四棱 柱 D i
5 A c 6

棱柱
A A—

下 列 语 句 不 正 确 的是 (

)

作 直线 A B
AB
=
CD
B

延 长线段 A 曰
P_ B 尺一 日

B

A—
_
Q

B

反 向延 长 射 线 A 8
D作

线段
4
AB

=
CD

C A


D A
如罔

只 蚂 蚁 从 正 方 体 的底 面
8

A
点处
A 1

B . 2 3
沿 着 表 面 爬 行到 点 上 面 的
短 路线 是 ( )

点 处 它 爬 行 的最
3



15
分到 3 时

图形认识初步练习题

图形认识初步练习题

图形认识初步练习题图形认识初步练习题在日常生活中,我们经常会遇到各种各样的图形,它们可以是平面上的,也可以是立体的。

图形认识是我们认识世界的一种基本能力,它不仅能够帮助我们更好地理解周围的事物,还能够培养我们的观察力和思维能力。

以下是一些图形认识的初步练习题,通过解答这些问题,我们能够更好地巩固和提升自己的图形认识能力。

练习题一:平面图形辨认1. 下面的图形中,哪个是正方形?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是矩形?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆形?A. △EFGB. □HIJKC. ○LMNO练习题二:立体图形辨认1. 下面的图形中,哪个是长方体?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是球体?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆柱体?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题三:图形属性判断1. 以下哪个图形具有对称性?A. △ABCB. □DEFGC. ○HIJK2. 下面的图形中,哪个图形具有直角?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个图形具有平行边?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题四:图形组合与变换1. 请将下面的图形组合成一个正方形。

A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 请将下面的图形组合成一个立方体。

A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 请将下面的图形组合成一个圆球。

A. △EFGB. □HIJKC. ○LMNOD. △PQRS通过以上的练习题,我们可以加深对各种图形的认识和理解。

通过观察和思考,我们能够更好地辨认出不同的图形,并理解它们的特点和属性。

七年级数学人教版图形认识初步(点、线、面、体)练习题

七年级数学人教版图形认识初步(点、线、面、体)练习题

图形认识初步——点、线、面、体学习要求知道点是几何学中最基本的概念.点动成线,线动成面,面动成体.一、填空题1.面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线,这条线是______的(填“直”或“曲”).2.如图所示的几何体是四棱锥,它是由______个三角形和一个形组成的.3.三棱柱有______个顶点,______个面,______条棱,______条侧棱,______个侧面,侧面形状是______形,底面形状是______形.4.笔尖在纸上划过就能写出汉字,这说明了______;汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴,这说明了______;长方形纸片绕它的一边旋转形成了一个圆柱体,这说明了______.二、选择题5.按组成面的侧面“平”与“曲”划分,与圆柱为同一类的几何体是( ).(A)圆锥(B)长方体(C)正方体(D)棱柱6.圆锥的侧面展开图不可能是( ).(A)小半个圆(B)半个圆(C)大半圆(D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是( ).8.下列说法错误的是( ).(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1) (2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.。

精品 七年级数学上册 图形认识初步综合练习题

精品 七年级数学上册 图形认识初步综合练习题

图形认识初步图形认识初步一三视图:主视图、左视图、俯视图直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。

直线的基本性质:经过两点有一条直线,并且只有一条直线。

简述为,两点确定一条直线。

直线的特征:①直线没有端点,不可量度,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。

射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”;②用一个小写字母表示。

射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短;③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

线段:直线上两点和它们之间的部分叫做线段。

线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

线段的表示方法:①用两个端点的大写字母表示;②用一个小写字母表示。

线段的基本性质:两点的所有连线中,线段最短。

简称,两点之间线段最短。

两点的距离:连接两点间的线段的长度叫做这两点的距离。

线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点。

线段大小的比较方法:(1)叠合法;(2)度量法;(3)估测法。

若线段上有n个点(含两个端点),则共有2)1(-nn条线段。

若线段内有n个点(不含端点),则共有2)1(+nn条线段。

例1.棱长为1的正方体,横放成如图所示的形状,现请回答下列问题:(1)如果这一物体摆放了如图所示的上下三层,请求出该物体的表面积.(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.例2.如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资建一个蓄水池,不考虑其它因素,请画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.例3.将线段AB 延长至C ,使BC=31AB ,延长BC 至点D ,使CD =31BC ,延长CD 至点E ,使DE=31CD ,若CE=8㎝,求AB 的长。

图形认识初步练习题

图形认识初步练习题

图形认识初步练习题一、选择题1. 一个正方形有几条边?A. 2B. 3C. 4D. 52. 下列哪个图形不是平面图形?A. 三角形B. 圆形C. 立方体D. 长方形3. 一个正五边形的内角是多少度?A. 90度B. 108度C. 120度D. 135度4. 一个圆的周长与直径的比值称为什么?A. 半径B. 直径C. 圆周率D. 面积5. 两个全等三角形可以组成哪种图形?A. 三角形B. 四边形C. 五边形D. 六边形二、填空题6. 一个正六边形的内角和为________度。

7. 一个圆的面积公式为________。

8. 一个等腰三角形的两个底角相等,其顶角为________度。

9. 一个直角三角形的两条直角边长度相等,这种三角形称为________三角形。

10. 一个平行四边形的对角线将平行四边形分成两个________三角形。

三、判断题11. 所有正多边形的外角和都是360度。

()12. 一个圆的半径增加1倍,其面积增加2倍。

()13. 所有等边三角形的内角都是60度。

()14. 一个矩形的对角线相等,这个矩形一定是正方形。

()15. 一个正二十边形的中心角是18度。

()四、简答题16. 描述一个圆的对称性。

17. 解释什么是相似图形,并给出两个相似图形的例子。

18. 为什么说三角形是最稳定的图形?19. 说明什么是黄金分割,并给出一个自然界中的例子。

20. 描述如何使用勾股定理来解决一个直角三角形的问题。

五、计算题21. 已知一个圆的半径为7厘米,求这个圆的周长和面积。

22. 如果一个等腰三角形的底边长为10厘米,高为8厘米,求其周长。

23. 一个长方形的长为15厘米,宽为10厘米,求其面积和对角线的长度。

24. 已知一个正六边形的边长为5厘米,求其周长和面积。

25. 如果一个直角三角形的两条直角边分别为3厘米和4厘米,求其斜边的长度。

六、作图题26. 画一个边长为5厘米的正方形,并标出其四个顶点。

图形的初步认识练习题

图形的初步认识练习题

图形的初步认识练习题一、选择题1. 下列哪个图形不是二维图形?A. 圆形B. 正方形C. 三角形D. 立方体2. 在平面几何中,一个点可以表示为:A. 一条线段B. 一个圆C. 一个平面D. 没有长度和宽度的标记3. 直线和射线的区别在于:A. 直线有两端点,射线没有B. 直线无限长,射线有限长C. 直线可以旋转,射线不能D. 直线有方向,射线没有方向4. 一个角的度数范围是:A. 0°到90°B. 0°到180°C. 0°到360°D. 180°到360°5. 一个四边形的对角线数量是:A. 1B. 2C. 3D. 4二、填空题6. 一个平面上不共线的三点可以确定一个________。

7. 一个圆的周长公式是________。

8. 直角三角形的两个锐角之和等于________。

9. 一个平行四边形的对边是________。

10. 一个多边形的内角和公式是(n-2)×180°,其中n代表________。

三、判断题11. 所有的正方形都是矩形。

()12. 两条平行线永远不会相交。

()13. 一个圆的直径是半径的两倍。

()14. 一个三角形的内角和总是180°。

()15. 一个多边形的外角和总是360°。

()四、简答题16. 描述什么是平面图形,并给出两个例子。

17. 解释什么是对称图形,并给出一个例子。

18. 什么是相似图形?它们有哪些性质?19. 描述什么是图形的平移和旋转,并给出一个例子。

20. 什么是图形的相似比?请给出计算相似比的公式。

五、计算题21. 如果一个圆的半径是5厘米,计算它的周长和面积。

22. 一个三角形的三个内角分别是40°,60°和80°,请判断它是什么类型的三角形,并计算它的外角和。

23. 一个矩形的长是10厘米,宽是5厘米,计算它的周长和面积。

七年级上册数学第4章图形的初步认识单元练习题(含答案)

七年级上册数学第4章图形的初步认识单元练习题(含答案)

第4章图形的初步认识检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F、E. V分别表示正多而体的而数、棱数、顶点数,则有F + V — E = 2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.203.如果Na与N/?是邻补角,且/a> 很那么Z侄的余角是(A.l(Za+Z/?)B.|ZaC.|(Za-Z/?)D.不能确定4.下列四个立体图形中,主视图为圆的是()。

5.将“创建文明城市”六个字分别写在一个正方体的六个而上,这个正方体的平面展开图如所示, 那么在这个正方体中,和“创”相对的字是( A.文B.明C.城6.如图, 已知直线曲、CD 相交于点。

, ZEOC = 110% 则ZBOD 的大小C.45°D.55QD rH第6题图B.35A.25 共5页8. 下列平而图形不能够国成正方体的是(9. 过平面_匕4, B, C 三点中的任意两点作直线,可作()那么线段OB 的长度是( )二、填空题(每小题3分,共24分)11. 如图,直线CD 相交于点。

,OE 平分匕AOD,若ZBOC = 80°,贝ljZAOE = 12. 直线上的点有—个,射线上的点有—个,线段上的点有—个.13. 两条直线相交有 个交点,三条直线相交最多有 个交点,最少有 个交点.14. 如图,OM 平分ZAOB, ON 平分ZCOD.若NMON= 50。

,ZBOC = 10% 则匕4OD = 15 .如图给出的分别有射线、16.下列表面展开图的立体图形的名称分别是:A.1条B.3条C.1条或3条D.无数条10.在直线[上顺次取4、B 、 C 三点,使得= 5 cm, BC = 3 cm.如果。

是线段AC 的中点,A.2 cmB.0.5 cmC.1.5 cmD.l cmA第11题图直线、线段,其中能相交的图形有 个. 第15题图17.如图,C, D是线段上两点,若CB = 4 cm, DB = 7 cm,且D^L AC的中点,贝脂。

初中数学专项练习《几何图形的初步认识》100道计算题包含答案(专项练习)审定版

初中数学专项练习《几何图形的初步认识》100道计算题包含答案(专项练习)审定版

初中数学专项练习《几何图形的初步认识》100道计算题包含答案(专项练习)一、解答题(共100题)1、下图是长方体的表面展开图,将它折叠成一个长方体.2、在图①、②中分别添加一个或两个小正方形,使该图形经过折叠后能围成一个以这些小正方形为面的立方体.3、如图,CE⊥DG,垂足为G,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?4、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.5、如图,已知四个点A、B、C、D,根据下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使P既在直线AD上,又在直线BC上.6、如图,已知点E在线段AD上,点P在直线CD上,∠AEF=∠F,∠BAD=∠CPF. 求证:∠ABD+∠BDC=180°.7、如图所示的是一个正方体,试在下列3×5方格中,画出它的平面展开图(要求:画出3种不同的情形)8、如图,已知AD,AE是△ABC的高和角平分线,∠B=44°,∠C=76°,求∠DAE的度数。

9、张先生前年在美美家园住宅小区订购了一套住房,图纸如图所示。

已知:①该住房的价格a=15000元/平方米;②楼层的电梯、楼梯及门厅前室面积由两户购房者平均负担;③每户配置车库16平方米,每平方米以6000元计算;根据以上提供的信息和数据计算:(1)张先生这次购房总共应付款多少元?(2)若经过两年,该住房价格变为21600元/平方米,那么该小区房价的年平均增长率为多少?(3)张先生打算对室内进行装修,甲、乙两公司推出不同的优惠方案:在甲公司累计购买10000元材料后,再购买的材料按原价的90%收费;在乙公司累计购买5000元材料后,再购买的材料按原价的95%收费.张先生怎样选择能获得更大优惠?10、如图,已知,与,相交于点M,N,.求证:.11、观察下图,思考问题:(1)你认识上面的图片中的哪些物体?(2)这些物体的表面形状类似与哪些几何体?说说你的理由。

图形初步认识练习题

图形初步认识练习题

图形初步认识练习题在学习图形的初步认识中,我们需要通过实际操作和练习题来加深对各种图形的理解。

下面是一些图形初步认识的练习题,通过解答这些题目,你能更好地掌握图形相关知识。

题目一:根据图形特征,判断下列图形的名称。

1. 该图形是由四条相等长度的线段构成,且相邻的两条线段之间夹角为90度。

图形名称:正方形。

2. 该图形是由三条线段以其中两条线段为基边,通过连接这两条线段的中点而形成的一个三角形。

图形名称:等腰三角形。

3. 该图形是由四条不相交的线段构成,其中两条相对的线段长度相等,且两两夹角均为90度。

图形名称:长方形。

题目二:判断下列说法的正确性。

正确的写“√”,错误的写“×”。

1. 正方形的特点是四个角都是直角。

√2. 所有的长方形都是正方形。

×3. 任意两条线段长度相等的四边形一定是正方形。

×4. 等边三角形的三个内角都是直角。

×5. 长方形和正方形的特点是两对对边相等。

√题目三:判断下列图形是否是多边形。

是的写“是”,不是的写“不是”。

1. 圆形不是2. 五角星是3. 梯形是4. 椭圆不是5. 正多边形是题目四:判断下列图形是否为全等图形。

是的写“是”,不是的写“不是”。

1. 正方形和长方形是2. 三角形和四边形不是3. 等腰三角形和等边三角形是4. 长方形和平行四边形不是5. 圆和椭圆不是题目五:根据图形特征,填写下列空格中的数字。

1. 正方形的内角和是____。

答案:360度。

2. 正三角形的内角和是____。

答案:180度。

3. 长方形的内角和是____。

答案:360度。

4. 五边形的内角和是____。

答案:540度。

5. 六边形的内角和是____。

答案:720度。

通过以上练习题的解答,相信你对图形的初步认识会更加深入。

继续进行类似的练习,并多进行实际操作,操练各种图形的绘画和测量,可以更好地巩固所学内容。

希望你能在图形认识的学习中取得更好的成绩!。

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题(含答案)

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题(含答案)

初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题欧拉公式:(1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F﹣E=2.这个公式叫欧拉公式.(2)V+F﹣E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.一选择题1.将正方体的面数记为f,边数记为e,顶点数记为v,则f+v﹣e=()A.1 B.2 C.3 D.42.一个多面体,若顶点数为4,面数为4,则棱数是()A.2 B.4 C.6 D.83.设长方体的顶点数为v,棱数为e,面数为f,则v+e+f等于()A.26 B.2 C.14 D.104.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F,E,V分别表示正多面体的面数、棱数、顶点数,则有F+V﹣E=2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6 B.8 C.12 D.205.欧拉公式中,多面体的面数F,棱数E,顶点数V之间的正确关系是()A.F+V﹣E=2 B.F+E﹣V=2 C.E+V﹣F=2 D.E﹣V﹣F=2二填空题6.简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表.现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=.7.阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是,如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V﹣E+F=2.这个发现就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是80,则其顶点数为.8.阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是:如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V﹣E+F=2.这个发现,就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是30,则其顶点数为.9.一个多面体的顶点数为12,棱数是30,则这个多面体的面数是.10.任意一个多面体,它的面数记为a,顶点数记为b,棱的条数记为c,则a,b,c三者之间的关系式为.11.n棱柱的面数+顶点数﹣棱数=.12.从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体、其面数+顶点数﹣棱数=.13.如图,正四面体的顶点数(4)+面数(4)﹣棱数(6)=2,仔细观察后计算,正八面体的顶点数+面数﹣棱数=.14.瑞士著名数学家欧拉发现:简单多面体的顶点数V、面数F及棱数E之间满足一种有趣的关系:V+F﹣E=2,这个关系式被称为欧拉公式.比如:正二十面体(如右图),是由20个等边三角形所组成的正多面体,已知每个顶点处有5条棱,则可以通过欧拉公式算出正二十面体的顶点为个.那么一个多面体的每个面都是五边形,每个顶点引出的棱都有3条,它是一个面体.15.一个多面体的面数为6,棱数是12,则其顶点数为.16.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f)、棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型:根据上面多面体模型,你发现顶点数(v)、面数(f)、棱数(e)之间存在的关系式是.17.正多面体共有五种,它们是、、、、,它们的面数f,棱数e、顶点数v满足关系式.18.图1(1)、(2)、(3)依次表示四面体、八面体、正方体.它们各自的面积数F、棱数E与顶点数V如下表,观察这些数据,可以发现F、E、V之间的关系满足等式:.三解答题19.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格.(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.20.图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求将表格补充完整:(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4035条,试求出它的面数.21.观察下列多面体,并把下表补充完整.观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出发现的关系式.22.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)一个多面体的面数比顶点数小8,且有30条棱,则这个多面体的面数是.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值.23.观察下列多面体,并把如表补充完整.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.24.回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.25.设棱锥的顶点数为V,面数为F,棱数为E.(1)观察与发现:三棱锥中,V3=,F3=,E3=;五棱锥中,V5=,F5=,E5=;(2)猜想:①十棱锥中,V10=,F10=,E10=;②n棱锥中,Vn=,Fn=,En=;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.26.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格.(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2018个,棱数4036条,试求出它的面数.27.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格;你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(2)正十二面体有12个面,那它有条棱;(3)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是;(4)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y 的值.28.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.29.在对第一章“丰富的图形世界”复习前,老师让学生整理正方体截面的形状并探究多面体(由若干个多边形所围成的几何体)的棱数、面数、顶点数之间的数量关系,如图是小颖用平面截正方体后剩余的多面体,请解答下列问题:(1)根据上图完成下表.(2)猜想:一个多面体的V(顶点数),F(面数),E(棱数)之间的数量关系是;(3)计算:已知一个多面体有20个面、30条棱,那么这个多面体有个顶点.30.观察下列多面体,并把表补充完整.(1)完成表中的数据;(2)若某个棱柱由28个面构成,则这个棱柱为棱柱;(3)根据表中的规律判断,n棱柱共有个面,共有个顶点,共有条棱;(4)观察表中的结果,你发现棱柱顶点数、棱数、面数之间有什么关系吗?请直接写出来.初一数学图形认识初步棱、顶点、面间数量关系(欧拉公式)练习题参考答案与解析1.分析:根据正方体的概念和特性进行分析计算即解.解:正方体的顶点数v =8,棱数e =12,面数f =6.故f+v ﹣e =8+6﹣12=2.故选B .2.分析:根据欧拉公式,简单多面体的顶点数V 、面数F 及棱数E 间的关系为:V+F ﹣E =2,代入求出棱数.解:根据欧拉公式:V+F ﹣E =2,可得4+4﹣E =2,解得E =6.故选C .3.分析:根据长方体的概念和特性进行分析计算即解.解:长方体的顶点数v =8,棱数e =12,面数f =6.故v+e+f =8+12+6=26.故选A .4.分析:根据题意中的公式F+V ﹣E =2,将E ,V 代入即解.解:∵正多面体共有12条棱,6个顶点,∴E =12,V =6,∴F =2﹣V+E =2﹣6+12=8.故选B .5.分析:根据欧拉公式进行解答即可.解:凸多面体的面数F 、顶点数V 和棱数E 满足如下关系:V+F ﹣E =2,故选A .6.分析:直接利用V ,E ,F 分别表示凸多面体的顶点数、棱数、面数,欧拉公式为V ﹣E+F =2,求出答案.解:∵现在有一个多面体,它的每一个面都是三角形,它的面数(F )和棱数(E )的和为30,∴这个多面体的顶点数V =2+E ﹣F ,∵每一个面都是三角形,∴每相邻两条边重合为一条棱,∴E =23F ,∵E+F =30,∴F =12,∴E =18,∴V =,2+E ﹣F =8,故答案为8. 7.分析:直接利用欧拉公式V ﹣E+F =2,求出答案.解:∵用V ,E ,F 分别表示凸多面体的顶点数、棱数、面数,则有V ﹣E+F =2.∴V =E ﹣F+2,∵一个多面体的面数为12,棱数是80,∴其顶点数为:80﹣12+2=70.故答案为:70.8.分析:直接把面数、棱数代入公式,即可求得顶点数.解:由题意可得,V ﹣30+12=2,解得V =20.故答案为:209分析:根据常见几何体的结构特征进行判断.解:∵顶点数记为V ,棱数记为E ,面数记为F ,V+F ﹣E =2,∴12+F ﹣30=2,解得:F =20.故答案为:20.10.分析:简单多面体的顶点数V 、面数F 及棱数E 间的关系为:V+F ﹣E =2,这个公式叫欧拉公式.解:由欧拉公式可得:a+b ﹣c =2.故答案为:a+b ﹣c =2.11.分析:根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.故答案为:2.12.分析:根据欧拉公式,得出正多面体的面数+顶点数﹣棱数的结果.解:从每个顶点出发的所有棱长相等,所有面形状、大小完全相同的正多边形的几何体称为正多面体,其面数+顶点数﹣棱数=2.故答案为2.13.分析:只需分别找出正八面体的顶点数,面数和棱数即可.解:正八面体有6个顶点,12条棱,8个面.∴正八面体的顶点数+面数﹣棱数=6+8﹣12=2.故答案为:2.14.分析:①设出正二十面体的顶点为n 个,则棱有25n 条.利用欧拉公式构建方程即可解决问题.②设顶点数V ,棱数E ,面数F ,每个点属于三个面,每条边属于两个面,利用欧拉公式构建方程即可解决问题.解:①设出正二十面体的顶点为n 个,则棱有25n 条.由题意F =20,∴n+20﹣25n =2,解得n =12.②设顶点数V ,棱数E ,面数F ,每个点属于三个面,每条边属于两个面,由每个面都是五边形,则就有E =25F ,V =35F ,由欧拉公式:F+V ﹣E =2,代入:F+35F ﹣25F =2,化简整理:F =12,所以:E =30,V =20,即多面体是12面体.棱数是30,面数是12,故答案为12,12.15.分析:因为多面体的面数为6,棱数是12,故多面体为四棱柱.解:根据四棱柱的概念,有8个顶点.故答案为8.16.分析:先根据四面体、长方体、正八面体,正十二面体的顶点数、面数和棱数,总结出顶点数(v )、面数(f )、棱数(e )之间存在的关系式即可.解:四面体的顶点数为4、面数为4,棱数为6,则4+4﹣6=2;长方体的顶点数为8、面数为6,棱数为12,则8+6﹣12=2;正八面体的顶点数为6,面数为8,棱数为12,则8+6﹣12=2;则关系式为:v+f ﹣e =2;故答案为:v+f ﹣e =2.17.分析:根据正多面体的面是正三角形,正方形,正五边形三种情况写出即可;再根据欧拉公式进行解答.解:正多面体只能有五种,用正三角形做面的正四面体、正八面体,正二十面体,用正方形做面的正六面体,用正五边形做面的正十二面体.f+v ﹣e =2.18.分析:根据题给图形中各图具体的面积数F 、棱数E 与顶点数V ,即可得出答案.解:根据表中所列可知:四面体有4﹣6+4=2;八面体有8﹣12+6=2;正方体有6﹣12+8=2;故有F ﹣E+V =2.故答案为:F ﹣E+V =2.19.分析:(1)依据多面体模型,即可得到棱数和顶点数;(2)依据表格中的数据,即可得出顶点数(V)、面数(F)、棱数(E)之间存在的关系式;(3)依据欧拉公式进行计算,即可得到这个多面体的面数.解:(1)四面体的棱数为6;正八面体的顶点数为6;故答案为:6,6;(2)顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2,故答案为:V+F﹣E=2;(3)设这个多面体的面数是x,则2x﹣12=2,解得x=7,这个多面体的面数是7,故答案为:7.20.分析:(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)把数值代入f+v﹣e=2求出即可.解:(1)填表如下:故答案为:7,8,15.(2)f+v﹣e=2.(3)∵v=2018,e=4035,f+v ﹣e=2,∴f+2018﹣4035=2,解得f=2019.故它的面数是2019.21.分析:只要将各个图形的顶点数、棱数、面数数一下就行;数的时候要注意:图中不能直接看到的那一部分不要遗漏,也不要重复,可通过想象计数,正确填入表内,通过观察找出每个图中“顶点数、棱数、面数”之间隐藏着的数量关系,这个数量关系用公式表示出来即可.解:填表如下,观察表中的结果,能发现a、b、c之间有的关系是:a+c﹣b=2.22.分析:(1)观察可得顶点数+面数﹣棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F﹣E=2;(2)由题意得:F+8+F﹣30=2,解得F=12;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F﹣36=2,解得F=14,∴x+y=14.故答案为:(1)6;6;V+F﹣E=2.(2)12;(3)14.23.分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.解:填表如下,根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c﹣b=2.24.分析:(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)设这个多面体的面数为x,根据顶点数+面数﹣棱数=2,列出方程即可求解.解:(1)图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v ﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x,则x+x+8﹣50=2,解得x=22.25.分析:(1)观察与发现:根据三棱锥、五棱锥的特征填写即可;(2)猜想:①根据十棱锥的特征填写即可;②根据n棱锥的特征的特征填写即可;(3)探究:①通过列举得到棱锥的顶点数(V)与面数(F)之间的等量关系;②通过列举得到棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系;(4)拓展:根据棱柱的特征得到棱柱的顶点数(V)、面数(F)、棱数(E)之间的等量关系.解:(1)观察与发现:三棱锥中,V3=4,F3=4,E3=6;五棱锥中,V5=6,F5=6,E5=10;(2)猜想:①十棱锥中,V10=11,F10=11,E10=20;②n棱锥中,Vn=n+1,Fn=n+1,En=2n;(用含有n的式子表示)(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系:V =F;②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F﹣2;(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+F﹣E =2.故答案为:4,4,6;6,6,10;11,11,20;n+1,n+1,2n;V=F,V+F﹣2.26.分析:(1)根据图形数出即可.(2)根据(1)中结果得出f+v﹣e=2.(3)代入f+v﹣e =2求出即可.解:(1)题1,面数f=7,顶点数v=9,棱数e=14,题2,面数f=6,顶点数v=8,棱数e=12,题3,面数f=7,顶点数v=10,棱数e=15,故答案为:7,9,14.6,8,12,7,10,15.(2)f+v﹣e=2.(3)∵v=2018,e=4036,f+v﹣e=2,∴f+2018﹣4036=2,f=2020,即它的面数是2020.27.分析:(1)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(2)根据题意得出是十二面体,得出顶点数;(3)代入(1)中公式进行计算;(4)根据欧拉公式可得顶点数+面数﹣棱数=2,然后表示出棱数,进而可得面数.解:(1)根据题意得:四面体的棱数为6,正八面体顶点数为6,∵4+4﹣6=2,8+6﹣12=2,6+8﹣12=2,∴顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F﹣E=2;故答案为:V+F﹣E=2;(2)正十二面体有十二个面,每个面都是正五边形,它的每个顶点处都有相同数目的棱.则它有30条棱,20个顶点;故答案是:30;(3)由(1)可知:V+F﹣E=2,∵一个多面体的面数比顶点数小8,且有30条棱,∴V+V﹣8﹣30=2,即V=20,故答案是:20;(4)∵有48个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有48×3÷2=72条棱,设总面数为F,48+F﹣72=2,解得F=26,∴x+y=26.28.分析:(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.解:(1)观察图形,四面体的棱数为6;正八面体的顶点数为6;正十二面体的面数为12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,关系式为:V+F﹣E=2;(3)由题意得:F﹣8+F ﹣30=2,解得F=20.故答案为:(1)6,6,12;(2)V+F﹣E=2;(3)20.29.分析:(1)观察图形即可得出结论;(2)观察可得顶点数+面数﹣棱数=2;(3)代入(2)中的式子即可得到面数.解:(1)观察图形,多面体(1)的顶点数为10;多面体(3)的面数为5;多面体(5)的棱数为12;故答案为:10,5,12;(2)观察表格可以看出:顶点数+面数﹣棱数=2,即关系式为:V+F﹣E=2;故答案为:V+F﹣E=2;(3)由题意得:V+20﹣30=2,解得V=12.故答案为:12.30.分析:(1)结合三棱柱、四棱柱、五棱柱和六棱柱的特点,即可填表:(2)(3)根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案;(4)利用前面的规律得出a,b,c之间的关系.解:(1)填表如下.(2)若某个棱柱由28个面构成,则这个棱柱为26棱柱;(3)根据表中的规律判断,n棱柱共有(n+2)个面,共有 2n个顶点,共有 3n条棱;(4)a,b,c之间的关系:a+c﹣b=2故答案为:8;15,18;7;26;(n+2),2n,3n.- 11 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的初步认识练习题
一、选择题:
1、下列4个图形中,能用∠1,∠AOB,∠O三种方法表示同一
角的图形就是( )
2、如图所示,O就是直线AB上一点,图中小于180°的角共有( )
(A)7个 (B)9个
(C)8个 (D)10个
3、下列说法中错误的有( )
(1)线段有两个端点,直线有一个端点;
(2)角的大小与我们画出的角的两边的长短无关;
(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的与一定大于直角
A.1个
B.2个
C.3个
D.4个
4、如果∠α+∠β=900,而∠β与∠γ互余,那么∠α与∠γ的关系为 ( )
A、互余
B、互补
C、相等
D、不能确定。

5、下列说法正确的就是( )
A、直线AB与直线BA就是两条直线;
B、射线AB与射线BA就是两条射线;
C、线段AB与线段BA就是两条线段;
D、直线AB与直线a不能就是同一条直线
6、下列图中角的表示方法正确的个数有( )
A、1个
B、2个
C、3个
D、4个
7、在钟表上,1点30分时,时针与分针所成的角就是( )
(A)150° (B)165°
(C)135° (D)120°
8、若∠A=20 o 18′, ∠B=20 o 15′30〞, ∠C=20、25 o,则( )
A 、∠A>∠B>∠C
B 、∠B>∠A>∠
C C 、∠A>∠C >∠B
D 、∠C >∠A >∠B
9、 如图所示,从A 地到达B 地,最短的路线就是( ). (A)A →C →E →B (B)A →F →E →B (C)A →D →E →B (D)A →C →G →E →B
10、下列说法中正确的就是( )
A.射线就是向两方无限延伸的;
B.可以用直线上的一个点来表示该直线;
C.射线AB 也可以写成射线BA;
D.线段AB 与线段BA 就是指同一条线段. 11、下列叙述正确的就是( )
A 、180°就是补角
B 、120°与60°互为补角
C 、10°、20°、60°的角互为补角
D 、 60°就是30°的补角 12、经过任意三点中的两点共可画出( ) A.1条直线 B.2条直线 C.1条或3条直线 D.3条直线
13、如图所示,从O 点出发的五条射线,可以组成角的个数就是( ).
A 10个 B.9个 C.8个 D.4个
14、已知线段AB=6厘米,在直线AB 上画线段AC=2厘米,则BC 的长就是( ) A.8厘米 B.4厘米 C.8厘米或4厘米 D.不能确定 15、下列说法不正确的就是( ) A 、过两点有且只有一条直线。

B 、两点之间线段最短。

C 、如果两个角都与同一个角互余,那么这两个角相等。

D 、如果两个角都与同一个角互补,那么这两个角互补。

二、填空题
1、18、03°=__________°__________′ , 108°20′42″=________度。

2、植树时,只要定出两个树坑的位置就能确定同一行的树坑所在的直线,这就是因为 。

3、如图,若CB = 4 cm,DB = 7 cm,且D 就是AC 的中点,则AC =_________________、
B
C
D
A
第3题 第4题
4、∠AOB=75°∠AOC=15°,OD 就是∠BOC 的平分线,则∠BOD= 。

5、如图所示,将图沿虚线折起来,得到一个正方体,那么“3”的对面就是_______(填编号)
4
1
2 6
5 3
第5题

6、∠α的补角为125°,∠β的余角为37°,则α、β的大小关系为α______β、
7、若线段AB=14cm,在直线AB 上有一点C,且BC=6cm,M 就是线段AC 的中点,则AM 的长为________cm 、 8、若线段AB=a,C 就是线段AB 上的任意一点,M 、N 分别就是AC 与CB 的中点,则MN=_______、 9如图,∠AOB 就是直角,已知∠AOC ︰∠COD ︰∠DOB=2︰1︰2,那么∠COB=__________、
三、解答题:
1、如图,平面上有四个点A 、B 、C 、D,根据下列语句画图(7分) (1)画直线AB; (2)作射线BC; (3)画线段CD;
(4)连接AD,并将其反向延长至E,使DE=2AD; (5)找到一点F,使点F 到A 、B 、C 、D 四点距离与最短。

2、一个角的补角加上10o
等于这个角的余角的3倍,求这个角。

3、如图、线段AB =14cm,C 就是AB 上一点,且AC =9cm,O 就是AB 的中点,求线段OC 的长度。

4、解下列方程:
6
75141
3)2(;
32)5(512)1(-=--=--y y x x
5、如图,已知C 就是AB 的中点,D 就是AC 的中点,E 就是BC 的中点、 (1)若AB=18cm,求DE 的长;(2)若CE=5cm,求DB 的长、
A
B
B A
6、一个角的余角比它的补角的13
还少20°,求这个角、
7、如图,已知直线AB 与CD 相交于O 点,∠COE 就是直角,OF 平分∠AOE, ∠COF=34°,求∠BOD 的度数、
C B A
E
O
D
F
8、如图,在直角∠AOB 的内部引一条射线OC, OD 、OE 分别就是∠AOC 与∠BOC 的角平分线,求
∠DOE 的度数。

9、数学课外活动小组的男同学原来占全组人数的3
1,加入4名男同学之后,就占全组人数的一半,问课外活动小组原来有多少同学?
10、甲、乙两地相距180km,小轿车以65km/h 的速度从甲地出发,客车以35km/h 的速度从乙地出发,两车同向而行,如果客车在前,经过多少小时后小轿车可以追上客车?
A D C E
B
O。

相关文档
最新文档