同相比例运算电路

合集下载

6.1基本运算电路

6.1基本运算电路

1
t
(U
0.1m s
I
)dt
uO
(0.1ms)
5
(
t
0.1ms)
5
uo
(0.3
ms)
[
5 0.1ms
(0.3ms
0.1ms)ຫໍສະໝຸດ 5]V5V
正峰值未达运放的正饱和电压10V,所以仍正常线性积分.
例6.1.3 积分电路及输入波形如下,运放最大输出电压为10V, t =0 时电容电压为零,试画出输出电压波形。
二、变跨导模拟乘法器的基本工作原理
用压控电流源代 替了差分放大电 路中的恒流源。
二、变跨导模拟乘法器的基本工作原理
当 uY >> uBE3 时,iC3≈uY/RE
V1、V2管的跨导
gm
I E1 UT
iC3 2U T
uY
2REU T
uO
β
RC rbe
uX
gm RCuX
KuX uY
K RC
当rbIeC1、rbI'uCe Y2较有小限/时制g,m:必须为正且应较2R大EU。T
6.1.2 加减运算电路
一、求和运算电路
1. 反相求和运算电路
平衡电阻
R3 =R1 // R2 // RF
电路特点: 输入信号均加至运放反相端
分析:
根据“虚短”“虚断”,可得
un up 0
if i1 + i2
故得
uo ui1 ui2 RF R1 R2
uo
RF
(
ui1 R1
ui2 R2
)
优点:调节方便。
特点:1. 信号加至反相端,反相放大或缩小电压信号。
2. un up 0,运放输入端虚地。 uic 0 ,故对 KCMR 的要求低。这两点也是所有反相运算电路的特点。

多级运算电路实验报告(3篇)

多级运算电路实验报告(3篇)

第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。

2. 掌握多级运算电路的设计方法。

3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。

4. 培养实验操作能力和数据分析能力。

二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。

本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。

4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。

三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。

2. 示波器:用于观察实验过程中信号的变化。

3. 数字万用表:用于测量电路的电压、电流等参数。

4. 电阻、电容、二极管、运放等电子元器件。

5. 电路板、导线、焊接工具等。

四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。

2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。

3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。

4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。

5. 分析实验数据,验证实验结果是否符合理论计算。

五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

基本运算电路的总结(优选8篇)

基本运算电路的总结(优选8篇)

基本运算电路的总结第1篇1. 单限电压比较器传输特性可以看出当输入电压u1 > UREF,输出高电平 UOH = +VCC当输入电压u1 < UREF,输出低电平 UOL = -VCC改进型:从上面的分析可知,在单门限比较器中,输入电压在门限电压附近有微小变化都会引起输出电压的跃变,因此该比较器有灵敏度高的优点,但抗干扰能力差。

2. 迟滞比较器主单限比较器的基础上引入正反馈,即构成迟滞比较器当输出电压uo = +UZ时,运放同相输入端电压为当输出电压uo = -UZ时,运放同相输入端电压为当迟滞比较器的输入为正弦波时,其输出波形为矩形波,如图下所示为使迟滞比较器的电压传输特性曲线向左或向右移动,可如图下所示在上述比较器的基础上加入参考电压UREF,其电压传输特性曲线如图所示。

对应的门限电压如下经典例题:3. 窗口比较器当uI > UH时,A1输出高电平,A2输出低电平,uo 为高电平;当uI < UH时,A2输出高电平,A1输出低电平,uo 为高电平;当UH > uI > UL时,A1输出低电平,A2输出低电平,uo 为低电平。

基本运算电路的总结第2篇由累加和右移实现1)原码一位乘法符号位和数值位分开求,乘积符号由两个数的符号位“异或”形成。

示例如下:2)无符号数乘法运算电路3)补码一位乘法(Booth算法)一种有符号数的乘法,采用相加、相减操作来计算补码数据的乘积。

移位规则如表所示示例如下:4)补码乘法运算电路(如图)1)符号扩展在算术运算中,有时候必须要把带符号的定点数转换为具有不同位数的表示形式,这称为“符号扩展”。

(如16位与32位整数相加时,要把16位扩展为32位)正数:符号位不变,新表示形式的扩展位都用0进行填充负数:2)原码除法运算(不恢复余数法,也叫原码加减交替法)商符和商值分开进行,减法操作用补码加法实现,商符由两个操作数的符号位“异或”得到。

第七章运算放大器7.1运算放大器特性同相比例放大电路反相比例放大

第七章运算放大器7.1运算放大器特性同相比例放大电路反相比例放大
第七章 运算放大器
7.1 运算放大器特性 同相比例放大电路 反相比例放大电路
7.2 基本运算电路应用 加法电路 减法电路
7.1 集成运放的特性---两种工作状态
1. 理想运放主要具有如下特性: ① 差模开环电压增益无穷大:A od→∞; ② 差模输入电阻无穷大:rid→∞; ③ 输出电阻为零:ro→0。
• 是信并 号联 的负 负反 载馈 能,力有Ri一f→定0,的R要i≈求R1。,所以对输入
二. 同相比例运算电路
i1
i f Rf
R1
u- _
ui u+ + A +
uo
反馈方式:
电压串联负反馈 因为有负反馈, 利用虚短和虚断
u-= u+= ui
i1=if (虚断)
电压放大倍数:
A
v
uo ui
1 Rf R1
【例7.2】分析图7-2-9所示的电路功能
vo1

Rf

v3 R3

v4 R4

vo

Rf

v1 R1

v2 R2

vo1 Rf


Rf

v3 R3

v4 R4

v1 R1

v2 R2

例如
设:电源电压±VCC=±10V。 运放的Aod=104
V
ui
+∞
A -
+
uo
V
uuo o
++1100VV
++UUoomm
-1mV 00 +1mV
uui i
│Ui│≤1mV时,运放处于线性区。

同相比例运算电路实验报告(共6页)

同相比例运算电路实验报告(共6页)

同相比例运算电路实验报告篇一:实验四比例求和运算电路实验报告实验四比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例、求和电路的特点及性能。

2.学会上述电路的测试和分析方法。

二、实验仪器1.数字万用表2.信号发生器3.双踪示波器其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。

三、实验原理(一)、比例运算电路 1.工作原理a.反相比例运算,最小输入信号Uimin等条件来选择运算放大器和确定外围电路元件参数。

如下图所示。

10kΩ输入电压Ui经电阻R1加到集成运放的反相输入端,其同相输入端经电阻R2接地。

输出电压UO经RF接回到反相输入端。

通常有:R2=R1//RF 由于虚断,有 I+=0 ,则u+=-I+R2=0。

又因虚短,可得:u-=u+=0由于I-=0,则有i1=if,可得:ui?u?u??uo? R1RFuoRF?A????ufuR1 i由此可求得反相比例运算电路的电压放大倍数为: ??u?Rif?i?R1?ii?反相比例运算电路的输出电阻为:Rof=0输入电阻为:Rif=R1b.同相比例运算10kΩ输入电压Ui接至同相输入端,输出电压UO通过电阻RF仍接到反相输入端。

R2的阻值应为R2=R1//RF。

根据虚短和虚断的特点,可知I-=I+=0,则有 u??且 u-=u+=ui,可得:R1?uo?uiR1?RFAuf?R1?uoR1?RFuoR?1?F uiR1同相比例运算电路输入电阻为: Rif?输出电阻: Rof=0ui?? ii以上比例运算电路可以是交流运算,也可以是直流运算。

输入信号如果是直流,则需加调零电路。

如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。

(二)求和运算电路 1.反相求和根据“虚短”、“虚断”的概念RRui1ui2u???o uo??(Fui1?Fui2)R1R2R1R2RF当R1=R2=R,则 uo??RF(ui1?ui2)R四、实验内容及步骤1、.电压跟随电路实验电路如图1所示。

《电工电子技术》(曹建林) PPT课件:7.3 基本运算电路

《电工电子技术》(曹建林)  PPT课件:7.3 基本运算电路

解:由式 uO= 1+ —Rf uI 可得 R1
uO=
1+ R—f R1
uI =
20
1+——
×1=11(V)
2
iF Rf
i1 R1 u-


uI
R2 u+ +
+
uO
图7.3.2 同相比例运算电路
7.3 基本运算电路
反相比例运算电路
同相比例运算电路
加法、减法运算电路
1.加法运算电路
在反相输入端增加若干个输入信号组成的 电路,就构成反相加法运算电路,如图7.3.3所 示。根据“虚短” 、“虚断”、 “虚地”得
i11=
—uI1 R11
i12=
u—I2 R12
iF=
i11+i12
=—u—I1 + R11
—uI—2 =R12
—uO— Rf
于是,输出电压为
uO= − —RR—f11uI1+ —RR—1f2uI2
(7.3.7)
当R11=R12 =Rf时,则uO=−(uI1+uI2)。
uI1 i11
R11
iF
Rf
uI2 i12
uO=uI2− uI1
(7.3.11)
7.3 基本运算电路
反相比例运算电路
同相比例运算电路
加法、减法运算电路
例 图7.3.4减法电路中,设Rf=R1=R2= R3,UI1=3V,
UI2=1V。求输出电压UO。
解:因为Rf=R1=R2= R3,故可得 UO=UI2−UI1=1−3=−2(V)

i1= iF

i1
=
—u—I , R1
iF
=

同相比例运算电路和反相比例运算电路

同相比例运算电路和反相比例运算电路

“同相比例运算电路和反相比例运算电路”文章一、引言在电路设计和应用中,同相比例运算电路和反相比例运算电路是十分重要的。

它们在信号处理、传感器接口等领域有着广泛的应用。

本文将就同相比例运算电路和反相比例运算电路进行深入探讨,从基本概念到具体设计原理,为读者提供全面的理解和应用指导。

二、同相比例运算电路的基本概念同相比例运算电路是一种电子电路,它能够将输入信号与一个固定的比例相乘,输出一个符合该比例的信号。

在同相比例运算电路中,输入信号和反馈电压处在同相位。

这种电路常用于放大、滤波和自动控制系统中,能够稳定地放大输入信号,使得输出信号与输入信号成比例。

在同相比例运算电路中,使用了运放来实现信号放大和控制。

通常情况下,同相比例运算电路的电路结构相对简单,设计相对容易。

然而,要构建一个高性能、稳定的同相比例运算电路,仍然需要对电路参数进行合理选择和优化。

三、同相比例运算电路的设计原理同相比例运算电路的设计原理主要包括运放、反馈电阻和输入信号等关键因素。

1. 运放的选择:选择合适的运放对于同相比例运算电路至关重要。

常用的运放有理想运放和实际运放两种,每种运放都有其适用的范围和性能特点。

在设计同相比例运算电路时,需要根据实际应用需求选择合适的运放。

2. 反馈电阻的选择:反馈电阻决定了同相比例运算电路的放大倍数。

通过合理选择反馈电阻,可以实现不同的放大倍数,满足不同的应用需求。

反馈电阻的稳定性和温度特性也需要考虑在内。

3. 输入信号的处理:输入信号的幅度和频率范围也是影响同相比例运算电路设计的重要因素。

对于不同幅度和频率的输入信号,需要进行合适的处理和滤波,以保证同相比例运算电路的稳定性和性能。

同相比例运算电路设计的关键在于综合考虑这些因素,通过合理的电路参数选择和设计,实现期望的电路功能和性能。

四、反相比例运算电路的基本概念反相比例运算电路与同相比例运算电路相似,都是一种能够进行输入信号放大的电路。

与同相比例运算电路不同的是,反相比例运算电路中输入信号和反馈电压处于反相位。

模拟电路应用-同相比例运算电路

模拟电路应用-同相比例运算电路

同相比例运算电路引入8u IR 1u oR fR 2反相比例运算电路8R1uoR fR2◆输入信号ui从同相端输入◆反馈信号回到反相端◆R2=R1//R F◆电压串联负反馈平衡电阻u I8R1uoR fR2虚断pn≈≈iii n i Pf 1i i≈i1i fIpnuuu=≈虚短fI1IRuuRuo-=-I1fO)1(uRRu+=1ff1RRAu+=u nu Pu Iu I8u o电压跟随器当R 1= ,A u f = 1R f = 0 R fR 2R 1u o = u I结论:①A uf 为正值,即u o 与u I 极性相同。

因为u I 加在同相输入端。

②A uf 只与外部电阻R 1、R f 有关,与运放本身参数无关。

③A uf ≥ 1 ,不能小于1 。

④u n = u p ≠ 0 ,反相输入端不存在“虚地”现象。

1fuf1R R A +=典型应用案例特点:电压—电流转换器◆输出电流与负载大小无关◆电压源转换成为电流源8R LR 2R1+_u s i 1i Ou +u -u -= u += u s i o = i 1= u s / R 1p n≈≈i i 虚断小结1ff 1R R A u +=A u f = 1u I8R 1u oR fR 2u I8u o◆同相比例运算电路◆电压跟随器The END!。

1《同相比例运算电路》说课稿

1《同相比例运算电路》说课稿

模块《集成运算放大器》第3课时——《同相比例运算电路》说课稿滨海县中等专业学校侍丽娟各位评委老师,下午好。

我是来自滨海县中等专业学校的电工电子教师侍丽娟,非常感谢相关领导为职业学校专业课老师搭建了“五课教研”、“两课评比”的活动平台,我非常荣幸能参与这次“两课评比”的活动。

今天我说课的课题是《集成运算放大器》的第3课时——同相比例运算电路,我将从教材、学情、教学方法、教学过程等方面来汇报本课的设计方案。

请各位评委老师指正。

一、说教材本课程在单招技能考试中有理论和技能考试。

占专业对口单招理论考试35%、技能考试50%。

●参考教材:本课程使用的教材是陈其纯主编、高等教育出版社出版的《电子线路》第2版。

●项目地位:集成运算放大器是电子电器产品和机电设备中非常重要的元件之一,第五章第二节《集成运算放大器》在教材中占有重要地位,也是每年对口单招高考的必考内容。

同相比例运算电路应用是集成运放线性电路的基本应用之一,渗透性强,项目地位很重要,后续章节、课程及生活中均有重要应用;通过学习同相比例运算电路,有助于知识迁移应用,便于知识系统化,未来化。

●本任务意义:同相比例运算电路应用进一步巩固了集成运算放大器的基本知识,也强化训练了集成运放的“虚短”和“虚断”,是后续分析、计算集成运放的基本,学生必须掌握,才能有助于后面集成运放的学习二、说教学目标(是依据综合理论及技能大纲、学情需求和能力构成来制定的)知识目标能力目标情感目标三、说教学重难点重点:难点:本节课的难点在于学生对“虚短”和“虚断”的理解不够通透。

如何突破难点,是本节课迫切需要解决的问题,这就需要我们对学生的情况有所了解。

四、说学情本课程的教学对象是职中参加对口单招的学生,从两个方面来分析:知识背景情况:情感认知情况:所以选择合适的教法和学法就显得非常的重要五、说教学法那么这堂课到底怎么展开呢,下面我就来说说教学程序六、教学程序教师课堂知识总结:有些难以理解的知识点,在学生掌握得差不多而又似懂非懂的时候,由老师在新的高度进行点拔,可以使学生达到豁然开朗的效果。

同相比例运算电路

同相比例运算电路

同相比例运算电路
同相比例运算电路是一种用于比例控制的电路。

它通过控制输入信号的幅度来控制输出信号的幅度。

比例控制的应用非常广泛,可以用于调节电动机的速度、调节温度、调节压力等。

同相比例运算电路的基本结构包括一个比例积分放大器(PIA)和一个比例放大器。

PIA将输入信号转换为电压,并根据控制电位器的调节程度放大或缩小输入信号的幅度。

比例放大器则根据PIA的输出电压调节输出信号的幅度。

同相比例运算电路的输出信号与输入信号之间的比值(即比例系数)可以通过调节控制电位器来调节。

这样,就可以根据需要调节输出信号的幅度,从而实现比例控制。

同相比例运算电路的应用非常广泛,可以用于各种控制系统中。

例如,在温度控制系统中,可以使用同相比例运算电路来调节加热器的输出功率,从而调节温度。

同相运算放大电路和同相比例运算放大电路

同相运算放大电路和同相比例运算放大电路

英文回答:The same-phase operational amplifier amplification circuit is a type of circuit that utilizes positive feedback to achieve amplification. In this configuration, the input signal is connected directly to the inverting input terminal of the operational amplifier through a resistor, while the output signal is connected to the non-inverting input terminal through another resistor. Upon application of the input signal to the inverting input terminal, the operational amplifier amplifies the signal and subsequently feeds the amplified signal to the non-inverting input terminal. The amplified signal is thenbined with the input signal, resulting in an amplified output signal. This amplification circuit offers the advantages of high gain, high input impedance, and low output impedance.同级操作放大器放大电路是一类利用正反馈实现放大的电路。

验证实验--运算放大电路同相、反相与加减法电路实验

验证实验--运算放大电路同相、反相与加减法电路实验

验证实验四 运算放大电路同相、反相及加减法电路实验一、实验目的(1)掌握由集成运算放大器组成的比例、加法、减法和积分等模拟运算电路功能。

(2)熟悉运算放大器在模拟运算中的应用。

二、主要设备及器件函数信号发生器、双踪示波器、交流毫伏表、数字万用表、直流稳压电源、实验电路板。

三、实验原理1、反相比例运算电路反相比例运算电路如图1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为:i 1foUR R U -=为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ´=R1||Rf 。

实验中采用10 k Ω和100 k Ω两个电阻并联。

图1 反相比例运算电路2、同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1fo )1(UR R U +=当R1→∞时,Uo=Ui ,即为电压跟随器。

图2 同相比例运算电路3、反相加法电路反相加法电路电路如图3所示,输出电压与输入电压之间的关系为)+(=B 2f A 1f o U R RU R R U - R ´ = R1 || R2 || Rf图3 反相加法电路4、同相加法电路同相加法电路电路如图4所示,输出电压与输入电压之间的关系为:)+++(+=B 211A 2123f 3o U R R R U R R R R R R U图4 同相加法电路5、减法运算电路(差动放大器)减法运算电路如图5所示,输出电压与输入电压之间的关系为:f f o A B 1121 ()()R R R U U U R R R R '=+'+-+当R1 = R2,R ´ = Rf 时,图5电路为差动放大器,输出电压为:)(=A B1fo U U R R U -图5 减法运算电路四、实验内容注意正、负电源的接法,并切忌将输出端短路,否则将会损坏集成块。

信号输入时先按实验所给的值调好信号源再加入运放输入端。

基本运算电路比例积分微分

基本运算电路比例积分微分

第一节基本运算电路一、比例运算电路比例运算电路有反相输入、同相输入和差动输入三种基本形式。

1.反相比例运算电路·平衡电阻――使两个差分对管基极对地的电阻一致,故R2的阻值为R 2=R1//RF反相比例运算电路·虚地概念运放的反相输入端电位约等于零,如同接地一样。

“虚地”是反相比例运算电路的一个重要特点。

可求得反相比例运算放大电路的输出电压与输入电压的关系为反相比例运算电路的输入电阻:由于反相输入端为“虚地”,显然电路的输入电阻为 Ri =R1。

反相比例运算电路有如下几个特点:①输出电压与输入电压反相,且与RF 与R1的比值成正比,与运放内部各项参数无关。

当R F =R1时,uO=-uI,称为反相器。

②输入电阻Ri=R1,只决定于R1,一般情况下反相比例运算电路的输入电阻比较低。

③由于同相输入端接地,反相输入端为“虚地”,因此反相比例运算电路没有共模输入信号,故对运放的共模抑制比要求相对比较低。

2.同相比例运算电路利用“虚短”和“虚断”,可得输出电压与输入电压的关系为同相比例运算电路有如下几个特点:①输出电压与输入电压同相,且与RF 与R1的比值成正比,电压放大倍数当R f =∞或R1=0时,则uO=uI。

这种电路的输出电压与输入电压幅度相等、相位相同,称为电压跟随器,又称为同相跟随器。

②同相比例运算电路的输入电阻很高。

由于电路存在很深的负反馈实际的输入电阻要比Rid高很多倍。

③同相比例运算电路由于u+=u-而u+=uI,因此同相比例运算电路输入端本身加有共模输入电压uIC =uI。

故对运放的共模抑制比相对要求高。

无论是反相比例运算电路还是同相比例运算电路由于引入的是电压负反馈(详细分析见第七章),所以输出电阻Ro很低。

3.差分比例运算电路利用“虚短”和“虚断”,即i+=i-=0、u+=u-,应用叠加定理可求得当满足条件R1=R2、RF=R3时,电路的输出电压与两个输入电压之差成正比,实现了差分比例运算。

同相输入比例运算电路、加法运算电路减法运算电路案例分析

同相输入比例运算电路、加法运算电路减法运算电路案例分析

同相输入比例运算电路、加法运算电路减法运算电路案例分析1.同相输入比例运算电路电路如图3.7(a)所示。

(a) 同相输入比例运算电路 (b)电压跟随器图3.7 比例运算电路根据运放工作在线性区的两条分析依据可知:f 1i i =,i u u u ==+-而FoF o f 1110R u u R u u i R u R u i i i-=-=-=-=--由此可得:i u R R u ⎪⎪⎭⎫⎝⎛+=1F o 1 输出电压与输入电压的相位相同。

同反相输入比例运算电路一样,为了提高差动电路的对称性,平衡电阻F 1p //R R R =。

闭环电压放大倍数为:1F o 1R R u u A i uf +==可见同相比例运算电路的闭环电压放大倍数必定大于或等于1。

当0f =R 或∞=1R 时,i u u =o ,即1=uf A ,这时输出电压跟随输入电压作相同的变化,称为电压跟随器,电路如图3.7(b)所示。

2.加法运算电路加法运算电路如图3.8(a)图所示。

(a) 加法运算电路 (b)减法电路图3.8 加减运算电路根据运放工作在线性区的两条分析依据可知:21f i i i +=111R u i i =,222R u i i =,F o f R u i -= 由此可得:)(22F 11F o i i u R Ru R R u +-= 若F 21R R R ==,则:)(21o i i u u u +-=可见输出电压与两个输入电压之间是一种反相输入加法运算关系。

这一运算关系可推广到有更多个信号输入的情况。

平衡电阻F 21p ////R R R R =。

3.减法运算电路减法电路如图3.8(b)图所示。

由叠加定理:u i 1单独作用时为反相输入比例运算电路,其输出电压为:11F oi u R Ru -=' u i 2单独作用时为同相输入比例运算,其输出电压为: 23231F o 1i u R R R R R u +⎪⎪⎭⎫ ⎝⎛+='' u i 1和u i 2共同作用时,输出电压为:23231F 11F o oo 1i i u R R R R R u R R u u u +⎪⎪⎭⎫ ⎝⎛++-=''+'= 若∞=3R (断开),则:21F 11F o 1i i u R R u R R u ⎪⎪⎭⎫ ⎝⎛++-= 若21R R =,且F 3R R =,则:)(121Fo i i u u R R u -=若F 321R R R R ===,则:12o i i u u u -=由此可见,输出电压与两个输入电压之差成正比,实现了减法运算。

同相比例运算电路虚短虚断

同相比例运算电路虚短虚断

同相比例运算电路虚短虚断English response:In the context of proportional operation circuits, a virtual short refers to the condition where the input and output terminals of the circuit are connected together, effectively shorting the circuit. This can occur due to a faulty connection or a malfunctioning component within the circuit. On the other hand, a virtual open or virtual break occurs when there is an unintended open circuit within the circuit, causing a break in the signal path.Virtual shorts and virtual opens can have detrimental effects on the performance of the circuit. A virtual short can cause excessive current flow, leading to overheating and potentially damaging the components. On the other hand, a virtual open can disrupt the signal path, leading to incorrect operation or complete failure of the circuit.To address these issues, it is important to carefullyinspect the circuit for any faulty connections or damaged components. Using proper testing equipment, such as a multimeter, can help identify the presence of virtual shorts or virtual opens. Once identified, the faulty components or connections should be repaired or replaced to restore the proper operation of the circuit.In summary, virtual shorts and virtual opens in proportional operation circuits can have detrimentaleffects on circuit performance. Careful inspection and testing are essential to identify and address these issues to ensure the proper operation of the circuit.中文回答:在比例运算电路中,虚短是指电路的输入和输出端子被连接在一起,有效地短路了电路。

同相输入运算电路

同相输入运算电路

《电子技术》知识点:同相输入运算电路1、同相输入比例运算电路 R 2-平衡电阻R 2= R 1// R fR f 引入深度负反馈,运放工作在线性区 电压串联负反馈 i f R f R 1 R 2 u i 1u i - u +u _oii 1 = i f “虚断路” i i +-≈≈0“虚短” 1、同相输入比例运算电路 u u = ——– o - R 1 R 1 R f + 故有: u u = ——– o i R 1 R 1 R f + 闭环电压放大倍数:u + ≈ u - 注意:同相无虚地概念,共模信号大。

A u f = — = 1+ — u 0 u i R f R 1 =(1+ −)u i R fR 1u o1、同相输入比例运算电路 1)输入电阻高串联电压负反馈2)输出电阻低 同相比例放大器小结闭环电压放大倍数 =(1+ −)u i R fR 1u o A u f = — = 1+ — u 0 u i R f R 11、同相输入比例运算电路 注意: = (1+ −)u i R fR 1u o i fR f R 1R 2u i 1 u i - u + u _ o i u + = u i “虚断路” =(1+ −)u + R f R 1 u o1、同相输入比例运算电路i f u i u 0 R 3R f R 1 R 2 i - u_ u +i 1 +=+323u R R R u i =+⎛⎝ ⎫⎭⎪⎪+1f 1323u R R R R R u o i = (1+ −)u + R f R 1 u o2、电压跟随器 u i R 2 u o当R 1=∞或 R f =0时u o = u i= (1+ −)u i R fR 1 u o R 2= R 1// R f =0 此时 u i u o3、同相输入加法运算电路运放工作在线性区,利用叠加原理分析即可。

请大家自行分析。

THE END。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档