2015年高考四川卷及答案
2015年四川卷语文试题及答案
如 眺 美,大 山 湖就 特饶奇胜
四个画面,和洞庭 山 西山合起来,差
全貌 一是从湖州到无锡的一 态, 人游 一是从
绝密★启封前
2015
本试 卷分第 卷 单项选择
全
高考语文试
四
卷
第1卷l 3 页,第 II 卷 4 卡 ,在本试 卷 6
和第 卷 非单项选择
页,共 6 页 满分 150 分 考试时间 150 分钟 考生作答时,须将答案答在答 草稿纸 答 无效 考试结束 ,将本试 卷和答 卡一并交回
第
注意 项
卷
单项选择
经学的 大 者 今 文经学的分 和论 促 了经学的发展,它们 一定的 遍意 , 来的中 学术 生了巨大而深 的影
表的 种学术精神和方法,
5
列关于 两汉 学 的表述, A 汉 立 B 汉朝五 位 C 今文 丰 D 今 响 文 学的学术精 文 的 帝接 独尊儒术 的建
确的一项是 , 置五 博士,以五 研 对象,标志 学的真 确
用,注 思想的阐发,强调经书的历 借鉴意 ,但弊病是 和
学在 汉发展昌盛,注 文
物的解释,突出 原历 和文化传承,学术贡献良多, 汉 帝时的 虎通 汉 今文经学,强调经 文经学家郑玄融合今
弊病是流 繁琐的文献考 而脱离思想和生活 学大 社会价值,借 维护 流思想,带 汉
一定的理论总结性
文经学,遍注群经, 所 响
象, 就形 了经学 所谓经学,是指 门研究儒家经 的学问 从中 文化 是汉王朝 用 家力量将民间流传的文化经 是,五经 布 家经 ,并设立博士
家 治 法律 意识形态的 据 从 家 度层面保 儒家经 的传 ,确立了 确立了经学在中 学术体系中的 心地位 儒学 的五伦 五常作 社会伦理道德,
2015高考数学四川(理工科类)试卷真题与答案解析
2015年四川省高考数学(理)试卷真题答案与解析一、选择题1. 设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ⋃= A.{|13}x x -<< B. {|11}x x -<< C. {|12}x x << D. {|23}x x << 【答案】A 【解析】{|12}A x x =-<<,且{|13}B x x =<<{|13}A B x x ∴⋃=-<<,故选A2. 设i 是虚数单位,则复数32i i-= A.i - B. 3i - C. i D. 3i 【答案】C【解析】3222i i i i i i -=--=,故选C3. 执行如图所示的程序框图,输出S 的值是 A. 3 B. 3B. C.12- D. 12【答案】D【解析】进入循环,当5k =时才能输出k 的值,则51sin62S π==,故选D 4. 下列函数中,最小正周期为且图象关于原点对称的函数是 A. cos(2)2y x π=+ B. sin(2)2y x π=+C. sin 2cos 2y x x =+D. sin cos y x x =+ 【答案】A 【解析】A. cos(2)sin 22y x x π=+=-可知其满足题意B. sin(2)cos 22y x x π=+=可知其图像的对称中心为(,0)()42k k Z ππ+∈,最小正周期为π C.sin 2cos 2)4y x x x π=+=+可知其图像的对称中心为(,0)()28k k Z ππ-∈,最小正周期为π D. sin cos )4y x x x π=+=+可知其图像的对称中心为(,0)()4k k Z ππ-∈小正周期为2π5. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A 、B 两点,则||AB =A.3B. C.6 D. 【答案】D 【解析】由题可知渐近线方程为y =,右焦点(2,0),则直线2x =与两条渐近线的交点分别为A (2,,B (2,-,所以||AB =6. 用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】分类讨论① 当5在万位时,个位可以排0、2、4三个数,其余位置没有限制,故有133472C A =种。
年全国高考文综试题及答案四川卷DOC1
2015年普通高等学校招生全国统一考试(四川卷)文科综合文科综合考试时间共150分钟, 满分300分。
政治、历史、地理各100分。
地理试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷9至11页, 第Ⅱ卷12至12页, 共4页。
考生作答时, 须将答案答在答题卡上, 本试题卷、草稿纸上答题无效。
考试结束后, 将本试题卷和答题卡一并交回。
地理第Ⅰ卷(选择题共48分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共12题, 每题4分。
在每题给出的四个选项中, 只有一项是最符合题目要求的。
2013年4月5日, 我国帆船物驾驶“青岛号”帆船荣归青岛港, 实现了中国人民首次单人不间断环球航行。
图1为此次航行的航线图, 据材料回答1-2题。
此次航行中, 最能利用盛行风和洋流的航程是A.南美洲以南→非洲以南 B、非洲以南→南海C.南海→台湾海峡D.台湾海峡→青岛2、帆船返回青岛港当日, 青岛A.日出东南方向B、于地方时6时前日出C.昼长较广州短D.正午物影较春分日长雾是悬浮在近地面空气中的大量微小水滴凝成冰晶, 图2为“中国年平均雾日空间分布图”, 据材料回答3—4题。
图23.下列地区中, 年平均雾日最少的是A.福建沿海B.黄海沿岸C.准噶尔盆地D.柴达木盆地4.与四川盆地内秋、冬季节多雾直接相关的是A.秦岭阻挡冷空气南下B.气流受地形阻挡抬升C.受暖湿的东南季风影响明显D.晴朗的夜间地面辐射冷却强图3反映我国某城市某工作日0:00时和10:00时的人口集聚状况, 该图由手机定位功能获取的人口移动数据制作而成, 读图回答5—6题。
图35.按城市功能分区, 甲地带应为A.行政区B.商务区C.住宅区D.工业区6、根据城市地域结构推断, 该城市位于A.丘陵地区B.平原地区C.山地地区D.沟谷地区图4为北半球某平原城市冬季等温线分布图, 读图回答7—8题。
7、该城市可能位于A.回归线附近大陆西岸B.40°N附近大陆西岸C.回归线附近大陆东岸D、40°N附近大陆东岸8、市中心与郊区的气温差异导致市中心A.降水的可能性较郊区大B.降雪的可能性较郊区大C.大气污染物不易扩散至郊区D.不易受郊区燃烧秸秆烟雾的影响农业化肥使用会增加河水中的NO, 工业废水和生活汗水排放会增加河水中的PO.。
2015年高考语文试题四川卷含答案(wrod精校版)
绝密★启封前2015年普通高等学校招生全国统一考试(四川卷)语文本试题卷分第1卷(单项选择题)和第1r卷(非单项选择题)。
第1卷l至3页,第II卷4至6页,共6页。
满分150分。
考试时间150分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第1卷(单项选择题共27分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。
第1卷共3大题,9小题。
每小题3分。
一、(12分,每小题3分)1.下列词语中加点字的读音,全部正确的一项是A. 暂时zan 埋怨mai 谆谆告诫zhun 引吭高歌h6ngB.豆豉chl 踝骨huai 踉踉跄跄cang 按图索骥j1C.梗概gen 删改shan 炊烟袅袅nieio 明眸皓齿m6uD.搁浅ge 解剖pou 鬼鬼祟崇sul 不屑一顾xi色2.下列词语中,没有错别字的一项是A.妨碍功夫片钟灵毓秀管中窥豹,可见一斑B.梳妆吊胃口瞠目结舌文武之道,一张一驰C.辐射入场券循章摘句风声鹤唳,草木皆兵D.蜚然直辖市秘而不宣城门失火,殃及池鱼3.下列各句中加点词语的使用,不恰当的一项是A."2015年度中国文化跨界论坛"日前在北京举行,届时来自世界各国的艺术家、企业家和媒体人围绕当前文化创意产业发展中的热点进行了交流。
B.对于那些熟稔互联网的人来说,,进行"互联网+"创业,最难的可能并不是"互联网"这一部分,而是"+"什么以及怎么"+"的问题。
C.这家民用小型无人机公司一年前还寂寂无闻,一年后却声名鹊起,其系列产品先后被评为"十大科技产品"2014年杰出高科技产品"。
D.近年来,广袤蜀地的新村建设全面推进,大巴山区漂亮民居星罗棋雍,大凉山上彝家新寨鳞次栉比,西部高原羌寨碉楼拔地而起。
4.下列各句中,没有语病的一项是A.首届"书香之家"颁奖典礼,是设在杜甫草堂古色古香的仰止堂举行的,当场揭晓了书香家庭、书香校园、书香企业、书香社区等获奖名单。
2015年四川省高考数学试题及答案(文科)【解析版】
2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C. {x|1<x<2} D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C. 4 D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C. y=sin2x+cos2x D.y=sinx+cosx考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C. 6 D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C. 24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y满足,则xy的最大值为()A.B.C. 12 D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣=2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i﹣=i﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015?四川)lg0.01+log216的值是2.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数的运算法则化简求解即可.解答:解:lg0.01+log216=﹣2+4=2.故答案为:2.点评:本题考查对数的运算法则的应用,考查计算能力.13.(5分)(2015?四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2cosα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客P1P2P3P4P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解答:解:(Ⅰ)点F,G,H的位置如图所示.(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p ﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,?+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难题.21.(14分)(2015?四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x ﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1} C. {x|1<x<2} D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C. 4 D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C. 6 D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C. 24小时D.28小时9.(5分)(2015?四川)设实数x,y满足,则xy的最大值为()A.B.C. 12 D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015?四川)lg0.01+log216的值是.13.(5分)(2015?四川)已知sinα+2cosα=0,则2si nαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015?四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。
2015年高考理科数学四川卷(含答案解析)
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(理科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将选答案对应的标号涂黑.第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = ( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<2.设i 是虚数单位,则复数32i i-= ( )A .-iB .-3iC .iD .3i3.执行如图所示的程序框图,输出S 的值为( )A. BC .12-D .124.下列函数中,最小正周期为π且图象关于原点对称的函数是 ( )A .πcos(2)2y x =+ B .πsin(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+5.过双曲线的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则||AB =( )A.3B. C .6D.6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个7.设四边形ABCD 为平行四边形,||=6AB ,||=4AD .若点M ,N 满足=3BM MC ,DN =2NC ,则AM NM =( )A .20B .15C .9D .68.设a ,b 都是不等于1的正数,则“3>3>3a b ”是“log 3log 3a b <”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件9.如果函数1()(2)(8)10022f x =m x +n x+m n --(≥,≥)在区间1[,2]2上单调递减,那么mn 的最大值为( )A .16B .18C .25D .81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.在5(21)x -的展开式中,含2x 的项的系数是_________(用数字填写答案). 12.sin15+sin75的值是_________.13.某食品的保鲜时间y (单位:小时)与储存温度x (单位:℃)满足函数关系y =e kx b +(e 2.718=…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是_________小时.14.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ 的最大值为_________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数1x ,2x ,都有0m >;(2)对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; (3)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =; (4)对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有_________(写出所有真命题的序号).2213y x -=---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记数列1{}n a 的前n 项和为n T ,求使得1|1| 1 000n T -<成立的n 的最小值.17.(本小题满分12分)某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队. (Ⅰ)求A 中学至少有一名学生入选代表队的概率;(Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛.记X 表示参赛的男生人数,求X 的分布列和数学期望.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC 的中点为M ,GH 的中点为N .(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)证明:直线MN ∥平面BDH ; (Ⅲ)求二面角A EG M --的余弦值.19.(本小题满分12分)如图A ,B ,C ,D 为平面四边形ABCD 的四个内角.(Ⅰ)证明:1cos tan 2sin A AA-=;(Ⅱ)若180A C +=,6AB =,3BC =,4CD =,5AD =,求tantan 22A B++tantan 22C D+的值. 20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b=>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点.当直线l 平行于x 轴时,直线l 被椭圆E截得的线段长为 (Ⅰ)求椭圆E 的方程;(Ⅱ)在平面直角坐标系xOy 中是否存在与点P 不同的定点Q ,使得||||||||QA PA QB PB =恒成立?若存在,求出点Q 的坐标;若不存在,说明理由.21.(本小题满分14分)已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >. (Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(四川卷)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】∵集合{|(1)(2)0}A x x x =+-<,集合B={x|1<x <3},∴集合{|12}A x x =-<<, ∵A ∪B={x|﹣1<x <3},故选:A【提示】求解不等式得出集合{|12}A x x =-<<,根据集合的并集可求解答案 【考点】并集及其运算 2.【答案】C【解析】∵i 是虚数单位,则复数32i i -,∴4i 2121i i i i--==-=,故选:C【提示】通分得出4i 2i-,利用i 的性质运算即可【考点】复数代数形式的乘除运算 3.【答案】D【解析】解:模拟执行程序框图,可得1k =,2k = 不满足条件4k >,3k = 不满足条件4k >,4k = 不满足条件4k >,5k =满足条件4k >,5π1sin62S ==,输出S 的值为12. 故选:D .【提示】模拟执行程序框图,依次写出每次循环得到的k 的值,当5k =时满足条件4k >,计算并输出S 的值为12【考点】程序框图 4.【答案】A【解析】解:πcos 2sin 22y x x ⎛⎫=+=- ⎪⎝⎭,是奇函数,函数的周期为:π,满足题意,所以A 正确 πsin 2cos22y x x ⎛⎫=+= ⎪⎝⎭,函数是偶函数,周期为:π,不满足题意,所以B 不正确;πsin 2cos224y x x x ⎛⎫=+=+ ⎪⎝⎭,函数是非奇非偶函数,周期为π,所以C 不正确;πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭,函数是非奇非偶函数,周期为2π,所以D 不正确;故选:A .【提示】求出函数的周期,函数的奇偶性,判断求解即可 【考点】两角和与差的正弦函数,三角函数的周期性及其求法 5.【答案】D【解析】解:双曲线2213yx -=的右焦点(2,0),渐近线方程为y =,过双曲线2213y x -=的右焦点且与x 轴垂直的直线,2x =,可得A y =,B y =-,∴||AB =故选:D .【提示】求出双曲线的渐近线方程,求出AB 的方程,得到AB 坐标,即可求解||AB . 【考点】双曲线的简单性质 6.【答案】B【解析】解:根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个; 分两种情况讨论:①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有3424A =种情况,此时有32472⨯=个,②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有3424A =种情况,此时有22448⨯=个,共有7248120+=个.故选:B【提示】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案. 【考点】排列、组合及简单计数问题 7.【答案】C【解析】解:∵四边形ABCD 为平行四边形,点M 、N 满足3BM MC =,2DN NC =,∴根据图形可得:3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,∴NM AM AN =-,∵2()AM NM AM AM AN AM AM AN =-=-,22239216AM AB AB AD AD =++, 22233342AM AN AB AD AB AD =++,||6AB =,||4AD =,∴22131239316AM NM AB AD =-=-=故选;C【提示】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+, 2()AM NM AM AM AN AM AM AN =-=-,结合向量结合向量的数量积求解即可.【考点】平面向量数量积的运算 8.【答案】B【解析】解:A 、B 都是不等于1的正数,∵333a b >>,∴1a b >>,∵l og 3l og 3a b <,∴3311log log a b <,即lg lg 0lg lg b a a b -<,lg lg 0lga lgb 0b a -<⎧⎨>⎩或lg lg 0lga lgb 0b a ->⎧⎨<⎩ 求解得出:1a b >>,10a b >>>或1b >,01a <<根据充分必要条件定义得出:“333a b >>”是“log 3log 3a b <”的充分不必要条件,故选:B .【提示】求解333a b >>,得出1a b >>,log 3log 3a b <,lg lg 0lga lgb 0b a -<⎧⎨>⎩或lg lg 0lga lgb 0b a ->⎧⎨<⎩数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)根据对数函数的性质求解即可,再利用充分必要条件的定义判断即可. 【考点】必要条件、充分条件与充要条件的判断 9.【答案】B【解析】解:∵函数21()(2)(8)1(0,0)2f x m x n x m n =-+-+≥≥在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,∴①2m =,8n <对称轴82n x m -=--, ②20822m n m ->⎧⎪-⎨-≥⎪-⎩即22120m m n >⎧⎨+-≤⎩ ③208122m n m -<⎧⎪-⎨-≤⎪-⎩即22180m n m <⎧⎨+-≤⎩ 设22120x x y >⎧⎨+-≤⎩,22180x y x <⎧⎨+-≤⎩或28x y =⎧⎨<⎩设k y x =,2ky x '=-,当切点为00()x y ,,k 取最大值. ①202k x -=-,202k x =,00212y x +=-,2000022x y x x ==,可得03x =,06y =,∵32x =>∴k 的最大值为3618⨯=②2012k x =,10200012x y x x ==,002180y x -+=,解得:09x =,092y =∵02x < ∴不符合题意.③2m =,8n =,16k mn ==综合得出:3m =,6n =时k 最大值18k mn ==,故选;B【提示】根据二次函数的单调性得出①2m =,8n <对称轴82n x m -=--,②20822m n m ->⎧⎪-⎨-≥⎪-⎩③208122m n m -<⎧⎪-⎨-≤⎪-⎩构造函数22120x x y >⎧⎨+-≤⎩或22180x y x <⎧⎨+-≤⎩或28x y =⎧⎨<⎩运用导数,结合线性规划求解最大值.【考点】二次函数的性质10.【答案】D【解析】解:设11()A x y ,,22()B x y ,,00()M x y ,,则斜率存在时,设斜率为k ,则2114y x =,2224y x =,利用点差法可得02ky =,因为直线与圆相切,所以0015y x k=--,所以03x =,即M 的轨迹是直线3x =,代入抛物线方程可得y =±所以交点与圆心(50),的距离为4,所以24r <<时,直线l 有2条;斜率不存在时,直线l 有2条;所以直线l 恰有4条,24r <<,故选:D .【提示】先确定M 的轨迹是直线3x =,代入抛物线方程可得y =±(50),的距离为4,即可得出结论.【考点】抛物线的简单性质,直线与圆的位置关系第Ⅱ卷二、填空题 11.【答案】40-【解析】解:根据所给的二项式写出展开式的通项,515(2)(1)rrr r T C x -+=-;要求2x 的项的系数,∴52r -=,∴3r =,∴2x 的项的系数是2335()2140C =--. 故答案为:40-.【提示】根据所给的二项式,利用二项展开式的通项公式写出第1r +项,整理成最简形式,令x 的指数为2求得r ,再代入系数求出结果 【考点】二项式定理的应用 12.【解析】解:sin15sin 75sin15cos15cos45cos15sin 45)60︒+︒=︒+︒=︒︒+︒︒=︒=.. 【提示】利用诱导公式以及两角和的正弦函数化简求解即可. 【考点】两角和与差的正弦函数;三角函数的化简求值. 13.【答案】24【解析】解:由题意可得,0x =时,192y =;22x =时,48y =. 代入函数e kx by +=,可得e 192b =,22e 48k b +=,即有111e 2k =,e 192b =,则当33x =时,331e 192248k b y +==⨯=. 故答案为:24.【提示】由题意可得,0x =时,192y =;22x =时,48y =.代入函数e kx by +=,解方程,可得k ,b ,再由33x =,代入即可得到结论. 【考点】函数与方程的综合运用 14.【答案】25【解析】解:根据已知条件,AB ,AD ,AQ 三直线两两垂直,分别以这三直线为x ,y ,z 轴,建立如图所示空间直接坐标系,设2AB =,则:(000)A ,,,(100)E ,,,(210)F ,,;M 在线段PQ 上,设(0,,2)M y ,02y ≤≤;∴(1,,2)EM y =-,(2,1,0)AF =;∴cos |cos ,55EMAF θ==;数学试卷 第13页(共21页)数学试卷 第14页(共21页)数学试卷 第15页(共21页)∴22244cos =5(y 5)y y θ-++,设22445(y 5)y y t -+=+,整理得:2(51)42540t y y t -++-=①,将该式看成关于y 的方程;(1)若15t =,则14y =-,不符合02y ≤≤,即这种情况不存在;(2)若15t ≠,①便是关于y 的一元二次方程,该方程有解;∴164(51)(254)0t t =---≥△;解得4025t ≤≤;∴t 的最大值为425;∴2cos θ的最大值为425,cos θ最大值为25.故答案为:25.【提示】首先以AB ,AD ,AQ 三直线为x ,y ,z 轴,建立空间直角坐标系,并设正方形边长为2,(02)M y ,,,从而可求出向量EM ,AF 的坐标,由cos cos ,EM AF θ=得到22244cos 5(5)y y y θ-+=+,可设22445(5)y y t y -+=+,可整理成关于y 的方程,根据方程有解即可求出t 的最大值,从而求出cos θ的最大值. 【考点】异面直线及其所成的角 15.【答案】①④【解析】解:对于①,由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则①正确;对于②,由二次函数的单调性可得()g x 在,2a ⎛⎫-∞- ⎪⎝⎭递减,在2a ⎛⎫+∞ ⎪⎝⎭,递减,则0n >不恒成立,则②错误;对于③,由m n =,可得1212()()()()f x f x g x g x -=-,考查函数2()2x h x x ax =+-,()22ln 2xh x x a '=+-,当a →-∞,()h x '小于0,()h x 单调递减,则③错误;对于④,由m n =-,可得1212[()()()(])f x f x g x g x -=--,考查函数2()2xh x x ax =++,()22ln 2x h x x a '=++,对于任意的a ,()h x '不恒大于0或小于0,则④正确.故答案为:①④.【提示】运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数2()2xh x x ax =+-,求出导数判断单调性,即可判断③; 通过函数2()2xh x x ax =++,求出导数判断单调性,即可判断④.【考点】命题的真假判断与应用 三、解答题16.【答案】(Ⅰ)2n na = (Ⅱ)10【解析】解:(Ⅰ)由已知12n n S a a -=,有1122(2)n n n n n a S S a a n ≥-==﹣﹣﹣,即12(2)n n a a n ≥=﹣, 从而212a a =,32124a a a ==,又∵1a ,21a +,3a 成等差数列,∴11142(21)a a a ++=,解得:12a =.∴数列{}n a 是首项为2,公比为2的等比数列.故2n na =;(Ⅱ)由(Ⅰ)得:112n n a =,∴1122212[1()]1111122212nn n n T -=+++==--. 由1|1|1000n T -<,得111121000n --<,即21000n >.∵9102512100010242=<<=,∴10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 【提示】(Ⅰ)由已知数列递推式得到12(2)n n a a n ≥=﹣,再由已知1a ,21a +,3a 成等差数列求出数列首项,可得数列{}n a 是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列1n a ⎧⎫⎨⎬⎩⎭的通项公式,再由等比数列的前n 项和求得n T ,结合1|1|1000n T -<求解指数不等式得n 的最小值. 【考点】数列的求和. 17.【答案】(Ⅰ)99100(Ⅱ)2【解析】解:(Ⅰ)由题意,参加集训的男、女学生个有6人,参赛学生全从B 中抽出(等价于A 中没有学生入选代表队)的概率为:333433661100C C C C =,因此A 中学至少有1名学生入选代表队的概率为:1991100100-=; (Ⅱ)某场比赛前,从代表队的6名队员中随机抽取4人参赛,X 表示参赛的男生人数,则X 的可能取值为:1,2,3,2333461(1)5C C P X C ===,2333463(2)5C C P X C ===,3133461(3)5C C P X C ===.则数学期望11232555EX =⨯+⨯+⨯=.【提示】(Ⅰ)求出A 中学至少有1名学生入选代表队的对立事件的概率,然后求解概率即可;(Ⅱ)求出X 表示参赛的男生人数的可能值,求出概率,得到X 的分布列,然后求解数学期望.【考点】离散型随机变量的期望与方差,离散型随机变量及其分布列 18.【答案】(Ⅰ)如图 (Ⅱ)见解析 (Ⅲ)3【解析】解:(Ⅰ)F 、G 、H 的位置如图;证明:(Ⅱ)连接BD ,设O 是BD 的中点,∵BC 的中点为M 、GH 的中点为N ,∴数学试卷 第16页(共21页) 数学试卷 第17页(共21页)数学试卷 第18页(共21页)OM CD ∥,12OM CD =,HN CD ∥,12HN CD =,∴OM HN ∥,OM HN =,即四边形MNHO 是平行四边形,∴MN OH ∥,∵MN BDH ⊄平面;OH BDH ⊂面,∴MN BDH 直线∥平面;(Ⅲ)方法一:连接AC ,过M 作MH AC ⊥于P ,则正方体ABCD EFGH -中,AC EG ∥,∴MP EG ⊥,过P 作PK EG ⊥于K ,连接KM ,∴KM PKM ⊥平面则KM EG ⊥,则PKM ∠是二面角A EG M --的平面角,设2AD =,则1CM =,2PK =,在Rt CMP △中,sin 45PM CM =︒=,在R t P K M △中,KM ,∴cos 3PK PKM KM ∠==,即二面角A EG M --的余弦值为3. 方法二:以D 为坐标原点,分别为DA ,DC ,DH 方向为x ,y ,z 轴建立空间坐标系如图:设2AD =,则(120)M ,,,(0,2,2)G ,(2,0,2)E ,(1,1,0)O ,则(2,2,0)GE =-,(1,0,2)MG =-,设平面EGM 的法向量为(x,y,z)n =,则00n GE n MG ⎧=⎪⎨=⎪⎩,即22020x y x z -=⎧⎨-+=⎩,令2x =,得(2,2,1)n =,在正方体中,DO AEGC ⊥平面,则(1,1,0)n DO ==是平面AEG 的一个法向量,则cos ,3||||9m n m n m n ====⨯.二面角A EG M --.【提示】(Ⅰ)根据展开图和直观图之间的关系进行判断即可; (Ⅱ)利用线面平行的判定定理即可证明直线MN BDH ∥平面; (Ⅲ)法一:利用定义法求出二面角的平面角进行求解. 法二:建立坐标系,利用向量法进行求解即可.【考点】二面角的平面角及求法,直线与平面平行的判定. 19.【答案】(Ⅰ)见解析 【解析】证明:(Ⅰ)222222sin 2sin 1cos tan cos2sin cos sin A AA A AAA A -===.等式成立.(Ⅱ)由180A C +=︒,得180C A =︒-,180D B =︒-,由(Ⅰ)可知:tantan tan tan 2222A B C D +++ 1cos 1cos 1cos(180)1cos(180)sin sin sin(180)sin(180)A B A B A B A B ---︒--︒-=+++︒-︒-22sin sin A B =+连结BD ,在ABD △中,有2222cos BD AB AD AB AD A -=+,6AB =,3BC =,4CD =,5AD =,在BCD △中,有2222cos BD BC CD BC CD C -=+,所以22222cos 2cos AB AD AB AD A BC CD BC CD C +=-+-,则:2222222265343cos 2(AB AD BCCD)2(6534)7AB AD BC CD A +--+--===+⨯+÷. 于是sin A ==AC , 同理可得:2222222263542(AB CD)2(63541)1cos 9AB BCAD CD BC ADF B +--+--==+⨯+÷=, 于是sin B=所以tan tantan tan2222A B C D +++22sin sin A B =+=【提示】(Ⅰ)直接利用切化弦以及二倍角公式化简证明即可.(Ⅱ)通过180A C +=︒,得180C A =︒-,180D B =︒-,利用(Ⅰ)化简22tantan tan tan 2222sin sin A B C D A B+++=+,连结BD ,在ABD △中,利用余弦定理求出sin A ,连结AC ,求出sin B ,然后求解即可【考点】三角函数恒等式的证明20.【答案】(Ⅰ)22142x y +=(Ⅱ)存在与点P 不同的定点(0,2)Q,使得QA PA QBPB=恒成立【解析】解:(Ⅰ)∵直线l 平行于x 轴时,直线l 被椭圆E截得的线段长为 ∴点在椭圆E , ∴22222211c e a a b a b c ⎧==⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得2a =,b =,∴椭圆E 的方程为:22142x y +=;(Ⅱ)结论:存在与点P 不同的定点(0,2)Q,使得||||||||QA PA QB PB =恒成立. 理由如下:当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点,如果存在定点Q 满足条件,数学试卷 第19页(共21页)数学试卷 第20页(共21页)数学试卷 第21页(共21页)则有||||||||QA PA QB PB =,即||||QC QD =. ∴Q 点在直线y 轴上,可设0(0,)Q y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于M 、N 两点,则M 、N的坐标分别为、(0,,又∵||||||||QM PM QN PN ==,解得01y =或02y =. ∴若存在不同于点P 的定点Q 满足条件,则Q 点坐标只能是(0,2).下面证明:对任意直线l ,均有||||||||QA PA QB PB =. 当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,A 、B 的坐标分别为11)(,A x y 、22)(,B x y ,联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,消去y 并整理得:22(12)420k x kx ++-=,∵22(4)8(12)0k k =++>△, ∴122412k x x k +=-+,122212x x k-=+, ∴121212112x x k x x x x ++==, 已知点B 关于y 轴对称的点B '的坐标为22(,)x y -, 又11111211AQ y kx k k x x x --===-,2222212111OB y kx k k K x x x x --===-+=---, ∴AO QB k k =,即Q 、A 、B '三点共线,∴12QAQA x PA QB QB x PB==='. 故存在与点P 不同的定点(0,2)Q ,使得QA PA QBPB=恒成立.【提示】(Ⅰ)通过直线l 平行于x 轴时被椭圆E截得的线段长为,2,计算即得结论;(Ⅱ)通过直线l 与x 轴平行、垂直时,可得若存在不同于点P 的定点Q 满足条件,则Q 点坐标只能是(02),.然后分直线l 的斜率不存在、存在两种情况,利用韦达定理及直线斜率计算方法,证明对任意直线l ,均有QA PAQB PB=即可. 【考点】直线与圆锥曲线的综合问题,椭圆的标准方程 21.【答案】(Ⅰ)见解析 (Ⅱ)见解析【解析】解:(Ⅰ)由已知,函数()f x 的定义域为(0,)+∞,()()2()2ln 21a g x f x x a x x ⎛⎫'==---+ ⎪⎝⎭,∴21124222()2()22()2x a a g x x x x -+-'=-+=. 当104a <<时,()g x在10,2⎛ ⎝⎭,12⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在区间⎝⎭上单调递减;当14a ≥时,()g x 在(0,)+∞上单调递增. (Ⅱ)由()2()2ln 210a f x x a x x ⎛⎫'=---+= ⎪⎝⎭,解得11ln 1x x a x ---=+,令2211111ln 1ln 1ln 1ln ()2ln 221111x x x x x x x x x x x x x x x x x ϕ------------⎛⎫⎛⎫⎛⎫=-++--+ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, 则(1)10ϕ=>,211(2)2()2011e e e e e e ϕ----⎛⎫=--< ⎪++⎝⎭. 故存在0(1,)x e ∈,使得0(0)x ϕ=.令000101ln 1x x a x ---=+,()1ln (1)u x x x x =--≥,由1()10u x x '=-≥知,函数()u x 在(1,)+∞上单调递增.∴0011100()(1)()20111111u x u u e e a x e x ----=<=<=<++++. 即0(0,1)a ∈,当0a a =时,有0()0f x '=,00()()0f x x ϕ==.由(Ⅰ)知,()f x '在(1,)+∞上单调递增,故当0(1,)x x ∈时,()0f x '<,从而0()()0f x f x >=; 当0(,)x x ∈+∞时,()0f x '>,从而0()()0f x f x >=. ∴当(1,)x ∈+∞时,()0f x ≥.综上所述,存在(0,1)a ∈,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.【提示】(Ⅰ)求出函数()f x 的定义域,把函数()f x 求导得到()g x 再对()g x 求导,得到其导函数的零点,然后根据导函数在各区间段内的符号得到函数()g x 的单调期间; (Ⅱ)由()f x 的导函数等于0把a 用含有x 的代数式表示,然后构造函数2211111ln 1ln 1ln 1ln ()2ln 221111x x x x x x x x x x x x x x x x x ϕ------------⎛⎫⎛⎫⎛⎫=-++--+ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭,由函数零点存在定理得到0(1,)x e ∈,使得0(0)x ϕ=.令000101ln 1x x a x ---=+,()1ln (1)u x x x x =--≥,利用导数求得0(0,1)a ∈,然后进一步利用导数说明当0a a =时,若(1,)x ∈+∞,有()0f x ≥,即可得到存在(01)a ∈,,使得()0f x ≥在区间(1,)+∞内恒成立,且()0f x =在区间(1,)+∞内有唯一解.【考点】利用导数研究函数的单调性,利用导数求闭区间上函数的最值。
2015年四川省语文高考试题及答案解析
2015年普通高等学校招生全国统一考试(四川卷)语文本试题卷分第1卷(单项选择题)和第1r卷(非单项选择题)。
第1卷l至3页,第II卷4至6页,共6页。
满分150分。
考试时间150分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第1卷(单项选择题共27分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。
第1卷共3大题,9小题。
每小题3分。
一、(12分,每小题3分)1.下列词语中加点字的读音,全部正确的一项是A. 暂.时zàn 埋.怨mái 谆谆.告诫zhǔn 引吭.高歌hángB.豆豉.chǐ踝.骨hu ái 踉踉跄跄.cāng 按图索骥.jìC.梗.概gěn 删.改shān 炊烟袅袅.niǎo 明眸.皓齿mòuD.搁.浅gě解剖.pōu 鬼鬼祟崇.suì不屑.一顾xiâ【答案】D【解析】A项mái应为mán;B项cāng应为qiàng;C项gěn应为gěng试题分析:本题识记现代汉语普通话常用字的字音的能力,涉及多音多义字和形声字。
2.下列各句中,没有语病的一项是A.首届"书香之家"颁奖典礼,是设在杜甫草堂古色古香的仰止堂举行的,当场揭晓了书香家庭、书香校园、书香企业、书香社区等获奖名单。
B.专家强调,必须牢固树立保护生态环境就是保护生产力的理念,形成绿水青山也是金山银山的生态意识,构建与生态文明相适应的发展模式。
C.市旅游局要求各风景区进一步加强对景区厕所、停车场的建设和管理,整治和引导不文明旅游的各种顽疾和陋习,有效提升景区的服务水平。
D.《四川省农村扶贫开发条例》是首次四川针对贫困人群制定的地方性法规,将精准扶贫确定为重要原则,从最贫困村户人手,让老乡过上好日子。
3.下列各句中加点词语的使用,不恰当的一项是A."2015年度中国文化跨界论坛"日前在北京举行,届时来自世界各国的艺术家、企业家和媒体人围绕当前文化创意产业发展中的热点进行了交流。
2015四川高考试题及答案(修正版)解析
treat.
11.A.avoided
B.started
C.canceled
D.suggested
12.A.business
B.fun
C.problem
D.privilege
13.A.help
B.cheat
C.threat
D.exception
14.A.trust
B.miss
C.admire
D.appreciate
was now talking an______interest in this food situation.I carefully
extended a long______,with a keen eye on those teeth,and ___,there were
times I would have the groundhog sitting next to a rabbit,both munching(津
C.neither D.none
-1-
第二节 完形填空
阅读下面短文,从短文后各题所给的四个选项(A、B、C、D)中,选出可以填
入空白处的最佳选项,并在答题卡上将该项涂黑。(共 20 小题;每小题 1.5 分,
共 30 分)
My previous home had a stand of woods behind it and many animals in the
watching the monkey dancing in front of him.
A.amaze
B.amazing C.amazed
D.to amaze
10.Niki is always full of ideas,but
高考语文真题四川卷2015年_真题(含答案与解析)-交互
高考语文真题(四川卷)2015年(总分150, 做题时间150分钟)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。
第Ⅰ卷共3大题,9小题。
每小题3分。
一、(12分,每小题3分)1.下列词语中加下划线字的读音,全部正确的一项是SSS_SINGLE_SELA 暂时zàn 埋怨mái 谆谆告诫zhūn 引吭高歌hángB 豆豉chǐ 踝骨huái 踉踉跄跄cāng 按图索骥jìC 梗概gěn 删改shān 炊烟袅袅niǎo 明眸皓齿móuD 搁浅gē 解剖pōu 鬼鬼祟崇suì 不屑一顾xiè该题您未回答:х该问题分值: 3答案:D各项的读音分别读:A埋(mán)怨,为多音字,B踉踉跄跄(qiàng),C梗(gěng)概,所以选D,这两项错误读音的字基本为四川人容易读错的字。
2.下列词语中,没有错别字的一项是SSS_SINGLE_SELA 妨碍功夫片钟灵毓秀管中窥豹,可见一斑B 梳妆吊胃口瞠目结舌文武之道,一张一驰C 辐射入场券循章摘句风声鹤唳,草木皆兵D 蜚然直辖市秘而不宣城门失火,殃及池鱼该题您未回答:х该问题分值: 3答案:AB一张一弛中的“驰”应为“弛”,C循章摘句中的“循”应为“寻”,D蜚然中的“蜚”应为“斐”,故答案为A3.下列各句中加下划线词语的使用,不恰当的一项是SSS_SINGLE_SELA “2015年度中国文化跨界论坛“日前在北京举行,届时来自世界各国的艺术家、企业家和媒体人围绕当前文化创意产业发展中的热点进行了交流。
B 对于那些熟稔互联网的人来说,进行“互联网+”创业,最难的可能并不是“互联网”这一部分,而是“+”什么以及怎么“+”的问题。
C 这家民用小型无人机公司一年前还寂寂无闻,一年后却声名鹊起,其系列产品先后被评为“十大科技产品“2014年杰出高科技产品”。
2015年普通高等学校招生全国统一考试(四川卷)-答案
2015年普通高等学校招生全国统一考试(四川卷)【答案】1. D2. A3. C4. D5. A6. C7. B8.(13分)(1)1s22s22p63s23p2或[Ne]3s23p2(2)三角锥形(3)HNO3HF Si、Mg、Cl2(4)P4+10CuSO4+16H2O10Cu+4H3PO4+10H2SO49.(13分)(1)圆底烧瓶(2)dbaec(3)0.03(4)取少量装置D内溶液于试管中,滴加BaCl2溶液,生成白色沉淀;加入足量稀盐酸后沉淀完全溶解,放出无色刺激性气体(5)NH3或氨气(6)3(NH4)2SO44NH3↑+N2↑+3SO2↑+6H2O↑10.(16分)(1)乙醇醛基取代反应或酯化反应(2)CH3CH2CH(CH2Br)2+2NaOH CH3CH2CH(CH2OH)2+2NaBr(3)(4)(5)11.(16分)(1)Fe2O3+6H+2Fe3++3H2O(2)C(3)Fe2+被氧化为Fe3+,Fe3+水解产生H+(4)4FeCO3(s)+O2(g) 2Fe2O3(s)+4CO2(g)ΔH=-260 kJ/mol(5)FeS2+4Li++4e- Fe+2Li2S或FeS2+4e- Fe+2S2-(6)0.011 8ab-0.646c或【解析】1.A项,明矾作净水剂是因为Al3+水解生成的Al(OH)3胶体有吸附作用;B项,甘油作护肤保湿剂是利用甘油中羟基的亲水性;C项,漂粉精作消毒剂是利用漂粉精溶于水后,ClO-水解生成HClO,HClO具有强氧化性。
评析:本题为识记内容,较易。
2.B项,CO2对应的酸为弱酸,不能和强酸盐CuSO4反应;C项,H2S为弱酸,书写离子方程式时不可拆;D项,Cu2+与过量浓氨水反应生成[Cu(NH3)4]2+。
3.A项,视线应与凹液面最低处相平;B项,应选用饱和食盐水;C项,铁钉发生吸氧腐蚀,左侧试管中压强减小,导管中会形成一段液柱;D项,制得的C2H2气体中有H2S等还原性气体,也能使KMnO4酸性溶液褪色。
2015年四川省高考数学试题及答案【解析版】
2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+co s2x D.y=sinx+cos x考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S 的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin =,输出S 的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A =2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= 2i .考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i ﹣=i ﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是 2 .考对数的运算性质.点:函数的性质及应用.专题:直接利用对数的运算法则化简求解即可.分析:解:lg0.01+log216=﹣2+4=2.解答:故答案为:2.本题考查对数的运算法则的应用,考查计算能力.点评:13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1 .考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2c osα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R 上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n ﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号32145324513 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号32145324513241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客 P1 P2 P3 P4 P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解解:(Ⅰ)点F,G,H的位置如图所示.答:(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x ﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= .12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3214532451(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2020-2-8。
2015高考四川卷语文真题及答案解析
2015年普通高等学校招生全国统一考试(四川卷)语文答案解析第1卷(单项选择题共27分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。
第1卷共3大题,9小题。
每小题3分。
一、(12分,每小题3分)1.下列词语中加点字的读音,全部正确的一项是:A暂时zàn 埋怨mái 谆谆告诫 zhūn 引吭高歌 hángB豆豉chǐ踝骨huái 踉踉跄跄仓cānɡ按图索骥jìC梗概ɡěn 删改shān 炊烟袅袅 niǎo 明眸皓齿 móuD搁浅ɡē解剖pōu 鬼鬼祟祟 suì不屑一顾xiâ解析:【参考答案】D各项的读音分别读:A埋(mán)怨,为多音字,B踉踉跄跄(qiàng),C梗(gěng)概,所以选D,这两项错误读音的字基本为四川人容易读错的字。
2.下列词语中没有错别字的一项是A妨碍功夫片钟灵毓秀管中窥豹,可见一斑B梳妆吊胃口瞠目结舌文武之道,一张一驰C辐射入场券循章摘句风声鹤唳,草木皆兵D蜚然直辖市秘而不宣城门失火,殃及池鱼解析:【参考答案】AB一张一弛中的“驰”应为“弛”,C循章摘句中的“循”应为“寻”,D蜚然中的“蜚”应为“斐”,故答案为A3.下列句中加点词语的使用,不恰当的一项是A“2015年度中国文化跨界论坛”日前在北京举行,届时来自世界各国的艺术家、企业家和媒体人围绕当前文化创意产业发展中的热点进行了交流。
B对于那些熟稔互联网的人来说,进行“互联网+”创业,最难的可能并不是“互联网”这一部分,而是“+”什么以及怎么“+”的问题。
C这家民用小型无人机公式一年前还寂寂无闻,一年后却声名鹊起,其系列产品先后被评为“十大科技产品”“2014年接触高科技产品”。
D近年来,广袤蜀地的新村建设全面推进大巴山区漂亮民居星罗棋布,大凉山上彝家新寨鳞次栉比,西部高原羌寨碉楼拔地而起。
解析:【参考答案】AA中的“届时”指的是到时候、那时候,还没有发生的某项活动或某项事件,与句中“日前”“进行了交流”相矛盾。
2015年普通高等学校招生全国统一考试(四川卷)
2015年普通高等学校招生全国统一考试(四川卷)文综政治部分第Ⅰ卷(选择题共48分)本卷共12题,每题4分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
1.假设其他条件不变,下列与右图所反映的信息相符的是()A.卷烟税率上调,导致卷烟价格和购买量的变动B.原油价格下跌,导致汽油价格和需求量的变动C.银行利率下调,导致棉花价格和种植量的变动D.汽油价格上涨,导致天然气价格和销量的变动2015·四川卷第1页2.“数以亿计的人可在自家屋顶、田间建立一个小型发电厂,只要它覆盖着太阳能电池板,而且通过互联网和电网与世界连接相互交易”,这是“互联网+能源”的一个远景和行动。
其重大意义在于()①每个人都可以是电力消费者也可以是生产者②可以极大地促进能源的清洁替代和绿色替代③能源供给结构将实现电能化且价格十分低廉④“互联网+能源”能全面推动各传统产业升级A.①②B.①③C.②④D.③④3.2014年,我国国内生产总值比上年增长7.4%,低于7.5%的目标;服务业增加值比重为48.2%,比上年提高1.3个百分点;城镇新增就业1 322万人,超额完成全年新增就业1 000万人的目标。
这意味着()①我国经济结构更加趋于优化②服务业成为我国经济的主导③第三产业吸纳就业的能力强④经济增长主要依靠创新驱动A.①②B.①③C.②④D.③④4.2015年,全国人大常委会办公厅出台《关于改进完善专题询问工作的若干意见》,要求围绕社会普遍关注和人民群众期待的重大问题,每年安排1至2位国务院副总理或国务委员向全国人大常委会作专项工作报告,听取审议意见并回答询问。
这表明,全国人大常委会()①制定法律,提高政府行政效能②积极履职,加强对行政权力的监督③与时俱进,创新行政管理方式④以人为本,切实维护人民合法权益A.①②B.①③C.②④D.③④5.短短几年间,M创新科技有限公司从仅有几个合伙人的公司发展成为全球民用小型无人机的领航者。
2015四川高考语文试题及答案(修正版)解析
2015年普通高等学校招生全国统一考试(四川卷)语文本试题卷分第l卷(单项选择题)和第Ⅱ卷(非单项选择题)。
第1卷l至3页,第II卷4至6页,共6页。
满分150分。
考试时间150分钟。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第1卷(单项选择题共27分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。
第1卷共3大题,9小题。
每小题3分。
一、(12分,每小题3分)1.下列词语中加点字的读音,全部正确的一项是A. 暂.时zàn 埋.怨mái 谆谆..告诫zhūn引吭.高歌hángB.豆豉.chǐ 踝.骨huái 踉踉跄跄..cāng按图索骥.jìC.梗.概gěn 删.改shān 炊烟袅袅..niǎo 明眸.皓齿móuD.搁.浅gē 解剖.pōu 鬼鬼祟祟..suì不屑.一顾xiè2.下列词语中,没有错别字的一项是A.妨碍功夫片钟灵毓秀管中窥豹,可见一斑B.梳妆吊胃口瞠目结舌文武之道,一张一驰C.辐射入场券循章摘句风声鹤唳,草木皆兵D.蜚然直辖市秘而不宣城门失火,殃及池鱼3.下列各句中加点词语的使用,不恰当的一项是A.“2015年度中国文化跨界论坛”日前在北京举行,届时..来自世界各国的艺术家、企业家和媒体人围绕当前文化创意产业发展中的热点进行了交流。
B.对于那些熟稔..互联网的人来说,进行“互联网+”创业,最难的可能并不是“互联网”这一部分,而是“+”什么以及怎么“+”的问题。
C.这家民用小型无人机公司一年前还寂寂无闻,一年后却声名鹊起....,其系列产品先后被评为“十大科技产品“2014年杰出高科技产品”。
D.近年来,广袤蜀地的新村建设全面推进,大巴山区漂亮民居星罗棋雍,大凉山上彝家新寨鳞次栉比....,西部高原羌寨碉楼拔地而起。
4.下列各句中,没有语病的一项是A.首届“书香之家”颁奖典礼,是设在杜甫草堂古色古香的仰止堂举行的,当场揭晓了书香家庭、书香校园、书香企业、书香社区等获奖名单。
2015年高考四川文科数学试卷及详解参考答案
2015年普通高等学校招生全国统一考试(四川卷)数学(文史类)姓名 成绩一、选择题:本题共10个小题,每小题5分,共50分,在每个小题给出的四个选项中,只有一个是符合题目要求的。
1、设集合{|12}A x x =-<<,集合{|13}B x x =<<,则A B =U ( )()A {|13}x x -<< ()B {|11}x x -<< ()C {|12}x x << ()D {|23}x x <<2、设向量(2,4)a =r 与向量(,6)b x =r共线,则实数x =( )()A 2 ()B 3 ()C 4 ()D 63、某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )()A 抽签法 ()B 系统抽样法 ()C 分层抽样法 ()D 随机数法4、设,a b 为正实数,则"1"a b >>是22log log 0"a b >>的( )()A 充要条件 ()B 充分不必要条件 ()C 必要不充分条件 ()D 既不充分也不必要条件5、下列函数中,最小正周期为π的奇函数是( )()A cos(2)2y x π=+ ()B sin(2)3y x π=+ ()Csin 2cos 2y x x =+ ()D sin cosy x x =+6、执行如图所示程序框图,输出S 的值为( )()A ()B ()C 12- ()D 127、过双曲线2213y x -=的右焦点且与x ,A B 两点,则||AB =( )()A ()B ()C 6 ()D 8、某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx by e+=( 2.718...e =为自然对数的底数,,k b 为常数)。
2015年高考四川卷答案(标准版)
2015年普通高等学校招生全国统一考试(四川卷)数 学(文史类)参考答案一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1【答案】A【解析】∵{|12}A x x =-<<,{|13}B x x =<<,{|13}A B x x ∴=-<< ,选A. 2【答案】B【解析】由共线向量()11,a x y = ,()22,b x y =的坐标运算可知12210x y x y -=,即26403x x ⨯-=⇒=,选B. 3【答案】C【解析】因为是为了解各年级之间的学生视力是否存在显著差异,所以选择分层抽样法。
4.【答案】A【解析】由已知当1a b >>时,22log log 0a b >>∴,“1a b >>”是“22log log a b >”的充分条件。
反过来由22log log 0a b >>,可得1a b >>,∴“1a b >>”是“22log log a b >”的必要条件,综上,“1a b >>”是“22log log a b >”的充要条件,选A. 5.【答案】A 【解析】A.cos(2)sin 22y x x π=+=-,可知其满足题意;B. sin(2)cos 22y x x π=+=,可知其最小正周期为π,偶函数;C. sin 2cos 2)4y x x x π=+=+,最小正周期为π,非奇非偶函数;D. sin cos )4y x x x π=+=+,可知其最小正周期为2π,非奇非偶函数.选A6.【答案】D【解析】易得当k =1,2,3,4时执行的是否,当k =5时就执行是的步骤,所以51sin62S π==,选D. 7.【答案】D【解析】由题意可知双曲线的渐近线方程为y =,且右焦点(2,0),则直线2x =与两条渐近线的交点分别为A,B (2,-,∴||AB =选D.8. 【答案】C 【解析】0+192k b e ⨯= ①,2248k b e ⨯+= ②,∴221142k k e e ==⇒=②①, ∴当33x =时,33k bex += ③,∴()3331248192k k xe e x ====⇒=③①,选C. 9.【答案】A 【解析】由第一个条件得:()25y x ≤-。
2015四川高考理科数学真题答案+解析
2015年四川省高考数学(理)试卷真题答案及解析一、选择题1. 设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ⋃= A.{|13}x x -<< B. {|11}x x -<< C. {|12}x x << D. {|23}x x << 【答案】A【解析】{|12}A x x =-<< ,且{|13}B x x =<<{|13}A B x x ∴⋃=-<<,故选A2. 设i 是虚数单位,则复数32i i-= A.i - B. 3i - C. i D. 3i 【答案】C 【解析】3222ii i i i i-=--=,故选C 3. 执行如图所示的程序框图,输出S 的值是A. B. C.12- D. 12【答案】D【解析】进入循环,当5k =时才能输出k 的值,则51sin62S π==,故选D 4. 下列函数中,最小正周期为且图象关于原点对称的函数是 A.cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+D. sin cos y x x =+ 【答案】A 【解析】 A.cos(2)sin 22y x x π=+=-可知其满足题意B. sin(2)cos 22y x x π=+=可知其图像的对称中心为(,0)()42k k Z ππ+∈,最小正周期为πC. sin 2cos 2)4y x x x π=+=+可知其图像的对称中心为(,0)()28k k Z ππ-∈,最小正周期为πD. sin cos )4y x x x π=+=+可知其图像的对称中心为(,0)()4k k Z ππ-∈小正周期为2π5. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A 、B 两点,则||AB =A.3B. C.6 D. 【答案】D 【解析】由题可知渐近线方程为y =,右焦点(2,0),则直线2x =与两条渐近线的交点分别为A ,B (2,-,所以||AB =6. 用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有 (A )144个 (B )120个 (C )96个 (D )72个 【答案】B【解析】分类讨论① 当5在万位时,个位可以排0、2、4三个数,其余位置没有限制,故有133472C A =种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高考四川卷及答案(word重绘版)
第一卷
2013年4月5日,我国帆船手驾驶“青岛号”帆船荣归青岛港,实现了中国人首次单人不间断环球航海的壮举。
图1为此次航行的航线图。
据材料回答1 ~2题。
1、此次航行中,最能利用盛行风和洋流的航程是
A、南美洲以南→非洲以南
B、非洲以南→南海
C、南海→台湾海峡
D、台湾海峡→青岛
2、帆船返回青岛港当日,青岛
A、日出东南方向
B、于地方时6时前日出
C、昼长较广东短+
D、正午物影较春分日长
雾是悬浮在近地面空气中的大量微小水滴或冰晶。
图2为“中国年平均雾日空间分布图”。
据材料回答3~4题。
3、下列地区中,年平均雾日最少的是
A、福建沿海
B、黄海沿岸
C、准噶尔盆地
D、柴达木盆地
4、与四川盆地内秋、冬季节多雾直接相关的是
A、秦岭阻挡冷空气南下
B、气流受地形阻挡抬升
C、受暖湿的东南季风影响显著
D、晴朗的夜间地面辐射冷却强
图3反映我国某城市某工作日0:00时和10:00时的人口聚集状况,该图由手机定位
功能获取的人口移动数据制作而成。
读图回答5~6题。
5、按城市功能分区,甲地带应为
A、行政区
B、商务区
C、住宅区
D、工业区
6、根据城市地域结构特点推断,该城市位于
A、丘陵地区
B、平原地区
C、山地地区
D、沟谷地区
图4为北半球某平原城市冬季等温线分布图。
读图回答7~8题。
7、该城市可能位于
A、回归线附近大陆西岸
B、40°N附近大陆西岸
C、回归线附近大陆东岸
D、40°N附近大陆东岸
8、市中心与郊区的气温差异导致市中心
A、降水的可能性较郊区大
B、降雪的可能性较郊区大
C、大气污染物不易扩散至郊区
D、不易受郊区燃烧秸秆烟雾的影响
农业化肥使用会增加河水中的NO3—,工业废水和生活污水排放会增加河水的PO43-。
下表为亚马孙河、密西西比河、长江、黄河四条河流中NO3—和PO43-的浓度数据。
读表
回答9~10题。
9、表中代表亚马孙河的序号是
A、①
B、②
C、③
D、④
10.若只考虑河流补给,黄河中游河水流经下游,NO3—和PO43-的浓度
A、均显著增加
B、均不会增加
C、NO3—减少PO43-增加
D、NO3—增加PO43-减少
贝加尔湖湖面每年1~5月封冻,冰厚可达90厘米。
图5为贝加尔湖地区等高线图。
据材料回答11~12题。
11.贝加尔湖
A、结冰主要原因是海拔高
B、湖面中心结冰早于边缘
C、位于山谷导致冰层较厚
D、北部的封冻期长于南部
12.贝加尔湖对湖区环境的影响是
A、结冰时使气温降低
B、融冰时使气温降低
C、减小了气温年较差
D、冰层增加空气湿度
第二卷
13、(30分)阅读材料,回答下列问题。
材料一“蓉欧快铁”货运直达列车于2013年4月26日开始运行。
“快铁”线路西端的欧洲中部地区有世界著名的传统工业区,钢铁、汽车制造工业历史悠久;东端的成都平原地区有国家级高新技术产业开发区,电子工业、汽车产业发展较快。
两端广阔的货物集散区域经济互补性强。
材料二“蓉欧快铁”运行线路图(图6);甲区域等高线地形图(图7)。
(1)川企产品利用“蓉欧快铁”出口,请分别指出其相对航空运输、海洋运输的突出优点。
(6分)
(2)据图7,描述图6中甲区域的地形特征。
(6分)
(3)据图示信息,分析“蓉欧快铁”运行沿线可能发生的主要自然灾害。
(12分)
(4)一列载有服装鞋帽、家用电器、个人电脑的“蓉欧快铁”奔驰在途中,判断列车的运行方向,并结合汽车生产条件,分析该列车终到站所在地区汽车生产的区位优势。
(6分)
14.(22分)阅读材料,回答下列问题。
材料一猕猴桃原产于我国,新西兰引入栽培,将改良后的优良品种称“奇异果”(图8)。
奇异果生长怕旱、怕风,宜栽培于湿润、疏松、深厚的土壤。
新西兰的奇异果高度集中分布
在北岛普伦蒂湾沿岸地区,鲜果主要出口到欧洲、日本等地,出口量居世界第一。
我国已引
种奇异果,并建立了加工企业。
材料二新西兰北岛图(图9)。
(1)分析新西兰普伦蒂湾沿岸栽培奇异果的有利自然条件。
(10分)(2)指出奇异果罐头厂趣味选择的主导因素,并说明原因。
(4分)(3)与新西兰相比,评价我国生产的奇异果产品的市场优势。
(8分)
参考答案
1~5:ABDDC 6~10:BDACB 11.12 DC
13.
(1)(6分)比航空运输运费低(2分),运量大(2分);比海洋运输时间短(2分)。
(2)(6分)高原山地为主(2分);高原分布在西南(南)部和东北(北)部,山地主要分布在中部(2分);地势起伏大,西南(南)高,东北(北)低(2分)。
(3)(12分)较高纬度地区,冬季气候寒冷(2分),多暴风雪(2分);内陆地区,气候干旱(2分),多风沙(2分);季风气候的山区,夏秋季节多暴雨(2分),易发生滑坡、泥石流(2分)。
(4)(6分)自东向西(2分)。
欧洲中部地区有传统工业区,原料丰富,协作条件好(2分);汽车制造历史悠久,技术水平高,资金雄厚(2分)。
14.(22分)
(1)(10分)中纬偏低地区,热量条件好(2分);沿岸有暖流流经,气候湿润(2分);西风受地形阻挡,风较小(2分);沿岸平原,地势低平(2分);河流泥沙淤积,土层疏松、深厚(2分)。
(2)(4分)原料(2分);鲜果不便长途运输(2分)。
(3)(8分)我国人口多,果品消费市场大(2分);我国劳动力价格相对低廉,果品生产成本低(2分);距欧洲、日本市场近(2分);与南半球季节相反,鲜果上市时间不同,利于销售(2分)。