工程热力学
工程热力学
第1章基本概念1.1 本章基本要求深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。
1.2 本章难点1.热力系统概念,它与环境的相互作用,三种分类方法及其特点,以及它们之间的相互关系。
2.引入准静态过程和可逆过程的必要性,以及它们在实际应用时的条件。
3.系统的选择取决于研究目的与任务,随边界而定,具有随意性。
选取不当将不便于分析。
选定系统后需要精心确定系统与外界之间的各种相互作用以及系统本身能量的变化,否则很难获得正确的结论。
4.稳定状态与平衡状态的区分:稳定状态时状态参数虽然不随时间改变,但是靠外界影响来的。
平衡状态是系统不受外界影响时,参数不随时间变化的状态。
二者既有所区别,又有联系。
平衡必稳定,稳定未必平衡。
5.注意状态参数的特性及状态参数与过程参数的区别。
名词解释闭口系统、开口系统、绝热系统、孤立系统、热力平衡状态、准静态过程、可逆过程、热力循环第2章理想气体的性质2.1 本章基本要求熟练掌握理想气体状态方程的各种表述形式,并能熟练应用理想气体状态方程及理想气体定值比热进行各种热力计算。
并掌握理想气体平均比热的概念和计算方法。
理解混合气体性质,掌握混合气体分压力、分容积的概念。
2.2 本章难点1.运用理想气体状态方程确定气体的数量和体积等,需特别注意有关物理量的含义及单位的选取。
2.考虑比热随温度变化后,产生了多种计算理想气体热力参数变化量的方法,要熟练地掌握和运用这些方法,必须多加练习才能达到目的。
3.在非定值比热情况下,理想气体内能、焓变化量的计算方法,理想混合气体的分量表示法,理想混合气体相对分子质量和气体常数的计算 2.5 自测题一、是非题1.当某一过程完成后,如系统能沿原路线反向进行回复到初态,则上述过程称为可逆过程。
( )2.只有可逆过程才能在p-v 图上描述过程进行轨迹。
( )3.可逆过程一定是准静态过程,而准静态过程不一定是可逆过程。
工程热力学公式大全
工程热力学公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外所做的功。
2.热力学第二定律(卡诺循环):η=1-Tc/Th其中,η表示热机的热效率,Tc表示冷源温度,Th表示热源温度。
3.单级涡轮放大循环功率:W=h_1-h_2其中,h_1表示压缩机入口焓,h_2表示涡轮出口焓。
4.热力学性质之一:比热容C=Q/(m*ΔT)其中,C表示比热容,Q表示系统吸收的热量,m表示系统的质量,ΔT表示温度变化。
5.热力学性质之二:比焓变ΔH=m*C*ΔT其中,ΔH表示焓变,m表示系统的质量,C表示比热容,ΔT表示温度变化。
6.理想气体状态方程:PV=nRT其中,P表示气体的压力,V表示气体的体积,n表示气体的物质量,R表示气体常数,T表示气体的温度。
7.热机制冷效率:ε=(Qh-Qc)/Qh其中,ε表示热机的制冷效率,Qh表示热机吸收的热量,Qc表示热机传递给冷源的热量。
8.熵变表达式:ΔS=Q/T其中,ΔS表示熵变,Q表示系统吸收的热量,T表示温度。
9.热力学性质之三:比容变β=-(1/V)*(∂V/∂T)_P其中,β表示比容变,V表示体积,T表示温度,P表示压力。
10.工作物质循环效率η_cyc = W_net / Qin其中,η_cyc表示工作物质的循环效率,W_net表示净功,Qin表示输入热量。
这只是一小部分工程热力学公式的示例,实际上工程热力学涉及面较广,还有许多其他常用公式。
与热力学相关的公式使工程师能够更好地理解和解决与能量转换和热力学有关的问题,在工程设计和应用中起到重要的作用。
工程热力学基础
工程热力学基础工程热力学基础是研究热与能量转化以及热力学循环的学科。
它是工程学中重要的基础学科之一,涉及到能量的转化、储存和传递等方面的问题。
在这里,我将以人类的视角,以生动的语言描述工程热力学基础的相关内容。
让我们来了解一下什么是热力学。
热力学是研究热与能量转化过程的一门学科,它描述了物质和能量之间的关系。
在工程中,我们经常需要考虑能量的转化问题,比如热能转化为机械能、电能或化学能等。
在工程热力学中,我们经常使用一些基本概念来描述能量转化的过程。
其中最重要的概念之一就是热力学循环。
热力学循环是一个能量转化的过程,它包括一系列的状态变化,最终回到起始状态。
比如蒸汽机、内燃机等都是基于热力学循环原理工作的。
在热力学循环中,热能的转化是一个重要的过程。
热能可以通过传导、传热、辐射等方式传递。
在工程中,我们经常需要考虑热能的传递问题,比如热交换器的设计、燃烧过程中的热能转化等。
热力学还包括熵的概念。
熵是描述系统无序程度的物理量,它与能量转化的效率有关。
在工程中,我们经常需要考虑如何提高能量转化的效率,减少能量的损失。
在工程热力学中,还有一些其他的重要概念,比如焓、熵增、热力学势等。
这些概念在描述和分析能量转化的过程中起到了重要的作用。
工程热力学基础是研究能量转化和热力学循环的学科。
它涉及到能量的转化、传递和储存等方面的问题。
通过研究工程热力学基础,我们可以更好地理解能量转化的原理,并应用于工程实践中。
希望本文能够以人类的视角,以生动的语言描述工程热力学基础的相关内容,使读者能够更好地理解和应用这门学科。
工程热力学知识点总结
工程热力学知识点总结一、热力学基本概念1.1 系统和环境1.2 状态量和过程量1.3 定态和非定态过程1.4 热平衡和热力学温度二、热力学第一定律2.1 能量守恒原理2.2 内能和焓2.3 热机效率和制冷系数三、热力学第二定律3.1 熵的概念与意义3.2 熵增原理与熵减原理3.3 卡诺循环及其效率四、物质的状态方程及其应用4.1 物态方程的概念与分类4.2 伯努利方程及其应用4.3 范德华方程及其应用五、相变热力学基础知识5.1 相变的基本概念5.2 相变过程中的物态方程5.3 相变焓和相变熵六、理想气体状态方程及其应用6.1 理想气体状态方程6.2 绝热过程中理想气体的温度压强关系6.3 恒容过程中理想气体内能变化七、混合气体热力学基础知识7.1 混合气体的概念7.2 混合气体的状态方程7.3 理想混合气体的热力学性质八、化学反应热力学基础知识8.1 化学反应的基本概念8.2 化学反应焓变和熵变8.3 反应平衡条件及其判定九、传热基础知识9.1 传热方式及其特点9.2 热传导方程及其解法9.3 对流传热及其换热系数十、工程热力学分析方法10.1 理想循环分析方法10.2 实际循环分析方法10.3 燃料空气循环分析方法十一、工程热力学实际应用11.1 能量转换装置的工作原理与性能分析11.2 能量转换装置的优化设计与运行控制11.3 工业过程中能量利用与节能技术总结:本文介绍了工程热力学知识点,包括了基本概念、第一定律和第二定律、物质状态方程及其应用、相变热力学基础知识、理想气体状态方程及其应用、混合气体热力学基础知识、化学反应热力学基础知识、传热基础知识、工程热力学分析方法和工程热力学实际应用。
这些知识点是工程热力学的核心内容,对于掌握能源转换与利用技术以及节能减排具有重要意义。
工程热力学ppt课件
1906--1912年,
德国物理化学家
能斯特根据低温
下化学反应中大
量的实验事实,
归纳出热力学第
三定律即绝对零
度不能达到,
使热力学理论更
趋完善。
15
1942年,美国的凯
南在热力学的基础
上提出了有效能的
概念,使人们对能
源利用和节能认识
又上了一个台阶。
J. H. Keenan1900—1977
完整编辑ppt
2. 微观方法————统计热力学
从物质的微观结构出发,应用统计方法研究大量
分子乱运动的统计平均性质,导出热力学定理,
可从微观机理解释热现象的本质。 但模型假设
有近似性,且分析计算繁复。
完整编辑ppt
21
工程上要求简单、可靠,故以宏观方
法为主。
工程热力学常采用抽象、概括、理想
化的方法,这种略去次要因素,抓住
3.何雅玲《工程热力学精要分析及典型题精解》西安
交通大学出版社2000
完整编辑ppt
23
煤、 天然气等)的化学能 。
地下燃料资源日益减少,不能满足飞
速发展的生产力对动力的需求。 世界
各国对原子能、太阳能、地热能, 乃
至海洋能、生物能等各种新能源正大
力开展多方面的研究工作,以期找到
新的能源出路。
完整编辑ppt
6
热
能
的
动
力
利
用
举
例
:
内
燃
机
的
工
作
过
程
完整编辑ppt
7
B、蒸汽动力装置工作过程
工程热力学
Engineering Thermodynamics
工程热力学知识点总结
工程热力学知识点总结工程热力学知识点总结1. 热力学基本概念热力学是研究能量转化和能量传递规律的学科,它关注系统的宏观性质和变化。
热力学的基本概念包括系统、界面、过程、平衡状态、状态方程等。
2. 热力学第一定律热力学第一定律是能量守恒的表述,它表示能量的增量等于传热和做功的总和。
数学表达式为ΔU = Q - W,其中ΔU表示系统内能的变化,Q表示热的传递,W表示外界对系统做功。
3. 热力学第二定律热力学第二定律描述了自然界中存在的一种过程的不可逆性,即熵增原理。
它指出孤立系统的熵总是增加或保持不变,不会减少。
熵增原理对热能转化和能量传递的方向提供了限制。
4. 热力学循环热力学循环是一系列热力学过程组成的闭合路径,通过这个路径,系统经历一系列状态变化,最终回到初始状态。
常见的热力学循环有卡诺循环、斯特林循环等。
5. 热力学性质热力学性质是用来描述物质宏观状态的物理量,常用的热力学性质包括温度、压力、内能、焓、熵等。
它们与热力学过程和相变有着密切的关系。
6. 热力学方程热力学方程是用来描述物质宏观状态的数学关系。
常见的热力学方程有状态方程(如理想气体状态方程)、焓的变化方程、熵的变化方程等。
这些方程对于分析和计算热力学过程非常重要。
7. 理想气体理想气体是热力学中一种理想的气体模型。
在理想气体状态方程中,气体的压力、体积和温度之间满足理想气体方程。
理想气体模型对于理解和研究气体性质和行为非常有用。
8. 发动机热力学循环发动机热力学循环是指内燃机和外燃机中进行热能转换的一系列过程。
常见的发动机热力学循环有奥托循环、迪塞尔循环等。
通过研究发动机热力学循环,可以优化发动机的效率和性能。
9. 相变热力学相变热力学研究物质由一种相态转变为另一种相态的过程。
相变热力学包括液体-气体相变、固体-液体相变、固体-气体相变等。
了解相变热力学对于理解物质的性质和行为具有重要意义。
总结:工程热力学是研究能量转化和能量传递规律的学科,它关注系统的宏观性质和变化。
工程热力学知识点电子版
工程热力学知识点电子版
1.热力学基本概念:包括热力学系统、态函数、过程、平衡等基本概念。
2.热力学定律:包括热平衡第一定律(能量守恒),热平衡第二定律(熵增原理)以及热平衡第三定律(绝对零度定律)。
3.理想气体的热力学性质:包括状态方程、卡诺循环、理想气体的内能、焓、熵等性质,以及理想气体的不可逆过程等。
4.热功学:包括热力学势、热力学基本方程、热力学关系、开放系统
的热力学分析等。
5.蒸汽循环与汽轮机:包括蒸汽循环的基本原理、热力学效率、汽轮
机的工作原理和热力学分析等。
6.冷热交换过程:包括传热方式、传热定律、传热设备的热力学设计等。
7.蒸发和冷凝:包括蒸发和冷凝的热力学原理、热传导、传质机制等。
8.混合物与溶液的热力学性质:包括理想混合物的热力学分析、溶解度、等温吸收和等温蒸馏等。
9.平衡态的热力学:包括平衡态判定、化学反应的平衡和平衡常数等。
10.非平衡态的热力学:包括非平衡态的基本概念、非平衡态热力学
平衡准则等。
11.热力学循环与工作系统:包括往复式热机循环(如柴油循环、克
氏循环等)、蒸汽循环的分析、制冷循环等。
以上仅列举了一些工程热力学的基本知识点,具体内容还包括一些相关的热力学计算方法和应用,如热力学分析软件的应用、能源转化系统的分析等。
工程热力学
实现平衡的充要条件: 系统内部及系统与外界之间的一切不平衡 势差(力差、温差、化学势差)消失是系统实 现热力平衡状态的充要条件。
热力平衡状态满足: 热平衡:组成热力系统的各部分之间没有热量的 传递。 力平衡:组成热力系统的各部分之间没有相对位 移。
自然界的物质实际上都处于非平衡状态, 平衡只是一种极限的理想状态。 工程热力学通常只研究平衡状态。
1 2 Ek mc 2
E p mgz
系统的总储存能(简称总能)
热力学能 宏观动能
U
系统的储存能
Ek
即
宏观位能 系统的储存能
EP
E
E U Ek EP
1 2 e u c gz 2
1kg工质的总能为比总能:
二. 闭口系统的热力学第一定律表达式
能量平衡关系式: 输入系统的能量-输出系统的能量=系统总储存能
二、容积功
气缸
可逆过程的容积功在p—v图中的表示
飞轮 续41
热 源
左止点 右止点
p
1
2
w pdv
1
2
v
p 1
p
21. p v 图上曲线下面的面积代表容积功 2. dv 0 有 w 0 w 称为膨胀功
dv 0 有 w 0 w 称为压缩功
q2 wnet
q1 热泵循环的经济性-热泵系数: wnet
热源
Q1
热机
W Q1 Q2
Q2
冷源
第二章 热力学第一定律
2.1 循环过程、热力学第一定律 2.2 闭口系的热力学第一定律表达式
2.3 开口系统的热力学第一定律表达式
2.1
循环过程、热力学第一定律
工程热力学(基本概念)
国际实用温标的固定点
平衡状态
平衡氢三相点 平衡氢沸点 氖沸点 氧三相点 氧冷凝点
国际实用温标指定
值
T,K
t,℃
13.81 -259.34
20.28 -252.87
20.102 -246.048
54.361 -218.789
90.183 -182.962
平衡状态
水三相点 水沸点
锌凝固点 银凝固点 金凝固点
一、热力过程
定义:热力系从一个状态向另一个状态变化时所经 历的全部状态的总和。
二、准平衡(准静态)过程
准平衡过程的实现
工程热力学 Thermodynamics
二、准平衡(准静态)过程
定义:由一系列平衡态组成的热力过程 实现条件:破坏平衡态存在的不平衡势差(温差、
力差、化学势差)应为无限小。 即Δp→0 ΔT→0 (Δμ→0)
工程热力学 Thermodynamics
三、可逆过程
力学例子:
定义: 当系统完成某一热力过程后,如果有可能使系统再
沿相同的路径逆行而恢复到原来状态,并使相互中所涉 及到的外界亦恢复到原来状态,而不留下任何变化,则 这一过程称为可逆过程。
实现条件:准平衡过程加无耗散效应的热力过程 才是可逆过程。
工程热力学 Thermodynamics
用来实现能量相互转换的媒介物质称为工质。
理想气体
工 质
实际气体
蒸气
工程热力学 Thermodynamics
二、平衡状态
(一)热力状态:热力系在某一瞬间所呈现的宏观
物理状况。(简称状态)
(二)平衡状态 1、定义:一个热力系统,如果在不受外界影响的条件下,
系统的状态能够始终保持不变,则系统的这种状态称为平衡 状态。
工程热力学(讲义)
1 课程学习1.1 热力学基本定律1.1.1 热力学基本概念及定义第一节热力系热力系:由界面包围着的作为研究对象的物体的总和。
按热力系与外界进行物质交换的情况可将热力系分为:闭口系(或闭系)--与外界无物质交换,为控制质量(c.m.);开口系(或开系)--与外界之间有物质交换,把研究对象规划在一定的空间范围内,称控制容积(c.v.)。
按热力系与外界进行能量交换的情况将热力系分为:简单热力系--与外界只交换热量及一种形式的准静功;绝热系--与外界无热交换;孤立系--与外界既无能量交换又无物质交换。
按热力系内部状况将热力系分为:单元系--只包含一种化学成分的物质;多元系--包含两种以上化学成分的物质;均匀系--热力系各部分具有相同的性质;均匀系--热力系各部分具有不同的性质。
工程热力学中讨论的热力系:简单可压缩系--热力系与外界只有准静功的交换,且由压缩流体构成。
第二节热力系的描述热力系的状态、平衡状态及状态参数*热力系的状态:热力系在某一瞬间所呈现的宏观物理状况。
在热力学中我们一般取设备中的流体工质作为研究对象,这时热力系的状态即是指气体所呈现的物理状况。
*平衡状态:在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。
处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。
而温差是驱动热流的不平衡势,温差的消失是系统建立平衡的必要条件。
对于一个状态可以自由变化的热力系而言,如果系统内或系统与外界之间的一切不平衡势都不存在,则热力系的一切可见宏观变化均将停止,此时热力系所处的状态即是平衡状态。
各种不平衡势的消失是系统建立起平衡状态的必要条件。
*状态参数:用来描述热力系平衡态的物理量。
处于平衡态的热力系其状态参数具有确定的值,而非平衡热力系的状态参数是不确定的。
状态参数的特性描述热力系状态的物理量可分为两类:强度量和尺度量(1)强度量与系统中所含物质无关,在热力系中任一点具有确定的数值的物理量。
工程热力学公式知识点总结
工程热力学公式知识点总结热力学是研究热现象和能量转化的一门物理学科。
它不仅适用于工程领域,也适用于物理、化学、地质等领域。
热力学公式是热力学知识的重要组成部分,掌握好热力学公式可以帮助工程师更好地理解和应用热力学知识。
本文将对工程热力学公式知识点进行总结,并进行详细解释。
1. 热力学基本公式1.1 第一定律:热力学第一定律也称为能量守恒定律,它表明了能量在物质之间的转化和传递过程中的基本规律。
数学表达式为:\[dU = \delta Q - \delta W\]其中,dU表示系统内能的变化量,\(\delta Q\) 表示系统吸收的热量,\(\delta W\) 表示系统对外做功的量。
1.2 第二定律:热力学第二定律指出了自然界不可逆过程的特性,也就是热量永远不能自发地由低温物体传递到高温物体。
热力学第二定律的数学表达式有多种形式,其中最常见的是开尔文表述和克劳修斯表述。
开尔文表述表示为:\[\oint \frac{dQ}{T} \leq 0\]即,对于任何经过完整循环的过程而言,系统吸收的热量与温度的比值总是小于等于零。
而克劳修斯表述表示为:\[\text{不可能使得热量从低温物体自发地转移到高温物体,而不引入外界作用。
}\]1.3 熵增原理:熵是描述系统混乱程度或者无序性的物理量,熵增原理指出了自然界中系统总是朝着熵增长的方向发展。
数学表达式为:\[\Delta S \geq \frac{\delta Q}{T}\]其中,\(\Delta S\)代表系统的熵增量,\(\frac{\delta Q}{T}\)表示系统的对外吸收的热量与温度的比值。
2. 热力学循环公式2.1 卡诺循环公式:卡诺循环是一个理想的热力学循环,它包括两个绝热过程和两个等温过程。
卡诺循环可以用来评价热能机械的性能,其热效率被称为卡诺热效率。
卡诺热效率的数学表达式为:\[\eta_{\text{Carnot}} = 1 - \frac{T_c}{T_h}\]其中,\(\eta_{\text{Carnot}}\)表示卡诺热效率,\(T_c\)表示循环的低温端温度,\(T_h\)表示循环的高温端温度。
工程热力学读书笔记(完整版)
工程热力学读书笔记(完整版)第一部分:绪论1、工程热力学工程热力学是研究热能有效利用及其热能与其他形式能量转换规律的科学。
2、热力学分类工程热力学(热能与机械能),物理热力学,化学热力学等3、热力装置的共同特点热源和冷源、工质、容积变化功、循环4、热效率1WQ η==收益代价5、工程热力学研究内容能量转换的基本定律,工质的基本性质和热力过程,热工转换设备及其工作原理,化学热力学基础。
6、工程热力学研究方法(1)宏观方法:连续体(continuum),用宏观物理量描述其状态,其基本规律是无数经验的总结(如:热力学第一定律)。
特点:可靠,普遍,不能任意推广经典(宏观,平衡)热力学(2)微观方法:从微观粒子的运动及相互作用角度研究热现象及规律特点:揭示本质,模型近似微观(统计)热力学第一章:基本概念1、热力系统(1)热力系统(热力系、系统):人为指定的研究对象(如:一个固定的空间);(2)外界:系统以外的所有物质;(3)边界(界面):系统与外界的分界面;(4)系统与外界的作用都通过边界;(5)以系统与外界关系划分:有无是否传质开口系闭口系是否传热非绝热系绝热系是否传功非绝功系绝功系是否传热、功、质非孤立系孤立系(6)简单可压缩系统只交换热量和一种准静态的容积变化功;2、状态和状态参数(1)状态:某一瞬间热力系所呈现的宏观状况(2)状态参数:描述热力系状态的物理量(3)状态参数的特征:●状态确定,则状态参数也确定,反之亦然●状态参数的积分特征:状态参数的变化量与路径无关,只与初终态有关●状态参数的微分特征:全微分(4)强度参数与广延参数●强度参数:与物质的量无关的参数,如压力p、温度T●广延参数:与物质的量有关的参数可加性,如质量m、容积V、内能(也称之为:热力学能)U、焓H、熵S3、基本状态参数(1)压力p(pressure)●物理中压强,单位:Pa(Pascal),N/m2。
●绝对压力与环境压力的相对值——相对压力;●只有绝对压力p才是状态参数;●大气压随时间、地点变化;(2)温度T(Temperature)传统:冷热程度的度量。
工程热力学的公式大全
工程热力学的公式大全1.热力学第一定律:ΔU=Q-W其中,ΔU代表内能的变化,Q代表系统吸收的热量,W代表系统对外界做功。
2.热力学第二定律:dS≥δQ/T其中,dS代表系统的熵变,δQ代表系统吸收的热量,T代表系统的绝对温度。
该定律表明在孤立系统中熵永不减少。
3.等容过程(内能不变):Q=ΔU在等容过程中,系统发生的任何热量变化都会完全转化为内能的变化。
4.等压过程(体积不变):W=PΔV在等压过程中,系统对外界所做的功等于系统内能的变化。
5.等温过程(温度不变):W = Q = nRT ln(V2/V1)在等温过程中,系统对外界所做的功等于系统从初始状态到最终状态所吸收的热量。
6.等熵过程(熵不变):Q=-W在等熵过程中,热量变化与对外界的功相等,系统的熵保持不变。
7.热机效率:η=1-(T2/T1)其中,η代表热机的效率,T2和T1分别代表工作物质的工作温度和热源的温度。
8.热泵效率:η=1-(T1/T2)其中,η代表热泵的效率,T1和T2分别代表热源的温度和工作物质的工作温度。
9.卡诺循环热机的效率上限:η=1-(T2/T1)卡诺循环是具有最高效率的热力循环,其效率仅取决于热源和冷源的温度。
10.纯物质气体的理想气体状态方程:PV=nRT其中,P代表压力,V代表体积,n代表物质的摩尔数,R为气体常数,T代表温度。
11.热力学温标:T(K)=T(°C)+273.15将摄氏温度转化为开尔文温标。
这只是一部分常用的工程热力学公式,还有其他更多的公式和关系式在工程热力学中发挥重要作用。
理解和应用这些公式可以帮助我们分析和解决实际工程问题,提高能源利用效率,促进工程技术的发展。
工程热力学总结范文
工程热力学总结范文第一,工程热力学研究了能量的守恒和能量传递的规律。
能量是物质具有的“做功”的能力,在工程系统中,能量的转化和传递对于系统的性能和效率至关重要。
通过热力学的研究,我们能够对能源的转化过程进行分析,发现能量的流动规律,并制定相应的措施提高系统的能量利用效率。
第二,工程热力学研究了热力学循环和热力学工质的特性。
热力学循环是一种能源的转化方式,通过热力学循环的分析,我们可以明确能源的输入和输出,为循环的性能评估和优化提供基础。
而热力学工质的特性则直接影响热力学循环的性能,如压缩因子、比热容等参数的不同会导致循环的性能差异,因此研究工质特性对于工程热力学的应用是至关重要的。
第三,工程热力学研究了热力学过程中的熵变和熵增方向。
熵是衡量系统无序程度的物理量,熵增原理指出在自然界中,熵总是增加的,这也是自然法则的一部分。
在工程热力学中,熵增原理可以用来分析工程系统的能量转化过程和能源流动过程,指导系统设计和优化,提高系统的能量利用效率。
第四,工程热力学研究了热力学第一定律和热力学第二定律。
热力学第一定律是能量守恒的基本原理,它指出能量既不能创造也不能消灭,只能从一种形式转化为另一种形式。
热力学第二定律则是能量转化过程中存在的限制,它指出热量不能自发地从低温物体传递给高温物体,能量转化总是伴随着能量的不可逆流失。
第五,工程热力学研究了工程系统的能量平衡和能量转化效率。
能量平衡是指工程系统中能量的输入和输出要平衡,不能存在能量的损失。
在能量转化过程中,能量的损失是不可避免的,而能量转化效率则是评估能源利用情况的重要指标。
通过工程热力学的分析与计算,我们可以确定能量利用的效率,从而制定相应的措施提高系统的效率。
综上所述,工程热力学研究了能量的转化和传递规律,研究了热力学循环和工质特性,研究了熵变和熵增方向,研究了热力学第一定律和热力学第二定律,研究了能量平衡和能量转化效率。
它为能源的利用和系统的设计提供了科学的基础和方法。
工程热力学知识点总结
工程热力学知识点总结一、基本概念1. 热力学系统热力学系统是指研究对象的范围,可以是一个物体、一个系统或者多个系统的组合。
根据系统与外界的物质交换和能量交换情况,将系统分为封闭系统、开放系统和孤立系统。
2. 热力学状态热力学状态是指系统的一种特定状态,由系统的几个宏观性质确定。
常用的状态参数有温度、压力、体积和能量等。
3. 热力学过程热力学过程是系统在一定条件下的状态变化。
常见的热力学过程有等温过程、绝热过程、等压过程和等容过程等。
4. 热力学平衡系统的平衡是指系统内各部分之间不存在宏观的能量或物质的不均匀性。
在平衡状态下,系统内各部分之间的宏观性质是不发生变化的。
5. 热力学势函数热力学势函数是描述系统平衡状态的函数,常见的有内能、焓、自由能和吉布斯自由能等。
二、热力学定律1. 热力学第一定律热力学第一定律是能量守恒定律的热力学表述。
它可以表述为:系统的内能变化等于系统对外界所做的功与系统吸收的热的代数之和。
2. 热力学第二定律热力学第二定律是热力学中一个非常重要的定律,它对能量转化的方向和效率进行了限制。
根据热力学第二定律,系统内部永远不会自发地将热量从低温物体传递到高温物体,这就是热机不能做功的原因。
3. 卡诺定理卡诺定理是热力学第二定律的一种推论,它指出在两个恒温热源之间进行热机循环时,效率最高的情况是卡诺循环。
4. 热力学第三定律热力学第三定律规定了在温度接近绝对零度时热容为零,即系统的熵在绝对零度时为常数。
三、热力学循环1. 卡诺循环卡诺循环是一种理想的热机循环,它采用绝热和等温两个可逆过程。
卡诺循环的效率是所有热机循环中最高的。
2. 斯特林循环斯特林循环是一种理想的外燃循环,它采用绝热和等温两个可逆过程。
斯特林循环比卡诺循环的效率低一些,但是实际上,在制冷机中应用得比较广泛。
3. 布雷顿循环布雷顿循环是一种理想的内燃循环,它采用等容和等压两个可逆过程。
布雷顿循环是内燃机的工作循环,应用比较广泛。
工程热力学的公式大全
工程热力学的公式大全1.理想气体状态方程:PV=nRT其中,P为气体的压强,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2.纯物质的热力学性质:(1)热容量:C=Q/ΔT其中,C为热容量,Q为吸热或放热的热量,ΔT为温度的变化。
(2)比热容量:c=Q/(m*ΔT)其中,c为比热容量,m为物质的质量。
(3)比熵:s=Q/T其中,s为比熵,Q为吸热或放热的热量,T为温度。
(4)比焓:h=Q/m其中,h为比焓,Q为吸热或放热的热量,m为物质的质量。
(5)等熵过程中的比热容量:Cp-Cv=R其中,Cp为等压比热容量,Cv为等容比热容量,R为气体常数。
3.热功定理:对于封闭系统,其热功等于系统内热能的减少。
W=Q-ΔU其中,W为热功,Q为吸热或放热的热量,ΔU为系统内能的变化。
4. 理想气体的Carnot热机效率:η=1-(Tc/Th)其中,η为Carnot热机的效率,Tc为冷源的温度,Th为热源的温度。
5.热流量:Q=U*A*ΔT其中,Q为热流量,U为热传导系数,A为传热面积,ΔT为温度的差异。
6.常见的传热方式:(1)对流传热:Q=h*A*ΔT其中,Q为对流传热量,h为传热系数,A为传热面积,ΔT为温度差异。
(2)辐射传热:Q=ε*σ*A*(T1^4-T2^4)其中,Q为辐射传热量,ε为发射率,σ为辐射常数,A为辐射面积,T1和T2为两个温度。
7.熵的守恒原理:对于封闭系统,熵的增加等于吸热过程中的热量除以绝对温度。
ΔS=Q/T其中,ΔS为熵的变化,Q为吸热或放热的热量,T为温度。
8.凝聚相变和汽化相变的热量计算:Q=mL其中,Q为相变的热量,m为物质的质量,L为潜热。
9.理想气体的质量分数计算:y=n/N其中,y为质量分数,n为其中一种气体的摩尔数,N为所有气体的总摩尔数。
工程热力学
工程热力学
工程热力学是热力学在工程领域中的应用。
它研究和应用
热力学原理和方法来解决工程中与热能转化相关的问题,
包括热动力系统的能量转换、热工过程的性能分析和优化、热力装置的设计与运行等。
工程热力学主要涉及以下几个方面的内容:
1. 热力学基本概念和基本定律:研究热力学的基本概念,
如热力学系统、状态、过程等,以及热力学的基本定律,
如能量守恒定律、熵增定律等。
2. 热力学性质和性能分析:研究物质的热力学性质,包括
温度、压力、比容、比热等,以及利用这些性质来进行热
力学性能分析,如热力过程的能量平衡、热效率等。
3. 热力学循环和循环过程分析:研究热力学循环,如蒸汽循环、气体循环等,以及利用热力学方法来进行循环过程分析,如循环效率、功输出等。
4. 热力装置的设计与运行:应用热力学原理和方法来设计和优化热力装置,如发电厂、热交换器、锅炉等,并研究热力装置的运行参数和运行性能。
工程热力学在工程实践中具有重要的应用价值,可以为工程师提供热力学的理论支持和实际问题的解决方案,促进工程领域的能源利用和环境保护。
工程热力学全部
3-4、一容器中盛有压力为5×105 Pa,温度为30℃的二氧化 碳气体。容器有一个未被发现的漏洞,直至压力降为 3.6×105 Pa时才被发现。这时的温度为20℃。若最初的质 量为25Kg,试计算到发现时漏掉的气体的质量。
已知:P1=5×105 Pa , T1=303K , P2=3.6×105 Pa , T2=293K, m1=25Kg , V1=V2 。 解: 由P1V1=m1RgT1 得: V1=m1RgT1/ P1=2.863(m3) 由m2=P2V2/RgT2 得: m2=18.6(Kg)。 故:Δm=m1-m2=6.4(kg)。
1-2、某凝汽器真空计读数为9.5×104Pa,气压计读数为
750mmHg,求凝汽器内的绝对压力为多少Pa? 解:绝对压力P=大气压力Pb-真空度 Pv =750×133.3- 95000=4975(Pa)
教材P15:
1-3、如果气压计读数为99.3 KPa,试计算: (1)表压力为0.06MPa时的绝对压力; (2)真空度为4.4KPa时的绝对压力; (3)绝对压力为65KPa时的真空度 (4)绝对压力为0.3MPa时的表压力。 解:(1)绝对压力P=Pb +Pg
教材P15:1-4、锅炉烟道中的烟
气常用如图所示的斜管测量。若已
p
知斜管倾角α =30º,压力计使用 ρ =0.8ɡ/cm3 的煤油,斜管中液 体长度为200mm,当地大气压力为
0.1MPa。试求烟气绝对压力为多
少MPa? 解:静止流体对压力P=Pb-ρ gLsinα P=100000-0.8×1000×9.8×0.2×0.5=99216(Pa) P=0.099216(MPa)
3-3、某锅炉送风机出口压力表上的读数为5.4×103 Pa, 风温为30℃,风量为2.5×103 m3/h,当地大气压力为 0.1MPa,求送风机出口每小时送风量为多少标准立方米?
工程热力学知识点总结
工程热力学知识点总结1. 热力学基本概念1.1 热力学系统:研究对象,与周围环境有能量和物质交换。
1.2 环境:系统之外的一切,与系统形成对比。
1.3 边界:系统与环境之间的分界线。
1.4 状态:系统在某一时刻宏观性质的集合。
1.5 平衡态:系统状态不随时间变化的状态。
1.6 过程:系统从一个平衡态到另一个平衡态的演变。
2. 热力学第一定律2.1 能量守恒:系统内能量的变化等于热量与功的和。
2.2 内能:系统内部微观粒子动能和势能的总和。
2.3 热量:系统与环境之间由于温度差而交换的能量。
2.4 功:系统对环境或其他系统施加的力与其位移的乘积。
2.5 热力学第一定律公式:ΔU = Q - W。
3. 热力学第二定律3.1 熵:系统无序度的量度,是不可逆过程的度量。
3.2 孤立系统:不与外界交换能量或物质的系统。
3.3 熵增原理:孤立系统熵永不减少。
3.4 卡诺定理:所有热机的最大效率由卡诺循环确定。
4. 热力学性质4.1 温度:系统热动能的度量,是热力学过程的驱动力。
4.2 压力:分子对容器壁单位面积的平均作用力。
4.3 体积:系统占据的空间大小。
4.4 比热容:单位质量的物质温度升高1K所需吸收的热量。
4.5 热容:系统温度升高1K所需吸收的热量。
5. 理想气体行为5.1 理想气体状态方程:PV = nRT。
5.2 摩尔体积:1摩尔理想气体在标准状态下的体积。
5.3 气体常数:理想气体状态方程中的常数R。
5.4 马略特定律:理想气体在恒定温度下,体积与压力成正比。
5.5 波义耳定律:在恒温条件下,理想气体的压强与其体积成反比。
6. 热力学循环6.1 卡诺循环:理想化的热机循环,由四个可逆过程组成。
6.2 奥托循环:内燃机的理想循环,包括等容加热、绝热膨胀、等容放热和绝热压缩。
6.3 朗肯循环:蒸汽动力循环,包括泵吸、锅炉加热、涡轮膨胀和冷凝器排热。
7. 相变与潜热7.1 相变:物质从一种相态转变为另一种相态的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
一、是非(共12道题,每题1分,共12分)(对者√,错者×)
1.对于渐缩喷管,若气流的初参数一定,那么随着背压的降低,流量将增大,但最多增大到临界流量。
()2.卡诺循环的热效率仅取决于其热和冷源的温度,而与工质的性质无关。
()
3.如图所示,q 1~2—3>q 1~4—3。
()
v
4.不管过程可逆与否,开口绝热系统的技术功总是等于初、终态的焓差。
()
5.在蒸汽压缩式制冷循环中,所选用的致冷剂液体比热越小,那么节流过程引起的损失就越小。
()
6.任何不可逆过程工质的熵总是增加的,而任何可逆过程工质的熵总是不变的。
()
7.在相同热源和在相同冷源之间的一切热机,无论采用什么工质,他们的热效率均相等。
()
8.系统的平衡状态是指系统在无外界影响的条件下(不考虑外力场作用),宏观热力性质不随时间而变化的状态。
()
9.孤立系统熵增原理表明:过程进行的结果是孤立系统内各部分的熵都是增加的。
()
10.凡符合热力学第一定律的过程就一定能实现。
()
11 .δq = d u + δw及δq = C V d T + P d v二式均可适用于任何工质,任何过程。
()
12.蒸发是发生于液体表面的汽化现象;沸腾是发生于液体内部的汽化现象
()
二、选择(共13题,每题1分,共13分)
13.闭口系统功的计算式W = U1-U2()。
(A)适用于可逆与不可逆的绝热过程。
(B)只适用于绝热自由膨胀过程。
(C)只适用于理想气体的绝热过程。
(D)只适用于可逆绝热过程。
14.逆卡诺循环的制冷系数,只与()有关。
(A)热源与冷源的温差。
(B)热源与冷源的温度。
(C)吸热过程中的制冷量Q2。
(D)每循环中所耗功W。
15.一个橡皮气球在太阳下被照晒,气球在吸热过程中膨胀,气球内的压力正比于气球的容积,则气球内的气球进行的是()。
(A)定压过程。
(B)多变过程。
(C)定温过程。
(D)定容过程。
16.气体的容积比热是指()。
(A)容积保持不变的比热。
(B)物量单位为一立方米时气体的比热。
(C)物量单位为一摩尔容积气体的比热。
(D)物量单位为一标准立方米时气体的比热。
17.湿蒸汽经定温膨胀过程后其内能变化()。
(A)△U = 0 (B)△U >0
(C)△U<0 (D)△U<0或△U >0
18.某理想气体,经可逆定压过程对外作功,则其内能的变化量与外界的交换热量分别为()。
(A)无确定值。
(B)△U = W / K;q = W。
(C )△U = W / (K -1);q =K W / (K -1)。
(D )△U = W ;q =K W 。
19.q = △h -vdp 12
⎰
只适用于( )。
(A ) 理想气体可逆过程。
(B )任何工质可逆过程。
(C )理想气体一切热力过程 (D )任何工质一切热力过程
(E )q -△u
20.压气机压缩气体所耗理论轴功为( )。
(A ) pdv 12⎰ (B )d pv ()1
2
⎰
(C )pdu 12
⎰
+p 1v 1-p 2v 2
21.气流在充分膨胀的渐缩渐扩喷管的渐扩段(df >0)中,流速( )。
(A ) 等于喉部临界流速 (B )等于当地音速
(C )小于当地音速 (D )大于当地音速
22. 抽气回热循环改善了朗肯循环,其根本原因在于( )。
(A ) 每公斤水蒸汽的作功量增加了
(B ) 排气的热能得到了充分利用
(C ) 水蒸汽的平均吸热温度提高了
(D ) 水蒸汽的放热温度降低了
23. 孤立系统是指系统与外界( )。
(A ) 没有物质交换 (B )没有热量交换
(C )没有任何能量交换 (D )没有任何能量传递与质交换
24. 工质熵的减小,意味着( )。
(A ) 作功能力增加 (B )过程必为不可逆
(C )必为放热过程 (D )过程不可能发生
25. 已知湿空气的状态t 、φ,则( )湿空气的状态。
(A ) 可以确定 (B )尚需压力P 才能确定
(C )尚需含湿量d 才能确定 (D )尚需湿球温度t W 才能确定
三、 填空( 共5道题,每题2分,共10分)
26.公式δq = δw 适用于理想气体的____________过程,公式δq = d h 适用于理想气体的________________________过程,公式δw s = - d h 适用于________________________过程。
27.蒸汽压缩致冷循环是由________、________、________和________等设备构成的。
空气压缩致冷循环中没有_______、________和________设备,而是以_______、________和________所代替。
28.用真空表测量某系统的压力时,系统的绝对压力应等于________________。
当环境压力减小时,真空表的读数将________,系统的绝对压力________。
29.熵变的计算公式△s = C v L N (T 2 / T 1)+ R L N (v 2 / v 1)适用于________气体的________________。
30.任何热力系统所具有的储存能(总能含)是由________,________和________________组成。
四、名词解释(共5道题,每题3分,共15分)
31.闭口系统
32.平衡常数
33.卡诺定理
34.渐缩喷管与渐缩渐扩喷管
35.实际气体的临界状态
五、计算题I(共一道题,共15分)
36.1 Kg空气从初态P1 = 5 bar,T1 = 340 K,在闭口系统中绝热膨胀,其容积变为原来的2倍(V2 = 2V1)。
求(1)如绝热膨胀过程是可逆的,求终态压力及终态温度、膨胀功、熵、内能、焓的变化。
(2)如进行的是绝热自由膨胀过程,求终态压力及终态温度、膨胀功、熵、内能、焓的变化。
(3)将上述两过程表示在T—S图上。
六、计算题II(共一道题,共15分)
37.一卡诺循环,已知两热源的温度t1= 527℃、T2= 27℃,循环吸热量Q1=2500KJ,试求:(A)循环的作功量。
(B)排放给冷源的热量及冷源熵的增加。
(C)如果由于不可逆,孤立系统熵增加0.1KJ / K,则排给冷源的热量增加多少?循环少作功多少?
七、计算题III(共一道题,共10分)
38.喷管进口处的空气状态参数P1 = 1.5bar, t1 = 27℃,流速C1 =150 m / s,喷管出口背压为P2 = 1bar,喷管流量为m = 0.2 Kg / s。
设空气在喷管内进行可逆绝热膨胀,试求:(1)喷管设计为什么形状(渐缩型、渐放型、缩放型)(2)喷管出口截面处的流速、截面积。
八、计算题IV(共一道题,共10分)
39.空气压缩致冷装置的致冷系数为2.5,致冷量为84600 KJ / h,压缩机吸入空气的压力为0.98 bar,温度为-10℃,空气进入膨胀机的温度为20℃。
试求:(A)压缩机出口压力。
(B)致冷剂的质量流量。
(C)压缩机的功率。
(D)循环的净功率。