相似三角形应用举例教学设计
人教版数学九年级下册27.2.3相似三角形的应用举例测量金字塔高度、河宽问题教学设计
-类似地,介绍如何利用相似三角形测量河宽等问题。
(三)学生小组讨论
1.教学内容:组织学生进行小组讨论,共同探讨相似三角形在测量问题中的应用,并分享解题方法。
2.教学过程:
-将学生分成若干小组,每组选择一个测量问题进行讨论,如测量金字塔高度、河宽等。
-帮助学生梳理解决实际问题的步骤和思路。
6.课后作业:
-设计具有实际背景的测量问题,让学生课后独立完成。
-鼓励学生将所学知识运用到生活中,发现生活中的数学问题。
四、教学内容与过程
(一)导入新课
1.教学内容:以埃及金字塔为背景,引导学生思考如何测量金字塔的高度。通过展示图片和实际案例,激发学生对相似三角形应用的好奇心。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握相似三角形在测量问题中的应用。
-学会运用相似三角形的性质进行实际问题的计算和分析。
2.教学难点:
-将相似三角形的理论知识与实际问题相结合,解决具体测量问题。
-在实际问题中,正确识别和运用相似三角形的条件,进行有效计算。
(二)教学设想
为了突破重难点,本节课将采用以下教学策略和方法:
人教版数学九年级下册27.2.3相似三角形的应用举例测量金字塔高度、河宽问题教学设计
一、教学目标
(一)知识与技能
本节课是关于相似三角形的应用举例,通过学习,使学生掌握以下知识与技能:
1.理解并掌握相似三角形的性质及其应用,能够运用相似三角形的知识解决实际问题。
2.学会使用测量工具(如测高仪、皮尺等)进行实地测量,并能结合相似三角形的知识计算出实际问题的答案。
2.教学过程:
相似三角形应用举例教案
27.2.3 相似三角形应用举例一、课标要求: 会利用图形的相似解决一些简单的实际问题.二、课标理解:识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题;通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.三、内容安排:【教学目标】知识与技能:1.能运用相似三角形的数学模型解决现实世界的测量问题;2.通过例题的分析与解决,让学生进一步感受相似三角形在实际生活中的应用.过程与方法:引导学生将实际问题转化为数学问题,建立相似三角形模型,再应用相似三角形知识求解,体会相似三角形的应用方法.情感、态度与价值观:开展学生的转化意识和自主探究、合作交流的习惯,体会相似三角形的实际应用价值,增加学生应用数学知识解决实际问题的经历和感受.【教学重难点】重点:运用相似三角形的知识解决生活中的一些测量问题.难点:如何把实际问题转化相似三角形这一数学模型.四、教学过程〔一〕孕育问题:〔1〕怎样判断两个三角形相似?〔2〕相似三角形的性质有哪些?引入:胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一〞.塔的 4 个斜面正对东南西北四个方向,塔基呈正方形,每边长约230 米.据考证,为建成胡夫金字塔,一共花了20 年时间,每年用工10 万人.该金字塔原高146.59 米,但由于经过几千年的风化吹蚀,高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!〞这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔高度的吗?引出课题:今天,我们就来研究利用三角形的相似,解决一些有关测量的问题.〔二〕萌发生长例1:据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图,木杆EF 长2m ,它的影长FD 为3m ,测得OA 为201m ,求金字塔的高度BO .追问:怎样测出OA 的长?金字塔的影子可以看成一个等腰三角形,那么OA 等于这个等腰三角形的高与金字塔的边长一半的和.解:太阳光是平行光线,因此∠BAO =∠EDF .又∠AOB =∠DFE =90°,∴△ABO ∽△DEF . BO OA EF FD ∴= 20121343OA EF BO FD ⋅⨯∴===〔m 〕 因此金字塔的高度为134 m.归纳:同一时间,同一地点,物高与影长成比例.【牛刀小试】1.在某一时刻,测得一根高为的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,这栋高楼的高度是多少?2.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R .已测得QS =45m ,ST =90m ,QR =60m ,请根据这些数据,计算河宽PQ .解:∵∠PQR =∠PST =90°,∠P =∠P ,∴△PQR∽△PST.PQ QRPS ST∴=即604590 PQ QR PQPQ QS ST PQ++==PQ×90=〔PQ+45〕×60.解得PQ=90〔m〕.因此,河宽大约为90m.归纳:构造两个共线的相似直角三角形.【随堂练习】1.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降时,长臂端点升高.AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗〔三〕收获硕果1.这节课我们学到了哪些知识?2.我们是利用什么方法获得这些知识的?3.通过这节课的学习,你有什么新的想法或发现?〔四〕拓展延伸,布置作业必做题:教材43页习题27.2第8、9题.选做题:教材44页习题27.2第14题.〔五〕学习评价1.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出()A.仰角B.树的影长C.标杆的影长D.都不需要2.如图,小芳和爸爸正在散步,爸爸身高1.8 m,某一时刻他在地面上的影长为2.1 m.假设小芳比爸爸矮0.3 m,那么她此时在地面上的影长为()A.1.3 mB.1.65 mC.1.75 mD.1.8 m3.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5 m的大视力表制作一个测试距离为3 m的小视力表.如图,如果大视力表中“E〞的高度是3.5 cm,那么小视力表中相应“E〞的高度是______________.4.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=80 m,那么河的宽度PQ为__________.5.有一张简易的活动小餐桌,如图,现测得OA=OB=30 cm,OC=OD=50 cm,桌面离地面的高度为40 cm,那么两条桌腿的交点离地面的高度为_____________.附:板书设计§ 27.2.2 相似三角形的性质一:相似三角形对应角相等,对应边成比例二:相似三角形的对应高线、对应中线、对应角平分线的比等于相似比例题板演学生板演三:相似三角形周长比等于相似比推广:相似三角形对应线段的比等于相似比四:相似三角形面积比等于相似的平方。
九年级数学《相似三角形应用举例1 》教案
“三部五环”教学模式设计《27.2.2相似三角形的应用举例1》教学设计教材义务教育课程标准实验教科书(人教版)《数学》九年级下册第二十七章《相似》第二小节相似三角形的判定第五课时相似三角形的应用举例。
设计理念从学生已有的生活经验和认知基础出发,让学生主动地进行学习。
学生在感知实际问题后,将实际问题转化为数学问题,进一步尝试解决、交流展示,从而培养学生分析、归纳、总结的能力和学生应用相似三角形的判定和性质解决实际问题的能力。
使学生感受数学源于生活又服务于生活,更好地理解数学知识的意义,体现“人人学有价值数学”的新课程理念。
整个教学设计流程突出以学定教,体现“设计问题化,过程活动化,活动练习化,练习要点化,要点目标化,目标课标化”的要求,将教学过程设计为有一定梯次的递进式活动序列。
学情分析教学对象是九年级学生,在学习本节前,学生已经掌握了相似三角形的概念、判定方法及性质;在思维已具备了初步的应用数学的意识;经历了在操作活动中探索性质的过程,获得了初步的数学活动经验和体验,也培养了学生良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力,在此基础上通过本节课的学习将进一步综合运用相似三角形的判定方法和性质解决问题的能力,提高学生的数学应用意识,加深对相似三角形的理解与认识。
培养学生在实际问题中建立数学模型的能力,从而提高学生理论联系实际的能力。
在推理论证方面须坚持遵循“特殊——一般——特殊”规律,注重对学生建立数学模型的能力和推理论证的严谨性的培养。
知识分析本节教材选自于人教版九年级下册第二十七章《相似》第二节《相似三角形》,隶属《全日制义务教育数学课程标准(实验稿)中的“空间与图形”领域。
图形的相似及相似三角形的判定和性质的应用是初中几何中重要的知识,是证明角相等,线段相等和线段成比例常用的解决问题方法。
它是建立在图形的全等和全等三角形、四边形的判定方法和性质及圆的有关知识的基础上学的,是继圆之后的又一章综合性比较强且应用比较广泛的重要章节。
数学九年级下册《相似三角形应用举例》教案
例1(测量金字塔高度的问题)根据史料记载,古希腊数学家、天文学家泰勒斯利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形来测量金字塔的高度.2-1-c-n-j-y如图,木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度.分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定定理和性质,根据已知条件求出金字塔的高度.解:∵BA∥DE,教学过程∴∠BAO=∠EDF. 又∵∠AOB=∠DFE=90°,∴△ABO∽△DEF,∴BOEF=AODF,∴BO=AO·EFDF=201×23=134.答:此金字塔的高度为134 m.例2(教材P49例4——测量河宽问题)分析:设河宽PQ长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有STQRPSPQ=,即906045xx=+.再解x的方程可求出河宽.解:略(见教材P49)问:你还可以用什么方法来测量河的宽度?解法二:如图构造相似三角形(解法略).例3(教材P40例5——盲区问题)分析:略(见教材P40)解:略(见教材P40)课堂练习1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米? 作业:教科书P43 9,10,11,12板书设计教学反思。
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。
通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。
但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。
因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.培养学生的逻辑思维能力和空间想象能力。
3.增强学生对数学学科的兴趣和自信心。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。
2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。
六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。
2.准备多媒体课件,展示实际问题及解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。
从而引出本节课的主题——相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。
请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。
27.2.3相似三角形应用举例(教案)
5.空间观念与数据分析:培养学生运用相似三角形知识分析问题,发展空间观念和数据分析能力,提高数学素养。
三、教学难点与重点
1.教学重点
-理解相似三角形的性质:重点强调相似三角形的对应角相等、对应边成比例的基本性质,以及如何利用这些性质解决实际问题。
3.解决实际问题:结合生活实例,让学生运用相似三角形的性质解决一些实际问题,提高学生的应用能力和解决问题的能力。
4.总结相似三角形在实际生活中的应用,强调数学知识与现实生活的紧密联系。
本节课将引导学生通过实际案例,掌握相似三角形在实际问题中的应用,培养学生的动手操作能力和解决问题的能力。
二、核心素养目标
五、教学反思
在今天的教学中,我发现同学们对相似三角形的应用举例产生了浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解数学知识在实际中的应用。让我感到高兴的是,大多数同学能够积极参与讨论,提出自己的观点,这充分说明了他们对这一知识点的投入。
然而,我也注意到在讲解相似三角形性质时,部分同学对识别相似三角形和确定对应关系存在一定的困难。这说明在这个环节,我需要更加耐心地引导和解释,或许可以通过更多的例子和直观的图示来帮助他们理解。
-应用相似三角形测量:掌握如何利用相似三角形进行高度和距离的测量,包括在实际问题中如何确定相似三角形和对应关系。
-生活实例的解析:通过具体实例,如测量建筑物高度、桥梁长度等,让学生掌握相似三角形在实际生活中的应用。
-数据处理与分析:学会在测量过程中处理数据,分析误差,提高测量的准确性。
举例:在测量建筑物高度时,重点讲解如何利用地面上的影子长度和已知的太阳高度角来确定建筑物的高度,强调相似三角形的实际应用。
《27.2.3 相似三角形的应用举例》教案、导学案、同步练习
27.2.3 相似三角形的应用举例【教学目标】1.运用三角形相似的知识计算不能直接测量物体的长度和高度;(重点) 2.灵活运用三角形相似的知识解决实际问题.(难点)【教学过程】一、情境导入胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗?二、合作探究探究点:相似三角形的应用【类型一】利用影子的长度测量物体的高度如图,某一时刻一根2m长的竹竿EF的影长GE为1.2m,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是3.6m,求树AB的长.解析:先利用△BDC∽△FGE得到BC3.6=21.2,可计算出BC=6m,然后在Rt△ABC中利用含30度的直角三角形三边的关系即可得到AB的长.解:如图,CD=3.6m,∵△BDC∽△FGE,∴BCCD=EFGE,即BC3.6=21.2,∴BC=6m.在Rt△ABC中,∵∠A=30°,∴AB=2BC=12m,即树长AB是12m.方法总结:解答此类问题时,首先要把实际问题转化为数学问题.利用相似三角形对应边成比例建立相等关系求解.【类型二】利用镜子的反射测量物体的高度小红用下面的方法来测量学校教学大楼AB的高度.如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20m.当她与镜子的距离CE=2.5m时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC =1.6m,请你帮助小红测量出大楼AB的高度(注:入射角=反射角).解析:根据物理知识得到∠BEA=∠DEC,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.解:如图,∵根据光的反射定律知∠BEA=∠DEC,∵∠BAE=∠DCE=90°,∴△BAE∽△DCE,∴ABDC=AEEC.∵CE=2.5m,DC=1.6m,∴AB1.6=202.5,∴AB=12.8,∴大楼AB的高度为12.8m.方法总结:解本题的关键是找出相似的三角形,然后根据对应边成比例列出方程.解题时要灵活运用所学各学科知识.【类型三】利用标杆测量物体的高度如图,某一时刻,旗杆AB影子的一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为9.6m,在墙面上的影长CD为2m.同一时刻,小明又测得竖立于地面长1m的标杆的影长为1.2m.请帮助小明求出旗杆的高度.解析:根据在同一时刻物高与影长成正比例,利用相似三角形的对应边成比例解答即可.解:如图,过点D作DE∥BC,交AB于E,∴DE=CB=9.6m,BE=CD=2m,∵在同一时刻物高与影长成正比例,∴EA∶ED=1∶1.2,∴AE=8m,∴AB=AE+EB=8+2=10m,∴学校旗杆的高度为10m.方法总结:利用杆或直尺测量物体的高度就是利用杆(或直尺)的高(长)作为三角形的边构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.【类型四】利用相似三角形的性质设计方案测量高度星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪念碑有多高呢?”请你利用初中数学知识,设计一种方案测量纪念碑的高度(画出示意图),并说明理由.解析:设计相似三角形,利用相似三角形的性质求解即可.在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.解:设计方案例子:如图,在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.理由:测量出CD、DE、BE的长,因为∠CED=∠AEB,∠D=∠B=90°,易得△ABE∽△CDE.根据CDAB=DEBE,即可算出AB的高.方法总结:解题的关键是根据相似三角形的性质设计出具体图形,将实际问题抽象出数学问题求解.三、板书设计1.利用相似三角形测量物体的高度;2.利用相似三角形测量河的宽度;3.设计方案测量物体高度.【教学反思】通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对相似三角形的理解和认识.基本达到了预期的教学目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.27.2.3 相似三角形的应用举例〔学习设计〕,即,, 。
相似三角形应用举例教学设计
相似三角形应用举例教学目标1.进一步巩固相似三角形的知识。
2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度。
教学重点进一步巩固相似三角形的知识。
教学难点能够运用三角形相似的知识,解决不能直接测量物体的长度和高度。
一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。
以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。
那么将一个三角形作相似变换后所得的像与原像称为相似三角形探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60 求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似三、练习:1.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O,准星A,目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到A’,若OA=0.2米,OB=40米,AA’=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为()A.3米B.0.3米C.0.03米 D.0.2米2.如图,测量小玻璃管口径的量具ABC , AB的长为12cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是()A.8cmB.10cmC.20cmD.60cm3.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为()A.2.4mB.24mC.0.6mD.6m4.如图所示的测量旗杆的方法,已知AB是标杆,BC表示AB在太阳光下的影子,叙述错误的是()A.可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高B.只需测量出标杆和旗杆的影长就可计算出旗杆的高C.可以利用△ABC∽△EDB ,来计算旗杆的高D.需要测量出AB.BC和DB的长,才能计算出旗杆的高四、教学评价设计1. 本节课教学目的明确、具体,符合课程标准的要求,切合学习实际;能够结合具体实例,通过观察、操作、想象、推理、交流等活动发展空间观念;推理能力和有条理的表达能力,能够密切结合学科特点,注重情感目标的建立。
《相似三角形应用举例》 说课稿
《相似三角形应用举例》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是《相似三角形应用举例》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析《相似三角形应用举例》是人教版数学九年级下册第二十七章的内容。
相似三角形是初中数学中的重要知识点,它不仅在数学学科中有着广泛的应用,而且在实际生活中也有着重要的价值。
本节课是在学生已经学习了相似三角形的判定和性质的基础上,进一步研究相似三角形在实际问题中的应用。
通过本节课的学习,学生将学会运用相似三角形的知识解决实际问题,提高学生的数学应用意识和解决问题的能力。
二、学情分析在知识储备方面,学生已经掌握了相似三角形的判定和性质,具备了一定的推理能力和逻辑思维能力。
但是,学生在将实际问题转化为数学问题,以及运用数学知识解决实际问题方面还存在一定的困难。
在学习态度方面,九年级的学生已经具备了一定的自主学习能力和探究精神,但是对于较为复杂的问题,可能会出现畏难情绪。
三、教学目标1、知识与技能目标(1)学生能够运用相似三角形的知识解决实际问题。
(2)培养学生将实际问题转化为数学问题的能力。
2、过程与方法目标(1)通过实际问题的解决,让学生经历观察、分析、推理、计算的过程,提高学生的数学思维能力。
(2)通过小组合作学习,培养学生的合作交流能力和创新意识。
3、情感态度与价值观目标(1)让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。
(2)培养学生的应用意识和创新精神,让学生体会数学的价值。
四、教学重难点1、教学重点(1)能够运用相似三角形的知识解决实际测量问题。
(2)如何将实际问题转化为数学问题,并建立相似三角形模型。
2、教学难点灵活运用相似三角形的知识解决实际问题,特别是在测量无法直接到达的物体高度或距离时。
五、教法与学法1、教法(1)启发式教学法:通过创设问题情境,引导学生思考,激发学生的学习兴趣和求知欲。
九年级数学上册《相似三角形的应用》教案、教学设计
4.引导学生了解相似变换的概念,掌握相似变换的矩阵表示。
5.通过示例和练习,让学生理解相似三角形在实际问题中的应用。
(三)学生小组讨论
1.将学生分成小组,讨论以下问题:
-相似三角形的判定方法有哪些?
-相似三角形具有哪些性质?如何运用这些性质解决问题?
2.通过讨论,引出相似图形的概念,强:“我们已经学过全等三角形,那么相似三角形与全等三角形有什么联系和区别?”引导学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.讲解相似三角形的定义,强调对应角相等、对应边成比例的特点。
2.介绍相似三角形的判定定理,如AA相似定理、SAS相似定理等,并通过实例进行解释。
(二)过程与方法
1.掌握几何直观和逻辑推理能力,培养学生运用几何知识解决实际问题的能力;
2.培养学生运用数学语言进行表达、交流与合作的能力,提高学生的团队协作意识;
3.引导学生运用类比、归纳等数学思想方法,发现和提出问题,培养创新意识;
4.培养学生自主探究、合作交流的学习方式,提高学生独立解决问题的能力。
-拓展题:运用相似变换解决较为复杂的几何问题。
2.学生完成后,教师进行点评,指出解题过程中的注意事项,纠正错误。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结相似三角形的定义、判定定理、性质及相似变换的应用。
2.强调相似三角形在实际问题中的重要作用,鼓励学生在生活中发现和运用相似三角形的原理。
(三)情感态度与价值观
1.培养学生热爱数学,认识到数学在现实生活中的重要作用,增强学生的数学应用意识;
2.培养学生勇于探索、克服困难的精神,增强学生面对挫折的勇气和信心;
人教版数学九年级下册27.2.3相似三角形的应用举例说课稿
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点为相似三角形的应用方法和实际问题的解决。难点在于如何引导学生运用相似三角形的性质进行问题的分析和解决。
1.重点:
(1)相似三角形的应用方法,如求线段长度、角度大小等。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.引入生活中的实际案例,让学生感受到相似三角形在生活中的广泛应用,提高他们的学习兴趣。
2.设计具有挑战性的问题,引导学生积极参与,培养他们的探究精神和解决问题的能力。
3.组织小组合作交流,让学生在互动中互相学习、互相启发,提高他们的合作能力和沟通能力。
3.采用几何画板软件,动态展示相似三角形的性质,帮助学生形象理解。
4.结合教材例题,引导学生独立思考、小组讨论,总结解题步骤和技巧。
(三)巩固练习
我计划设计以下巩固练习或实践活动,以帮助学生巩固所学知识并提升应用能力:
1.课堂练习:设计具有代表性的习题,让学生当堂完成,巩固相似三角形的应用方法。
2.小组竞赛:开展小组间的解题竞赛,鼓励学生积极思考、合作交流,提高解题速度和准确率。
四、教学过程设计
(一)导入新课
为快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.生活实例引入:向学生展示一张具有相似三角形特征的建筑图片,如古希腊神庙的三角形门廊,引导学生观察并思考这些三角形之间的关系。
2.提问互动:询问学生:“你们在生活中还见到过类似的三角形吗?它们之间有什么共同特点?”通过问题引导学生回顾相似三角形的性质,为新课的学习做好铺垫。
主要知识点包括:1.相似三角形的判定方法;2.相似三角形的应用,如求线段长度、角度大小等;3.实际问题的解决,如测量高度、距离等。
九年级数学《相似三角形应用举例》教案
27.2.2相似三角形应用举例一、设计理念本着让学生通过交流、合作、讨论的方式,积极探索改进学习方法,提高学习质量,逐步形成正确地数学价值取向这一基本理念,在本课的教学中,将由感性到理性,由抽象到具体的认识过程,启发学生审清题意,将相似三角形的知识与现实生活中学生熟悉的实际问题相联系,不断提高学生运用数学知识及思想方法分析、解决实际问题的能力。
在重视课本例题的基础上,力求发挥学生的创造性思维能力,得到更多的解决问题的方法。
同时根据新课程标准的评价理念,在整个教学过程中,始终注重学生的自主探究、有效参与,注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题。
在课堂上,尽量留给学生更多的空间,更多的展示自己的机会,让学生在充满激情的、和谐的课堂氛围中,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立了学好数学的信心。
二、学情分析(1)本节主要探索的是应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度及盲区问题),学生已经学过了相似三角形的概念、判定方法及性质,在此基础上通过本课的学习将对前面所学知识进行全面应用。
初三学生在思维上已具备了初步的应用数学的意识,在心理特点上则更依赖于直观形象的认识。
(2)运用三角形相似的知识解决实际问题对于学生来说难度较大,在实际生活中,面对不能直接测量出长度和宽度的物体及盲区问题,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解。
在教学中,要通过这些知识的教学,帮助学生从实际生活中发现数学问题,运用所学知识解决实际问题。
另外,还可以根据学生实情,选择一些实际问题,引导学生加以解决,体现数学源于生活又用于生活,提高他们应用知识解决问题的能力。
(3)课上可以通过著名的科学家名句和如何测量神秘的金字塔的高度来激发学生学数学的兴趣,使学生积极参与探索,体验成功的喜悦。
人教版九年级数学下册1相似三角形应用举例
探
索
新
知
分析:如图,设观察者眼睛的位置 (视点) 为点 F,画出观察者的水平视
线 FG,它交 AB,CD 于点 H,K.视线 FA,FG 的夹角 ∠AFH 是观察点
A 的仰角. 类似地,∠CFK 是观察点 C 时的仰角,由于树的遮挡,区域
Ⅰ和Ⅱ都在观察者看不到的区域 (盲区) 之内. 再往前走就根本看不到 C
第二十七章 相似
27.2 相似三角形
相似三角形应用举例
学
习
目
标
1. 能够利用相似三角形的知识,求出不能直接测量
的物体的高度和宽度. (重点)
2. 进一步了解数学建模思想,能够将实际问题转化
为相似三角形的数学模型,提高分析问题、解决
问题的能力. (难点)
0 1 . 课 前 导 入
0 2 . 探 索 新 知
∴ BO
FD
3
=134 (m).
因此金字塔的高度为
134 m.
探
索
新
知
方法总结:
测量不能到达顶部的物体的高度,可以用“在同一
时刻物高与影长成正比例”的原理解决.
表达式:物1高 :物2高 = 影1长 :影2长
探
索
新
知
小明身高 1.5 米,在操场的影长为 2 米,同时
测得教学大楼在操场的影长为 60 米,则教学大楼
因此,河宽大约为 90 m.
探
索
新
知
方法总结:
测量如河宽等不易直接测量的物体的宽度,常构造相
似三角形求解.
探
索
新
知
如图,为了测量水塘边 A、B 两点之间的距离,在可以看
人教版九年级数学下册《相似三角形应用举例》优秀说课稿
人教版九年级数学下册《相似三角形应用举例》优秀说课稿一. 教材分析人教版九年级数学下册《相似三角形应用举例》这一节内容,是在学生学习了相似三角形的性质和判定之后进行的一节应用性较强的课程。
通过本节课的学习,学生能够理解和掌握相似三角形的应用,提高解决实际问题的能力。
教材通过引入生活中的实际问题,引导学生利用相似三角形的性质和判定解决问题,培养学生的数学应用意识。
二. 学情分析九年级的学生已经学习了相似三角形的性质和判定,对于这部分知识的理解和运用已经有了一定的基础。
但是,学生在解决实际问题时,往往不能灵活运用所学知识,需要老师在教学中进行引导和启发。
此外,学生对于实际问题的解决方法还不够熟练,需要老师在教学过程中进行具体的指导。
三. 说教学目标1.知识与技能目标:学生能够理解和掌握相似三角形的应用,能够运用相似三角形的性质和判定解决实际问题。
2.过程与方法目标:通过解决实际问题,培养学生的数学应用意识和解决实际问题的能力。
3.情感态度与价值观目标:学生能够体验到数学与生活的紧密联系,增强学习数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解和掌握相似三角形的应用。
2.教学难点:学生能够灵活运用相似三角形的性质和判定解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过自主探究和合作交流来解决问题。
2.教学手段:利用多媒体课件和实物模型进行教学,帮助学生直观地理解相似三角形的应用。
六. 说教学过程1.导入:通过展示一些生活中的实际问题,引发学生的兴趣,导入新课。
2.探究:学生通过自主探究和合作交流,理解相似三角形的应用。
3.讲解:老师对学生的探究结果进行讲解和点评,引导学生理解和掌握相似三角形的应用。
4.练习:学生进行相关的练习,巩固所学知识。
5.总结:老师对本节课的内容进行总结,强调相似三角形的应用。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
人教版九年级数学下册《相似三角形应用举例》优秀教学设计
人教版九年级数学下册《相似三角形应用举例》优秀教学设计一. 教材分析人教版九年级数学下册《相似三角形应用举例》这一章节是在学生已经掌握了相似三角形的性质和判定方法的基础上进行教学的。
通过这一章节的学习,使学生能够运用相似三角形的性质解决一些实际问题,提高他们的应用能力。
教材通过丰富的例题和练习题,引导学生运用所学知识解决实际问题,培养他们的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的性质和判定方法有一定的了解。
但是,他们在解决实际问题时,往往不知道如何运用所学知识,对相似三角形的应用范围和条件掌握不牢固。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高他们的应用能力。
三. 教学目标1.知识与技能目标:使学生掌握相似三角形的应用范围和条件,能够运用相似三角形的性质解决一些实际问题。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决问题的能力,提高他们的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.教学重点:使学生掌握相似三角形的应用范围和条件,能够运用相似三角形的性质解决实际问题。
2.教学难点:如何引导学生将理论知识与实际问题相结合,提高他们的应用能力。
五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生运用相似三角形的性质解决问题。
2.案例教学法:通过分析典型案例,使学生掌握相似三角形的应用范围和条件。
3.引导发现法:教师引导学生发现相似三角形的性质在实际问题中的应用,培养他们的数学思维能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和教学活动。
2.学生准备:预习相似三角形的相关知识,了解本节课的学习内容。
七. 教学过程1.导入(5分钟)教师通过设置一个实际问题情境,引导学生回顾相似三角形的性质和判定方法。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
《相似三角形的应用》课时教学设计
《相似三角形的应用》课时教学设计第一篇:《相似三角形的应用》课时教学设计《相似三角形的应用》课时教学设计[教学目标] 1.了解平行投影、中心投影、盲区的意义.2.知道在平行光线的照射下,不同物体的物高与影长成比例.3.通过测量活动,综合运用判定三角形相似的条件和三角形相似的性质解决问题,增强用数学的意识,加深对判定三角形相似的条件和:::角形相似的性质的理解.[教学过程(第一课时)] 1.情境创设(1)当人们在阳光下行走时,会出现——个怎样的现象?(学生思考片刻,回答是影子)光线在直线传播过程中,遇到不透明的物体,在这个物体的后面光线不能到达的区域便产生影.你能举出生活中的例子吗? 2.探索活动活动一试验探究,得出结论.活动分为3个层次.第—层次:试验探究.引导学生根据已有的生活经验,感悟到:在阳光下,在同一时刻,物体的高度与物体的影长存在某种关系:物体的高度越高,物体的影长就越长,并在此基础上组织探究试验.对试验探究活动的教学要注意两点:(1)各小组通过观察、测量、计算出的结果存在着一定的误差,在引导学生探究结论时,一般应取各小组测量结果的平均值;(2)教学中,各小组的测量是在同一时刻进行的,其他时刻情况如何?学生可能存在疑问,对此可在教学中向学生展示教师事先在其他几个不同时刻测量出的结果,再次引导学生探究.第二层次:了解平行投影.第三层次:引导学生归纳出:在平行光线的照射下,不同物体的物高与影长成比例.活动二组织尝试活动.图10—27是—幅立体图形,学生根据“太阳光线可以看成平行光线”的表述画出与图中虚线平行的线段—般不会感到困难.教学中,要引导学生通过观察、分析,感悟到画乙、丙两根木杆的影长(用线段表示)时,它们应与甲木杆在阳光下的影长平行.图中的太阳光线、木杆及其影子构成了3个直角三角形,但它们不在同一平面内.如果将这3个直角三角形平移到同一平面内,可以得到如图的图形:引导学生思考:如何用三角形相似的知识说明在乎行光线的照射下,不同物体的物高与影长成比例.活动三应用举例.课本列举古埃及测量金字塔的问题作为相应知识的应用.该问题对学生来说有一定的难度,教学时建议做如下铺垫:(1)铺垫练习:如,在阳光下,身高1.68m的小强在地面上的影长为2m,在同一时刻,测得旗杆在地面上的影长为18m.求旗杆的高度(精确到0.1m).(2)作变式:如果要求测量的是一个等腰三角形的高,你将如何计算?(3)较充分地展开图10—28中立体图形转化为平面图形的过程. 3.小结(1)了解平行投影的含义;(2)通过观察、测量等操作活动,探究在平行光线的照射下,物体的物高与影长的关系,并解决有关的实际问题.[教学过程设计建议(第二课时)] 1.情境创设夜晚,当人们在路灯下行走时,你是否发现一个有趣的现象:如图10—29,影子越变越长了?你能说明理由吗? 2.探索活动(1)组织操作、实验活动,引导学生观察.设计操作、实验活动的目的是:通过操作、实验活动,引导学生通过观察,感悟到与平行光线的照射不同,在点光源的照射下,不同物体的物高与影长不成比例.(2)了解中心投影. 3.例题教学(1)例1的综合性较强,为较好地发挥学生的主体作用,建议教学中适当补充1~2个基础练习,做为铺垫.(2)在例1的解答中,“由AB∥CD,得△ABF∽△CDF”、“由AB∥EF,得△ABG∽△EFG”,实际上用到了判定三角形相似的条件:平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.由于这一判定三角形相似的条件在实际的应用中用途较广,教学时应结合实例向学生说明.(3)在本章之前,要说明线段或角相等,往往是说明它们分别与第三个量相等,通过“等量代换”得到所需的结沦.在说明线段成比例时,只要将“两线段的比”看成是一个整体,同样可以通过第三个比代换.如,在例1的解答中,由AB3+BDAB7+BD3+BD7+BDAB===“”,“”,得“”就是通过第三个比1.61.631.6434来证明结论的.4.小结(1)了解中心投影的意义;(2)通过操作、观察等数学活动,探究中心投影与平行投影的区别,并运用中心投影的相关知识解决一些实际问题.[教学过程(第三课时)] 1.情境创设(1)同学们玩过“捉迷藏”的游戏吗?你认为躲藏者藏在何处,才不容易被寻找者发现?(2)如图1,小强站在3楼窗口能看到楼下的小丽吗?为什么? 你认为小丽站在什么位置时,小强才能看到她?(3)如图2,小强站在一座木板墙前,小丽在墙后活动.你认为小丽应在什么区域内活动,才能不被小强看见?请在图2的俯视图图3中画出小丽的活动范围;(4)你能举出生活中类似的例子吗? 2.例题教学设置例2的目的是:(1)在实际运用中,进一步巩固判定三角形相似的条件及相似三角形的性质等知识;(2)通过具体实例,使学生了解视点、视线和盲区的概念.在例2的解答中,“点O、C、A恰好在一条直线上,点O、D、B也恰好在一条直线上”的结论,是由实际问题:将一枚1元的硬币,放在眼睛与月球之间,调整硬币与眼睛间的距离,直到硬币刚好将月球遮住,抽象为数学结沦得出的.(需要说明的是:本例为了得到正确的结论,题设中“硬币与眼睛的距离为2.72m”的条件不尽合理.)解答中,由△OCD∽△OAB,OF、OE分别是△OCD、△OAB对应边上的高,得OFCD 到的根据是相似三角形的性质:相似三角形对应高的比等于相似比. OEAB3.探索活动同例2一样,课本设置“尝试”活动的目的仍然是:通过实际应用进一步巩固判定三角形相似的条件及相似三角形的性质;通过具体实例,使学生进一步认识视点、视线和盲区.本题的难度不大,关键是引导学生读懂题意,能将实际问题抽象为数学问题,并引导学生理解:问题“当小强与树AB的距离小于多少时,就不能看到树CD的树顶D”的实质就是求图中线段FG的长.4.小结(1)通过具体实例,认识视点、视线和盲区;(2)在实际应用中,进一步巩固相似三角形的有关知识.第二篇:相似三角形的应用教学设计《相似三角形的应用》教学设计无锡市安镇中学汪秋莲【教材分析】(一)教材的地位和作用《相似三角形的应用》选自华东师范大学出版社义务教育课程标准实验教科书中数学九年级上册第二十四章。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《27.2.3相似三角形应用举例》的教学设计
绥阳县思源实验学校王玉乾
教学内容:27.2.3相似三角形应用举例
教学目标:
1.让学生学会运用两个三角形相似解决实际问题。
2.培养学生的观察﹑归纳﹑建模﹑应用能力。
3.让学生经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
教学重点与难点
重点:运用两个三角形相似解决实际问题
难点:在实际问题中建立数学模型
教学准备:课件
教学过程:
一、复习旧知温故知新
问题1:判定两三角形相似的方法有哪些?(学生举手回答)问题2:相似三角形的性质有哪些?
设计意图:以旧引新,帮助学生建立新旧知识间的联系。
二、新课教学
(一)创设情境提出问题(课件出示图片)
问题:你能否运用相似三角形的判定与性质,测量、计算金字塔的高和河宽?(学生思考、讨论、展示交流)
(二)发现问题,探求新知
活动1:探究利用三角形相似测量物高
1. 测高方法一:据史料记载,古希腊数学家,天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆.借助太阳光线构成两个相似三角形,来测量金字塔的高度.
提炼方法:同一时刻,物1高:物2高 = 影1长:影2长
例1:如图,如果木杆EF长2m,它的影长FD为3m,测OA得为201m,求金字塔的高度BO.
(让学生体会由于太阳光的照射,从图片中可以抽象出相似三角形;领会此方法测量物高的可行性和操作步骤;并根据相似三角形的性质进行求解)
2. 测高方法二:测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决.
例2:如图是小明设计用手电来测量某古城墙高
度的示意图,点 P 处放一水平的平面镜,光线从点 A
出发经平面镜反射后,刚好射到古城墙的顶端 C 处,
已知 AB = 2 米,且测得 BP = 3 米,DP = 12 米,那么该古城墙的高度是 ( )
A. 6米
B. 8米
C. 18米
D. 24米
(通过此题,让学生领会并掌握运用平面镜反射构建相似三角形求物高的方法)
3.渗透思想,构建模型
利用三角形相似测量物高的步骤:(引导学生归纳)
一用:(利用平行光或反射光)
二建:(构建相似三角形模型)
三算:(根据相似三角形的性质
计算)
活动2:探究利用三角形相似测量距离(或宽度)
1.测宽方法一:
例3:如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线
PS与河垂直,接着在过点S且与PS垂直的直线a上
选择适当的点T,确定PT与过点Q且垂直PS的直线b
的交点R.如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.
(先出示河的图片,让学生思考、交流如何构建“A型”相似三角形测河宽;如果学生没有讨论出正确操作步骤,教师再演示引导学生掌握操作步骤,并根据数据求出河宽)
2.测宽方法二:
例4:如图,为了估算河的宽度,我们可
以在河对岸选定一个目标作为点A,再在河的
A 这一边选点
B 和C,使AB⊥B
C ,然后,再选
D E
A
点 E ,使 EC ⊥ BC ,用视线确定 BC 和 AE 的交点 D .
此时如果测得 BD =120米,DC =60米,EC =50米,求两岸间的大致距离 AB .
(先出示河的图片,让学生思考:是否可以构建不同于例3的测量方法?若可以,展示交流;最后出示题目,学生再运用相似三角形的性质解答)
3. 渗透思想,构建模型
利用三角形相似测量距离(或宽度):(引导学生归纳)
一建:(构建“A 型”或“X 型”)
二算:(根据相似三角形的性质计算)
三、强化训练 巩固双基
1. 如图,为了测量水塘边 A 、B 两点之间的距离,在可以看到 A 、B 的点 E 处,取 AE 、BE 延长线上的 C 、D 两
点,使得 CD ∥AB . 若测得 CD =5 m ,AD =15m ,ED =3 m ,则 A 、B 两点间的距离为 m. (学生思考、讨论、解答、交流)
2.小明测得长为1米的竹竿影长为0.9
米, 同时小王在测另一棵树时,发现树影的
一部分在地面上,而另一部分在墙上,他测
得地面上的影长为2.7米,留在墙上部分的
影长为 1.2米.请计算小王测量的这棵树的
高. B E D C
四、课堂小结
请从以下几个方面谈谈你学到了什么?
五、作业布置 提高升华
1.必做题:教材第43页第9、10题。
2.选做题:
如图,为了测量路灯(OS )的高度,把一根长1.5米的竹竿(AB )竖直立在水平地面上,测得竹竿的影子(BC )长为1米,然后拿竹竿向远离路灯方向走了4米(BB ´),再把竹竿竖立在地面上, 测得竹竿的
影长(B ´C ´)为1.8米,求路灯离地面的高度.
2B C D 知
识 方体验。