因子分析ppt课件

合集下载

因子分析课件

因子分析课件

1、描述(Descriptives)子对话框中的选择项
原始分析结果(Initial solution),选 单变量描述统计量(Univariate 描述子对话框如图所示。描述统计量分的选择项为两组: 择此项可以给出原始变量的公因子 Descriptives ),选择此项可以输 出参与分析的各原始变量的均值、 方差、与变量数相等的因子、各因 子的特征值、各因子特征值占总方 标准差和有效取值个数等。 差的百分比以及累积百分比。 KMO和球形 Bartlett检验KMO 相关系数Coeffients ,选 and Bartlett‘s test of逆模型Inverse 相关系数 sphericity 。 择此项给出原始变量间的 显著性水平Significance 矩阵的逆矩阵。 再生相关阵Reproduced , 选择此项给出对采样充足度的 相关系数矩阵。这是分析 levels , 选择此项给出每 反映象相关阵Anti-image 。 选择此项给出因子分析后 行列式Determinant ,相 Kaisex-Meyer-Olkin测度。检验变 的基础 个相关系数相对于相关系 包括偏相关系数的负数; 的相关阵,还给出残差, 关系数矩阵的行列式。 量间的偏相关是否很小。Bartlett 数为0的假设检验的概率 反映象协方差阵,包括偏 即原始相关性矩阵与再生 球形检验,检验的相关阵是否是 水平。 协方差的负数;在一个好 相关性矩阵之间的差值。 单位阵。它表明因子模型是否是 不合适宜的。 的因子模型中除对角线上 的系数较大外,远离对角 线的元素应该比较小。
S PSS因子分析
钧译
一、因子分析的基本概念和原理
通常,在科学研究中首先得到的观测资料都是关于事物的外
在特征或个别的具体特征,这些特征的观测值存在聚合趋势,有 倾向于聚合的一些变量具有高度相关性,这种高度的相关性显示

因子分析ppt课件

因子分析ppt课件
(2)因子提取 研究如何在样本数据的基础上提取综合因子。
(3)因子旋转
通过正交旋转或斜交旋转使提取出的因子具有可解 释性。
(4)计算因子得分
通过各种方法求解各样本在各因子上的得分,为进 一步分析奠定基础。
❖ 2、因子分析前提条件——相关性分析:
分析方法主要有:
(1)计算相关系数矩阵(correlation coefficients matrix)
1 2 为p的特0 征根,
标准化特征向量,则
为u对1 , 应u2 的,, up
1
Σ = U
2
U AA + D
p
u1 u2
up
1
0
1u1u1 2u2u2
0
u1 u2
p
up
mumum m1um1um1
1u1
2u2
pu p
1u1
2
u2
p
因子分析的基本理论 ❖ 3、因子分析的目的:
因子分析的目的之一,简化变量维数。即要使因素结 构简单化,希望以最少的共同因素(公共因子),能 对总变异量作最大的解释,因而抽取得因子愈少愈好, 但抽取因子的累积解释的变异量愈大愈好。
在因子分析的公共因子抽取中,应最先抽取特征值最 大的公共因子,其次是次大者,最后抽取公共因子的 特征值最小,通常会接近0。
(3)因子分析中因子载荷的不唯一性有利于对公因子进行有效解释; 而主成分分析对提取的主成分的解释能力有限。
因子分析的基本理论
❖ 5、因子分析模型: 设 Xi (i 1,2,个,变p)量p,如果表示为
X i i ai1F1 aimFm i (m p)
X1 1 11 12

X
2

最新因子分析法详细步骤ppt课件

最新因子分析法详细步骤ppt课件

六、因子得分
• Thomson法,即回归法
回归法得分是由Bayes思想导出的,得 到的因子得分是有偏的,但计算结果 误差较小。
• Bartlett法
Bartlett因子得分是极大似然估计,也是 加权最小二乘回归,得到的因子得分 是无偏的,但计算结果误差较大。
• 因子得分可用于模型诊断,也可用作 进一步分析的原始资料。
每一个公共因子的载荷系数之平方和 等于对应的特征根,即该公共因子的 方差。
p
j
ai2j
g
2 j
i1
• 极大似然法(maximum likelihood factor)
假定原变量服从正态分布,公共因 子和特殊因子也服从正态分布,构 造因子负荷和特殊方差的似然函数, 求其极大,得到唯一解。
• 主因子法(principal factor)
设原变量的相关矩阵为R=(rij),其逆 矩阵为R-1=(rij)。各变量特征方差 的初始值取为逆相关矩阵对角线元 素的倒数,δi’=1/rii。则共同度 的初始值为(hi’)2=1- δi’=1-1/rii。
以(hi’)2代替相关矩阵中的对角线上的元素, 得到约化相关矩阵。
(h1’)2 r12 … r1p
r21 (h2’)2 … r2p
R’= .
. ….
.
. ….
rp1 rp2 … (hp’)2
R’的前m个特征根及其对应的单位化特征向 量就是主因子解。
• 迭代主因子法(iterated principal factor)
主因子的解很不稳定。因此,常以估计 的共同度为初始值,构造新的约化矩 阵,再计算其特征根及其特征向量, 并由此再估计因子负荷及其各变量的 共同度和特殊方差,再由此新估计的 共同度为初始值继续迭代,直到解稳 定为止。

因子分析 ppt课件

因子分析  ppt课件

PPT课件
14
(1)计算相关系数矩阵
计算原有变量的简单相关系数矩阵。观察相关系数矩阵,如果相关系数 矩阵中的大部分相关系数值小于 0.3,则各个变量之间大多为弱相关,这就 不适合做因子分析。如果一个变量与其他变量间相关度很低,则在下一分析 步骤中可考虑剔除此变量。
PPT课件
15
(2)进行统计检验
因子分析
—SPSS操作及其原理
PPT课件
陶鑫 2008-4-23
1
在科学研究中,往往希望尽可能多地收集反映研究对象的 多个变量,以期能对问题有比较全面、完整的把握与认识。多 变量的大样本虽然能为科学研究提供大量的信息,但是在一定 程度上增加了数据采集的工作量,更重要的是在大多数情况下, 许多变量之间可能存在相关性,这意味着表面上看来彼此不同 的变量并不能从各个侧面反映事物的不同属性,而恰恰是事物 同一种属性的不同表现。
PPT课件
11
Байду номын сангаас
主成分分析的数学模型
PPT课件
12
主成分分析与因子分析的公式上的区别
因子分析(m<p)
y1 a11x1 a12 x2 a1p xp y2 a21x1 a22 x2 a2 p xp
主成分分析 因子得分
y p ap1x1 ap2 x2
app xp
PPT课件
27
5.计算因子得分
计算因子得分是因子分析的最后一步。因子变量确定后,便可计 算各因子在每个样本上的具体数值,这些数值就是因子的得分,形成 的新变量称为因子变量,它和原变量的得分相对应。有了因子得分, 在以后的分析中就可以因子变量代替原有变量进行数据建模,或利用 因子变量对样本进行分类或评价等研究,进而实现降维和简化的目标。

因子分析方法ppt课件

因子分析方法ppt课件

2、变量共同度(共同性)
总之,变量的共同度刻画了因子全体对变量信息解释的 程度,是评价变量信息丢失程度的重要指标。
如果大多数原有变量的变量共同度均较高(如高于0.8), 则说明提取的因子能够反映原有变量的大部分信息(80 %以上)信息,仅有较少的信息丢失,因子分析的效果 较好。因子,变量共同度是衡量因子分析效果的重要依 据。
Page 10
10
因子分析数学模型中几个相关概念
举例说明:
Page 11
11
Page 12
12
因子分析的五大基本步骤
第一步:因子分析的前提条件
由于因子分析的主要任务之一是对原有变量进行浓缩,即将
原有变量中的信息重叠部分提取和综合成因子,进而最终实
现减少变量个数的目的。因此它要求原有变量之间应存在较
Page 4
4
用矩阵的形式表示为Z=AF+U
F称为因子,由于它们出现在每个原始变量的线性表达式 (原始变量可以用Xj表示,这里模型中实际上是以F线性表 示各个原始变量的标准化分数Zj),因此又称为公共因子.
A称为因子载荷矩阵, aji称为因子载荷,是第j个原始变 量在第i个因子上的负荷。
U称为特殊因子,表示了原有变量不能被因子解释的部分, 其均值为0,相当于多元线性回归模型中的残差。
当要判断一个因子的意义时,需要查看哪些变量的负荷达
到了0.3或0.3以上
Page 7
7
因子分析数学模型中几个相关概念
2、变量共同度(共同性) 一个因子解释的是相关矩阵的方差,变量的方差由共同因 子和唯一因子组成,可以表示成h+u2=1(h表示共同度,u2 表示特殊因子的平方)。 变量共同度就是指每个原始变量在每个共同因子的负荷量 的平方和,是全部因子对变量方差解释说明的比例。变量共 同度h越接近1,说明因子全体解释说明了变量Zj的较大部分 方差,如果用因子全体刻画变量,则变量的信息丢失较少; 共同性的意义在于说明如果用共同因子替代原始变量后,原 始变量的信息被保留的程度。 特殊因子U的平方,反应了变Pag量e 8方差中不能由因8 子全体解

因子分析因子分析PPT课件

因子分析因子分析PPT课件
1/ 5 2 / 5
1/ 5 2 / 5
1
21
第21页/共96页
特征根为: 1 1.55 2 0.85 3 0.6
0.475 0.883 0
U
0.629
0.331 0.707
0.629 0.331 0.707
0.475 1.55 0.883 0.85
A 0.629 1.55 0.331 0.85
因子分析:潜在的假想变量和随机影响变量 的线性组合表示原始变量。
因子分析(探索)与结构方程模型(验证)
3
第3页/共96页
第二节 因子分析的数学模型
一、数学模型 1.R型因子分析数学模型(按列)
设 X i (i 1,2,, p) p 个变量,如果表示为
X i ai1F1 aimFm i (m p)
X1 11 12

X
2
21
22
X
p
p1
p2
1m F1 1
2m
F2
2
pm
Fm
p
或X AF
4
第4页/共96页
称为 F1, F2,, Fm公共因子,是不可观测的变量,
他们的系数称为因子载荷。i 是特殊因子,是不能被
前m个公共因子包含的部分。并且满足:
3、公共因子Fj方差贡献的统计意义
因子载荷矩阵中各列元素的平方和
Sj
a p i 1
2 ij
p
r
i 1
2
(
xi
,
Fj
)
称为Fj ( j 1,, m) 对 X i 的方差贡献和。衡量Fj的相对重
要性。
12
第12页/共96页
(三)因子分析模型的性质

因子分析ppt课件

因子分析ppt课件

xi ai1 f1 ai2 f2 ... ui
特殊因子(unique factor)观测变量所
特有的因子,表示
公因子(common因fa子ct负or载s)(是factor load该in变gs量):不表能示被i公个因 观测变量所共有的变因量子在,第解j个释公因子上子的所负解载释,的是部因分子。
因子抽取方法的选择一般考虑因子分 析的目的和对变量方差的了解程度:
如果因子分析的目的是用最少的因子 最大程度地解释原始数据中的方差,或特 殊因子、误差带来的方差很小,则用主 成分分析法。
如果目的是确定数据结构,但不了解 变量方差的情况,则用公因子分析法。
五、解释因子(rotation)
初始因子很难解释,大多数因子都和很多变 量有关,因子的实际意义难以理解和把握。 因子旋转使因子结构更简单、更易于理解。
当公因子间不相关时,某变量 xi 的公因子方差
h2i
a2i1
a2i2
...
a
பைடு நூலகம்
2 im
即等于与该变量有关的公因子负载的平方和。
因子贡献率(contributions) 表示每个公因子对数据的解释能力, 它等于和该因子有关的因子负载的平 方和,能衡量公因子的相对重要性。
公因子个数 ≤ 观测变量数
能代表观测变量较多信息的公因子是 研究感兴趣的;求因子解时,第一个因 子代表信息最多,随后的因子代表性逐 渐衰减。
0.6以上,差; 0.5,很差;0.5以下不能接受;
KMO 用于检测变量之间的简单相关系数和偏 相关系数的相对大小,取值在0--1间,一般认 为KMO在0.9以上很适合做因子分析,0.8以上 比较适合做因子分析;
Bartlett's 球形检验虚无假设“相关矩 阵是单位矩阵”,拒绝该假设(P<.001)表明 数据适合进行因子分析。

因子分析PPT课件

因子分析PPT课件

3. 公共因子的方差贡献:是某公共因子对所有原变量载荷的平方和, 它
反映该公共因子对所有原始总变异的解释能力,等于因子载荷矩阵中某 一列载荷的平方和。一个因子的方差贡献越大,说明该因子就越重要。
2024/6/2
15
★ 确定公因子数目的准则
1)因素的特征值(Eigenvalues)大于或等于1;
2)因素必须符合陡阶检验(Screen Test),陡阶检
仅仅是为了化简、浓缩数据,则采用正交旋转(保持
直角90度,不允许公因子相关)。如果研究的目的是
为了得到理论上有意义的研究结果,则采用斜交旋转。
(不呈90度,允许公因子相关;有证据表明公因子之
间是相关的才用)
旋转之后,特征值发生变化,但共同度不变
2024/6/2
18
第六步:单击Scores按纽,弹出对话框
输出旋转后的 因子载荷矩阵
2024/6/2
输出载荷散点图17
★ 因子旋转
为了更好地解释因子分析解的结果,常常需要将
因子载荷转换为比较容易解释的形式(相当于相机的
调焦,使看得更清楚;一般会使各因子对应的载荷尽
可能地向0和1两极分化)。
常用的方法有正交旋转(varimax procedure)
和斜交旋转(oblique rotation),如果研究的目的
2024/6/2
1
二、因子分析思想与方法的由来
● 英国统计学家Scott 1961年对英国157个 城镇发展水平进行调查时,原始测量的变量有57 个,而通过因子分析发现,只需要用5个新的综 合变量(它们是原始变量的线性组合),就可以 解释95%的原始信息。
● 美国统计学家Stone在1947年研究国民经

因子分析课件-因素分析-详解全篇

因子分析课件-因素分析-详解全篇
④ “Extract”(抽取)选项框 A “Eigenvalues over”(特征值):后面的空 格默认为1,表示因素抽取时,只抽取特征值 大于1者,使用者可随意输入0至变量总数之间 的值。 B “Number of factors”(因子个数):选取 此项时,后面的空格内输入限定的因素个数。
共变异数矩阵 相关矩阵
B “Initial solution”(未转轴之统计量):显示 因素分析未转轴前之共同性、特征值、变异数 百分比及累积百分比。
单变量描述性统计量 未转轴之统计量
② “Correlation Matric”(相关矩阵)选项框 A “Coefficients”(系数):显示题项的相关矩 阵 B “Significance levels”(显著水准):求出前 述相关矩阵地显著水准。 C “Determinant”(行列式):求出前述相关矩 阵地行列式值。
案例 1
(5)设置因素分数:单击图1-1对话框中的“Scores…”按钮,弹出“Factor Analyze:Scores”(因素分析:因素分数)对话框。
① “Save as variable”(因素存储变量)选项框: 勾选时可将新建立的因素分数存储至数据文件
中,并产生新的变量名称(默认为fact_1、fact_2、 fact_3、fact_4等)。
直接斜交转轴法
四次方最大值法 相等最大值法 Promax转轴法
转轴后的解
因子负荷量 收敛最大迭代
图1-4 Factor Analyze:Rotation对话框
③ “Maximum Iterations for Convergence”:(收敛最大 迭代):
转轴时执行的迭代最多次 数,后面默认数字为25,表示 算法执行转轴时,执行步骤的 次数上限。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因子分析
(1)计算相关系数矩阵
计算原有变量的简单相关系数矩阵。观察相关系数矩阵,如果相关系数 矩阵中的大部分相关系数值小于 0.3,则各个变量之间大多为弱相关,这就不 适合做因子分析。如果一个变量与其他变量间相关度很低,则在下一分析步骤 中可考虑剔除此变量。
因子分析
(2)进行统计检验
在因子分析过程中提供了几种检验方法来判断变量是否适合做因子分析。主要统 计方法有如下两种:
因子分析
—SPSS操作及其原理
因子分析
2008-4-23
在科学研究中,往往希望尽可能多地收集反映研究对象 的多个变量,以期能对问题有比较全面、完整的把握与认识。 多变量的大样本虽然能为科学研究提供大量的信息,但是在一 定程度上增加了数据采集的工作量,更重要的是在大多数情况 下,许多变量之间可能存在相关性,这意味着表面上看来彼此 不同的变量并不能从各个侧面反映事物的不同属性,而恰恰是 事物同一种属性的不同表现。
因子分析
统计学原理 因子分析的含义
因子分析,又叫因素分析,就是通过寻找众多变量的公共因 素来简化变量中存在复杂关系的一种统计方法,它将多个变量综合 为少数几个“因子”以再现原始变量与“因子”之间的相关关系。
因子分析
因子分析
寻找基本结构
在多元统计中,经常遇到诸多变量之间存在强相关的问题,它会 对分析带来许多困难。通过因子分析,可以找出几个较少的有实际意 义的因子,反映出原来数据的基本结构。例如:调查汽车配件的价格 中,通过因子分析从20个指标中概括出原材料供应商、配件厂商、新 进入者、后市场零部件厂商、整车厂和消费者6个基本指标。从而找 出对企业配件价格起决定性作用的几个指标。
因子分析
主成分分析的数学模型
因子分析
主成分分析与因子分析的公式上的区别
因子分析(m<p)
y1 a11x1 a12 x2 L a1 p x p y2 a21x1 a22 x2 L a2 p x p LL
主成分分析
y p a p1x1 a p2 x2 L a pp x p
x1 a11 f1 a12 f2 L a1m fm 1 x2 a21 f1 a22 f2 L a2m fm 2
注:单位阵:主对角线上的元素都是1,其余的元素都是零的 n 阶方阵,叫做 n 阶单位矩阵
4阶单位阵
因子分析
2. KMO(Kaiser-Meyer-Olkin)检验。KMO统计量用于检验变量间的偏相关性 是否足够小,是简单相关量和偏相关量的一个相对指数,由下式求得:
KMO>0.9 非常适合 0.8<KMO<0.9 适合 0.7<KMO<0.8 一般 0.6<KMO<0.7 不太适合 KMO<0.5 不适合
一级偏相关系数: 假设有三个要素x1、x2、x3,它们之间的偏相关系数共有三个, 即r12.3,r13.2,r23.1其计算公式分别如下:
有的因素,即所谓独特因子部分。其中
叫做公共因子,
它们是在各个变量中共同出现的因子。我们可以把它们看作多维空间分布中互
相垂直的 个坐标轴。
表示影响 的独特因子,指原有变
量不能被因子变量所解释的部分,相当于回归分析中的残差部分。 叫做因子
负荷(载荷),它是第 个变量在第 个主因子上的负荷或叫做第 个变量在
在第 个主因子上的权值,它反映了第 个变量在第 个主因子上的相对重要
性。
因子分析
主成分分析
主成分分析:通过对一组变量的几个线性组合来解释这组变量的方差和协方 差结构,以达到数据的压缩和数据的解释的目的。
若有一些指标 ,取综合指标即它们的线性组合F,当然有很多,我们希望 线性组合F包含很多的信息,即var(F)最大,这样得到F记为F1 ,然后再找F2 , F1与 F2无关,以此类推,我们找到了一组综合变量 F1 ,F2,… ,Fm,这组变量基本包含了 原来变量的所有信息。
因子分析
如何从众多相关的指标中找出少数几个综合性指标来反 映原来指标所包含的主要信息,这就需要进行 因子分析 (Factor Analysis),它是用少数几个因子来描述许多指标或因 素之间的联系,即:用较少几个因子反映原始数据的大部分信 息的统计方法。
因子分析
在 SPSS 系 统 里 , 实 现 因 子 分 析 的 功 能 是 在 Data Reduction命令菜单中。
LL
xp ap1 f1 ap2 f2 L apm fm p
因子得分
f1 11x1 12 x2 L 1p xp f2 21x1 22 x2 L 2 p xp
LL
fm m1x1 m2 x2 L mp xp
因子分析
因子分析的基本步骤
1.确定因子分析的前提条件
因子分析是从众多的原始变量中综合出少数几个具有代表性的因子,这 必定有一个前提条件,即原有变量之间具有较强的相关性。如果原有变量之间 不存在较强的相关关系,则无法找出其中的公共因子。因此,在因子分析时需 要对原有变量做相关分析。通常可采用如下几种方法:
因子分析
数据化简
通过因子分析,可以找出少数的几个因子来代替原来的 变量做回归分析、聚类分析、判别分析等。
因子分析
数学模型
因子分析可以通过下面的数学模型来表示:
独特因子 公共因素
因子分析
因子分析把每个原始变量分解成两部分谓公共因素部分;另一部分是每个变量独自具
1. 巴特利球形检验(Barlett Test of Sphericity)。它是以变量的相关系数矩阵为 出发点,零假设:相关系数矩阵是一个单位阵。如果巴特利球形检验的统计计量数 值较大,且对应的相伴概率值小于用户给定的显著性水平,则应该拒绝零假设;反 之,则不能拒绝零假设,认为相关系数矩阵可能是一个单位阵,不适合做因子分析。
因子分析
简单相关系数:
相关系数:表示两要素之间的相关程度的统计指标。 对于两个要素x与y,如果它们的样本值分别为 xi与yi(i=1,2,...,n),它
们之间的相关系数:
因子分析
偏相关系数
在多要素构成的系统中,当研究某一个要素对另一个要素的影响或相关程度时, 把其它要素的影响视为常数,而单独研究两个要素之间的相互关系的密切程度时,称 为偏相关。用以度量偏相关程度的统计量,称为偏相关系数。
相关文档
最新文档