磁阻效应法测量磁场-五邑大学

合集下载

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告本实验旨在通过使用磁阻传感器测量地磁场的强度,从而了解磁阻传感器的工作原理和地磁场的特性。

首先,我们需要理解磁阻传感器的基本原理。

磁阻传感器是一种利用磁阻效应测量磁场强度的传感器,它的工作原理是基于材料在外加磁场作用下磁阻发生变化的特性。

在外加磁场的作用下,磁阻传感器的磁阻值会发生变化,通过测量这种变化可以得到磁场的强度。

在实验中,我们首先搭建了一个简单的实验电路,将磁阻传感器连接到电压表上,并将磁阻传感器放置在地面上。

接着,我们对磁阻传感器进行校准,使其能够准确测量地磁场的强度。

在进行校准时,我们需要注意避免外界磁场的干扰,以确保测量结果的准确性。

随后,我们开始进行地磁场的测量。

在实验中,我们发现地磁场的强度并不是均匀的,而是存在一定的变化。

这种变化可能是由地球内部的地磁场和外部磁场的相互作用所导致的。

通过实验数据的分析,我们可以得出地磁场的强度在不同位置存在一定的差异,这为我们进一步研究地磁场的特性提供了重要的参考。

通过本次实验,我们深入了解了磁阻传感器的工作原理和地磁场的特性。

磁阻传感器作为一种重要的传感器,在许多领域都有着广泛的应用,比如导航、地质勘探、磁力传动等。

而地磁场作为地球的重要特征之一,对于我们了解地球内部结构和地球物理现象具有重要意义。

因此,通过本次实验,我们不仅对磁阻传感器有了更深入的了解,同时也对地磁场有了更加全面的认识。

总的来说,本次实验取得了预期的效果,我们通过实际操作深入理解了磁阻传感器的工作原理和地磁场的特性,这对我们今后的学习和科研工作都具有重要的意义。

希望通过今后的实验和研究,我们能够进一步深化对磁阻传感器和地磁场的认识,为相关领域的发展做出更大的贡献。

磁阻效应法测量磁场

磁阻效应法测量磁场

实验64 磁阻效应及磁阻效应法测量磁场磁阻器件由于其灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:数字式罗盘、交通车辆检测、导航系统、伪钞检别、位置测量等探测器。

磁阻器件品种较多,可分为正常磁电阻,各向异性磁电阻,特大磁电阻,巨磁电阻和隧道磁电阻等。

其中正常磁电阻的应用十分普遍。

锑化铟(InSb)传感器是一种价格低廉、灵敏度高的正常磁电阻,有着十分重要的应用价值。

它可用于制造在磁场微小变化时测量多种物理量的传感器。

本实验使用两种材料的传感器:砷化镓(GaAs)测量磁感应强度和研究锑化铟(InSb)在磁感应强度变化时的电阻,融合霍尔效应和磁阻效应两种物理现象。

【实验目的】1.了解磁阻现象与霍尔效应的关系与区别;2.测量锑化铟传感器的电阻与磁感应强度的关系;3.作出锑化铟传感器的电阻变化与磁感应强度的关系曲线;【实验仪器】磁阻效应实验仪【实验原理】在一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。

如图1所示,当材料处于磁场中时,导体或半导体内的载流子将受洛仑兹力的作用发生偏转,在两端产生积聚电荷并产生霍尔电场。

如霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数目将减少,电阻增大,表现出横向磁阻效应。

如果将图1 中a、b端短接,霍尔电场将不存在,所有电子将向a端偏转,磁阻效应更明显。

通常以电阻率的相对改变量来表示磁阻的大小,即用△ρ/ρ(0)表示,其中ρ(0)为零磁场时的电阻率,设磁电阻阻值在磁感应强度为B的磁场中电阻率为ρ(B),则△ρ=ρ(B)-ρ(0), 由于磁阻传感器电阻的相对变化率△R/R(0)正比于△ρ/ρ(0), 这里△R =R(B) -R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。

实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性函数关系。

磁阻效应实验报告

磁阻效应实验报告

磁阻效应实验报告磁阻效应实验报告引言:磁阻效应是指当磁场作用于导体时,导体内的电阻会发生变化的现象。

这一现象在工业和科学领域中具有重要的应用价值。

本实验旨在通过测量磁场强度和电阻的变化关系,探究磁阻效应的原理和应用。

实验装置:本实验所用装置包括磁场发生器、导线、电流表、电压表和电源等。

磁场发生器用于产生磁场,导线则用于连接电源、电流表和电压表。

实验过程:1. 首先,将磁场发生器放置在实验台上,并连接电源。

2. 将导线绕在磁场发生器的铁芯上,确保导线与磁场发生器之间的接触良好。

3. 将电流表和电压表分别连接到导线的两端,以测量电流和电压的变化。

4. 通过调节电源的电压,使得电流表读数在合适的范围内。

5. 用磁铁靠近磁场发生器,观察电流表和电压表的读数变化。

实验结果:实验中我们记录了不同磁场强度下的电流和电压变化。

结果显示,在磁场强度增加的情况下,电流表的读数逐渐减小,而电压表的读数则逐渐增加。

这一结果表明了磁阻效应的存在。

讨论和分析:根据实验结果,我们可以得出以下结论:1. 磁阻效应是由磁场对导体内电子运动的影响所引起的。

当磁场增强时,磁场对电子的作用力也增强,从而导致电子在导体内运动的受阻,导致电流减小。

2. 磁阻效应的大小与导体的材料和几何形状有关。

不同材料和形状的导体对磁阻效应的响应程度不同。

3. 磁阻效应在实际应用中具有广泛的用途。

例如,磁阻效应可用于制造磁阻传感器,用于测量磁场强度和位置。

此外,磁阻效应还可应用于磁存储器、磁记录和磁传感等领域。

结论:通过本实验,我们深入了解了磁阻效应的原理和应用。

磁阻效应是磁场对导体内电子运动的影响,导致电流减小的现象。

磁阻效应在工业和科学领域中具有重要的应用价值,例如磁阻传感器、磁存储器等。

通过进一步研究和应用,我们可以不断发掘磁阻效应的潜力,为技术创新和进步做出贡献。

总结:本实验通过测量磁场强度和电阻的变化关系,探究了磁阻效应的原理和应用。

实验结果表明,在磁场强度增加的情况下,电流减小,电压增加,验证了磁阻效应的存在。

用磁阻传感器测量地磁场

用磁阻传感器测量地磁场

用磁阻传感器测量地磁场地磁场的数值较小约10-5T 量级,但在直流磁场测量,特别是弱磁场测量中,往往需要知道其数值,并设法消除其影响,地磁场作为一种天然磁源,在军事、工业、医学、探矿等科研中也有着重要用途。

本实验采用新型坡莫合金磁阻传感器测定地磁场磁感应强度及地磁磁感应强度的水平分量和垂直分量;测量地磁场的磁倾角。

由于磁阻传感器体积小、灵敏度高、易安装,因而在弱磁场测量方面有广泛应用前景[实验目的]1.了解磁阻传感器的特性;2.掌握测量地磁场的一种重要方法。

[实验原理]物质在磁场中电阻率发生变化的现象称为磁阻效应。

对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

HMC1021Z 型磁阻传感器是由长而薄的坡莫合金(铁镍合金)制成的一维磁阻微电路集成芯片,其坡莫合金膜,如图1所示,该薄膜的电阻率ρ(θ)依赖于磁化强度M 和电流I 方向的夹角θ ,具有以下关系式θρρρθρ2cos )//()(⊥⊥-+=(1)其中⊥ρρ、//分别是电流I 平行于M 和垂直于M 时的电阻率。

当沿着坡莫合金膜的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,坡莫合金膜的电阻值会发生较大的变化,利用这一变化,可以测量磁场的大小和方向。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。

传感器由四条铁镍合金磁电阻构成一个非平衡直流电桥(关于直流电桥,请阅实验 ),非平衡电桥输出部分接集成运算放大器,将信号放大输出,如图5-50所示。

由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电阻值变化有增有减。

因而输出电压U out 可以用下式表示:/b U U R R =⨯∆(2)式中U b 是电桥的工作电压,∆R/R 是外磁场引起的磁电阻阻值的相对变化。

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告

磁阻传感器与地磁场测量实验报告一、实验目的1、了解磁阻传感器的工作原理和特性。

2、掌握利用磁阻传感器测量地磁场的方法。

3、学会对实验数据进行处理和分析,得出地磁场的相关参数。

二、实验原理1、磁阻效应磁阻效应是指某些金属或半导体在磁场中电阻值发生变化的现象。

磁阻传感器就是利用磁阻效应来测量磁场的。

2、地磁场地磁场是地球周围存在的磁场,其强度和方向在不同的地理位置有所不同。

地磁场可以分解为水平分量和垂直分量。

3、测量原理通过将磁阻传感器放置在不同的方向,测量磁场在不同方向上的分量,然后利用三角函数关系计算出地磁场的大小和方向。

三、实验仪器1、磁阻传感器实验仪包括磁阻传感器、亥姆霍兹线圈、数字电压表等。

2、电脑及数据采集软件四、实验步骤1、仪器连接与调试将磁阻传感器与实验仪连接好,打开电源,预热一段时间,确保仪器正常工作。

2、测量地磁场水平分量(1)将磁阻传感器水平放置,旋转传感器,使数字电压表的示数最大,此时传感器的方向即为地磁场水平分量的方向。

(2)记录此时的电压值,根据仪器的标定系数,计算出地磁场水平分量的大小。

3、测量地磁场垂直分量(1)将磁阻传感器垂直放置,同样旋转传感器,使数字电压表的示数最大。

(2)记录电压值,计算出地磁场垂直分量的大小。

4、数据记录与处理将测量得到的数据记录下来,利用三角函数计算地磁场的大小和方向。

五、实验数据|测量项目|电压值(V)|标定系数(V/T)|磁场分量大小(T)|||||||地磁场水平分量|_____ |_____ |_____ ||地磁场垂直分量|_____ |_____ |_____ |六、数据处理1、地磁场大小根据公式$B =\sqrt{B_{H}^{2} + B_{V}^{2}}$,其中$B_{H}$为地磁场水平分量,$B_{V}$为地磁场垂直分量,计算地磁场的大小。

2、地磁场方向利用反正切函数$\theta =\arctan\frac{B_{V}}{B_{H}}$计算地磁场的方向。

各项异性磁阻效应及磁场测量.

各项异性磁阻效应及磁场测量.

物理实验报告2014物理学专业实验题目:_ 各项异性磁阻效应及磁场测量姓名: 柯铭沣学号:____135012014071___________日期:__2015_年__9___月__28___日实验 各向异性磁阻传感器及磁场测量[实验目的]1、掌握各向异性磁阻传感器的原理和特性;2、掌握各向异性磁阻传感器测量磁场的基本原理和测量方法。

[实验仪器]磁场测试仪,主要包括底座、转轴、带角刻度的转盘、磁阻传感器的引线、亥姆霍兹线圈、磁场测试仪控制主机(数字式电压表、5 V 直流电源等)。

[实验原理]1、各向异性磁阻传感器一定条件下,导电材料的电阻值R 随磁感应强度B 变化的规律称为磁阻效应。

当半导体处于磁场中时,导体或半导体的载流子将受洛伦兹力的作用而发生偏转,因而沿外加电场方向运动的载流子数量将减少,使得沿电场方向的电流密度减小,电阻增大。

(具体原理详见实验39“半导体材料的磁电阻效应研究”)。

各向异性磁阻传感器(Anisotropic Magneto-Resistive sensors, AMR) 是由沉积在硅片上的坡莫合金( Ni 80Fe 20) 薄膜形成的电阻,如图1所示。

除了具有磁阻效应,由于在沉积时外加磁场,AMR 形成易磁化方向,即当外加磁场偏离合金的内部磁化方向时,材料电阻减小,这就是各向异性磁阻效应。

AMR 的电阻与材料所处环境磁化强度M 和电流I 方向间的夹角有关,电流和磁化方向平行时电阻最大为R max ,而电流与磁化方向垂直时电阻最小为R min ,则电流和磁化方向成θ时, 电阻可表示为:()θ2min max min cos R R R R -+= (1)图1磁阻传感器的构造示意图 图2磁阻传感器内部结构为了消除温度等外界因素的影响,本实验所用的磁阻传感器是一种单边封装的磁场传感器,传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出,内部结构如图2所示。

磁阻效应的测量实验原理简述

磁阻效应的测量实验原理简述

磁阻效应的测量实验原理简述磁阻效应是指当通过物体的电流改变时,物体的电阻也会发生变化的现象。

磁阻效应的原理是基于磁连锁理论和斯廷格尔效应。

磁连锁理论认为,当磁场通过物体时,磁场力会改变物体内电子的原初运动状态,并限制其在物体中的自由运动,从而导致电阻的增加。

斯廷格尔效应是指材料内电子的自旋在磁场中的定向程度发生变化,从而导致电阻的变化。

测量磁阻效应可以通过以下实验方法进行:1.电阻测量法:首先建立一个测量电流的电路,将待测物体连接到电路中,通过改变电路中的电流,测量物体的电阻变化。

常用的电阻测量仪器有万用表、电桥等。

在测量过程中,需要注意消除电路中的磁场对测量结果的影响。

2.磁场测量法:通过改变物体周围的磁场强度,观察物体电阻的变化。

可以通过在物体周围安装磁体来改变磁场强度,同时使用磁感应强度计等仪器来测量磁场强度的变化。

在测量过程中,需要注意确保磁感应强度计的探头与物体表面保持垂直,并校正磁感应强度计的零点。

3.电流-磁场测量法:通过施加外部磁场,改变物体内部的自旋定向程度,进而观察电阻的变化。

在实验中,可以使用电流源和磁场源,通过改变电流和磁场的大小和方向,测量物体的电阻变化。

测量过程中,需要注意在改变电流和磁场时,保持稳定的测量条件,并及时记录测量数据。

在进行磁阻效应测量实验时,还需要注意以下几个因素:1.电流和磁场的选择:电流和磁场的选择应根据实验需求来确定。

电流的选择要考虑到物体的电阻范围和所需测量的电阻变化,并注意避免电流过大引起的热效应。

磁场的选择要考虑到物体的磁阻变化范围和所需测量的磁阻变化,并注意避免磁场过大引起的饱和效应。

2.试样的准备:试样的准备要求材料均匀,尺寸合适,并且表面光滑,以减小材料的内部自旋散射和表面等效电阻的影响。

必要时可以采用化学方法对试样进行表面处理。

3.温度控制:磁阻效应与温度有关,温度上升会引起电阻的变化。

所以在实验进行中,需要采取措施控制试样的温度,并记录温度变化的数据。

地磁场的测量实验报告

地磁场的测量实验报告

地磁场的测量实验报告一、实验目的地磁场是地球的重要物理场之一,它对地球的生态、通信、导航等方面都有着重要的影响。

本次实验的目的是测量地磁场的水平分量和垂直分量,并了解地磁场的基本特性。

二、实验原理1、利用磁阻传感器测量地磁场的磁感应强度磁阻传感器是一种基于磁阻效应的传感器,当磁场作用于磁阻传感器时,其电阻值会发生变化。

通过测量电阻值的变化,可以计算出磁场的磁感应强度。

2、测量地磁场的水平分量和垂直分量将磁阻传感器水平放置,测量得到的磁感应强度即为地磁场的水平分量;将磁阻传感器垂直放置,测量得到的磁感应强度即为地磁场的垂直分量。

三、实验仪器1、磁阻传感器2、数据采集卡3、计算机4、电源四、实验步骤1、连接实验仪器将磁阻传感器与数据采集卡连接,数据采集卡与计算机连接,接通电源。

2、校准磁阻传感器在无磁场的环境中,对磁阻传感器进行校准,消除零漂和误差。

3、测量地磁场的水平分量将磁阻传感器水平放置,在计算机上记录测量数据。

4、测量地磁场的垂直分量将磁阻传感器垂直放置,在计算机上记录测量数据。

5、重复测量多次为了提高测量的准确性,对水平分量和垂直分量分别进行多次测量,并取平均值。

五、实验数据以下是多次测量得到的地磁场水平分量和垂直分量的数据:|测量次数|水平分量(μT)|垂直分量(μT)||||||1|_____|_____||2|_____|_____||3|_____|_____||4|_____|_____||5|_____|_____|平均值:水平分量:_____μT垂直分量:_____μT六、数据处理与分析1、计算地磁场的总磁感应强度根据勾股定理,地磁场的总磁感应强度 B 可以通过水平分量 Bx 和垂直分量 By 计算得到:B =√(Bx²+ By²)2、计算地磁场的磁倾角磁倾角θ 可以通过垂直分量 By 和总磁感应强度 B 计算得到:θ = arctan(By / Bx)3、分析测量结果的误差误差可能来源于仪器误差、环境干扰、测量次数等因素。

用磁阻传感器测量地磁场的实验报告

用磁阻传感器测量地磁场的实验报告

用磁阻传感器测量地磁场的实验报告一、引言地磁场是地球表面或附近空间的磁场,是由地球内部流动的液态外核形成的。

地磁场在地球物理学、地磁导航等领域具有重要作用。

而磁阻传感器是一种能够测量磁场强度变化的传感器,可以用于测量地磁场。

本实验旨在通过使用磁阻传感器,测量地磁场的变化,从而探究地磁场的性质及其变化规律。

二、实验目的1.使用磁阻传感器测量地磁场的变化;2.探究地磁场的性质及其变化规律;3.分析实验结果,加深对地磁场的理解。

三、实验原理地球磁场的方向是指向地磁极的,地磁场强度的大小和方向随着地理位置和时间的变化而变化。

磁阻传感器是一种能够测量磁场强度变化的传感器,其工作原理是基于霍尔效应。

当受到外部磁场的作用时,传感器内部产生霍尔电位差,从而输出相应的电压信号,通过对电压信号的测量,可以得到磁场强度的大小。

四、实验材料和装置1.磁阻传感器2.数字万用表3.磁铁4.实验记录表5.实验数据处理软件五、实验步骤1.将磁阻传感器连接至数字万用表,设置为电压测量模式;2.将磁阻传感器放置于地面上,记录下磁场强度的数值;3.在磁阻传感器周围移动磁铁,观察并记录磁场强度的变化;4.将实验数据输入至数据处理软件,进行数据分析;5.根据分析结果,得出地磁场的性质及其变化规律。

六、实验结果与分析通过实验数据的测量和分析,我们得到了地磁场强度随地理位置和外界磁场影响下的变化规律。

地磁场强度的变化不仅受地理位置的影响,还受到外部磁场的影响,因此在进行地磁场测量时需要考虑外部干扰的影响,并进行数据处理和校正。

七、结论与展望本实验通过磁阻传感器测量地磁场的变化,探究了地磁场的性质及其变化规律。

在实验过程中,我们也发现了一些问题和不确定因素,如外部磁场的影响等,需要进一步研究和改进。

通过本实验的学习,我们对地磁场有了更深入的理解,同时也为未来的地磁场研究和应用提供了一定的参考价值。

八、个人观点与理解地磁场是一个十分复杂的自然现象,其变化规律和影响因素需要进一步深入研究。

实验05 磁阻效应法测量磁场

实验05 磁阻效应法测量磁场
0 0 2
实验仪器
亥姆霍兹线圈、 磁阻传感器 恒流源、电压 表等
实验仪器
传感器绕轴旋转锁紧螺钉 传感器轴向移 动锁紧螺钉
磁阻传感器盒 亥姆霍兹线圈
传感器横向移动 锁紧螺钉
传感器水平旋转锁紧螺钉
仪器水平调节螺钉
信号接口盒
线圈水平旋转锁紧螺 钉
磁阻传感器-核心
磁阻传感器芯片 [-6,+6]Gs,1mV/V/Gs 易磁化轴 方向
A
C
A
C
FE
FE
IS
EH
IS
EH
Fg
Fg C
A
A
C
(a)
图 1-1 霍尔效应原理图
(b)
磁阻效应-磁阻效应传感器
磁阻效应-物质在磁场中电阻率发生变化 直接测量磁场、磁场变化 弱磁场、地磁场、导航系统的罗盘、硬盘 位移、角度、转速传感器 接近开关、隔离开关 汽车、家电、各类需要自动检测与控制的 领域

R Rmax cos Rmin sin
2 2
材料
i
夹角
平行

垂直

M
如何应用AMR测量磁场?
实验原理

45度
i
M0
i
M0
M -ΔR
2、磁阻电桥: M 消除温度等外界因素-惠斯通电桥 45 B// R B cos R 惠斯通电桥:U Vb R / R 近似有
磁阻效应法测量磁场
背景知识
电磁场无所不在 地球磁场、手机通信、电磁炉、发电机、 指南针、硬盘、人体、恒星

磁场测量

磁场看不见摸不着,如何测量磁场? 磁力法-被测磁场与磁化物体(或通电线圈)的 机械力(力矩) 电磁感应法-法拉第电磁感应原理 磁饱和法-铁磁材料磁调制 霍尔效应法 磁阻效应法 磁共振法 超导效应法 V V 磁光效应法

大学物理磁阻效应实验报告

大学物理磁阻效应实验报告

大学物理磁阻效应实验报告一、实验目的1、了解磁阻效应的基本原理。

2、测量不同磁场强度下磁阻传感器的电阻变化。

3、研究磁阻传感器的电阻与磁场的关系,求出磁阻特性曲线。

二、实验原理1、磁阻效应磁阻效应是指某些金属或半导体在磁场中电阻值发生变化的现象。

通常,材料的电阻会随着外加磁场的增强而增加,这种现象称为正磁阻效应;而在某些情况下,电阻会随着磁场的增强而减小,称为负磁阻效应。

2、磁阻传感器的工作原理本实验中使用的磁阻传感器通常由半导体材料制成,如锑化铟(InSb)。

当没有外加磁场时,电流在半导体内部均匀流动;当外加磁场时,载流子受到洛伦兹力的作用而发生偏转,导致电流路径变长,电阻增大。

3、磁场的产生与测量实验中通过亥姆霍兹线圈产生均匀磁场,磁场强度可以通过线圈的匝数、电流以及线圈的半径等参数计算得出。

同时,使用特斯拉计测量磁场的实际强度,以进行校准和验证。

三、实验仪器1、磁阻效应实验仪包括亥姆霍兹线圈、磁阻传感器、电源、数字电压表等。

2、特斯拉计四、实验步骤1、仪器连接与调试(1)将磁阻传感器插入实验仪的插座中,确保连接牢固。

(2)将亥姆霍兹线圈与电源连接,调节电源输出电流,使线圈产生磁场。

(3)使用特斯拉计测量亥姆霍兹线圈中心的磁场强度,并与理论计算值进行比较,如有偏差,进行相应的调整。

2、测量零磁场下磁阻传感器的电阻(1)关闭电源,使亥姆霍兹线圈中无电流通过,处于零磁场状态。

(2)使用数字电压表测量磁阻传感器的电阻值,记录下来。

3、测量不同磁场强度下磁阻传感器的电阻(1)逐步增加电源输出电流,使亥姆霍兹线圈中的磁场强度逐渐增大。

(2)在每个磁场强度下,使用数字电压表测量磁阻传感器的电阻值,并记录对应的磁场强度和电阻值。

(3)同样的方法,逐渐减小电源输出电流,测量磁场强度减小时磁阻传感器的电阻值。

4、数据记录与处理(1)将测量得到的数据整理在表格中,包括磁场强度、电阻值等。

(2)以磁场强度为横坐标,电阻值为纵坐标,绘制磁阻特性曲线。

磁阻效应实验报告结论

磁阻效应实验报告结论

一、实验目的本次实验旨在通过实验验证磁阻效应的基本原理,测量不同磁感应强度下导电材料的电阻变化,并分析磁阻效应在实际应用中的重要性。

二、实验原理磁阻效应是指导电材料的电阻值随磁感应强度变化的现象。

当导电材料受到磁场作用时,其电阻值会发生变化。

这种现象可以通过以下原理进行解释:1. 电流在导电材料中传输时,电子会受到洛伦兹力的作用,使得电子的运动轨迹发生偏转。

2. 当磁场方向与电流方向垂直时,电子的偏转轨迹会使得电阻增加;当磁场方向与电流方向平行时,电子的偏转轨迹会使得电阻减小。

3. 磁阻效应的大小与磁感应强度、导电材料的性质等因素有关。

三、实验方法1. 准备实验仪器:THPCZ-1型磁阻效应实验仪、THQCZ-1型磁阻效应测试仪等。

2. 将待测材料放置在实验仪中,调整磁感应强度,测量不同磁场下的电阻值。

3. 记录实验数据,绘制电阻随磁感应强度变化的曲线。

4. 分析实验结果,探讨磁阻效应在实际应用中的重要性。

四、实验结果与分析1. 实验数据表明,随着磁感应强度的增加,待测材料的电阻值呈现出先减小后增大的趋势。

在磁感应强度较小时,电阻值随磁感应强度的增加而减小;在磁感应强度较大时,电阻值随磁感应强度的增加而增大。

2. 实验结果与磁阻效应的基本原理相符。

当磁感应强度较小时,电子的偏转轨迹较短,电阻减小;当磁感应强度较大时,电子的偏转轨迹较长,电阻增大。

3. 通过实验数据分析,可以得出以下结论:(1)磁阻效应在磁感应强度较小时表现出显著的电阻减小现象,有利于提高导电材料的导电性能。

(2)磁阻效应在磁感应强度较大时表现出显著的电阻增大现象,有利于提高导电材料的磁性能。

(3)磁阻效应在实际应用中具有广泛的应用前景,如磁阻传感器、磁阻开关等。

五、实验结论1. 本实验成功验证了磁阻效应的基本原理,并测量了不同磁感应强度下导电材料的电阻变化。

2. 实验结果表明,磁阻效应在磁感应强度较小时表现出显著的电阻减小现象,在磁感应强度较大时表现出显著的电阻增大现象。

地磁场测量实验报告

地磁场测量实验报告

一、实验目的1. 理解地磁场的基本概念及其测量方法。

2. 掌握使用磁阻传感器测量地磁场的原理和操作技巧。

3. 通过实验,验证地磁场在不同位置的分布情况,并分析其特点。

二、实验原理地磁场是指地球表面及其周围空间存在的磁场。

地磁场的强度和方向因地理位置、时间等因素而有所不同。

磁阻传感器是一种利用磁阻效应原理来测量磁场强度的传感器。

当磁阻传感器置于磁场中时,其电阻值会发生变化,通过测量电阻值的变化,可以计算出磁场的强度。

三、实验仪器1. 磁阻传感器2. 亥姆霍兹线圈3. 数字多用表4. 磁力计5. 移动平台6. 铝制样品7. 标准磁标四、实验步骤1. 搭建实验装置:将亥姆霍兹线圈放置在移动平台上,确保线圈轴线与地面平行。

将磁阻传感器固定在亥姆霍兹线圈上,使其感应面与线圈轴线垂直。

2. 产生磁场:通过亥姆霍兹线圈产生一个均匀的磁场。

调节亥姆霍兹线圈中的电流,使磁场强度达到预定值。

3. 测量磁场强度:使用数字多用表测量磁阻传感器的电阻值。

记录不同位置下的电阻值,并计算出相应的磁场强度。

4. 测量地磁场:将磁力计放置在待测位置,记录其读数。

重复测量多次,取平均值作为该位置的地磁场强度。

5. 数据分析:将测量得到的地磁场强度与磁力计读数进行对比,分析地磁场的分布特点。

五、实验结果与分析1. 磁场强度分布:通过实验,发现地磁场强度在亥姆霍兹线圈产生的磁场中呈现均匀分布。

在远离线圈的位置,地磁场强度逐渐减弱。

2. 地磁场特点:地磁场强度在不同地理位置、时间等因素的影响下存在差异。

通过实验,发现地磁场强度在南北方向上较为稳定,而在东西方向上存在一定程度的波动。

3. 误差分析:实验过程中,可能存在以下误差来源:a. 磁阻传感器精度:磁阻传感器的精度会影响测量结果的准确性。

b. 亥姆霍兹线圈磁场均匀性:亥姆霍兹线圈产生的磁场并非完全均匀,可能导致测量结果存在偏差。

c. 环境因素:温度、湿度等环境因素可能对磁阻传感器的性能产生影响。

五邑大学杨芷华电磁场测试活动答案

五邑大学杨芷华电磁场测试活动答案

五邑大学杨芷华电磁场测试活动答案1、问题:电磁感应现象是(??)发现的。

选项:A:法拉第B:库伦C:麦克斯韦D:安培答案:【法拉第】2、问题:一般的,作为空间坐标的函数(有时还是时间的函数)的任何物理量都叫做一个数学场。

选项:A:对B:错答案:【对】3、问题:物理场的三个属性为(??)。

选项:A:空间性B:地域性C:事件性D:时间性答案:【空间性;事件性;时间性】第一章单元测试1、问题:已知如图所示半径为R的半圆柱面均匀分布面电荷密度为s,假设该半圆柱面轴向长度为无限长,放置在真空中,则半圆柱轴线上的电场强度E大小为(?)。

选项:A:B:C:D:答案:【】2、问题:两同心金属球内外半径分别为a和b,中间为理想电介质e=3e0,内、外球面之间的电压为U,则介质中的外球表面(半径为b)电位移矢量D大小为()。

选项:A:B:C:D:答案:【】3、问题:电场强度E通过一个闭合曲面的通量等于零,意味着()。

选项:A:该闭合曲面内负电荷多于正电荷B:该闭合曲面内正电荷等于负电荷C:该闭合曲面内极化电荷等于零D:该闭合曲面内正电荷多于负电荷答案:【该闭合曲面内正电荷等于负电荷】4、问题:选项:A:不能B:不确定C:能D:其余选项都有可能对答案:【不能】5、问题:半径为a的长直圆柱导线通恒定电流I。

外面包一层半径为b的绝缘材料,磁导率为m?1?m0,绝缘层内表面(半径为a)中的极化强度M大小为()。

选项:A:B:C:D:答案:【】6、问题:下面关于磁感应强度方向的说法哪些是正确的()。

选项:A:与产生磁场的电流成左手螺旋关系B:与产生磁场的电流成右手螺旋关系C:与产生磁场的电流方向以及电流流经导线的受力方向共同构成的平面垂直D:平行于产生磁场的电流答案:【与产生磁场的电流成右手螺旋关系;与产生磁场的电流方向以及电流流经导线的受力方向共同构成的平面垂直】7、问题:极化电荷的存在使得介质内部的电场强度增大。

选项:A:对B:错答案:【错】8、问题:长直载流导线附近有一单匝矩形线框与其共面,如图所示。

大学物理实验讲义实验04 磁阻效应法测量磁场

大学物理实验讲义实验04 磁阻效应法测量磁场

实验15 磁阻效应法测量磁场物质在磁场中电阻率发生变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。

磁场的测量可利用电磁感应,霍尔效应,磁阻效应等各种效应。

其中磁阻效应法发展最快,测量灵敏度最高。

磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。

也可通过磁场变化测量其它物理量,如利用磁阻效应已制成各种位移、角度、转速传感器,各种接近开关,隔离开关,广泛用于汽车,家电及各类需要自动检测与控制的领域。

磁阻元件的发展经历了半导体磁阻(MR ),各向异性磁阻(AMR ),巨磁阻(GMR ),庞磁阻(CMR )等阶段。

本实验研究AMR 的特性并利用它对磁场进行测量。

【实验目的】1. 了解AMR 的原理并对其特性进行实验研究。

2. 测量赫姆霍兹线圈的磁场分布。

3. 测量地磁场。

【仪器用具】ZKY-CC 各向异性磁阻传感器(AMR )与磁场测量仪【实验原理】各向异性磁阻传感器AMR (Anisotropic Magneto-Resistive sensors )由沉积在硅片上的坡莫合金(Ni 80 Fe 20)薄膜形成电阻。

沉积时外加磁场,形成易磁化轴方向。

铁磁材料的电阻与电流与磁化方向的夹角有关,电流与磁化方向平行时电阻R max 最大,电流与磁化方向垂直时电阻R min 最小,电流与磁化方向成θ角时,电阻可表示为:θ2min max min cos )(R R R R -+= (1) 在磁阻传感器中,为了消除温度等外界因素对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。

图1中,易磁化轴方向与电流方向的夹角为45度。

理论分析与实践表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线性关系。

无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个桥臂电阻阻值相同,输出为零。

磁阻效应的测量实验原理

磁阻效应的测量实验原理

磁阻效应的测量实验原理
磁阻效应实验的原理是利用电流通过磁体时产生的磁场所产生的磁阻变化来测
量电流的大小。

磁阻效应是指材料在外加磁场作用下其电阻发生的变化。

磁阻效应的大小与材料的特性参数磁阻率有关,磁阻率越大,磁阻效应越明显。

实验中通常采用两种不同的材料制作的磁阻式电阻,一种为感应式磁阻式电阻,另一种为磁场敏感型磁阻式电阻。

感应式磁阻式电阻是由磁性材料制成的,当外加磁场发生改变时,材料内部的磁化程度也会发生变化,进而改变电阻值。

通过测量电阻的变化可以间接测量磁场的大小。

磁场敏感型磁阻式电阻是由半导体材料制成的,当通过该电阻的电流发生改变时,材料内部的电荷载流子的自旋会发生改变,进而改变电阻值。

同样通过测量电阻的变化可以间接测量电流的大小。

实验中通常使用电路连接电源和待测电阻,通过测量电阻两端的电压或电流,再根据磁阻效应原理,就可以计算出电流的大小。

需要注意的是,在磁阻效应测量中,外界干扰的磁场会影响测量结果,因此需要
采取屏蔽措施以减小干扰。

总结起来,磁阻效应测量实验通过测量磁阻变化来间接测量电流大小,利用磁阻式电阻的特性来实现测量。

各项异性磁阻效应及磁场测量.

各项异性磁阻效应及磁场测量.

物理实验报告2014物理学专业实验题目:_ 各项异性磁阻效应及磁场测量姓名: 柯铭沣学号:____135012014071___________日期:__2015_年__9___月__28___日实验 各向异性磁阻传感器及磁场测量[实验目的]1、掌握各向异性磁阻传感器的原理和特性;2、掌握各向异性磁阻传感器测量磁场的基本原理和测量方法。

[实验仪器]磁场测试仪,主要包括底座、转轴、带角刻度的转盘、磁阻传感器的引线、亥姆霍兹线圈、磁场测试仪控制主机(数字式电压表、5 V 直流电源等)。

[实验原理]1、各向异性磁阻传感器一定条件下,导电材料的电阻值R 随磁感应强度B 变化的规律称为磁阻效应。

当半导体处于磁场中时,导体或半导体的载流子将受洛伦兹力的作用而发生偏转,因而沿外加电场方向运动的载流子数量将减少,使得沿电场方向的电流密度减小,电阻增大。

(具体原理详见实验39“半导体材料的磁电阻效应研究”)。

各向异性磁阻传感器(Anisotropic Magneto-Resistive sensors, AMR) 是由沉积在硅片上的坡莫合金( Ni 80Fe 20) 薄膜形成的电阻,如图1所示。

除了具有磁阻效应,由于在沉积时外加磁场,AMR 形成易磁化方向,即当外加磁场偏离合金的内部磁化方向时,材料电阻减小,这就是各向异性磁阻效应。

AMR 的电阻与材料所处环境磁化强度M 和电流I 方向间的夹角有关,电流和磁化方向平行时电阻最大为R max ,而电流与磁化方向垂直时电阻最小为R min ,则电流和磁化方向成θ时, 电阻可表示为:()θ2min max min cos R R R R -+= (1)图1磁阻传感器的构造示意图 图2磁阻传感器内部结构为了消除温度等外界因素的影响,本实验所用的磁阻传感器是一种单边封装的磁场传感器,传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出,内部结构如图2所示。

磁阻效应的测量实验原理简述

磁阻效应的测量实验原理简述

磁阻效应的测量实验原理简述
磁阻效应的测量实验原理是指在磁场中,物质的电阻发生变化的现象。

它是由于磁场作用下,电子在材料中移动时受到磁场的阻碍而导致电阻增加。

磁阻效应的测量实验可以通过测量电阻的变化来研究材料的磁性质。

磁阻效应的测量实验通常使用恒流源、电压表和磁场,实验过程如下:
1、首先,将恒流源连接到待测物质上,保持电流恒定。

这样可以确保在测量过程中,电流是不变的。

2、接下来,将电压表连接到待测物质的两端,用来测量电阻的变化。

在测量前,可以先测量一下初始电阻,作为参考值。

3、然后,将磁场引入实验装置中。

可以使用一个电磁铁或者永磁体来产生磁场。

将磁场垂直于待测物质的方向,以确保磁场的作用最大化。

4、在引入磁场后,开始测量电阻的变化。

通过电压表测量待测物质的电压差,并根据欧姆定律可以计算出电阻的变化量。

根据实验要求,可以在不同的磁场强度下重复测量。

5、实验结束后,可以绘制出磁场强度和电阻变化的曲线图。

通过观察曲线的形状和变化趋势,可以对物质的磁性质进行初步分析。

总结来说,磁阻效应的测量实验通过测量材料在磁场中的电阻变化,研究材料的磁性质。

实验中通过恒流源和电压表控制和测量电流和电压,在引入磁场后测量电阻的变化,并绘制曲线来分析物质的磁性质。

这样的实验有助于深入理解材料的磁性质以及在磁场中的表现。

测量微弱磁场的方法和手段

测量微弱磁场的方法和手段

测量微弱磁场的方法和手段大家好呀!今天咱就来好好唠唠测量微弱磁场的那些方法和手段哈。

一、利用霍尔效应测量微弱磁场。

霍尔效应可是个挺神奇的东西哟。

简单来说呢,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这就是霍尔效应啦。

具体咋操作呢?咱得有个霍尔元件,这玩意儿就像是个小探测器。

把它放在待测的微弱磁场中,然后给它通上一定的电流。

这时候呀,根据霍尔元件产生的霍尔电压,就能算出磁场的大小啦。

比如说,在一些科研实验里,要测量一个小区域内的微弱磁场,就可以把霍尔元件放进去,通过测量霍尔电压,再结合相关的公式,就能得到磁场的数值咯。

不过呢,用霍尔效应测量的时候,要注意霍尔元件的灵敏度,要是灵敏度不够高,那可能就测不准微弱磁场啦。

二、利用磁阻效应测量微弱磁场。

磁阻效应也很有趣哟。

有些材料的电阻会随着外加磁场的变化而变化,这就是磁阻效应的基本原理啦。

常见的有巨磁阻材料和各向异性磁阻材料。

就拿各向异性磁阻材料来说吧,把它做成传感器放在微弱磁场中,当磁场变化时,材料的电阻就会改变。

通过测量电阻的变化,就能知道磁场的情况啦。

比如说在一些电子罗盘里,就会用到这种磁阻传感器来测量地球的微弱磁场,从而确定方向。

但是呢,这种方法也有个小缺点,就是容易受到外界干扰,像温度变化啥的,可能会对测量结果有一点影响,所以在测量的时候得注意控制好环境条件哟。

三、利用超导约瑟夫森效应测量微弱磁场。

超导约瑟夫森效应听起来是不是有点高大上?其实呀,它在测量微弱磁场方面也有很大的用处呢。

在超导材料中,当有微弱磁场存在时,约瑟夫森结会表现出一些特殊的性质。

通过检测这些性质的变化,就能实现对微弱磁场的测量。

比如说在一些高精度的磁场测量实验中,超导约瑟夫森结就像是一个超级灵敏的探测器,能够检测到极其微弱的磁场变化。

不过呢,要实现超导约瑟夫森效应,对环境的要求可是很高的哟,一般得在低温环境下才行,这就需要一些特殊的设备来维持低温,成本也会相对高一些啦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据误差范围确定改装表的准确度等级

改装电压表的校准
1、满量程校准(调R2) 2、对改装表上每一格刻度进行校准(记录仪器实物
标准电压表 标准电流表
实验板和表头
可调稳压电源 滑线变阻器 数字万用表
预习与思考
1、校正电流表时,如发现改装表的读数相对于标准表的读数均偏高, 分流电阻应调大还是调小?为什么? 2、校正电压表时,如发现改装表的读数相对于标准表的读数均偏低, 分压电阻应调大还是调小?为什么? 3、请自行设计数据记录表格。
改装表校准

改装电流表的校准
1、把改装表与标准表串联,让流过它们的 电流一样大,如下图所示 2、调节RW或电电源电压,使标准表读数达 到设计的电流量程I1,此时改装表指针理 论上应指向满量程,但由于分流电阻R1与 计算值存在一定的偏差,会造成指针不到 或超出量程。 3、调节R1,RW或电源电压,使标准表读数 与改装表的满量程相一致,此时,电流表 的改装才真正完成,此后,R1不能再改变。
电表设计与制作
五邑大学物理实验中心
最基本的电量测量和仪器

电学最基本的定律之一 欧姆定律:R=U/I 最基本的电量:U,I 测量仪器:电压表、电流表、三用表(万用表) 类型:磁电式(指针式)、数字式(各有优点,要根据用途选用)
指针式
数字式
实验目的
1、了解磁电式电表基本结构和内阻测量方法 2、掌握改装电表的原理和校准方法
R2
U1 rg Ig
U1
电压量程
表头内阻测量

改装表的设计需要知道表头的内阻Rg 表头内阻的测量方法:

用高精度的数字万用表直接测(注意使用电阻档量程从高到低) 半电流法(半偏法)
Step1.断开S,记录电流读数I Step2.闭合S,调节R2,使用 电流读数为I/2,此时R2的值即 为表头内阻Rg
表头结构与工作原理
“表头”通常指的是磁电式结构的微安表头,其动圈是由铜导线 (常用紫铜线)绕制而成的,测量时,电流流过线圈产生磁场, 与永磁定子之间产生相互作用力使指针偏转,通过合理设计定标, 可以使指针转过的角度与电流的大小成一定的对应关系,从而达 到指示电流大小的目的。
改装电流表

微安表头的电流量程很小(如Ig=100uA),要改装成一个量程更大 的电流表,须加分流电阻R1,如下图所示。 R1的计算公式如下:
R1 I g rg I1 I g
I g 表头量程
I 1 改装后量程
rg R0 1.8KΩ _表头等效内阻 rg
改装电压表


电流表的指针摆幅随被测的电压变化而变化,因此可以作为电压 表用于指示电压的大小,但微安表头的内阻很小,可以承受的电 压很小,要扩大电压量程,必须加分压电阻R2,如下图所示。 R2的计算公式如下:

4、以改装表的读数为自变量I x ,等间隔地改变电流的大小,读取 相应的标准表上的读数I S ,设计表格记录数据。 5、计算各刻度的修正值 I x I S I x ,作出 I x I x 曲线即为 该电流表的校准曲线,如下图所示

6、准确度等级计算
rm
I m 100% I1
相关文档
最新文档