原子发射光谱定性分析

合集下载

原子发射光谱定性定量分析.

原子发射光谱定性定量分析.

中心波长:300 nm ; 摄谱波长范围:200-1000 nm
狭缝宽度5 um ;
狭缝高度l nm ;电流强度:5A、8A
预热时间5s ;
曝光时间15s
4.摄谱 调整外电路和电极间距离,电流强度5A,预热时间5s,曝光时间
l5s,摄钢样谱,板移1.5 nm,在电弧电流强度8A的条件下,再摄一 次钢样谱。 5.暗室处理
仪器与试剂
1.仪器 (1)WLD-3C型真空直读光谱仪; (2)元素标准光谱图 2.试剂: (1)显影液; (2)定影液; (3)上电极为光谱 纯石墨桥,下电极为钢块
实验步骤
1.预习摄谱仪各部件的工作原理,熟悉仪器使用方法
2.准备电极和试样,在暗室中安装感光板
3.调整仪器工作条件和工作参数
光谱仪:WLD-3C型真空直读光谱仪
表1 钢样中铬、铜、锰、镍、钛元素的灵敏线
元素 Cr Cu Mn Ni Ti
301.476 324.754 257.610 305.082 308.803
灵敏线波长λ /nm 301.493 327.396 259.373 341.477 334.904
267.716 282.437 293.306 299.260 337.759
因此把摄得的谱板置于映谱仪上放大20倍以铁光谱为波长标尺与元素标准图谱进行比较使谱板上的铁光谱与元素标准光谱的铁光谱完全重合就可方便地辨别出元素的灵敏线判断元素是否存在
实验九
原子发射光谱定性定量分析 钢中铬、锰、铜、镍、钛五元素分析
实验原理
各种元素因其原子结构不同而有其特征光谱线。具有较低激发电 位的谱线称为灵敏线,按照激发电位大小可分为最灵敏线,次灵敏线 等。根据元素2-3条灵敏线是否出现,就可以判断出该元素是否存在。 由于这是根据谱线的波长进行光谱定性分析的。因此,把摄得的谱板 置于映谱仪上,放大20倍,以铁光谱为波长标尺,与元素标准图谱进 行比较,使谱板上的铁光谱与元素标准光谱的铁光谱完全重合,就可 方便地辨别出元素的灵敏线,判断元素是否存在。

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱仪通常由三部分构成: 光源、分光、检测
二、火焰光度计
利用火焰作为激发光源,仪器装置简单,稳定性高。该仪器通常采用滤光片、光电池检测器等元件,价格低廉,又称火焰光度计。
常用于碱金属、钙等谱线简单的几种元素的测定,在硅酸盐、血浆等样品的分析中应用较多。对钠、钾测定困难,仪器的选择性差。
缺点: 弧光不稳,再现性差; 不适合定量分析。
2. 低压交流电弧
工作电压:110~220 V。 采用高频引燃装置点燃电弧,在每一交流半周时引燃一次,保持电弧不灭;
工作原理
(1)接通电源,由变压器B1升压至2.5~3kV,电容器C1充电;达到一定值时,放电盘G1击穿;G1-C1-L1构成振荡回路,产生高频振荡; (2)振荡电压经B2的次级线圈升压到10kV,通过电容器C2将电极间隙G的空气击穿,产生高频振荡放电;
二、原子发射光谱的产生
在正常状态下,元素处于基态,元素在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱);
特征辐射
基态元素M
激发态M*
热能、电能
E
原子的共振线与离子的电离线
原子由第一激发态到基态的跃迁: 第一共振线,最易发生,能量最小; 原子获得足够的能量(电离能)产生电离,失去一个电子,一次电离。(二次电离) 离子外层电子跃迁时发射的谱线称为离子线,每条离子线都具有相应的激发电位,其大小与电离电位大小无关。 原子谱线表:I 表示原子发射的谱线; II 表示一次电离离子发射的谱线; III表示二次电离离子发射的谱线; Mg:I 285.21 nm ;II 280.27 nm;
1. 直流电弧 直流电作为激发能源,电压150 ~380V,电流5~ 30A; 两支石墨电极,试样放置在一支电极(下电极)的凹槽内; 使分析间隙的两电极接触或用导体接触两电极,通电,电极尖端被烧热,点燃电弧,再使电极相距4 ~ 6mm

光谱定性分析的基本原理

光谱定性分析的基本原理

光谱定性分析的基本原理光谱定性分析是一种通过物质对光的吸收、发射、散射等特性来确定其化学成分和结构的方法。

在化学分析中,光谱定性分析具有重要的应用价值,可以帮助化学家快速准确地确定物质的成分和结构。

本文将介绍光谱定性分析的基本原理,希望能为相关领域的研究人员提供一些帮助。

光谱定性分析的基本原理主要包括原子光谱、分子光谱和质谱三种类型。

原子光谱是通过原子吸收光谱和原子发射光谱来进行分析的,主要应用于金属元素的分析。

分子光谱则是通过分子的振动、转动和电子跃迁等过程来进行分析,主要应用于有机物和无机物的分析。

质谱则是通过物质的质荷比来进行分析,可以用于确定化合物的分子结构和分子量。

在光谱定性分析中,最常用的是原子吸收光谱和分子红外光谱。

原子吸收光谱是通过原子在特定波长的光线作用下吸收特定的能量,从而产生吸收线,通过测定吸收线的位置和强度来确定样品中金属元素的含量。

而分子红外光谱则是通过样品中分子的振动和转动引起的红外吸收来确定分子的结构和成分。

光谱定性分析的基本原理是通过物质对光的吸收、发射、散射等特性来确定其化学成分和结构。

在实际应用中,可以通过光谱仪器来测定样品的光谱特性,然后根据已知的标准光谱图谱或者数据库来进行比对分析,从而确定样品中的化学成分和结构。

总的来说,光谱定性分析是一种非常重要的化学分析方法,它可以帮助化学家快速准确地确定物质的成分和结构。

通过对光谱定性分析的基本原理的了解,可以更好地应用光谱定性分析方法进行化学分析工作,为科学研究和工程技术提供支持。

光谱定性分析的基本原理是化学分析中的重要内容,它可以帮助化学家快速准确地确定物质的成分和结构。

希望本文的介绍能够对相关领域的研究人员有所帮助,也希望大家能够在实际工作中更好地应用光谱定性分析的方法,为科学研究和工程技术提供支持。

原子发射光谱分析

原子发射光谱分析
01
02
01
半定量
01
I = KNX
02
其中:
03
I:光谱强度
04
K:常数
05
N:原子浓度
06
X:接近1的指数
定量分析基础
全谱直读电感耦合等离子发射光谱仪
工作模式: 通过一次测定,同时记录样品中待测元素的所有发射谱线,不管这些谱线是在紫外区,还是在可见区,也不论这些待测元素是高浓度或是低浓度,多能同时完成测定。 性能特点: 1、由于具有同时记录待测元素的所有发射谱线的功能,所以,可以通过选择合适的谱线,有效避免光谱干扰; 2、同一元素,具有很多分析谱线,不同元素具有不同的灵敏度,高灵敏度谱线检测低含量的样品,低灵敏度谱线检测高浓度样品,所以有效地拓宽了分析的浓度范围; 3、分析速度极快; 4、同时记录样品的背景信号,有效扣除背景影响,大大改善分析精度。
当蠕动泵管变得松弛,无须拉长就可挂在两边的卡槽中时,就需要更换蠕动泵管了
8
清洁冷锥接口/石英帽
9
ICP-AES维护
注意:
C
当分析有机样品时,应经常检查中间层和注射管上是否有积碳。
F
随着炬管使用时间的增加,炬管最终会破碎 这时必须更换之 为保证分析性能,必须保持炬管清洁,经常检查和清洗炬管。
B
炬管上所形成的沉积物可能影响仪器的正常操作
一种半定量的方法是对许多元素进行一次曲线校正,并将标准曲线储存起来。然后在需要进行半定量时,直接采用原来的曲线对样品进行测试。结果会因仪器的飘移而产生误差或因样品基体的不同而产生误差,但对于半定量来说,可以接受。
半定量是对样品中一些元素的浓度进行大致估算。与定量分析相比较,半定量希望通过较少地努力来大致得到许多元素的浓度。

原子发射光谱分析概述、基本原理和定性定量分析方法

原子发射光谱分析概述、基本原理和定性定量分析方法
节重点介绍光源、相板检测器及相关特性。
物镜
准直镜
反射镜 入射狭缝
光栅 转台
AES仪器略图
光源
一 、AES光源 1. 光源种类及特点
光源
经典光源 现代光源
火焰 电弧 火花
直流电弧 交流电弧
电感耦合等离子体,ICP 激光光源
直流电弧:接触引燃,二次电子发射放电
L
E 220~380V V
5~30A
G
R
d) 谱线的自吸(self-absorption)及自蚀(self-reversal); e)e) 激发温度 T; f)f) 基态原子数 N0 或浓度 c; g) 前三项由待测物原子自身的性质决定,如核电荷数 、外层电子、轨道状态等。 h) 影响谱线强度及其稳定性最重要的的因素是温度T!
5.3 AES仪器 AES仪器由光源、单色系统、检测系统三部分组成。此
上述振荡电压 10kV(变压器B2) C2击穿 高压高频振荡 引燃分析 间隙(L2-C2-G2);
G 被击穿瞬间,低压电流使 G2 放电(通过R1和电流表) 电弧; 不断引燃 电弧不灭。
5由于原子或离子的能级很多并且不同元素的结构是不同的因此对特定元素的原子或离子可产生一系不同波长的特征光谱通过识别待测元素的特征谱线存在与否进行定性分析定性原理
原子发射光谱分析 概述、基本原理和 定性定量分析方法
5.1 概述 5.2 基本原理 5.3 AES 仪器 5.4 定性定量分析方法
1)分析对象为大多数金属原子; 2)物质原子的外层电子受激发射产生特征谱线(线光谱); 3)谱线波长——定性分析;谱线强度——定量分析。
E = E2-E1 = h =hc/
高能态E2)
2. 几个概念 激发电位(Excited potential):由低能态--高能态所需要的

实验一原子发射光谱定性半定量分析

实验一原子发射光谱定性半定量分析

1. 光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范围; 应用:用于钢材、合金等的分类、矿石品位分级等大批 量试样的快速测定。 谱线强度比较法:测定一系列不同含量的待测元素标准 光谱系列,在完全相同条件下(同时摄谱),测定试样中待测 元素光谱,选择灵敏线,比较标准谱图与试样谱图中灵敏线 的黑度,确定含量范围。
7)其余可能干扰的元素,应逐个检查它们的灵敏线,如 某元素的灵敏线光谱中没有,则认为不存在这个元素的干扰。 如在光谱中有其灵敏线,可能是分析元素谱线上叠加干扰元 素的的谱线。在这种情况下,进行下一步骤,以期得出肯定 判断。
8)在该线附近再找出一条干扰元素的谱线(与原干扰强 度相同或稍强一些)进行比较,如该分析元素灵敏线黑度大 于或等于找出的干扰元素谱线的黑度,则可判定分析元素存 在。例:样品中含铁量高时。则锆3438·23A被铁3438·31A (强度10)所重叠,可与铁3437·95A(强度15)的黑度比较, 如锆3438·23A的黑度大于或等于铁3437·95A时可确定锆的存 在,又如钼3170·347A与铁3170·346A重叠时,可用铁 3171·663A的黑度比较,确定钼是否存在。
5、换新的石墨电极。其它条件不变。推光阑至|6|和|7|,在低 电流和高电流下重复对该样品摄谱。
6、暗室操作 在红灯下从暗盒中取出摄好谱的干板,乳剂面向上放入 18~20℃的显影液中,显影2分钟半。定影2分钟。半定影8分钟, 取出用水充分冲洗晾干。
7、识谱(铁光谱比较法)
1)谱片置于映谱仪置片台上
测量各元素特征光谱的波长和强度便可对元 素进行定性和定量分析。
原子发射光谱法的特点
原子发射光谱法灵敏度高,10-3-10-9g; 选择性好;可同时分析儿十种元素; 线性范围宽,约2个数量级,但若采用电感 藕合等离子体光源,则线性范围可扩大至 6-7个数量级; 不足之处:是谱线干扰较严重,对一些非 金属元素还不能测定。

原子发射光谱 定量和半定量

原子发射光谱 定量和半定量

原子发射光谱(Atomic Emission Spectrometry,AES)是一种利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,进行元素的定性与定量分析的方法。

原子发射光谱法具有多元素检测、分析速度快、选择性好、检测限低、准确度高、误差较小、试样消耗少、线性范围大等优点。

然而,它也存在一些局限性,如不能非金属、光谱复杂、价格昂贵等。

在原子发射光谱法中,定量和半定量的分析主要依据以下原理:
1. 定量分析:通过测量待测物质中各元素的发射光谱强度,与标准光谱强度进行比较,从而计算出待测物质中各元素的含量。

常用的定量分析方法有:标准曲线法、标准加入法、内标法等。

2. 半定量分析:通过比较待测物质中某元素的发射光谱与已知浓度的标准物质光谱,对待测物质中该元素的含量进行大致估算。

半定量分析常用的方法有:目视法、比较法等。

在实际应用中,原子发射光谱法可对约70 种元素(包括金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。

在一般情况下,用于1% 以下含量的组份测定,检出限可达ppm,精密度为10% 左右,线性范围约2 个数量级。

这种方法可有效地用于测量高、中、低含量的元素。

仪器分析 第7章 原子发射光谱分析

仪器分析 第7章 原子发射光谱分析

摄谱法原理 ⑴ 摄谱步骤
安装感光板在摄谱仪的焦面上
激发试样,产生光谱而感光
显影,定影,制成谱板 特征波长—定性分析 特征波长下的谱线强度—定量分析
⑵ 感光板 玻璃板为支持体,涂抹感光乳剂(AgBr+明胶+增感剂) 感光:
2AgX+2hυ→ Ag(形成潜影中心)+X2
OH
O
显影: 对苯二酚
乳剂特性曲线:
感光板的反衬度
以黑度S与曝光量的对数lgH作图 在正常曝光部分:
γ
S lg H lg H i lg H i
α
乳 剂 特 性 曲 线
S lg( It ) i
Hi为感光板的惰延量
谱线黑度与辐射强度的关系:
S lg( It ) i
定量分析中,更主要是采用 内标法,测量分析线对的相 对强度
磁辐射,通过测定其波长或强度进行分析的方法
不涉及能级跃迁,物质与辐射作用,使其传播方 向等物理性质发生变化,利用这些改变进行分析 的方法
光分析法
非光谱分析法
光谱分析法
圆 折 二 射 色 法 性 法
X 射 干 线 涉 衍 法 射 法
原子光谱分析法 旋 光 法
X 射 线 荧 光 光 谱
分子光谱分析法
分 子 荧 光 光 谱 法 分 子 磷 光 光 谱 法 核 磁 共 振 波 谱 法
e. 波长尽可能靠近
(3) 摄谱法中的内标法基本关系式
• 摄谱法中谱线黑度S与辐射强度、浓度、曝光时间 、感光板的乳剂性质及显影条件有关,固定其他 条件不变,则感光板上谱线的黑度仅与照射在感 光板上的辐射强度有关
i0 S lg i
i0 未曝光部分的透光强度 i 曝光部分的透光强度

原子发射光谱分析

原子发射光谱分析

ICP的分析特点 的分析特点
1. 对大多数元素有高的灵敏度 检测限达 -9-10-11 检测限达10 g·L-1因为温度高(等离子体核处 因为温度高(等离子体核处10000K,中央 ,中央6000- - 8000K);惰性气氛,有利于难熔物质分解。 );惰性气氛 );惰性气氛,有利于难熔物质分解。 2. 测定线性范围宽 因趋肤效应而无自吸现象。 因趋肤效应而无自吸现象 自吸现象。 高频电流密度在导体截面呈不均匀分布, 趋肤效应 高频电流密度在导体截面呈不均匀分布,集 中在导体表层的现象。 中在导体表层的现象。 3. 碱金属电离不造成干扰,因电流密度大。 碱金属电离不造成干扰,因电流密度大。 4. 无电极污染 因是无极放电。 因是无极放电。 5. 耗样量小 载气流速低,试样在中央通道充分激发 载气流速低, 6. 背景干扰小 因工作气体氩气是惰性气体不产生其 它物质。 它物质。
第一共振线 原子由第一激发态跃迁到基态发射的谱线。 原子由第一激发态跃迁到基态发射的谱线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 原子获得足够的能量(电离能)产生电离。 原子获得足够的能量(电离能)产生电离。失去一个电 子形成一级离子,再失去一个电子形成二级离子。 子形成一级离子,再失去一个电子形成二级离子。 离子由第一激发态跃迁到基态发射的谱线。 电离线 离子由第一激发态跃迁到基态发射的谱线。与电 离能大小无关,离子的特征共振线。 离能大小无关,离子的特征共振线。 识别元素的特征光谱鉴别元素的存在 定性分析 测定特征谱线的强度测定元素的含量 定量分析
R 镇流电阻 调节 和稳定电流 L 减小电流波动
直流电弧工作原理
电弧点燃后,热电子流高速通过分析间隔冲击阳极, 电弧点燃后,热电子流高速通过分析间隔冲击阳极, 产生高热,试样蒸发并原子化, 产生高热,试样蒸发并原子化,电子与原子碰撞电离出 正离子冲向阴极。电子、原子、离子间的相互碰撞, 正离子冲向阴极。电子、原子、离子间的相互碰撞,使 原子跃迁到激发态,返回基态时发射出该原子的光谱。 原子跃迁到激发态,返回基态时发射出该原子的光谱。 弧焰温度: 多种元素激发 弧焰温度:4000~7000 K,可使 多种元素激发。 ~ ,可使70多种元素激发。 绝对灵敏度高,背景小,适合定性分析。 特 点:绝对灵敏度高,背景小,适合定性分析。

原子发射光谱测定方面的分析【论文】

原子发射光谱测定方面的分析【论文】

原子发射光谱测定方面的分析摘要:原子发射光谱主要曾经应用于发现新元素以及建立原子结构理论。

随着分析科学技术的不断发展,人们对分析仪器的要求也越来越高,不但要求将来的分析仪器设备具有更高的灵敏度、精密度以及分析速度,更要求其向微型化、自动化和集成化的方向发展。

关键词:原子发射光谱;分析仪器;分析速度一、概述1.原子发射光谱法的概述原子发射光谱法,是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。

在正常状态下,元素处于基态,元素在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱)。

原子发射光谱法包括了三个主要的过程,即:(1)原子发射光谱主要由光源提供能量给样品,从而使样品蒸发、形成气态原子以及进一步使气态原子激发得到光辐射的过程;(2)其将复合光经单色器分解成按顺序排列的谱线,从而形成光谱;(3)使用检测器来检测光谱中的谱线的波长以及谱线的强度。

“原子发射光谱分析”是《分析试验室》期刊两年一次的综述。

自 1991 年起, 至今已有 4 篇综述发表, 这些综述推动了我国原子发射光谱分析的发展,具有好的参考价值。

在有关原子光谱分析的技术中,原子发射光谱法的特点是拥有检测线性范围宽以及多元素可以同时测定的能力,原子发射光谱法被视为一种标准的分析方法,现今,原子发射光谱法广泛应用于痕量元素的分析测定。

分析测定主要的基本原理是使物质处于热激发或电激发,其由元素的离子或原子发射出特征光谱,根据发射出来的特征光谱的强弱,从而可对元素进行定性与定量分析的过程。

原子发射光谱仪器主要由波长选择系统、检测系统、进样系统以及激发光源组成。

2.原子发射光谱的分析方法(1)定性分析每一种元素的原子都有它的特征光谱,根据原子光谱中的元素特征谱线就可以确定试样中是否存在被检元素。

通常将元素特征光谱中强度较大的谱线称为元素的灵敏线。

只要在试样光谱中检出了某元素的灵敏线,就可以确证试样中存在该元素。

原子发射光谱定性和定量分析

原子发射光谱定性和定量分析

【实验题目】原子发射光谱定性和定量分析【实验目的】1、把握光谱定性分析的一样原理和方式。

2、把握光谱定量分析的一样原理和方式。

3、了解电感耦合等离子体原子发射光谱仪的利用方式。

【实验原理】但当原子受到能量(如热能、电能等)的作历时,原子由于与高速运动的气态粒子和电子彼此碰撞而取得了能量,使原子中外层的电子从基态跃迁到激发态,处于激发态的原子是十分不稳固的,在极短的时刻内便跃迁至基态或其它较低的能级上。

当原子从较高能级跃迁到基态或其它较低的能级的进程中,将释放出多余的能量,这种能量是以必然波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示:△E=E2-E1=hv谱线波长:λ=c/v每一种元素因其原子结构不同,受激发后都能够产生自己的特点光谱,每一种元素的特点光谱通常包括有很多谱线,谱线的强度各不相同。

一个试样如含有假设干种元素,谱线上就有这假设干种元素的特点光谱,特点光谱的条数多少与各元素含量高低有关。

当某元素含量降低时,其光谱中的弱线接踵消失,而不被检出。

最后消失的几条谱线叫“灵敏线”定性分析一样只需找出某元素的灵敏线即可确信该元素的存在。

光谱分析依照这些元素的特点光谱就能够够准确无误的辨别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。

当温度一按时,光谱线的强度与试样中该元素的浓度之间的关系符合以下体会公式:I=a C blgI=blgc+lga【实验仪器与试剂】(1)仪器:IRIS INTREPIDⅡ XSP 高频电感耦合等离子直读仪。

(2)试剂:氩气;未知样品;钙、镁保准储蓄液:100ug/mL;蒸馏水。

【实验内容与步骤】1、定性分析按仪器操作规程,设置仪器参数,点燃等离子体,运行全谱命令,对未知样品进行分析。

仪器要紧参数:高频功率,1150W;冷却气流量,15L/min;辅助气流量,/min;载气压力,25psi;蠕动泵转速,120r/min;溶液提升量,min。

实验6 原子发射光谱定性分析

实验6 原子发射光谱定性分析

由于元素的谱线强度随试样中该元素的含量减少而降低, 这样一来,元素含量降低时,其中一部分灵敏度较低,强度较 弱的谱线将逐渐消失,我们把: 随着元素含量的降低,而最后消失的灵敏线叫最后线。
12:30
16
λ=2265Å是Cd元素的最后线。
最后线一般是元素的最灵敏线,但如果谱线中有自吸现 象,则这些谱线在元素浓度高时,由于自吸而很弱或消失, 而当浓度逐渐降低时,它反而加强或重新出现,这条线不 是最灵敏线,但有可能是最后线。
(1) 分析线:用来判断元素存在与否的一组谱线称之为分析 线。
(2) 鬼线:光谱图上不明原因的谱线称为“鬼线”。
尽管只有符合光谱选律的跃迁才产生光谱,但由于原子结构有 的简单,有的复杂,简单的只有几条谱线,复杂的多至数千条。 在光谱分析中,虽然没有必要把所有的谱线都找出来,但也不 能只凭一条谱线的出现来确定元素的存在与否,这是因为在光 谱图上不明原因的谱线很多,光谱学上称这些不明原因的谱线 为“鬼线”。 光谱仪的分辨率越高,鬼线越多。为防止这类谱线的重叠干扰, 一般需要用一个元素的2~3条灵敏线的出现与否来判断元素是 否存在。
如Sn 380.10nm6P为宽线。
12:30
20
4、光谱的识别方法——释谱 根据谱图确定样品中元素存在与否的过程叫释谱 释谱的方法很多,有些多年从事这方面工作的老师,根据经验 就可从谱板放大后映出的谱图上,知道有那些元素的那条谱线。 一般情况下很难达到这一点,我们初学就更难,所以我们从最 简单的释谱方法学起。 我们释谱时,首先用到的工具是《元素光谱图》。
ΔE E j E 0 hγ
hc λ
Ej:激发态原子能量,E。:基态原子能量;h:Planck常数;c: 光速;λ:波长。
由于每个原子的核电荷不同,核外电子数不同,核外电子构成 能级也不同,因此,每个原子激发后都会产生具有特征的谱线。 这是发射光谱法定性的基础。

原子发射光谱法

原子发射光谱法
a
b
二、定量分析基础-谱线强度
在i, j两能级间跃迁,谱线强度可表示为:
I ij= Ni Aij hυij (1) (Aij 为跃迁几率)
在高温下,处于热力学平衡状态时, 单 Ni位之体间积遵的守基Bo态ltz原m子an数n分N布0与定激律发态原子数
Ni = N0 gi/g0 e-E/kT (2)
第三节 原子发射光谱仪
原子发射光谱法仪器分为三部分:光源、分光 仪和检测器。
一、光源 光源的作用: 蒸发、解离、原子化、激发、 跃迁。 光源的类型:
直流电弧 交流电弧 电火花 电感耦合等离子体(ICP) (Inductively coupled plasma)
主要部分:
1. 高频发生器 2. 等离子体炬管 3. 试样雾化器 4. 光谱系统
R = I / I0 =Acb 取对数,得
lgR = blgc + lgA
此式为内标法光谱定量分析的基本关系式。
2. 校准曲线法: 在确定的分析条件下,用三个或三个以上
含有不同浓度被测元素的标准样品与试样 在相同的条件下激发光谱,以分线强度I或 内标分析线对强度比R或lgR对浓度c或lgc做 校准曲线。再由校准曲线求得试样被测元 素含量。
为(Bgoi,ltgz0m为an激n常发数态,和T基为态温的度统。计) 权,Ei为激发电位,K
把(2)代入(1)得:
Iij=gi/g0AijhυijN0e-Ei/kT
此式为谱线强度公式。 Iij 正比于基态原子N0 ,也就是说 Iij ∝C,这就 是定量分析依据。
影响谱线强度的因素为:
(1)统计权重(gi/g0)
影响谱线强度的因素为:
(4)激发温度(T)
温度升高,谱线强度增大。但温度升高, 电离的原子数目也会增多,而相应的原子 数减少,致使原子谱线强度减弱,离子的 谱线强度增大。

金属或合金中杂质元素的原子发射光谱定性分析

金属或合金中杂质元素的原子发射光谱定性分析

实验金属或合金中杂质元素的原子发射光谱定性分析一、实验目的1.学习原子发射光谱分析的基本原理和定性分析方法。

2.掌握发射光谱分析方法的电极制作、摄谱、冲洗感光板等基本操作。

3.掌握铁光谱比较法定性判别未知试样中所含杂质元素。

4.学会正确使用摄谱仪和投影仪。

二、实验原理各种元素的原子被激发后,因原子结构不同,可发射许多波长不同的特征光谱谱线,因此可根据特征光谱线是否出现,来确定某种元素是否存在。

但在光谱定性分析中,不必检查所有谱线,而只需根据待测元素2~3条最后线或特征谱线组,即可判断该元素存在与否。

所谓元素的最后线是指当试样中元素含量降低至最低可检出量时,仍能观察到的少数几条谱线。

元素的最后线往往也是该元素的最灵敏线。

而特征线组往往是一些元素的双重线、三重线、四重线或五重线等,它们并不是最后线。

例如,镁的最后线是285.2nm一条谱线,而最易于辨认的却是在277.6 ~ 278.2nm之间的五重线。

此五重线由于不是最后线,在低含量时,在光谱中不能找到。

但由于特征谱线组易于辨认,当试样中某些元素含量较高时,就不一定依靠其最后线,而只用它的特征谱线组就足以判断了。

表1-1列出了各元素在228.0 ~ 460.0 nm范围内的重要分析线,供光谱定性分析时使用。

但必须注意,判定某元素时,如果最后线不出现,而较次灵敏线反而出现,则可能是由其他元素谱线的干扰而引起的。

事实上,由于试样中许多元素的谱线波长相近,而摄谱仪及感光板的分辨率又有限,在记录到的试样光谱中,谱线会相互重叠,发生干扰。

当需要确证某一元素的分析线是否受到干扰时,首先要判明干扰元素是否存在(检查干扰元素的最后线存在与否)。

当一条分析线确实受到干扰时,可以根据别的分析线来确定该元素的存在与否。

在光谱定性分析中,除了需要元素分析线表外,还需要一套与所用的摄谱仪具有相同色散率的元素标准光谱图。

图1-1为波长范围在301.0~312.4nm的元素标准光谱图。

实验四原子发射光谱定性分析

实验四原子发射光谱定性分析

实验四原⼦发射光谱定性分析实验四原⼦发射光谱定性分析【实验⽬的】1. 学习原⼦发射光谱仪的摄谱过程。

2. 学会利⽤标准铁谱图查找未知物中的元素和指定元素的定性⽅法。

【基本原理】物质中每种元素的原⼦在电能(或热能)激发下能发射出特征谱线,经摄谱仪⾊散系统⾊散后,按不同波长顺序排列的光谱记录在感光板上。

根据谱线位置与标准铁谱图已标定的铁谱线⽐较,查找出元素的2~3条灵敏线或特征谱线组,可判断某⼀元素是否存在。

如果要查找指定元素,⾸先从谱线表上查出该元素的特征谱线,然后根据波长范围有⽬的地从光谱板上确定元素是否存在。

【仪器试剂】仪器:WPG-100平⾯光栅摄谱仪(仪器操作详见实验“铅锌矿烟道灰中锗的光谱定量分析”后附录);φ6 mm 光谱纯⽯墨电极(上电极锥形、下电极凹形),光谱纯铁电极;天津紫外I 型光谱感光板;8 W 型光谱投影仪。

试剂:显影液、定影液,其分别配⽅⽰于表5-4和表5-5。

表5-4 显影液(A 、B 配⽅)配制A 、B液时,必须按顺序逐⼀溶解后再加⼊第⼆种试剂,在显影前才把A 、B 液按1:1混合,在18~20℃时显影时间为3~4 min 。

试样制备:把待分析试样粉碎,⽤玛瑙研钵磨成粉末状待分析。

摄谱条件:中⼼波长300 nm ;狭缝宽度5 m ;中间光栏3 mm ;电极距离5 mm 。

操作记录见表5-6。

* 为实验五记录表格。

【实验步骤】1. 将粉末试样装⼊下电极⼩孔中,为防⽌燃弧时试样喷溅,⽤⼲净⼩玻璃棒压紧,同时操作过程中要防⽌试样污染。

2. 在暗室中将感光板装⼊板盒,切记勿把感光板装反⽅向,然后把板盒装在摄谱仪上,此过程切勿使感光板曝光。

3. 摄谱(1)摄谱条件:依据分析试样所需的波长范围选⽤中⼼波长。

照仪器说明书给出指标,某中⼼波长所对应的光栅转⾓、狭缝调焦和狭缝倾⾓等设置仪器参数(仪器操作详见实验“铅锌矿烟道灰中锗的光谱定量分析”后附录)。

为消除⼆级光谱重叠,在第三聚光镜套上“1”号滤光⽚。

光学分析-原子发射光谱

光学分析-原子发射光谱
后切断) 内管—载气,样品引入(使用
Ar 是因为性质稳定、不 与试样作用、光谱简单)
冷却气 辅助气
载气Ar + 样品 载气(Ar)
依具体设计,三管中所通入的Ar 总流量为 5-20 L/min。石英管最 大内径为2.5 cm
废液
样品溶液
•光学分析-原子发射光谱
尾焰区 内焰区 焰心区
ICP炬形成过程:
基体中不存在的外加元素中选一条与分析线均称的谱线作内标线。二者
组成分析线对,以分析线和内标线绝对强度的比值与浓度的关系来进行
定量分析。
•光学分析-原子发射光谱
内标法公式:
设分析线和内标线强度分别为I,I0;浓度分别为c,c0;自吸系数 分别为b, b0,
Iab c I0a0c0 b0
二者之比可简化为:
内标元素及内标线的选择原则:

内标元素
1)外加内标元素在分析试样品中应不存在或含量极微;如样品基体
元素的含量较稳时,亦可用该基体元素作内标。
2)内标元素与待测元素应有相近的特性(蒸发特性);
3)同族元素,具相近的电离能;
内标线:
1)激发能应尽量相近——匀称线对,不可选一离子线和一原子线作为
分析线对(温度T对两种线的强度影响相反);
R I I0
acb a0cob0
Acb
取对数得: loR gblocg A
当以相板为检测器时,该式变为:S = S-S0 = blgc + lgA 当以光电管为检测器时,该式为:lgU =lgU-lgU0=blgc+lgA 即以 S 或 lgU 对 lgc 作图,可制作标准曲线,并求得浓度值。
•光学分析-原子发射光谱
半定量方法 绝对强度法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lg R b lg c lg A
A为其他三项合并后的常数项,内标法定量的基本关系式。
00:55:54
内标元素与分析线对的选择:
a. 内标元素可以选择基体元素,或另外加入,含量固定; b. 内标元素与待测元素具有相近的蒸发特性; c. 分析线对应匹配,同为原子线或离子线,且激发电位相近( 谱线靠近),“匀称线对”; d. 强度相差不大,无相邻谱线干扰,无自吸或自吸小。
00:55:54
c.标准加入法
无合适内标物时,采用该法。 取若干份体积相同的试液(cX),依次按比例加入不同量的 待测物的标准溶液(cO),浓度依次为:
cX , cX +cO , cX +2cO , cX +3cO , cX +4 cO …… 在相同条件下测定:RX,R1,R2,R3,R4……。 以R对浓度c做图得一直线,图中cX点即待测溶液浓度。
00:55:54
(2) 内标法基本关系式
影响谱线强度因素较多,直接测定谱线绝对强度计算难以
获得准确结果,实际工作多采用内标法(相对强度法)。
在被测元素的光谱中选择一条作为分析线(强度I),再选
择内标物的一条谱线(强度I0),组成分析线对。则:
I a cb
相对强度R:
I0 a0 c0b0
R I a cb Acb I0 a0 c0b0
2. 定性方法
元素光谱图比较法: 最常用的方法,以铁谱作为标准(波长标尺);为什么选铁谱?
00:55:54
标准光谱比较定性法
为什么选铁谱? (1)谱线多:在210~660nm范围内有数千条谱线; (2)谱线间距离分配均匀:容易对比,适用面广; (3)定位准确:已准确测量了铁谱每一条谱线的波长。
标准谱图:将其他元素的分析线标记在铁谱上,铁谱起 到标尺的作用。
00:55:54
(3) 定量分析方法
a. 内标标准曲线法 由 lgR = blgc +lgA 以lgR 对应lgc 作图,绘制标准曲线,在相同条件下,测定 试样中待测元素的lgR,在标准曲线上求得未知试样lgc; b. 摄谱法中的标准曲线法
S = lgR = blgc + lgA 在完全相同的条件下,将标准样品与试样在同一感光板上 摄谱,由标准试样分析线对的黑度差(S )对lgc作标准曲线(三 个点以上,每个点取三次平均值),再由试样分析线对的黑度 差,在标准曲线上求得未知试样lgc 。该法即三标准试样法。
00:55:54
2. 光谱定量分析
(1) 发射光谱定量分析的基本关系式
在条件一定时,谱线强度I 与待测元素含量c关系为: I=ac
a为常数(与蒸发、激发过程等有关),考虑到发射光谱中 存在着自吸现象,需要引入自吸常数 b ,则:
I a cb lg I b lg c lg a 发射光谱分析的基本关系式,称为塞伯-罗马金公式(经 验式)。自吸常数 b 随浓度c增加而减小,当浓度很小,自 吸消失时,b=1。
00:55:54
谱线检查:将试样与纯铁在完全相同条件下摄谱,将两 谱片在映谱器(放大器)上对齐、放大20倍,检查待测元素的 分析线是否存在,并与标准谱图对比确定。可同时进行多元 素测定。
00:55:54
二、 光谱定量分析
quantitative spectrometric analysis 1. 光谱半定量分析
与目视比色法相似;测量试样中元素的大致浓度范围; 应用:用于钢材、合金等的分类、矿石品位分级等大批 量试样的快速测定。 谱线强度比较法:测定一系列不同含量的待测元素标准 光谱系列,在完全相同条件下(同时摄谱),测定试样中待测 元素光谱,选择灵敏线,比较标准谱图与试样谱图中灵敏线 的黑度,确定含量范围。
R=Acb b=1时,R=A(cx+ci ) R=0时, cx = 加入一种或几种辅助物质,用来抵偿试样 组成变化的影响,这种物质称为光谱缓冲剂。它 也是电弧法经常使用的。要使试样或标样组成完 全一致,在实际工作中往往是难以办到的。因此 加入较大量的缓冲剂以稀释试样,减小试样组成 的影响。以加入炭粉的情况最为普遍,其他化合 物用得也相当多。当然,它们也能起到控制电极 温度与电弧温度的种种作用。因此,载体与缓冲 剂很难截然分开,此两名称也因而常常被混用。
相关文档
最新文档