教材第五章习题解答

合集下载

大学物理第五章 习题解答

大学物理第五章 习题解答

第五章 习题解答5-1解:等压过程系统做功W ,根据等压过程做功的公式:W=p(V 2-V 1)=νR ΔT 可得ΔT=W/νR ,ν=1mol ,ΔT=W/RW W i T R i T T C Q p 272222)(12=+=∆+=-=υυp 5-2 J T R i E 65.124131.823102=⨯⨯⨯=∆=∆υ5-3 解:等容过程有W=0,Q=ΔE J T R i E 747930031.82322=⨯⨯⨯=∆=∆=υ 5-4解:等压过程系统做功W ,根据等压过程做功的公式:W=p(V 2-V 1)=νR ΔT=200JW i T R i T T C Q 2222)(12+=∆+=-=υυp 单原子分子 i =3,J Q 500200223=⨯+= 单原子分子 i =5,J Q 700200225=⨯+= 5-5. 一系统由如图所示的a 状态沿acb 到达b 状态,有334J 热量传入系统,系统做功J 126。

(1)经adb 过程,系统做功J 42,问有多少热量传入系统?(2)当系统由b 状态沿曲线ba 返回状态a 时,外界对系统做功为J 84,试问系统是吸热还是放热?热量传递了多少?解:由acb 过程可求出b 态和a 态的内能之差Q=ΔE+W ,ΔE=Q -W=334-126=208 Jadb 过程,系统作功W=42 J , Q=ΔE+W=208+42=250J 系统吸收热量ba 过程,外界对系统作功A=-84 J , Q=ΔE +W=-208-84=-292 J 系统放热 5-6解:ab 过程吸热,bc 过程吸热 cd 过程放热,da 过程放热取1atm=105Pa 根据等温、等压过程的吸热公式可得J V p V p i T T C Q a a b b ab 336)(2)(12=-=-=V υ J V p V p i Q b b c c bc 560)(22=-+= J V p V p i Q c c d d cd 504)(2-=-= J V p V p i Q d d a a da 280)(22-=-+= 整个过程总吸热J Q Q Q bc ab 8961=+=,总放热J Q Q Q da cd 7842=+=p净功J Q Q W 11221=-=,效率%5.128967841112=-=-=Q Q η 5-7 卡诺热机的效率为%4028011112=-=-=T T T 卡η,可得高温热源温度7.4661=T K 如果%50'28011112=-=-=T T T 卡η,可得560'1=T K ,温度提高了3.93'11=-T T K 5-8 %251068.11026.1117712=⨯⨯-=-=Q Q η。

高一数学(必修一)《第五章 函数y=Asin(ωxφ)》练习题及答案解析-人教版

高一数学(必修一)《第五章 函数y=Asin(ωxφ)》练习题及答案解析-人教版

高一数学(必修一)《第五章 函数y=Asin (ωx φ)》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、解答题1.已知函数()2sin(2)16f x x a π=+++,且当[0,]2x π∈时()f x 的最小值为2.(1)求a 的值;(2)先将函数()y f x =的图像上点的纵坐标不变,横坐标缩小为原来的12,再将所得的图像向右平移12π个单位,得到函数()y g x =的图像,求方程()4g x =在区间[0,]2π上所有根之和.2.写出将sin y x =的图像变换后得到2sin 24y x π⎛⎫=- ⎪⎝⎭的图像的过程,并在同一个直角坐标平面内画出每一步变换对应的函数一个周期的图像(保留痕迹). 3.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<2π)的部分图象如图所示.(1)求函数f (x )的解析式;(2)如何由函数y =sin x 的图象通过相应的平移与伸缩变换得到函数f (x )的图象,写出变换过程. 4.用“五点法”画出函数2sin y x =在区间[]0,2π上的图象. 5.已知函数()()sin f x A x ωϕ=+(0A >,0>ω与2πϕ<),在同一个周期内,当4x π=时,则y 取最大值1,当712x π=时,则y 取最小值-1. (1)求函数()f x 的解析式.(2)函数sin y x =的图象经过怎样的变换可得到()y f x =的图象 (3)求方程()()01f x a a =<<在[]0,2π内的所有实数根之和. 6.已知函数()2cos 44f x x ππ⎛⎫=-⎪⎝⎭. (1)求函数()f x 图象的对称轴;(2)将函数()f x 图象上所有的点向左平移1个单位长度,得到函数()g x 的图象,若函数()y g x k =+在()2,4-上有两个零点,求实数k 的取值范围.7.2021年12月9日15时40分,神舟十三号“天宫课堂”第一课开讲!受“天宫课堂”的激励与鼓舞,某同学对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,则火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地 球引力,进入宇宙空间的运载工具.早在1903年齐奥尔科夫斯基就推导出单级火箭的最大理想速度公式: 0lnkm v m ω=,被称为齐奥尔科夫斯基公式,其中ω为发动机的喷射速度,0m 和k m 分别是火箭的初始质量和发动机熄火(推进剂用完 )时的质量.0km m 被称为火箭的质量比.(1)某单级火箭的初始质量为160吨,发动机的喷射速度为2千米/秒,发动机熄火时的质量为40吨,求该单级火箭的最大理想速度(保留2位有效数字);(2)根据现在的科学水平,通常单级火箭的质量比不超过10.如果某单级火箭的发动机的喷射速度为2千米/秒,请判断该单级火箭的最大理想速度能否超过第一宇宙速度7.9千米/秒,并说明理由.(参考数据:ln20.69≈,无理数e 2.71828=)二、单选题8.为了得到函数3sin 2y x =的图象,只要将函数3sin(21)y x =-的图象( ) A .向左平移1个单位长度 B .向左平移12个单位长度C .向右平移1个单位长度D .向右平移12个单位长度9.函数sin3y x =的图象可以由函数cos3y x =的图象( ) A .向右平移6π个单位得到 B .向左平移6π个单位得到 C .向右平移3π个单位得到 D .向左平移3π个单位得到 10.要得到函数()2cos 23f x x π⎛⎫=- ⎪⎝⎭的图像,只需将cos2y x =的图像( )A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移23π个单位长度 D .向右平移23π个单位长度 11.为了得到函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需把函数3sin y x =图像上所有点( )A .向左平行移动3π个单位长度,再把所得各点的横坐标缩短到原来的12B .向左平行移动3π个单位长度,再把所得各点的横坐标伸长到原来的2倍 C .向左平行移动6π个单位长度,再把所得各点的横坐标缩短到原来的12D .向右平行移动3π个单位长度,再把所得各点的横坐标缩短到原来的12 12.要得到函数π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,需( )A .将函数3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)B .将函数π3sin 10y x ⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)C .将函数3sin 2y x =图像上所有点向左平移π5个单位长度D .将函数3sin 2y x =图像上所有点向左平移π10个单位长度13.为了得到函数2cos2y x =的图象,只需把函数2cos 2y x x =+的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度三、填空题14.将函数()f x 的图象向左平移π6个单位长度后得到()()sin y g x A x ωϕ==+(0A >,0>ω与π2ϕ≤)的图象如图,则()f x 的解析式为_____.15.彝族图案作为人类社会发展的一种物质文化,有着灿烂历史.按照图案的载体大致分为彝族服饰图案、彝族漆器图案、彝族银器图案等,其中蕴含着丰富的数学文化,如图1,漆器图案中出现的“阿基米德螺线”,该曲线是由一动点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动所形成的轨迹.这些螺线均匀分布,将其简化抽象为图2,若2OA =,则AOB ∠所对应的弧长为______.参考答案与解析1.(1)2a =;(2)3π. 【分析】(1)由于当[0,]2x π∈时()f x 的最小值为2,所以min ()112f x a =-++=,从而可求出a 的值;(2)由图像变化可得()2sin(4)36g x x π=-+,由()4g x =得1sin(4)62x π-=,从而可求出x 的值【详解】(1)()2sin(2)16f x x a π=+++,∵[0,]2x π∈,∴72[,]666x πππ+∈∴min ()112f x a =-++=,∴2a =;(2)依题意得()2sin(4)36g x x π=-+,由()4g x =得1sin(4)62x π-=∴4266x k πππ-=+(k Z ∈)或54266x k πππ-=+(k Z ∈) ∴212k x ππ=+或24k x =+ππ,解得12x π=或4x π= ∴所有根的和为1243πππ+=.【点睛】此题考查三角函数的图像和性质,考查三角函数的图像的变换,考查转化能力和计算能力,属于基础题2.答案见解析.图像见解析【分析】由三角函数图像中的相位变换、周期变换、振幅变换叙述变换过程,然后作出图像变换的过程即可.【详解】先将sin y x =的图像上各点向右平移4π个单位得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像再将函数sin 4y x π⎛⎫=- ⎪⎝⎭图像上的每一个点保持纵坐标不变,横坐标缩短到原来的一半,得到函数sin 24y x π⎛⎫=- ⎪⎝⎭的图像.再将函数sin 24y x π⎛⎫=- ⎪⎝⎭图像上的每一个点保持横坐标不变,纵坐标扩大到原来的2倍,得到函数2sin 24y x π⎛⎫=- ⎪⎝⎭的图像.3.(1)f (x )=sin (2)6x π+ ;(2) 答案见解析.【分析】(1)由图像可得A =1,51264Tππ-=结合2T πω=可求出ω的值,然后将点(,1)6π代入解析式可求出ϕ的值,从而可求出函数f (x )的解析式; (2)利用三角函数图像变换规律求解【详解】(1)由图像知A =1.f (x )的最小正周期T =4×5()126ππ-=π,故ω=2Tπ=2 将点(,1)6π代入f (x )的解析式得sin ()3πϕ+=1又|φ|<2π,∴φ=6π.故函数f (x )的解析式为f (x )=sin (2)6x π+.(2)变换过程如下:y =sin x 图像上的所有点的横坐标缩小为原来的一半,纵坐标不变,得到y =sin 2x 的图像,再把y =sin 2x 的图像,向左平移12π个单位y =sin (2)6x π+的图像. 4.答案见解析【分析】利用五点作图法,列表、描点、连线可作出函数sin y x =在区间[]0,2π上的图象. 【详解】解:按五个关键点列表如下:描点并将它们用光滑的曲线连接起来,如图所示.5.(1)()sin 34f x x π⎛⎫=- ⎪⎝⎭(2)答案见解析 (3)112π【分析】(1)结合已知条件可求出A ,最小正周期T ,然后利用最小正周期公式求ω,通过代值求出ϕ即可;(2)利用平移变换和伸缩变换求解即可;(3)利用正弦型函数的对称性求解即可. (1)设()()sin f x A x ωϕ=+的最小正周期为T 由题意可知,1A =,1721243T πππ=-=即223T ππω== ∴3ω=,即()()sin 3f x x φ=+∵3sin 14πϕ⎛⎫+= ⎪⎝⎭∴3242k ππϕπ+=+ k Z ∈ 又2πϕ<,∴4πϕ=-∴()sin 34f x x π⎛⎫=- ⎪⎝⎭.(2)利用平移变换和伸缩变换可知,sin y x =的图象向右平移4π个单位长度,得到sin 4y x π⎛⎫=- ⎪⎝⎭的图象再将sin 4y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标缩短为原来的13,纵坐标不变,得到sin 34y x π⎛⎫=- ⎪⎝⎭的图象.(3)∵()sin 34f x x π⎛⎫=- ⎪⎝⎭的最小正周期为23π∴()sin 34f x x π⎛⎫=- ⎪⎝⎭在[]0,2π内恰有3个周期故所有实数根之和为1119112662ππππ++=. 6.(1)14x k =+ k ∈Z (2)()2,0-.【分析】(1)求出()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭,解方程442x k ππππ+=+,k ∈Z 即得解;(2)求出()2cos 4g x x π=,即函数()y g x =的图象与直线y k =-在()2,4-上有两个交点,再利用数形结合分析求解. (1)解:因为()2cos 44f x x ππ⎛⎫=- ⎪⎝⎭,所以()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.令442x k ππππ+=+,k ∈Z ,解得14x k =+ k ∈Z 所以函数()f x 图象的对称轴为直线14x k =+ k ∈Z . (2)解:依题意,将函数()f x 的图象向左平移1个单位长度后,得到的图象对应函数的解析式为()()2sin 12cos 444g x x x πππ⎡⎤=++=⎢⎥⎣⎦.函数()y g x k=+在()2,4-上有两个零点即函数()y g x =的图象与直线y k =-在()2,4-上有两个交点,如图所示所以02k <-<,即20k -<< 所以实数k 的取值范围为()2,0-. 7.(1)2.8千米/秒(2)该单级火箭最大理想速度不可以超过第一宇宙速度7.9千米/秒,理由见解析【分析】(1)明确0k m m ω、、各个量的值,代入即可;(2)求出最大理想速度max v ,利用放缩法比较max 2ln10v =与7.9的大小即可. (1)2ω=,0160m =和40k m =0lnk m v m ω∴=21602ln 2ln 42ln 24ln 2 2.7640=⨯===≈ ∴该单级火箭的最大理想速度为2.76千米/秒.(2)10km M ≤ 2ω= 0max ln km v m ω∴=2ln10= 7.97.97128e22>>=7.97.9ln ln128ln1002ln10e ∴=>>=max v ∴2ln107.9=<.∴该单级火箭最大理想速度不可以超过第一宇宙速度7.9千米/秒.8.B【分析】根据已知条件,结合平移“左加右减”准则,即可求解.【详解】解:()13sin 213sin 22y x x ⎛⎫=-- ⎪⎝=⎭∴把函数13sin 22x y ⎛⎫- ⎝=⎪⎭的图形向左平移12个单位可得到函数3sin 2y x =.故选:B . 9.A【分析】化简函数sin 3cos[3()]6y x x π==-,结合三角函数的图象变换,即可求解.【详解】由于函数3sin 3cos(3)cos(3)cos[3()]226y x x x x πππ==+=-=- 故把函数cos3y x =的图象向右平移6π个单位,即可得到cos3sin 36y x x π⎛⎫=-= ⎪⎝⎭的图象.故选:A. 10.B【分析】直接由三角函数图象的平移变换求解即可. 【详解】将cos2y x =的图像向右平移3π个单位长度可得2cos2cos 233y x x ππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭. 故选:B. 11.A【分析】利用三角函数图象变换规律求解即可【详解】将3sin y x =向左平移3π长度单位,得到3sin 3y x π⎛⎫=+ ⎪⎝⎭,再把所得的各点的横坐标缩短到原来的12,可得3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象 故选:A 12.D【分析】根据三角函数的图像变换逐项判断即可.【详解】解:对于A ,将3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于B ,将π3sin 10y x ⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 210y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于C ,将3sin 2y x =图像上所有点向左平移π5个单位长度后,得到2π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于D ,将3sin 2y x =图像上所有点向左平移π10个单位长度后,得到π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,正确.故选:D. 13.C【分析】化简2cos 2y x x =+,再根据三角函数图象平移的方法求解即可【详解】12cos 22cos 222cos 223y x x x x x π⎛⎫⎛⎫+==- ⎪ ⎪ ⎪⎝⎭⎝⎭,因为2cos 23y x π⎛⎫=- ⎪⎝⎭向左平移6π个单位长度得到2cos 22cos263ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦y x x故选:C14.()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭【分析】由图像可知,函数的最值、最小正周期,可得,A ω的值,代入点5,212π⎛⎫⎪⎝⎭,进而解得ϕ的值,根据函数的图像变换规律,可得答案.【详解】由题图可知()max 2A g x ==,函数()g x 的最小正周期为45πππ3123T ⎛⎫=+= ⎪⎝⎭,所以2π2T ω==,所以()()2sin 2g x x ϕ=+.又5π5π2sin 2126g ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以5πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以5ππ2π62k ϕ+=+(k ∈Z ),解得π2π3k ϕ=-(k ∈Z ). 因为π2ϕ≤,所以π3ϕ=-,所以()π2sin 23g x x ⎛⎫=- ⎪⎝⎭.将函数()g x 的图象向右平移π6个单位长度后可得到函数()f x 的图象故()ππ2π2sin 22sin 2633f x x x ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为:()2π2sin 23f x x ⎛⎫=- ⎪⎝⎭15.4π9【分析】根据题意得到圆心角2π9AOB α=∠=,结合弧长公式,即可求解.第 11 页 共 11 页 【详解】由题意,可知圆心角2π9AOB α=∠=,半径2r OA == 所以AOB ∠所对应的弧长为2π4π299l r α==⨯=. 故答案为:4π9.。

《金属材料与热处理》教材习题答案:第五章 合金钢

《金属材料与热处理》教材习题答案:第五章 合金钢

《金属材料与热处理》教材习题答案第五章合金钢1.什么是合金钢?答:所谓合金钢就是在碳钢的基础上,为了改善钢的性能,在冶炼时有目的地加入一种或数种合金元素的钢。

2.合金元素在钢中有哪些主要作用?这些作用对钢的性能会产生哪些影响?答:合金元素在钢中的作用是非常复杂,其中主要作用包括:一是形成合金铁素体。

由于合金元素与铁的晶格类型和原子半径的差异,引起铁素体的晶格畸变,产生固溶强化作用。

二是与碳能形成碳化物,当这些碳化物呈细小颗粒并均匀分布在钢中时,能显著提高钢的强度和硬度。

三是抑制钢在加热时奥氏体晶粒长大的作用,达到细化晶粒的目的使合金钢在热处理后获得比碳钢更细的晶粒,从而提高其综合力学性能。

四是可增加过冷奥氏体的稳定性,推迟其向珠光体的转变,减小钢的临界冷却速度,提高钢的淬透性。

五是提高回火稳定性,在相同的回火温度下,合金钢比相同含碳量的碳素钢具有更高的硬度和强度。

在强度要求相同的条件下,合金钢可在更高的温度下回火,以充分消除内应力,而使韧性更好。

3.合金钢是如何分类的?答:合金钢最常用下面两种分类方法。

一是按用途分类:分为合金结构钢、合金工具钢和特殊性能钢。

其中合金结构钢又可以分为低合金高强度钢,渗碳钢,调质钢、弹簧钢、滚动轴承钢等。

合金工具钢可分为刃具钢、模具钢和量具钢等。

特殊性能钢则有不锈钢、耐热钢、耐磨钢等。

二是按合金元素总含量分类:分为低合金钢(合金元素总含量<5%)、中合金钢(合金元素总含量5%一10%)和高合金钢(合金元素总含量>10%)。

4.合金钢的牌号编制有何特点?答:我国合金钢牌号采用碳含量、合金元素的种类及含量、质量级别来编号,简单明了,比较实用。

其中合金结构钢的牌号采用两位数字(碳含量)+元素符号(或汉字)+数字表示,前面两位数字表示钢的平均含碳量的万分数;合金工具钢的牌号和合金结构钢的区别仅在于碳含量的表示方法,它用一位数字表示平均含碳量的千分数,当碳含量大于等于1.0%时,则不予标出。

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。

现代汉语第五章练习题答案

现代汉语第五章练习题答案

现代汉语第五章练习题答案现代汉语第五章通常涉及词汇、语法、句式等方面的练习题。

以下是一些可能的练习题答案,具体内容会根据实际教材的章节内容有所不同。

一、词汇练习1. 根据上下文,选择正确的词语填空。

- 他(勤奋/懒惰)地完成了作业。

答案:勤奋2. 写出下列词语的反义词。

- 快乐:悲伤- 年轻:年老3. 根据语境,选择最合适的词语。

- 他(突然/偶然)想到了一个好主意。

答案:突然二、语法练习1. 将下列句子改写成被动语态。

- 学生们正在教室里学习。

答案:教室里的学生们正在被学习。

2. 将下列句子改为疑问句。

- 他明天会来参加聚会。

答案:他明天会来参加聚会吗?3. 用“虽然...但是...”造句。

- 虽然今天天气不好,但是他还是决定去爬山。

三、句式练习1. 将下列简单句扩展为复合句。

- 他喜欢游泳。

他经常去海边。

答案:他不仅喜欢游泳,而且经常去海边。

2. 将下列句子改写为倒装句。

- 窗外的风景很美。

答案:很美的风景在窗外。

3. 使用“不但...而且...”连接句子。

- 这本书很有趣。

这本书很有教育意义。

答案:这本书不但很有趣,而且很有教育意义。

四、阅读理解阅读下面的文章,回答以下问题:(文章内容省略)1. 文章中提到了几个主要观点?答案:(根据文章内容回答)2. 作者对于...的看法是什么?答案:(根据文章内容回答)五、写作练习根据以下提示,写一篇不少于300字的短文。

- 提示:描述你最喜欢的季节以及原因。

答案:(学生根据个人经验写作)请注意,以上内容仅为示例,具体的练习题和答案应根据实际使用的教材和课程内容来确定。

如果需要针对特定教材的练习题答案,请提供具体的章节内容或练习题。

第五章定积分习题参考解答

第五章定积分习题参考解答

习题5-1 定积分的概念1、利用定积分的几何意义,求下列积分: (1)dx x ⎰-21(2)dx x ⎰--3329解2、估计下列各积分的值:(1)()⎰+ππ4542sin 1dx x (2)⎰-022dx exx3、根据定积分的性质及教材中习题5-1第12题的结论,说明下列各对积分哪一个的值较大: (1)⎰21ln xdx 还是()⎰212ln dx x ?解(1)在区间{1,2}上,由于0ln 1x ≤≤,得()2ln ln x x ≥,因此21ln xdx ⎰比()221ln x dx ⎰大.(2)⎰1dx e x 还是()⎰+11dx x ?解 由于当0x >时()ln 1x x +<,故此时有1xx e +<,因此10x e dx ⎰比()11+x dx ⎰大。

习题5-2 微积分基本公式1、求由参数表达式⎰=t udu x 0sin ,⎰=tudu y 0cos 所确定的函数对x 的导数dxdy.2、求由+⎰y t dt e 00cos 0=⎰x tdt 所确定的隐函数对x 的导数dxdy.3、计算下列各导数:(1) ⎰+2021x dt t dx d ; (2) ()⎰x x dt t dxd cos sin 2cos π. 解 (1)原式=2; (2)原式=()()()()cos sin 222200cos cos sin cos cos cos cos sin x x d t dt t dt x x x x dx ππππ⎡⎤-=--⎢⎥⎣⎦⎰⎰ ()()()()222sin cos sin cos cos sin sin cos cos sin x x x x x x x ππππ=---=-4、 计算下列定积分: (1)⎰-1024x dx; (2)⎰-+++012241133dx x x x ; 解 (1)110arcsin 26x π⎡⎤==⎢⎥⎣⎦⎰(2)42000232211133113arctan 1114x x dx x dx x x x x π---++⎛⎫⎡⎤=+=+=+ ⎪⎣⎦++⎝⎭⎰⎰ (3)⎰42tan πθθd ; (4)⎰π20sin dx x ;解 (3) ()[]2244400tan sec 1tan 14d d ππππθθθθθθ=-=-=-⎰⎰(4)()[][]22200sin sin sin cos cos 4x dx xdx x dx x x πππππππ=+-=-+=⎰⎰⎰(5)⎰20)(dx x f ,其中⎪⎩⎪⎨⎧>≤+=.1,21,1,1)(2x x x x x f 解()11232122010018()12263x x f x dx x dx x dx x ⎡⎤⎛⎫=++=++= ⎪⎢⎥⎣⎦⎝⎭⎰⎰⎰5、求下列极限: ⎰⎰⎪⎭⎫ ⎝⎛→xt xt x dt te dt e 0220022lim .解()222222220020020222limlimlimlim21x x xt x t t x xxx x x x t e dtee dte dtexxe te dt→→→→====⎰⎰⎰⎰6、设⎩⎨⎧∈∈=].2,1[,),1,0[,)(2x x x x x f 求=Φ)(x ⎰x dt t f 0)(在]2,0[上的表达式,并讨论)(x Φ在)2,0(内的连续性.习题5-3 定积分的换元法和分部积分法 1、计算下列各定积分:(1)⎰262ππdu u ; (2))0(0222>-⎰a dx x a x a; 解 (1)()2222666111cos 1cos2sin 222268udu u du u u πππππππ⎡⎤=+=+=-⎢⎥⎣⎦⎰⎰(2)()()4sin 2422220sin cos sin 228x a ua a xa u udu u d u ππ===⎰⎰⎰44422242001sin sin 8442216t ua a a tdt tdt a ππππ====⋅⋅=⎰⎰ 另解()sin 422422220sin cos sin 1sin x a ua xa u udu au u du ===-⎰⎰⎰ππ441312242216a a ⎛⎫=⋅-⋅⋅= ⎪⎝⎭πππ。

《固体物理学》房晓勇主编教材-习题解答参考pdf05第五章_金属电子论基础

《固体物理学》房晓勇主编教材-习题解答参考pdf05第五章_金属电子论基础

8.45
×1022
⎤1/ ⎦
3
=
5.2 限制在边长为 L 的正方形的 N 个电子,单电子能量为
( ) ( ) E kx, ky
=
2
k
2 x
+
k
2 y
2m
(1)求能量 E 到 E+dE 之间的状态数; (2) 求绝对零度时的费米能量。 解:(参考中南大学 4.6,王矜奉 6.2.2,林鸿生 1.1.83,徐至中 5-2) (1)如《固体物理学》图 5-1 所示,每个状态点占据的面积为
G′(E) = 2 dZ ⋅ dk = 2 L2 k • dk dE 2π
m = L2m 2k π 2
得二维金属晶体中自由电子的状态密度为:
…………………………(4)
g(E)
=
G′(E) S
=
1 L2
L2m π2
=
m π2
………………………(5)
(2)根据《固体物理学》式 金属的电子浓度
3
∫ ∫ n =
2π i 2π = (2π )2
Lx Ly
L2
所以每个单位
k
空间面积中应含的状态数为
L2
(2π )2

d k 面积元中应含有的状态数为
dZ
=
L2
(2π )2
d
k
而单电子能量为
( ) ( ) E kx, ky
=
2
k
2 x
+
k
2 y
2m
= 2k2 2m
E+dE E
可见在 k 空间中等能曲线为一圆,如图所示,在 E——E+dE 两个等能圆之间的
2

第5章课后习题解答

第5章课后习题解答

第5章课后习题解答-情境题
【参考答案三】手环自身一般不具备分析功能,数据分析是 在服务器端完成的。服务器通过使用各种算法和科学缜密的逐 辑运算对采集的数据进行分析,建立健康模型,最终将这些数 据转变成手环可读数字——步数、距离、消耗的卡路里数值等 呈现给终端用户,还可以通过与手环相连的手机端将用户的运 动、睡眠、心率等数据可视化呈现出来并给用户提供健康建议。
【参考答案四】实际上仅依靠手环采集数据做分析是不全面 的,还需结合用户的年龄、体重、身高、性别等个人信息进行 数据分析,因此个人信息填写正确与否直接影响数据分析的准 确性。
【参考答案二】能回答运动时利用的加速度传感器是三轴加 速度传感器,而且是通过捕捉人体三个维度的各项数据,并上传 至服务端进行统计分析。或者增加实例,如利用手环检测心率, 主要是通过光感进行,采用绿色搭配感光光电二极管实时检测流 经手腕血液的流量来获取心率信息。当用户的心脏跳动时,会有 更多的血液流过用户的手腕,绿光的吸收量也会越大;在心脏跳 动间隙,血液流量减少,绿光的吸收也会减少。
B (2)下列可以用于分析数据趋势的是( )。
A. 饼图 B. 折线图 C. 动态热力图 D. 词云图
A (3)数据分析的方法不包括( )。
A. 线性分析 B. 关联分析 C. 聚类分析
D. 数据分类
第5章课后习题解答-思考题
若要求你对本班同学喜欢看的书籍进行分类统计,并对其进行数据分析,你 会如何做?谈谈你的想法。
参考答案一: (项目需求分析)分析书籍分类统计的项目:书名、图书类别、出版时 间、来源(网购、书店购买、图书馆借阅、向他人借阅)、同学姓名, 性别等。 (数据采集)能够选择合适的工具采集和保存信息:可使用文件共享或 选择协同办公软件采集书籍信息记录(逐条统计),能够使用硬盘存储 或云存储方式保存数据。 (数据分析与可视化表达)能够采用词云图、折线图或饼图等方式,按 照图书类别分析出本班同学的图书喜好,能分析出某位同学的兴趣爱好。

大学物理基础教程答案第05章习题分析与解答

大学物理基础教程答案第05章习题分析与解答

5-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常数,R 为摩尔气体常数,则该理想气体的分子数为( )。

(A )PV m (B )PV kT (C )PV RT (D ) PVmT解:由N p nkT kT V ==得,pVN kT=,故选B 5-2 两个体积相同的容器,分别储有氢气和氧气(视为刚性气体),以1E 和2E 分别表示氢气和氧气的内能,若它们的压强相同,则( )。

(A )12E E = (B )12E E > (C )12E E < (D ) 无法确定 解:pV RT ν=,式中ν为摩尔数,由于两种气体的压强和体积相同,则T ν相同。

又刚性双原子气体的内能52RT ν,所以氢气和氧气的内能相等,故选A 5-3 两瓶不同种类的气体,分子平均平动动能相同,但气体分子数密度不同,则下列说法正确的是( )。

(A )温度和压强都相同 (B )温度相同,压强不同 (C )温度和压强都不同(D )温度相同,内能也一定相等解:所有气体分子的平均平动动能均为32kT ,平均平动动能相同则温度相同,又由p nkT =可知,温度相同,分子数密度不同,则压强不同,故选B5-4 两个容器中分别装有氦气和水蒸气,它们的温度相同,则下列各量中相同的量是( )。

(A )分子平均动能 (B )分子平均速率 (C )分子平均平动动能 (D )最概然速率解:分子的平均速率和最概然速率均与温度的平方根成正比,与气体摩尔质量的平方根成反比,两种气体温度相同,摩尔质量不同的气体,所以B 和D 不正确。

分子的平均动能2i kT ε=,两种气体温度相同,自由度不同,平均动能则不同,故A 也不正确。

而所有分子的平均平动动能均为k 32kT ε=,只要温度相同,平均平动动能就相同,如选C 5-5 理想气体的压强公式 ,从气体动理论的观点看,气体对器壁所作用的压强是大量气体分子对器壁不断碰撞的结果。

《数电》教材习题答案 第5章习题答案

《数电》教材习题答案 第5章习题答案

思考题与习题5-1 在如图5-1所示的四位移位寄存器中,假定开始时Q3Q2Q1Q0为1101状态。

若串行输入序列101101与CP脉冲同步地加在D SR串行输入端时,请对应画出各触发器Q 3Q2Q1Q端的输出波形。

图T5-15-2 图T5-2电路中各触发器的初始状态均为0,请对应输入CP和IN的波形,画各触发器Q端的输出波形。

图T5-25-3 试用两片74LS194电路构成一个八位移位寄存器,并画出逻辑电路图。

5-4 请用上升沿触发的D触发器构成一个异步三位二进制加法计数器。

并对应CP画出Q1、Q2、Q3的波形。

图T5-45-5 请用JK 触发器构成一个脉冲反馈式异步六进制加法计数器,并画出对应于CP 脉冲的工作波形。

图T5-5用三位JK 触发器构成八进制计数器,然后在状态110时利用与非门反馈至清零端构成六进制计数器,图略。

5-6请分析如图T5-6所示的阻塞反馈式异步计数器电路的逻辑功能,指出该计数器为几进制,并画出计数状态转换图。

图T5-6解:(1)驱动方程:J I =3Q ,K 1=1; J 2=1,K 2=1;J 3=nQ n Q 21,K 3=1;代入得状态方程: (CP 脉冲下降沿时刻)(Q 1下降沿时刻) (CP 脉冲下降沿时刻)列出状态转换图(略)分析得出该计数器为5进制计数器,状态从000-100,其它的三个状态下一状态均为000,因此该电路是异步五进制计数器,具有自启动功能。

5-7 分析图T5-7同步计数器电路的逻辑功能。

图T5-7nn n n n Q K ,Q J Q K ,Q J Q K ,J 232312323111====== n Q n Q Q n 1311=+n Q Q n 221=+n Q n Q n Q Q n 31231=+nn n nn n nn n n n n n n n n n Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 23232132123123113111=⋅+⋅=⋅+⋅=+=⋅+=+++n n n Q Q Q 123 111213+++n n n Q Q Q0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1因为该计数器设计了清零端,因此可实现从000开始进入循环圈的2进制计数器的功能,但我们也发现,它也可以实现三进制。

新教材北师大版高中数学选择性必修第一册第五章计数原理 课时分层练习题含解析

新教材北师大版高中数学选择性必修第一册第五章计数原理 课时分层练习题含解析

第五章计数原理课时练习题1、分类加法计数原理分步乘法计数原理............................................................ - 1 -2、基本计数原理的简单应用.................................................................................... - 5 -3、排列与排列数排列数公式.............................................................................. - 11 -4、组合组合数及其性质...................................................................................... - 14 -5、二项式定理的推导.............................................................................................. - 17 -6、二项式系数的性质.............................................................................................. - 20 -1、分类加法计数原理分步乘法计数原理一、选择题1.某班有男生26人,女生24人,从中选一位担任学习委员,不同的选法有()A.50种B.26种C.24种D.616种A[选一位学习委员分两类办法:第一类:选男生,有26种不同的选法;第二类:选女生,有24种不同的选法.根据分类加法计数原理,共有N=26+24=50种不同的选法.]2.已知集合A⊆{1,2,3},且A中至少有一个奇数,则这样的集合有() A.2个B.3个C.4个D.5个D[当集合A中含一个元素时,A={1}或{3};当集合A中含两个元素时,A={1,2}或{1,3}或{2,3},∴共有5个集合.]3.火车上有10名乘客,要在沿途的5个车站下车,则乘客下车的所有可能情况共有()A.510种B.105种C.50种D.以上都不对A[完成这件事可分为10步,即10名乘客全部下车,每名乘客选择下车的不同方法均为5种,由分步乘法计数原理知,所有可能的情况为510种.] 4.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有()A.4种B.5种C.6种D.12种C[若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.]5.从0,1,2,3,4,5这六个数字中,任取两个不同的数字相加,其和为奇数的不同取法的种数为()A.25B.12C.9D.6C[两个数字的和为奇数,这两个数必须一个是奇数,另一个是偶数,在所给的6个数中,3个奇数与3个偶数.因此,由分步乘法计数原理得,共有3×3=9种不同的取法.]二、填空题6.乘积(a+b+c)(m+n)(x+y)展开后,共有________项.12[∵乘积(a+b+c)(m+n)(x+y)的展开式中的每一项是由a+b+c中的一个字母与m+n中的一个字母与x+y中的一个字母的乘积组成.可分步完成此事.所以共有3×2×2=12项.]7.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为________.5[分两类:一类是女同学主持主题班会有3种方法;一类是男同学主持主题班会有2种方法,由分类加法计数原理知,共有3+2=5(种)方法.] 8.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有________个.27[先考虑等边的情况,a=b=c=1,2,…,6,有六个,再考虑等腰的情况,若a=b=1,c<a+b=2,此时c=1与等边重复,若a=b=2,c<a+b=4,则c=1,3,有两个,若a=b=3,c<a+b=6,则c=1,2,4,5,有四个,若a=b=4,c<a+b=8,则c=1,2,3,5,6,有五个,若a=b=5,c<a+b=10,则c=1,2,3,4,6,有五个,若a=b=6,c<a+b=12,则c=1,2,3,4,5,有五个,故一共有27个.]三、解答题9.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?[解]分两类完成:第1类:当A或B中有一个为0时,表示的直线为x=0或y=0,共2条;第2类:当A,B都不为0时,确定直线Ax+By=0需分两步完成:第1步:确定A的值,有4种不同的方法,第2步:确定B的值,有3种不同的方法,由分步乘法计数原理,共可确定4×3=12条直线.由分类加法计数原理,方程所表示的不同直线共有2+12=14条.10.已知椭圆x2m2+y2n2=1,其中m,n∈{1,2,3,4,5}.(1)求满足条件的椭圆的个数;(2)如果椭圆的焦点在x轴上,求椭圆的个数.[解](1)由椭圆的标准方程知m≠n,要确定一个椭圆,只要把m,n一一确定下来这个椭圆就确定了.故要确定一个椭圆共分两步,第一步确定m,有5种方法,第二步确定n,有4种方法,共有5×4=20个椭圆.(2)要使焦点在x轴上,必须m>n,故可以分类:m=2,3,4,5时,n的取值列表为:m 2345n 11,21,2,31,2,3,4故共有1+2+3+4=10个椭圆.11.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9B[分两步,第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.]12.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36D[在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.]13.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个A[将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有2种,共有2×2×2×2×2=32(个).]14.(一题两空)已知a,b∈{0,1,2,3},则方程(x-a)2+(y-b)2=4可表示不同的圆的个数为________,其中与y轴相交的圆的个数为________.1612[得到圆的方程分两步:第一步:确定a有4种选法;第二步:确定b有4种选法,由分步乘法计数原理知,共有4×4=16(个).由与y轴相交知,a=0或1或2,b有4种选法,由分步乘法计数原理知,共有3×4=12(个).]15.我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:如图所示,将1,2,3,4,5,6,7,8,9分别填入3×3的方格中,使得每一行、每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是()834159672 A.9B.8C.6D.4B[因为所有数的和为9×(1+9)2=45,453=15,所以每一行、每一列以及对角线上的三个数的和都是15,采用列举法:492,357,816;276,951,438;294,753,618;438,951,276;816,357,492;618,753,294;672,159,834;834,159,672,共8个幻方,故选B.]2、基本计数原理的简单应用一、选择题1.从0,1,2,3,4,5这六个数字中,任取两个不同的数字相加,其和为偶数的不同取法的种数为()A.30B.20C.10D.6D[从0,1,2,3,4,5这六个数字中任取两个不同的数字的和为偶数可分为两类:第一类,取出的两个数都是偶数,有0和2,0和4,2和4,共3种不同的取法;第二类,取出的两个数都是奇数,有1和3,1和5,3和5,共3种不同的取法.由分类加法计数原理得,共有3+3=6种不同的取法.]2.如图所示的几何体由三棱锥P-ABC与三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有()A.6种B.9种C.12种D.36种C[先涂三棱锥P-ABC的三个侧面,有3×2×1种情况,然后涂三棱柱的三个侧面,有2×1×1种情况,由分步乘法计数原理,共有3×2×1×2×1×1=12种不同的涂法.故选C.]3.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11C.12 D.15B[分0个相同、1个相同、2个相同讨论.(1)若0个相同,则信息为:1001.共1个.(2)若1个相同,则信息为:0001,1101,1011,1000.共4个.(3)若2个相同,又分为以下情况:①若位置一与二相同,则信息为:0101;②若位置一与三相同,则信息为:0011;③若位置一与四相同,则信息为:0000;④若位置二与三相同,则信息为:1111;⑤若位置二与四相同,则信息为:1100;⑥若位置三与四相同,则信息为:1010.共有6个.故与信息0110至多有两个对应位置上的数字相同的信息个数为1+4+6=11.]4.如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96C[分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,各有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.故选C.] 5.若m,n均为非负整数,在做m+n的加法运算时各位均不进位(例如:2 019+100=2 119),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为2 019的“简单的”有序对的个数是()A.100B.96C.60D.30C[m+n=2 019且各位均不进位,从高位分步处理:千位有2+0,1+1,0+2,共3种;百位有0+0,共1种;十位有0+1,1+0,共2种;个位有0+9,1+8,2+7,3+6,4+5,5+4,6+3,7+2,8+1,9+0,共10种,由分步乘法计数原理可知,值为2 019的“简单的”有序对的个数是3×1×2×10=60.故选C.]二、填空题6.我们把中间数位上的数字最大,而两边依次减小的多位数称为“凸数”,如132,341等,那么由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是________.20[根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为“3”时,此时有2个(132,231);第二类,当中间数字为“4”时,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6个;第三类,当中间数字为“5”时,则百位数字有三个选择,个位数字有四个选择,则“凸数”有4×3=12个;根据分类加法计数原理,得到由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是2+6+12=20.]7.某电商为某次活动设计了“和谐”“爱国”“敬业”三种红包,活动规定每人可以依次点击4次,每次都会获得三种红包中的一种,若集全三种即可获奖,但三种红包出现的顺序不同对应的奖次也不同.员工甲按规定依次点击了4次,直到第4次才获奖.则他获得奖次的不同情形种数为________.18[根据题意,若员工甲直到第4次才获奖,则其第4次才集全“和谐”“爱国”“敬业”三种红包,则甲第4次获得的红包有3种情况,前三次获得的红包为其余的2种,有23-2=6种情况,则他获得奖次的不同情形种数为3×6=18.] 8.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.13[当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.]三、解答题9.(1)如图①所示,有A,B,C,D四个区域,用红、黄、蓝三种颜色涂色,要求任意两个相邻区域的颜色各不相同,共有多少种不同的涂法?图①图②(2)如图②所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两个端点异色,如果只有5种颜色可供使用,共有多少种不同染色方法?[解](1)①若A,C涂色相同,则按照分步乘法计数原理,A,B,C,D可涂颜色的种数依次是3,2,1,2,则有3×2×1×2=12种不同的涂法.②若A,C涂色不相同,则按照分步乘法计数原理,A,B,C,D可涂颜色的种数依次是3,2,1,1,则有3×2×1×1=6种不同的涂法.所以,根据分类加法计数原理,共有12+6=18种不同的涂法.(2)按照S→A→B→C→D的顺序进行染色,按照A,C是否同色分类:第一类,A,C同色,则有5×4×3×1×3=180种不同的染色方法.第二类,A,C不同色,则有5×4×3×2×2=240种不同的染色方法.根据分类加法计数原理,共有180+240=420种不同的染色方法.10.用0,1,2,3,4,5可以组成多少个无重复数字的且比2 000大的四位偶数.[解]完成这件事有3类方法:第一类是用0做结尾的比2 000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有4×4×3=48个;第二类是用2做结尾的比2 000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,除去2,1,0,只有3个数字可以选择,有3种选法;第二步,选取百位上的数字,在去掉已经确定的首尾两数字之后,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有3×4×3=36个;第三类是用4做结尾的比2 000大的4位偶数,其个数同第二类.用分类加法计数原理,所求无重复数字的比2 000大的四位偶数有48+36+36=120个.11.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为() A.504B.210C.336D.120A[分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.]12.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种B[法一:设四位监考教师分别为A、B、C、D,所教的班分别为a、b、c、d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c、d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9种.法二:班级按a、b、c、d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:∴共有9种不同的监考方法.]13.(多选题)从0,1,2,3,4中选取四个数组成一个能被6整除的四位数,则()A.这个四位数个位上的数字为偶数,且各数位上的数字之和能被3整除B.个位上的数字为0的这样的四位数有12个C.个位上的数字为2的这样的四位数有8个D.个位上的数字为4的这样的四位数有4个ABCD[A正确;当个位上的数字为0时,其余三个数为1,2,3或2,3,4,所以这样的四位数有3×2×1×2=12个,故B正确;当个位上的数字为2时,其余三个数为0,1,3或0,3,4,所以这样的四位数有2×2×1×2=8个,故C正确;当个位上的数字为4时,其余三个数为0,2,3,所以这样的四位数有2×2×1=4个,故D正确.]14.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数有________种.36[因为4个同学总分为0,所以可分为三类:都选甲且两对两错共有6种;都选乙且两对两错有6种;两个选甲一对一错,另两个选乙也一对一错,有6×2×2=24种.由分类加法计数原理N=6+6+24=36种.]15.(一题两空)回文数是指从左到右与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999.则(1)5位回文数有________个;(2)2n(n∈N+)位回文数有________个.(1)900(2)9×10n-1[(1)5位回文数相当于填5个方格,首尾相同,且不为0,共9种填法,第2位和第4位一样,有10种填法,中间一位有10种填法,共有9×10×10=900(种)填法,即5位回文数有900个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n-1种填法.]§2排列问题3、排列与排列数排列数公式一、选择题1.已知A2n=132,则n等于()A.11B.12C.13D.14B[∵A2n=n(n-1)=132,∴n=12或n=-11(舍),∴n=12.]2.89×90×91×…×100可表示为()A.A10100B.A11100C.A12100D.A13100C[最大数为100,共有12个连续整数的乘积,由排列数公式的定义可以得出.]3.将五辆车停在5个车位上,其中A车不停在1号车位上,则不同的停车方案种数为()A.24B.78C.96D.120C[∵A车不停在1号车位上,∴可先将A车停在其他四个车位中的任何一个车位上,有4种可能,然后将另外四辆车在剩余的四个车位上进行全排列,有A44种停法,由分步乘法计数原理,得共有4×A44=4×24=96种停车方案.] 4.已知A2n+1-A2n=10,则n的值为()A.4B.5C.6D.7B[A2n+1-A2n=n(n+1)-n(n-1)=10,2n=10,n=5.]5.不等式x A3x>3A2x的解集是()A.{x|x>3}B.{x|x>4,x∈N}C.{x|3<x<4,x∈Z}D.{x|x>3,x∈N+}D[由题意得x[x×(x-1)×(x-2)]>3×[x×(x-1)],∵x≥3且x∈N,∴x-1>0,∴x(x-2)>3,即x2-2x-3>0,解得x>3或x<+-1(舍),}.]∴原不等式的解集为{x|x>3,x∈N+二、填空题6.从6个不同元素中取出2个元素的排列数为________.(用数字作答)30[A26=6×5=30.]7.从4个蔬菜品种中选出3个,分别种植在不同土质的3块土地上进行试验,则不同的种植方法有________种.(用数字作答)24[本题可理解为从4个不同元素(4个蔬菜品种)中任取3个元素的排列个数,即为A34=24(种).]8.集合p={x|x=A m4,m∈N+},则p中元素的个数为________.3[由A m4,m∈N+的意义可知,m=1,2,3,4.当m=1时,A m4=A14=4;当m=2时,A m4=A24=12;当m=3时,A m4=A34=24;当m=4时,A m4=A44=24.由集合元素的互异性可知:p中元素共有3个.]三、解答题9.将3张电影票分给5人中的3人,每人1张,求共有多少种不同的分法.[解]问题相当于从5张电影票中选出3张排列起来,这是一个排列问题.故共有A35=5×4×3=60种分法.10.有三张卡片,正面分别写着1,2,3三个数字,反面分别写着0,5,6三个数字,问这三张卡片可组成多少个三位数?[解]先排列三张卡片,有A33×2×2×2种排法,0排在首位的个数为A22×2×2,则这三张卡片可以组成A33×2×2×2-A22×2×2=40个三位数.11.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种B [∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A 44=24(种).]12.(多选题)下列等式中成立的是( )A .A 3n =(n -2)A 2nB .1n A n n +1=A n -1n +1C .n A n -2n -1=A n nD .n n -m A m n -1=A m n ACD [A 中,右边=(n -2)(n -1)n =A 3n 成立;C 中,左边=n ×(n -1)×…×2=n ×(n -1)×(n -2)×…×2×1=A n n 成立;D 中,左边=n n -m ×(n -1)!(n -m -1)!=n !(n -m )!=A m n 成立;经验证只有B 不正确.] 13.(多选题)当n ∈N +,且n ≥3时,A 3n 不可能取到( )A .60B .240C .2 020D .2 040BCD [A 35=60;由于A 37<240<A 38,所以A 3n 不可能取到240;A 3n 一定是6的倍数,所以A 3n 不可能取到2 020;由于A 313<2 040<A 314,所以A 3n 不可能取到2 040.] 14.(一题两空)由数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数是________,奇数的个数是________.48 72 [从2,4中取一个数作为个位数字,有2种取法,再从其余四个数中取出三个数排在前三位,有A 34种,由分步乘法计数原理知组成无重复数字的四位偶数的个数为2×A 34=48, 又四位偶数的个数与四位奇数的个数之和为A 45,故四位奇数的个数为A 45-48=72.]15.将A 、B 、C 、D 四名同学按一定顺序排成一行,要求自左向右,且A 不排在第一,B 不排在第二,C 不排在第三,D 不排在第四.试写出他们四人所有不同的排法.[解] 由于A 不排在第一,所以第一只能排B 、C 、D 中的一个,据此可分为三类.由此可写出所有的排法为:BADC ,BCDA ,BDAC ,CADB ,CDAB ,CDBA ,DABC,DCAB,DCBA.4、组合组合数及其性质一、选择题1.若A3m=6C4m,则m的值为()A.6B.7C.8D.9B[∵A3m=C3m A33=6C3m.∴6C3m=6C4m,∴C3m=C4m,∴m=3+4=7.]2.若C7n+1-C7n=C8n,则n=()A.12 B.13C.14D.15C[∵C7n+1-C7n=C8n,∴C7n+1=C7n+C8n=C8n+1,∴n+1=7+8,∴n=14.] 3.集合{0,1,2,3}中含有3个元素的子集的个数是()A.4B.5C.7D.8A[由于集合中的元素是没有顺序的,一个含有3个元素的子集就是一个从{0,1,2,3}中取出3个元素的组合,这是一个组合问题,组合数是C34=4.] 4.某城市纵向有6条道路,横向有5条道路,构成如图所示的矩形道路网(图中黑线表示道路),则从西南角A地到东北角B地的最短路线共有()A.125条B.126条C.127条D.128条B[要使路线最短,只能向右或向上走,途中不能向左或向下走.因此,从A 地到B地归结为走完5条横线段和4条纵线段.设每走一段横线段或纵线段为一个行走时段,从9个行走时段中任取4个时段走纵线段,其余5个时段走横线段,共有C49C55=126种走法,故从A地到B地的最短路线共有126条.] 5.假设200件产品中有3件次品,现在从中任取5件,其中至少有2件次品的抽法种数为()A.C23C2198B.C23C3197+C33C2197C .C 3200-C 4197D .C 5200-C 13C 4197B [分为两类:第一类,取出的5件产品有2件次品3件合格品,有C 23C 3197种抽法;第二类,取出的5件产品有3件次品2件合格品,有C 33C 2197种抽法.因此共有(C 23C 3197+C 33C 2197)种抽法.]二、填空题6.设A ={x |x =C n 4,n ∈N +},B ={1,2,3,4},则A ∩B =________.{1,4} [当n =0时,C 04=1;当n =1时,C 14=4;当n =2时,C 24=4×32×1=6; 当n =3时,C 34=C 14=4;当n =4时,C 44=C 04=1, ∴A ={x |x =C n 4,n ∈N +}={1,4,6}.又∵B ={1,2,3,4},∴A ∩B ={1,4}.]7.从2,3,5,7四个数中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m ∶n =________.12 [∵m =C 24,n =A 24,∴m ∶n =12.] 8.7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排不同的3人,则不同的安排方案共有________种.(用数字作答)140 [可分步完成此事,第一步选周六的3人共有C 37种方法;第二步选周日的志愿者共有C 34种方法.由分步乘法计数原理可知:不同的安排方案共有C 37·C 34=140(种).]三、解答题9.已知1C m 5-1C m 6=710C m 7,求m 的值. [解] 由组合数公式化简整理得m 2-23m +42=0,解得m =2或m =21,又0≤m ≤5,所以m =2.10.(1)设集合A ={a 1,a 2,a 3,a 4,a 5},则集合A 中含有3个元素的子集有多少个?(2)10位同学聚会,见面后每两人之间要握手相互问候,共需握手多少次?[解] (1)从5个元素中取出3个元素并成一组,就是集合A 的子集,元素无序,则共有C 35=10(个).(2)每两人握手一次就完成这一件事,则共有握手次数为C 210=10×92×1=45(次).11.C 9798+2C 9698+C 9598=( )A .C 9799B .C 97100 C .C 9899D .C 98100 B [C 9798+2C 9698+C 9598=C 9798+C 9698+C 9698+C 9598=C 9799+C 9699=C 97100.]12.有两条平行直线a 和b ,在直线a 上取4个点,在直线b 上取5个点,以这些点为顶点作三角形,这样的三角形共有( )A .70个B .80个C .82个D .84个A [分两类,第1类:从直线a 上任取一个点,从直线b 上任取两个点,共有C 14C 25种方法;第2类:从直线a 上任取两个点,从直线b 上任取一个点,共有C 24C 15种方法.故满足条件的三角形共有C 14C 25+C 24C 15=70(个).]13.(多选题)若C 4n >C 6n ,则n 的值可以是( )A .6B .7C .8D . 9ABCD [∵C 4n >C 6n ,∴⎩⎨⎧C 4n >C 6n ,n ≥6, ⇒⎩⎨⎧ n !4!(n -4)!>n !6!(n -6)!,n ≥6,⇒⎩⎨⎧ n 2-9n -10<0,n ≥6,⇒⎩⎨⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9.]14.(一题两空)在同一个平面内有一组平行线共8条,另一组平行线共10条,这两组平行线相互不平行,它们共能构成________个平行四边形,共有________个交点.1260 80 [第一组中每两条与另一组中的每两条直线均能构成一个平行四边形,故共有C 28C 210=1 260(个).第一组中每条直线与另一组中每条直线均有一个交点,所以共有C 18C 110=80(个).]15.(1)求C 3n 13+n +C 3n -112+n +C 3n -211+n +…+C 17-n 2n 的值;(2)求满足C 5n -1+C 3n -3C 3n -3=195的n 的值. [解] (1)由原式知,n 满足3n ≤13+n 且17-n ≤2n ,又∵n ∈N +,∴n =6.∴原式=C 1819+C 1718+C 1617+…+C 1112=C 119+C 118+C 117+…+C 112=124.(2)原方程可变形为C 5n -1C 3n -3+1=195,C 5n -1=145C 3n -3, ∴(n -1)(n -2)(n -3)(n -4)(n -5)5!=145×(n -3)(n -4)(n -5)3!. ∴n 2-3n -54=0.∴n =9或n =-6(舍去),∴n =9为原方程的解.5、 二项式定理的推导一、选择题1.(x +2)8的展开式中x 6的系数是( )A .28B .56C .112D .224C [该二项展开式的通项为T r +1=C r 8x 8-r 2r =2r C r 8x8-r ,令r =2,得T 3=22C 28x 6=112x 6,所以x 6的系数是112.]2.若(1+2)5=a +b 2(a ,b 为有理数),则a +b 等于( )A .45B .55C .70D .80C [由二项式定理,得(1+2)5=1+C 15·2+C 25·(2)2+C 35·(2)3+C 45·(2)4+C 55·(2)5 =1+52+20+202+20+42=41+292.所以a =41,b =29,a +b =70.故选C .]3.在⎝ ⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ) A .10 B .-10 C .40 D .-40D [∵T r +1=C r 5(2x 2)5-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r C r 525-r x 10-3r ,令10-3r =1即r =3,此时x 的系数为(-1)3C 3522=-40.] 4.设k =1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .80C [x 1的系数为C 45·24=80,x 2的系数为C 35·23=80,x 3的系数为C 25·22=40,x 4的系数为C 15·21=10,x 5的系数为C 05·20=1,所以系数不可能为50.] 5.(x +3x )12的展开式中,含x 的正整数次幂的项共有( )A .4项B .3项C .2项D .1项B [设第(r +1)项含x 的正整数次幂,则T r +1=C r 12·⎝ ⎛⎭⎪⎫x 1212-r ·⎝ ⎛⎭⎪⎫x 13r =C r 12·x 6-16r ,其中0≤r ≤12.要使6-16r 为正整数,必须使r 为6的倍数.所以r =0,6,12,即第1项、第7项,第13项为符合条件的项.]二、填空题6.(a +x )4的展开式中x 3的系数等于8,则实数a =________.2 [∵T r +1=C r 4a4-r x r 且x 3的系数等于8,∴r =3,即C 34a 4-3=8,∴a =2.] 7.⎝ ⎛⎭⎪⎫x 2+1x 6的展开式中x 3的系数为________.(用数字作答) 20 [设第r +1项为含x 3的项,则T r +1=C r 6x 2(6-r )x -r =C r 6x 12-3r , 令12-3r =3,得r =3,∴x 3的系数为C 36=20.]8.在⎝⎛⎭⎪⎫32x -1220的展开式中,系数是有理数的项共有________项. 4 [T r +1=C r 20(32x )20-r ⎝ ⎛⎭⎪⎫-12r =⎝ ⎛⎭⎪⎫-22r ·(32)20-r ·C r 20·x 20-r . ∵系数为有理数,∴(2)r 与220-r3均为有理数. ∴r 能被2整除,且20-r 能被3整除.∴r 为偶数,20-r 是3的倍数,0≤r ≤20,∴r =2,8,14,20.∴共有4项系数为有理数.]三、解答题9.求(1+x )3+(1+x )4+…+(1+x )20的展开式中x 3的系数.[解] 所求x 3的系数为:C 33+C 34+C 35+…+C 320=(C 44+C 34)+C 35+…+C 320=(C 45+C 35)+C 36+…+C 320=…=C 420+C 320=C 421.所以展开式中x 3的系数是C 421=5 985.10.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求: (1)第3项的二项式系数及系数;(2)含x 2的项.[解] (1)第3项的二项式系数为C 26=15,又因为T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24·C 26x , 所以第3项的系数为24C 26=240.(2)T k +1=C k 6(2x )6-k ⎝⎛⎭⎪⎫-1x k =(-1)k 26-k C k 6x 3-k , 令3-k =2,得k =1.所以含x 2的项为第2项,且T 2=-192x 2.11.二项式(1+x )6的展开式中有理项系数之和为( )A .64B .32C .24D .16B [二项式(1+x )6的展开式的通项为T r +1=C r 6x r 2,令r 2为整数,可得r =0,2,4,6,故展开式中有理项系数之和为C 06+C 26+C 46+C 66=32,故选B .]12.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-1D[展开式中含x2的系数为C25+a C15=5,解得a=-1,故选D.]13.(多选题)中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a,b,m(m>0)为整数,若a和b被m除得的余数相同,则称a和b对模m 同余,记为a=b(mod m).若a=C020+C120·2+C220·22+…+C2020·220,a=b(mod 10),则b的值可以是()A.2 011B.2 012C.2 020D.2 021AD[∵a=(1+2)20=320=910=(10-1)10=C0101010-C110109+…-C91010+1,∴被10除得的余数为1,而2 011与2 021被10除得的余数是1,故选AD.] 14.(一题两空)在二项式(2+x)9的展开式中,常数项是________,系数为有理数的项的个数是________.1625[由二项展开式的通项公式可知T r+1=C r9·(2)9-r·x r,r∈N,0≤r≤9,当r=0时,第1项为常数项,所以常数项为T1=C09·(2)9·x0=(2)9=162.当项的系数为有理数时,9-r为偶数,可得r=1,3,5,7,9,即系数为有理数的项的个数为5.]15.(3-2x-x4)(2x-1)6的展开式中,含x3项的系数为()A.600B.360C.-600D.-360C[由二项展开式的通项可知,展开式中含x3项的系数为3×C3623(-1)3-2×C4622(-1)4=-600.故选C.]6、二项式系数的性质一、选择题1.若(x+3y)n展开式的系数和等于(7a+b)10展开式中的二项式系数之和,则n 的值为()A.5B.8C.10D.15A[(7a+b)10展开式的二项式系数之和为210,令x=1,y=1,则由题意知,4n=210,解得n=5.]2.若⎝ ⎛⎭⎪⎫x +1x n展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120 B [由2n =64,得n =6,∴T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫1x r=C r 6x 6-2r(0≤r ≤6,r ∈N ). 由6-2r =0,得r =3. ∴T 4=C 36=20.]3.(x -1)11展开式中x 的偶次项系数之和是( ) A .-2 048 B .-1 023 C .-1 024D .1 024C [(x -1)11=C 011x 11+C 111x 10(-1)1+C 211x 9(-1)2+…+(-1)11,偶次项系数为负数,其和为-210=-1 024.]4.设(3-x )n =a 0+a 1x +a 2x 2+…+a n x n ,若n =4,则a 0-a 1+a 2-a 3+…+(-1)n a n =( )A .256B .136C .120D .16A [令x =-1,得a 0-a 1+a 2+…+(-1)n a n =(3-(-1))4=44=256.]5.已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n 的值等于( )A .64B .32C .63D .31 B [由已知(1+2)n=3n=729,解得n =6.则C 1n +C 3n +C 5n =C 16+C 36+C 56=262=32.]二、填空题6.若⎝ ⎛⎭⎪⎫x 2+1x 3n展开式的各项系数之和为32,则其展开式中的常数项是________.10 [令x =1得2n =32,∴n =5. ∵T r +1=C r 5(x 2)5-r ·⎝ ⎛⎭⎪⎫1x 3r=C r 5·x 10-5r , ∴由10-5r =0即r =2可得展开式中的常数项是C 25=10.]7.如图,在由二项式系数所构成的杨辉三角形中,第________行中从左至右第14个与第15个数的比为2∶3.34 [由已知C 13n C 14n=23,即n !(n -13)!·13! × (n -14)!·14!n !=23,化简得14n -13=23.解得n =34.] 8.将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.10 [∵f (x )=x 5=[(1+x )-1]5,∴a 3=C 25(-1)2=10.]三、解答题9.⎝⎛⎭⎪⎪⎫x +23x n 展开式第9项与第10项二项式系数相等,求x 的一次项系数. [解] ∵⎝ ⎛⎭⎪⎪⎫x +23x n 的展开式中第9项,第10项的二项式系数分别为C 8n 、C 9n . 又∵这两项的二项式系数相等.∴C 8n =C 9n ,∴n =17.其展开式的通项T r +1=C r 17x 17-r 2·2r ·x -r3=2r C r17x 17-r 2-r 3, 令17-r 2-r3=1, ∴r =9.∴T 10=29C 917x =29×24 310x =12 446 720x ,即x 的一次项系数为12 446 720.10.若(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,求: (1)各项系数之和;(2)奇数项系数的和与偶数项系数的和.[解] (1)各项系数之和即为a 0+a 1+a 2+…+a 10,可用“赋值法”求解.令x =y =1,得a 0+a 1+a 2+…+a 10=(2-3)10=(-1)10=1.(2)奇数项系数的和为a 0+a 2+a 4+…+a 10,偶数项系数的和为a 1+a 3+a 5+…+a 9.由(1)知a 0+a 1+a 2+…+a 10=1,①令x =1,y =-1,得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得,2(a 0+a 2+…+a 10)=1+510,故奇数项系数的和为12(1+510); ①-②得,2(a 1+a 3+…+a 9)=1-510,故偶数项系数的和为12(1-510).11.若(x -2)5-3x 4=a 0+a 1(x -3)+a 2(x -3)2+a 3(x -3)3+a 4(x -3)4+a 5(x -3)5,则a 3=( )A .-70B .28C .-26D .40C [令t =x -3,则(x -2)5-3x 4=a 0+a 1(x -3)+a 2(x -3)2+a 3(x -3)3+a 4(x -3)4+a 5(x -3)5可化为(t +1)5-3(t +3)4=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25-3×C 14×3=10-36=-26.]12.在⎝ ⎛⎭⎪⎫x +2x 2n(n ∈N +)的展开式中,若二项式系数最大的项仅是第六项,则展开式中常数项是( )A .180B .120C .90D .45A [在⎝ ⎛⎭⎪⎫x +2x 2n (n ∈N +)的展开式中,若二项式系数最大的项仅是第六项,则n =10,则⎝ ⎛⎭⎪⎫x +2x 2n=⎝ ⎛⎭⎪⎫x +2x 210的展开式的通项为T r +1=C r 10·2r ·x 5-5r 2,令5-5r 2=0,得r =2,可得展开式中常数项为C 210·22=180.] 13.(多选题)若将函数f ()x =x 5表示为f ()x =a 0+a 1(1+x )+a 2(1+x ) 2+…+a 5(1+x ) 5, 其中a 0,a 1,a 2,…,a 5为实数,则( )A .a 0=-1B .a 3=10C .∑i =15a i =1D .∑i =15(-1) i a i =-31ABCD [由已知得(x -1)5=a 0+a 1x +a 2x 2+…+a 5x 5,令x =0得,a 0=-1; 又a 0+∑i =15a i =(1-1)5=0,a 0+∑i =15(-1) i a i =(-1-1) 5=-32,。

高一数学(必修一)《第五章 诱导公式》练习题及答案解析-人教版

高一数学(必修一)《第五章 诱导公式》练习题及答案解析-人教版

高一数学(必修一)《第五章 诱导公式》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、填空题1.若3cos 25πα⎛⎫+= ⎪⎝⎭,则()sin πα-=______.二、解答题2.对任意复数()i ,z x y x y =+∈R ,定义()()3cos isin x g z y y =+.(1)若()3g z =,求复数z ;(2)若()i ,z a b a b =+∈R 中的a 为常数,则令()()g z f b =,对任意b ,是否一定有常数()0m m ≠使得()()f b m f b +=若存在,则m 是否唯一?请说明理由.3.求下列各式的值.(1)sin105︒; (2)5sin()12π-; (3)tan15︒; (4)7tan 12π. 4.已知1sin 2x =. (1)当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,则求角x 的值; (2)当3,22⎡⎤∈⎢⎥⎣⎦x ππ时,则求角x 的值; (3)当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,则求角x 的值. 5.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知221cos sin 02A A -+=. (1)求角A 的值;(2)若ABC 为锐角三角形,设a 5b =求ABC 的面积.6.求下列各式的值:(1)7cos 2703sin 270tan 765++;(2)234cos cos cos cos 5555ππππ+++; (3)()()cos 120sin 150tan855--+.7.已知函数()sin cos f x x x x ⎛⎫= ⎪ ⎪⎝⎭. (1)求区数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的值域; (2)若[0,]απ∈,且2f α⎛⎫= ⎪⎝⎭,求cos 26πα⎛⎫- ⎪⎝⎭. 8.若函数()2sin cos 6f x x x π⎛⎫=+ ⎪⎝⎭.求函数f (x )的对称中心与单调递增区间. 9.求证:()()()3tan 2cos cos 62133tan sin cos 22ααααααπ⎛⎫π--π- ⎪⎝⎭=ππ⎛⎫⎛⎫π-++ ⎪ ⎪⎝⎭⎝⎭. 1011.如图,锐角α和钝角β的终边分别与单位圆交于A ,B 两点,且OA OB ⊥.(1)求()()πsin πcos 23πcos πsin 2αββα⎛⎫++ ⎪⎝⎭⎛⎫-+ ⎪⎝⎭的值; (2)若点A 的横坐标为35,求2sin cos αβ的值. 12.在①()3sin 2sin 2ππαα⎛⎫-=- ⎪⎝⎭,②()2tan 3πα-=-这两个条件中任选一个,补充在下面横线中,并解答.已知α为第一象限角,且___________,求sin α,cos α和tan α的值.13.求证:()()()()()11sin 2cos cos cos 22tan 9cos sin 3sin sin 2πππαπααααππαπαπαα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫----+ ⎪⎝⎭.14.在△ABC 中,已知137cos ,143C a c ==. (1)求∠A 的大小; (2)请从条件①:1b a -=;条件②:5cos 2b A =-这两个条件中任选一个作为条件,求cos B 和a 的值. 15.求下列各式的值.(1)sin37.5cos37.5︒︒;(2)sin 20cos70sin10sin50︒︒+︒︒.16.已知,αβ的始边为x 轴非负半轴,终边与以原点为圆心的单位圆分别交于,P Q 两点.(1)如图1,若1,(1,0)2P Q ⎛- ⎝⎭,求|2|OP OQ +;(2)如图2,若11,22P Q ⎛⎛⎫- ⎪ ⎪⎝⎭⎝⎭,设θ为||αβ-的最小值,求单位圆中圆心角为θ的圆弧长.三、单选题17.已知1sin 3π3α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+ ⎪⎝⎭的值等于( )A .9B .9-C .79-D .79参考答案与解析1.35【分析】根据给定条件利用诱导公式求解即得.【详解】因3cos 25πα⎛⎫+= ⎪⎝⎭,则3sin 5α-=,即3sin 5α=- 所以()3sin sin 5παα-==-.故答案为:352.(1)12i z k π=+ k ∈Z(2)2m k π= k ∈Z ,m 不唯一,理由见解析【分析】(1)由复数相等的性质分析可得到结果;(2)利用诱导公式()cos 2cos k b b π+=,()sin 2sin k b b π+=即可说明理由.(1)由()()()3cos isin 3cos 3sin i x x x g z y y y y =+=+,()3g z =得()3cos 3sin i 3x x y y +=即3cos 33sin 0x x y y ⎧=⎨=⎩,由30x >得sin 0y =,进而cos 1y =± 当cos 1y =时,则3=3x ,解得1x =,此时2,y k k π=∈Z ;当cos 1y =-时,则3=3x -,无解,舍去.所以1x =,2,y k k π=∈Z 故12i,i z x y k k π=+=+∈Z .(2)由题意得,()()()3cos isin a f b g z b b ==+因为()cos 2cos k b b π+= ()sin 2sin k b b π+= k ∈Z所以()()()()()23cos 2isin 23cos isin a a f k b k b k b b b f b πππ+=+++=+=⎡⎤⎣⎦所以令2m k π=,k ∈Z ,则有()()f b m f b +=,同时k 取不同值时,则m 也有相应的不同值,故m 不唯一.3.(2);(3)2;(4)2-【分析】(1)由()sin105sin 6045︒=︒+︒,结合正弦的和角公式即可求得结果;(2)由5sin()12π-()sin 3045=-︒+︒,结合正弦的和角公式即可求得结果;(3)由tan15︒()tan 4530=︒-︒,结合正切的差角公式即可求得结果;(4)由7tan12π()tan 6045=︒+︒,结合正切的和角公式即可求得结果. (1)因为sin105︒()sin 6045sin60cos45cos60sin 45=︒+︒=︒︒+︒︒12==故sin105︒=(2)5sin()12π-()()()sin 75sin75sin 3045sin30cos45cos30sin 45=-︒=-︒=-︒+︒=-︒︒+︒︒1222⎛=-⨯= ⎝⎭故5sin()12π-=(3) tan15︒()1tan 45tan 30tan 453021tan 45tan 30︒-︒=︒-︒===+︒︒ 故tan15︒2=(4)7tan 12π()tan 60tan 45tan105tan 604521tan 60tan 45︒+︒=︒=︒+︒===--︒︒故7tan12π2=-4.(1)6x π=;(2)56x π=;(3)6x π=和56x π=. 【分析】(1)根据角的范围可得6x π=; (2)根据角的范围可得56x π=; (3)根据角的范围可得56x π=和6x π=. 【详解】由1sin 2x =可知,x 为第一、二象限角.(1)由题意知0,2x π⎡⎤∈⎢⎥⎣⎦且1sin 2x =,所以满足条件的角x 只有一个6x π=. (2)由题意知,2x ππ⎡⎤∈⎢⎥⎣⎦且1sin 2x =,所以满足条件的角x 只有一个566x πππ=-=. (3)由题意知[0,]x π∈且1sin 2x =,所以满足条件的角x 有两个6x π=和56x π=. 5.(1)1π3A =或2π3【分析】(1)利用三角恒等变换得到1cos 22A =-,进而求出22π3A =或4π3,故1π3A =或2π3;(2)利用余弦定理求出2c =或3,验证后得到3c =,进而利用三角形面积公式进行求解. (1)2211cos sin cos 2022A A A -+=+=,所以1cos 22A =-,因为(0,π)A ∈,所以2(0,2π)A ∈,故22π3A =或4π3,即1π3A =或2π3. (2)由第一问所求和ABC 为锐角三角形得1π3A = 由余弦定理可得2222cos a b c bc A =+-,化为2560c c -+=,解得2c =或3若2c =,则cos 0B =<,即B 为钝角,2c ∴=不成立当3c =,经检验符合条件,ABC 的面积为11sin 5322S bc A ==⨯⨯=6.(1)2-(2)0 (3)34-【分析】利用诱导公式结合特殊角的三角函数即可得到答案.(1)原式=()()()7cos 180903sin 18090tan 236045++++⨯+7cos903sin90tan 450312--+=-=+=- (2)原式=22coscos cos cos 5555ππππππ⎛⎫⎛⎫++-+- ⎪ ⎪⎝⎭⎝⎭ =22cos cos cos cos 05555ππππ+--=. (3)原式=()cos120sin150tan855-+()()()cos 18060sin 18030tan 1352360=---++⨯()cos60sin30tan 18045=+-cos60sin30tan 113122454=⨯-=-=-7.(1)⎡⎢⎣⎦(2) 【分析】(1)根据二倍角公式和三角恒等变化,可得()f x 的解析式,再根据三角函数的性质,即可求出结果;(2)由(1)可得1sin()64πα+=,再根据角的范围,和正弦的二倍角公式可得sin 23πα⎛⎫+ ⎪⎝⎭的值,再根据诱导公式可得cos 2sin 263ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,由此即可求出结果. (1)解:())1sin cos sin21cos22f x x x x x x ⎛⎫==- ⎪ ⎪⎝⎭所以()1sin2226f x x x x π⎛⎫==+ ⎪⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,则72666x πππ≤+≤ 故1sin(2)126x π-≤+≤从而()f x ≤≤所以函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为:⎡⎢⎣⎦(2)解:26f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭所以1sin()64πα+= 因7666πππα≤+≤ 若662πππα≤+≤,则1sin 62πα⎛⎫+> ⎪⎝⎭,矛盾! 故26ππαπ≤+≤,cos 6πα⎛⎫+= ⎪⎝⎭从而sin 23πα⎛⎫+= ⎪⎝⎭所以cos 2sin 263ππαα⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭8.对称中心为1,,1222k k ππ⎛⎫-+∈ ⎪⎝⎭Z ,递增区间为(),,.36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. 【分析】化简()2sin cos 6f x x x π⎛⎫=+ ⎪⎝⎭为()sin()f x A wx B ϕ=++ 的形式,利用整体代换分别求出对称中心和单调区间.【详解】()211cos 212cos cos cos cos 2sin 22262x f x x x x x x x x x π⎫+⎛⎫=+=⋅=++⎪ ⎪⎪⎝⎭⎝⎭= 令()2,6x k k Z ππ+=∈,可得对称中心为1,,1222k k ππ⎛⎫-+∈ ⎪⎝⎭Z 令()222,262k x k k Z πππππ-+++∈解之得(),36k x k k ππππ-++∈Z递增区间为(),,.36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦9.证明见解析【分析】利用诱导公式化简即可证明;【详解】证明:左边()()()tan cos cos 2tan sin cos 22αααααα⎡π⎤⎛⎫---- ⎪⎢⎥⎝⎭⎣⎦=⎡π⎤⎡π⎤⎛⎫⎛⎫--+-+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()()()()tan sin cos tan cos sin αααααα--=--1==右边,所以原式成立.10.sin2cos2- 【分析】本题首先可根据22ππ<<得出sin2cos20->,然后根据同角三角函数关系即可得出结果. 【详解】因为22ππ<<,所以sin 20>,cos20<和sin2cos20->=sin 2cos 2=-.11.(1)-1(2)3225-【分析】(1)根据三角函数的诱导公式,可得答案; (2)根据图中的等量关系,进行等量代还,可得答案.(1)由题意得π2βα=+ 所以()()ππsin πcos sin sin sin sin sin cos 2213ππcos cos sin cos cos πsin cos cos 22αβαααβαααβααβααβ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭===-=-⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭. (2)因为点A 的横坐标为35 所以3cos 5α=,4sin 5α和π4cos cos sin 25βαα⎛⎫=+=-=- ⎪⎝⎭所以44322sin cos 25525αβ⎛⎫=⨯⨯-=- ⎪⎝⎭. 12.sin α=cos α=2tan 3α=. 【分析】选择条件,利用三角函数诱导公式对原式进行化简,根据α为第一象限角,结合平方关系及商数关系求值即可.【详解】解:若选条件①由()3sin 2sin 2ππαα⎛⎫-=- ⎪⎝⎭可得3sin 2cos αα= 又22sin cos 1αα+=,所以213cos 19α=,得29cos 13α=. 因为α为第一象限角,所以cos α=所以sin α== 所以2tan 3α=. 若选条件② 因为()2tan 3πα-=-,所以2tan 3α-=- 2tan 3α= 所以2sin cos 3αα=,又22sin cos 1αα+=,所以213cos 19α=,得29cos 13α= 因为α为第一象限角,所以cos α=所以sin α==. 13.证明见解析.【分析】利用三角函数的诱导公式和同角三角函数基本关系式证明.【详解】左边=()()()()sin cos sin sin cos sin sin cos αααααααα-⋅----⋅⋅⋅=–tan α=右边 ∴等式成立.14.(1)3A π=或23A π=; (2)选条件①:1cos 7B =-, a =7;选条件②11cos 14B =,a =7.【分析】(1)先用正弦定理求出角A ;(2)选条件①:先判断出3A π=,分别求出cos sin cos sin C C A A 、、、,利用两角和的余弦公式即可求出cos B 再用余弦定理求出a ;选条件②:先判断出3A π=,分别求出cos sin cos sin C C A A 、、、,利用两角和的余弦公式即可求出cos B ,再用正弦定理求出a .(1)△ABC 中,因为13cos 14C =,所以sin C ==. 由正弦定理得sin sin a c A C =,所以7sin sin 3a A C c == 所以3A π=或23A π=. (2)选条件①1b a -=,则b a >,所以3A π=(23A π=舍去).所以()1311cos cos cos cos sin sin 1427B A C A C A C =-+=-+=-⨯=-. 即1cos 7B =-. 由余弦定理得:2222cos b a c ac B =+-即()22233112777a a a a a ⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 解得:7a =(715a =-舍去). 选条件②:5cos 2b A =-. 因为0b >,所以cos 0A <,所以23A π=(3A π=舍去).所以()13111cos cos cos cos sin sin 14214B A C A C A C ⎛⎫⎛⎫=-+=-+=-⨯-= ⎪ ⎪⎝⎭⎝⎭. 即11cos 14B =,所以sin B = 由正弦定理得:sin sin a b A B =即51522cos sin sin 7sin sin b A a A A B B -⎛⎫⨯-- ⎪=⨯=⨯==即a =7.15.(2)14【分析】(1)利用积化和差公式化简求得正确答案.(2)利用积化和差公式、诱导公式化简求得正确答案.(1)sin37.5cos37.5︒︒()()1sin 37.57.5sin 37.57.52=︒+︒+︒-︒⎡⎤⎣⎦()1sin 45sin 302=︒+︒=. (2)sin 20cos70sin10sin50︒︒+︒︒()()()()11sin 2070sin 2070cos 1050cos 105022=︒+︒+︒-︒-︒+︒-︒-︒⎡⎤⎡⎤⎣⎦⎣⎦ ()()11sin 90sin 50cos60cos 4022=︒+-︒-︒--︒⎡⎤⎡⎤⎣⎦⎣⎦ 1111sin 50cos 402242=-︒-+︒ ()111sin 50cos 9050422=-︒+︒-︒ 1111sin 50sin 504224=-︒+︒=. 16.(1;(2)56π 【解析】(1)根据,P Q 坐标,求出2OP OQ +的坐标,进而可得|2|OP OQ +;(2)根据11,22P Q ⎛⎛⎫- ⎪ ⎪⎝⎭⎝⎭,可得,αβ表示的角,进而可得θ的值,利用弧长公式可求单位圆中圆心角为θ的圆弧长.【详解】解:(1)13,,(1,0)22P Q ⎛- ⎝⎭2OP OQ ∴+=()(121,02⎛+-= ⎝⎭|2|3OP OQ ∴+=;(2)由11,22P Q ⎛⎛⎫- ⎪ ⎪⎝⎭⎝⎭,得121272,2,,36k k k k Z ππαπβπ=+=+∈ 则()()12121275522223666||k k k k k k αβππππππππ⎛⎫+-+=-+-=-- ⎪⎝⎭-= 当120k k -=时,则||αβ-取最小值56πθ单位圆中圆心角为θ的圆弧长56l r πθ==. 【点睛】本题考查向量模的坐标运算,考查终边相同的角的表示,考查弧长公式,是基础题.17.C【分析】根据诱导公式可得π2πcos 2cos 233αα⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,再根据二倍角的余弦公式即可求解. 【详解】ππ2πcos 2cos π2cos 2333ααα⎡⎤⎛⎫⎛⎫⎛⎫+=--+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 222ππ17cos 22sin 1213339αα⎛⎫⎛⎫⎛⎫=--=--=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:C .。

自考 离散数学教材课后题第五章答案

自考 离散数学教材课后题第五章答案

5.1习题参考答案1、设无向图G有16条边,有3个4度结点,4个3度结点,其余结点的度数均小于3,问:G中至少有几个结点。

阮允准同学提供答案:解:设度数小于3的结点有x个,则有3×4+4×3+2x≥2×16解得:x≥4所以度数小于3的结点至少有4个所以G至少有11个结点2、设无向图G有9个结点,每个结点的度数不是5就是6,证明:G中至少有5个6度结点或至少有6个5度结点。

阮允准同学答案:证明:由题意可知:度数为5的结点数只能是0,2,4,6,8。

若度数为5的结点数为0,2,4个,则度数为6的结点数为9,7,5个结论成立。

若度数为5的结点数为6,8个,结论显然成立。

由上可知,G中至少有5个6度点或至少有6个5度点。

3、证明:简单图的最大度小于结点数。

阮同学认为题中应指定是无向简单图.晓津证明如下:设简单图有n个结点,某结点的度为最大度,因为简单图任一结点没有平行边,而任一结点的的边必连有另一结点,则其最多有n-1条边与其他结点相连,因此其度数最多只有n-1条,小于结点数n.4、设图G有n个结点,n+1条边,证明:G中至少有一个结点度数≥3 。

阮同学给出证明如下:证明:设G中所有结点的度数都小于3,即每个结点度数都小于等于2,则所有结点度数之和小于等于2n,所以G的边数必小于等于n,这和已知G有n+1条边相矛盾。

所以结论成立。

5、试证明下图中两个图不同构。

晓津证明:同构的充要条件是两图的结点和边分别存在一一对应且保持关联关系。

我们可以看出,(a)图和(b)图中都有一个三度结点,(a)图中三度结点的某条边关联着两个一度结点和一个二度结点,而(b)图中三度结点关联着两个二度结点和一个一度结点,因此可断定二图不是同构的。

6、画出所有5个结点3条边,以及5个结点7条边的简单图。

解:如下图所示: (晓津与阮同学答案一致)7、证明:下图中的图是同构的。

证明如下:在两图中我们可以看到有a→e,b→h,c→f,d→g两图中存在结点与边的一一对应关系,并保持关联关系。

教材第五章习题解答

教材第五章习题解答

第五章化学热力学习题解答1.要使木炭燃烧,必须首先加热,为什么?这个反应究竟是放热还是吸热反应?试说明之?【解答】略2.判断反应能否自发进行的标准是什么?能否用反应的焓变或熵变作为衡量的标准?为什么?【解答】判断反应能否自发进行的标准是吉布斯自由能变。

不能用反应的焓变作为衡量的标准,应用熵判据,原则上可以确定变化的方向和限度,但它只适用于孤立体系,而实际上的变化过程,系统和环境常有能量的交换,这样使用熵判据就不方便了。

3.由书末附表中f m H θ∆(298.15K )的数据计算水蒸发成水蒸气,)()1(22g O H O H →的标准摩尔焓变m H θ∆(298.15K )=?298.15K 下,2.000mol的)1(2O H 蒸发成同温、同压的水蒸气,焓变H θ∆(298.15K )=?吸热多少?做功W =?内能的增量?=∆U (水的体积比水蒸气小得多,计算时可忽略不计。

)【解答】)()1(22g O H O H →1f H /kJ mol θ-∆⋅ 285.83 241.82①m H (298.15K)θ∆=f 2H (H O(g))θ∆-f 2H (H O(l))θ∆=241.82-285.83=44.01kJ.mol -1 ② 298.15K 下,2.000mol 的)1(2O H 蒸发成同温、同压的水蒸气,焓变H θ∆(298.15K )=2.000×m H (298.15K)θ∆=88.02kJ③ Qp=H θ∆=88.02kJ④ W = -p ∆V = -p (V g -V l )= -pV g = -nRT= -2mol ×8.314J/(mol.K )*298.15K = -4957J= -4.957kJ⑤ ΔU=Q+W=88.02 + (-4.957) = 83.06 kJ4.写出反应C B A 23→+中A 、B 、C 各物质的化学计量数,并计算反应刚生成1molC 物质的反应进度变化。

医用物理学第05章 课后习题解答

医用物理学第05章 课后习题解答

其方向垂直向下。 ②求电势: 电荷元 dq 在圆心产生的电势 dU 为
θ
O dE⊥
dE∥ X dE
dq q dU k k 2 dl R r
将上式积分即得圆心处的电势
习题 5-7 附图
U dU k
q R 2

R
0
dl k
q R
5-8 长度为 L 的直线段上均匀分布有正电荷,电荷线密度为 λ,求该直线的延长线上, 且与线段较近一端的距离为 d 处的场强和电势。 解: ①求场强:在直线段 l 处取一线元 dl,其带电量为 dq=λdl,它在 P 处产生的场强方 向沿直线的延长线,大小为
(因为 E2 =E3 )
3Q 2 0 a 2
E Ey
3Q 2 0 a 2
其方向垂直向上。 由点电荷电势公式可得三个点电荷在重心的电势分别为
U
Q 3Q , 4 0 r 4 0 a
U2 U3
3Q 4 0 a
根据电势叠加原理,重心处的电势为
U U1 U 2 U 3
1 2 2
V 6.36 10 2 V
②求场强:根据场强与电势的关系 E=-dU/dn,对(c)式求关于 x 的导数,则场强 E 的 大小为
E
9 dU qx 9 5.0 10 0.05 k 2 9 . 0 10 V m 1 6.36 10 3V m 1 3 dx (R x 2 )3 / 2 (0.05 2 0.05 2 ) 2
5-2 两个点电荷分别带有+10C 和+40C 的电量,相距 40cm,求场强为零的点的位置及 该点处的电势。 解: ①求场强为零的位置: 只有在两电荷的连线中的某点 P,才能使该处场强为零,即 q1 、q2 在该点的场强 E1、E2 大小相等,方向相反,已知 q1 =10C,q2 =40C,则根据点电荷 r1 r2 ,有 k q1 k q2 场强公式 E k q 2 2 2 r r1 r2 由上式可得 r1 r2

第5章-习题解答

第5章-习题解答

第5章-习题解答第5章 习题与答案5-1 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 [ ](A) 其振幅为3 m (B) 其周期为s 31 (C) 其波速为10 m/s (D) 波沿x 轴正向传播 [答案:B]5-2 一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如题5-2图所示. 则x =0处的振动方程为[ ](A)y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) . (C) y =2×10-2cos(πt /2+π/2) ( S I ) . (D) y =2×10-2cos(πt -3π/2)( SI ) . [答案:A]5-3 如题5-3图所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1ux y (10· · · · · · · 0 5 1122- PSS题5-2图题5-3图的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是[ ](A) 0 . (B) π . (C) π /2 . (D) 3π/2 . [答案:B]5-4 一平面简谐波沿ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形如题5-5图中的哪一个? [ ] [答案:B]5-5 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如题5-5图所示.则该时刻 [ ]题5-4图-(A) A 点振动速度大于零 (B)B 点静止不动(C) C 点向下运动(D) D 点振动速度小于零 [答案:D]5-6 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形如题5-6图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ ][答案:A]5-7 一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如题5-7图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则 [ ] (A) O 点的初相为0=φωS A O ′ωSA ωωSAO ′(A)(B)(C)(D)S题5-5图题5-6图(B) 1点的初相为π-=211φ(C) 2点的初相为π=2φ(D) 3点的初相为π-=213φ[答案:D]5-8 在驻波中,两个相邻波节间各质点的振动[ ](A) 振幅相同,相位相同 (B) 振幅不同,相位相同(C) 振幅相同,相位不同 (D) 振幅不同,相位不同 [答案:B]5-9 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:[ ](A) 它的动能转化为势能. (B) 它的势能转化为动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,题5-7图其能量逐渐减小. [答案:D]5-10 一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是__________,波长是__________,频率是__________,波的传播速度是__________。

VB课本习题答案第五章课后习题答案

VB课本习题答案第五章课后习题答案

第5章数组与记录5.1 填空题1.若要定义一个包含10个字符串元素,且下界为1的一维数组s,则数组说明语句为( Dim s(1 To 10) As String )。

2.若要定义一个元素为整型数据的二维数组a,且第一维的下标从0到5,第二维下标从-3到6,则数组说明语句为( Dim a(0 To 5,-3 To 6) As Integer )。

3.如果数组元素的下标值为实数,则VB系统会按(四舍五入原则)进行处理。

4.数组元素个数可以改变的数组称为(可调数组);数组元素可以存放不同类型数据的数组称为(可变类型数组)。

5.数组刷新语句用于(清除指定数组内容)。

若被刷新的数组是数值数组,则把所有元素置(0);若被刷新的数组为字符串数组,则把所有元素置(空字符串)。

6.设有表格控件grd1,若设置grd1的第2行第5列的单元格为当前活动单元格,使用的语句为(grd1. Row =2 )和(grd1.Col=5 )。

7.要使表格控件grd1的当前活动单元格显示字符串“姓名”,使用的语句是(grd1.Text=“姓名”)。

8.建立一个具有10行10列的表格控件grd2,需使用的语句为(grd2. Row =10 )和(grd2.Col=10 )。

9.在程序的运行中,对表格控件grd1的某些列的数据按降序并且区分大小写排序,使用的语句是(grd1.Sort=8 )。

10.控件数组是由一组类型和(名字)相同的控件组成,共享(同一个事件过程)。

11.控件数组中的每一个控件都有惟一的下标,下标值由( Index )属性指定。

12.建立控件数组有两种方法:(在设计阶段通过相同Name属性值来建立)和(在程序代码中使用Load方法)。

5.2 选择题1.下列一维数组说明语句错误的是( d )。

a) Dim b(100) AS Double b) Dim b(-5 To 0) AS Bytec) Dim b(-10 To –20) AS Integer d) Dim b(5 To 5) AS String2.若有数组说明语句为:Dim a(-3 To 8),则数组a包含元素的个数是( d )。

第五章习题 - 褚圣麟原子物理学教材习题解答

第五章习题 - 褚圣麟原子物理学教材习题解答

第五章 多电子原子5.1 e H 原子的两个电子处在2p3d 电子组态。

问可能组成哪几种原子态?用原子态的符号表示之。

已知电子间是LS 耦合。

解:因为21,2,12121====s s l l , 1,2,3;1,0,,1,;2121212121==∴-⋯-++=-+=L S l l l l l l L s s s s S ,或 所以可以有如下12个组态:4,3,23313,2,13212,1,0311,1,3,0,3,1,2,0,2,1,1,0,1F S L F S L D S L D S L P S L P S L ============5.2 已知e H 原子的两个电子被分别激发到2p 和3d 轨道,器所构成的原子态为D 3,问这两电子的轨道角动量21l l p p 与之间的夹角,自旋角动量21s s p p 与之间的夹角分别为多少?解:(1)已知原子态为D 3,电子组态为2p3d2,1,1,221====∴l l S L因此,'21222122122212222111461063212/)(cos cos 26)1(6)1(22)1(οθθθπ=-=--=∴++==+==+==+=L l l l l L L Ll l l l L L l l p p p p P p p p p P L L P l l p hl l p(2)hh S S P h h s s p p s s S 2)1(23)1(212121=+==+==∴== 而'212221221222123270312/)(cos cos 2οθθθ==--=∴++=S s s s s S s ss s s s S p p p p P p p p p P 5.3 锌原子(Z=30)的最外层电子有两个,基态时的组态是4s4s 。

当其中有一个被激发,考虑两种情况:(1)那电子被激发到5s 态;(2)它被激发到4p 态。

试求出LS 耦合情况下这两种电子组态分别组成的原子状态。

中文版教材习题五答案

中文版教材习题五答案


z
*

30 199
30
(2)分离点为: d 0.4 ,分离角为: (2k 1)
l
2
起始角: p4 268 , p5 268
与虚轴的交点:
K1*

0 0
K2,3*

1.034 73.04
K4*,5165.553104
K(3s 1)
s(2s 1) K(3s 1)
闭环特征方程: 2s 2 (1 3K)s K 0
闭环特征根: s1,2 (1 3K)
(1 3K)2 8K (1 3K) 9K 2 2K 1

4
4

K=0
时,特征根
s1

0, s2


1 2
(1 3K ) (3K 1)2 8
(1)
G(s)

K s(s 1)2
(2)
G(s)

K(s s(s2 4s
4) 29)
(3) G(s)
K
s(s 2 4s 8)
试概略画出闭环系统根轨迹图。 5-4 参考答案:
(a) G(s)H (s) K s(s 1)2
(4) G(s) K (s 5)(s 4) s(s 1)(s 3)
-4 -3
Im
-1
0
Re 5
44
“自动控制原理”第五章习题参考答案
5-5
已知开环传递函数为 G(s)H (s)
K s(s 4)(s2 4s 20)
,请概略画出闭环系统根轨。
5-5 参考答案:
与虚轴交点:

K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章化学热力学习题解答1.要使木炭燃烧,必须首先加热,为什么?这个反应究竟是放热还是吸热反应?试说明之?【解答】略2.判断反应能否自发进行的标准是什么?能否用反应的焓变或熵变作为衡量的标准?为什么?【解答】判断反应能否自发进行的标准是吉布斯自由能变。

不能用反应的焓变作为衡量的标准,应用熵判据,原则上可以确定变化的方向和限度,但它只适用于孤立体系,而实际上的变化过程,系统和环境常有能量的交换,这样使用熵判据就不方便了。

3.由书末附表中f m H θ∆(298.15K )的数据计算水蒸发成水蒸气,)()1(22g O H O H →的标准摩尔焓变m H θ∆(298.15K )=?298.15K 下,2.000mol的)1(2O H 蒸发成同温、同压的水蒸气,焓变H θ∆(298.15K )=?吸热多少?做功W =?内能的增量?=∆U (水的体积比水蒸气小得多,计算时可忽略不计。

)【解答】)()1(22g O H O H →1f H /kJ mol θ-∆⋅ 285.83 241.82①m H (298.15K)θ∆=f 2H (H O(g))θ∆-f 2H (H O(l))θ∆=241.82-285.83=44.01kJ.mol -1 ② 298.15K 下,2.000mol 的)1(2O H 蒸发成同温、同压的水蒸气,焓变H θ∆(298.15K )=2.000×m H (298.15K)θ∆=88.02kJ③ Qp=H θ∆=88.02kJ④ W = -p ∆V = -p (V g -V l )= -pV g = -nRT= -2mol ×8.314J/(mol.K )*298.15K = -4957J= -4.957kJ⑤ ΔU=Q+W=88.02 + (-4.957) = 83.06 kJ4.写出反应C B A 23→+中A 、B 、C 各物质的化学计量数,并计算反应刚生成1molC 物质的反应进度变化。

【解答】 反应 3A + B → 2C化学计量数:A v = -3,B v = -1,Cv = 2生成1molC 物质时,1052.CCn mol ξν∆===5.在标准态,298.15K 下,由)(2g Cl 与)(2g H 合成了4mol )(g HCl ,试分别按下列计量方程:(1))()(21)(2122g HCl g Cl g H →+(2))(2)(22g HCl Cl g H →+计算各自的ξ、r m H θ∆(298.15K )和r H θ∆(298.15K )。

【解答】(1) 221122()()()H g Cl g HCl g +=由附表7得:1f m H (kJ mol )θ-∆⋅ 0 0 -92.307 ∴ 1r m H (298.15K)92.3070092.307kJ mol θ-∆=---=-⋅4HClHCln mol ξν∆==1r H (298.15K)92.307kJ mol 4mol 369.228kJ θ-∆=-⋅⨯=-4HClHCln mol ξν∆==(2) 222()()()H g Cl g HCl g +=由附表7得:1f m H (kJ mol )θ-∆⋅ 0 0 -92.3072HClHCln mol ξν∆==∴ 1r m H (298.15K)92.307200184.614kJ mol θ-∆=-⨯--=-⋅1r H (298.15K)184.614kJ mol 2mol 369.228kJ θ-∆=-⋅⨯=-6.根据122r m 1Cu O(s)O (g)2CuO(s)H (298.15K)145kJ mol 2θ-+→∆=-⋅;12r m CuO(s)Cu(s)Cu O(s)H (298.15K)12kJ mol θ-+→∆=-⋅;计算)(s CuO 的标准生成焓f m H θ∆(298.15K )。

【解答】 22122()()()Cu O s O g CuO s += (1)2CuO(s)Cu(s)Cu O(s)+→ (2)(1)+(2)得:212()()()Cu s O g CuO s += (3)由盖斯定律可知,131214512157()()()r m r m r m H H H kJ mol θθθ-∆=∆+∆=--=-⋅由(3)知,13157(())()f m r m H CuO s H kJ mol θθ-∆=∆=-⋅7.选择正确的答案,填在 上。

(1)已知)(2g CO 的f m H θ∆(298.15K )=-394kJ·mol -1,)(2g CO =C (石墨)+)(2g O 反应的r m H θ∆(298.15K ) kJ·mol -1。

A .-394 B. -2×394 C. 394 D. 2×394(2)22()()()C O g CO g +=石墨,r mH θ∆(298.15K )=-394kJ·mol -1C (金刚石)+)()(22g CO g O →,r m H θ∆(298.15K )=-396kJ·mol-1那么,金刚石的f m H θ∆(298.15K )= kJ·mol-1A. -790B. 2C. -2D. +790 【解答】(1)C-1r f m f m 2f m 2H (298.15K)=H (C(H (O (g))H (CO (g)) = 394 kJ?mol m θθθθ∆∆∆∆石墨)+- (2)B①-②得:C(石墨)=C (金刚石)∴金刚石的f m H θ∆(298.15K )=r m H (298.15K)θ∆=r m H (1)θ∆-r m H (2)θ∆= -394-(-396)= 2kJ.mol -18.为测定燃烧完全燃烧时所放出的热量,可使用弹式量热计。

将 1.000g 火箭燃料二甲基肼()3222CH N H ⎡⎤⎣⎦置于盛有5.000kg 水的弹式量热计的钢弹内完全燃尽,系统温度上升1.39℃。

已知钢弹的热容为1840J·K -1,试计算:(1)此燃烧反应实验中总放热多少?(2)此条件下,1mol 二甲基肼完全燃烧放热多少? 【解答】(1)已知水的比热容(质量热容) C = 4.184 J ·g -1·K -1∴ Q = Q 水 + Q 弹 = Cm ΔT + C ΔT= 4.184×5.000×103×1.39 + 1840×1.39= 31636J = 31.6 kJ(2)1.000g 二甲基肼放热31.6kJ ,已知(CH 3)2N 2H 2 M = 60g/mol∴ 1mol 二甲基肼完全燃烧放热为:(60g/mol)×31.6kJ/g = 1.90×103 kJ ·mol -19.下列说法是否正确?如何改正?(1)对于稳定单质,规定它的f m H θ∆(298.15K )=0、f m G θ∆(298.15K )=0、m S θ(298.15K )=0。

(2)某化学反应的r m G 0θ∆>,此反应是不能发生的。

(3)放热反应都是自发反应。

【解答】(1)错误,s θm ≠0;(2)错误,在外界的帮助下,r m G 0θ∆>的反应可以发生,但不是自发发生的;(3)错误,放热反应表示H 0∆<,并不表示G 0∆<,所以放热反应不一定是自发反应。

10.计算回答反应)(2)()(22g NO g O g N =+的r m G θ∆(298.15K )=?,在标准状态、298.15K 下NO 是否有自发分解为单质2N 和2O 的可能性? 【解答】 222()()()N g O g NO g +=Δf G θm (298.15K)/kJ ·mol -1 0 0 86.57 ∴ Δr G θm,1(298.15K) = 2×86.57 – 0 – 0 = 173.14 kJ ·mol -1 若: 222()()()NO g N g O g =+ Δf G θm (298.15K)/kJ ·mol -1 86.57 0 0 ∴ Δr G θm,2(298.15K) = -173.14 kJ ·mol -1 < 0∴ 在标准态、298.15K 下,NO 可以自发分解为单质N 2和O 2 。

11.已知)()(23)(2322s O Fe g O s Fe =+,r m G θ∆(298.15K )=-742.2kJ·mol -143323)(4O Fe s Fe O Fe =+,r mG θ∆(298.15K )=-76.2kJ·mo l -1试求43O Fe 的标准生成吉布斯函数f m G θ∆(298.15K )=? 【解答】)()(23)(2322s O Fe g O s Fe =+,r m G θ∆(298.15K )=-742.2kJ·mol -1(1)43323)(4O Fe s Fe O Fe =+,r mG θ∆(298.15K )=-76.2kJ·mol -1(2) 由411233()()⨯+⨯得:23432()()()Fe s O g Fe O s +=∴344131233(())()()()f mr m r m r m G Fe O g G G G θθθθ∆=∆=∆⨯+∆⨯1417422762101533.(.)kJ mol -=-⨯+-⨯=-⋅12.反应)()()1()(22s OH Ca O H s CaO →+在标准状态、298.15K 下是自发的。

其逆反应在高温下变为自发进行的反应,那么可以判定在标准状态,298.15K 时正反应的状态函数变化是 。

A .r m r m H 0,S 0θθ∆>∆> B.r m r m H 0,S 0θθ∆<∆< C .r m r m H 0,S 0θθ∆>∆< D.r m r m H 0,S 0θθ∆<∆>【解答】B 。

分析:反应)()()1()(22s OH Ca O H s CaO →+的逆反应在高温下由非自发变为自发进行的反应,说明0r mS θ∆<。

又反应)()()1()(22s OH Ca O H s CaO →+在标准状态、298.15K 下是自发的,说明正反应0r mr m r m G H T S θθθ∆=∆-∆<,必有0r m H θ∆<。

13.电子工业中清洗硅片上的)(2s SiO 反应是)(2)()(4)(242g O H g SiF g HF s SiO +→+r m G θ∆(298.15K )=-94.0 k J·mol -1;r m S θ∆(298.15K )=-75.8 kJ·mol -1;设r m H θ∆和r m S θ∆不随温度而变,试求此反应自发进行的温度条件,有人提出用)(g HCl 代替HF ,试通过计算判定此建议可行否?【解答】(1) r m r m r m G H T S θθθ∆=∆-∆= -94.0×103 - T ×(-75.8) < 0 ,得 T < 1.24×103 K(2)若用HCl(g)代替HF,设有反应:SiO 2(s) + 4HCl(g) = SiCl 4(g) + 2H 2O(g)Δf H θm (kJ ·mol -1) -903.49 -92.307 -657.01 -241.82S θm (J ·mol -1·K -1) 46.9 186.91 330.7 188.83 Δr H θm = -241.82×2 + (-657.01) – (-92.307)×4 – (-903.49)= 132.07 kJ ·mol -1ΔS θm = 2×188.83 + 330.7 - 4×186.91 – 46.9 = -86.18 J ·mol -1·K -1 ∵Δr H θm >0,ΔS θm <0,所以在任何温度下,Δr G θm (T)>0,所以建议不可行。

相关文档
最新文档