级高数A期末考试题及答案

合集下载

10-11-3高等数学A期末考试试卷(A)参考答案及评分标准

10-11-3高等数学A期末考试试卷(A)参考答案及评分标准

共 2 页 第 1 页10-11-3高数A 期末试卷(A )参考答案及评分标准11.6.21一.填空题(本题共9小题,每小题4分,满分36分)1. 4;2. 2;3. 224()t f t π;4. π-;5. 4π;6. 2,3;7. i π;8. 12;9.2-,0. 二. 计算下列各题(本题共4小题,每小题7分,满分28分)10.解 点(1,1,1)处切线的方向向量{1,2,2}{2,2,5}{14,9,2}=-⨯-=-a ,(4分)切线方程为1111492x y z ---==-.(3分)(或223022550x y z x y z --+=⎧⎨-+-=⎩(7分)) 11.解22201d cos d cos d 2xyy x x x x y x x ===⎰⎰⎰⎰⎰.(3+2+2分) 12.解 由sin ,2sin y x y x ==(0)x π≤≤所围成的区域记为D ,利用Green 公式得2sin 220sin 033(1)d d d d d sin d 24x xCDy x xy y y x y y x x ππσπ++=-=-=-=-⎰⎰⎰⎰⎰⎰Ñ.(3+2+2分) 13. 解 补两个面2211:1x y S z ⎧+≤⎨=⎩,2224:2x y S z ⎧+≤⎨=⎩ ,分别取下侧和上侧,(1分)由12,,S S S 所围成的区域记为Ω,利用Gauss 公式得()d d ()d d Sy x z y z x z y x y -∧+-∧⎰⎰12()d (1)d d (2)d d 0S S y x v x y x y x y x y Ω=+--∧--∧=⎰⎰⎰⎰⎰⎰⎰.(3+3分)三(14).(本题满分8分)解1()n n a a ∞=∑未必收敛,例11n a n =+,10n a n ≤<,而111n n ∞=+∑发散;(2分)1()(1)nn n b a ∞=-∑未必收敛,例111(1)sin 2n n a n n ⎛⎫=+- ⎪⎝⎭,10n a n ≤<,而11(1)n n n ∞=-∑收敛,11sin n n ∞=∑发散,故1(1)11(1)sin 2n nn n n ∞=-⎛⎫+- ⎪⎝⎭∑发散;(2分)1()n c ∞=11n a n =+,10n a n ≤<,而1n ∞=发散;(2分)21()(1)n n n d a ∞=-∑必定收敛,2210n a n ≤<,共 2 页 第 2 页而211n n ∞=∑收敛,所以21(1)n n n a ∞=-∑绝对收敛,故21(1)n n n a ∞=-∑收敛. (2分) 四(15)。

高等数学期末考试A(附答案)

高等数学期末考试A(附答案)

-------------------------------------密-----------------------封-----------------------线---------------------------------系部___________ 班级___________ 考场_________ 姓名______________ 学号_________高等数学期末试卷(A )一、选择题(共25小题,每题2分,共计50分) 1.下列各对函数定义域相同的是( ).A.2)()(,)(x x g x x f ==B.x x g x x f ==)(,)(2C.x x g x x f lg 2)(,lg )(2== D.11)(,1)(2--=+=x x x g x x f2.下列函数在其定义域内不是奇函数的是( ). A.x y sin = B.x y cos = C.x y tan = D.x x y -=33.函数)(x f 在0x x =处有定义是0x x →时)(x f 有极限的( ). A 必要条件 B 充分条件 C 充要条件 D.无关条件 4.下列各式中正确的是( ). A.0sin lim0=→x x x B.1sin lim =∞→x x x C.e n n x =+∞→)11(lim D.e nx =+→)11(lim 05.=+→xx x 1)41(lim ( ).A.4-eB.4e C.41e D.41-e6.=→xxx 5tan 3tan lim( ). A .1 B.53 C.35D.07.设)2(x f y -=,则='y ( ).A.)2(x f 'B.)2(x f -'-C.)2(x f -'D.)2(2x f -'-8.设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x ,是),(+∞-∞上的连续函数,则)(=aA. 0B.1C.1-D.2 9.下列各式错误的是( ).A.1-)(μμμx x ='B.a a a x x ln )(⋅='C.x x cos )(sin ='D.x x sin )(cos =' 10.函数)(x f 在0x 处连续是)(x f 在0x 处可导的( ).A.必要条件B.充分条件C.充要条件D.无关条件 11.函数2)(-=x x f 在点2=x 处的导数为( ). A.1 B.0 C.1- D.不存在12.设x 为自变量,当,1=x 0=∆x .1时,=)(3x d ( ). A.3.0 B.0 C.01.0 D.03.013.设)(),(x v v x u u ==都是可微函数,则=)(uv d ( ). A.vdv udu + B.du v dv u '+' C.vdu udv + D.vdu udv -14.设曲线22++=x x y 在点M 处的切线斜率为3,则点M 的坐标为( ). A.)(4,1 B.)(1,4 C.)0,1( D.)1,0( 15.已知函数⎩⎨⎧>≤-=-,0,0,1)(x e x x x f x 则)(x f 在0=x 处( ).A.间断B.连续但不可导C.1)0(-='fD.1)0(='f 16.若)(x f 在点a x =的邻域内有定义,且除去点a x =外恒有0)()()(2>--a x a f x f ,则以下结论正确的是( ).A.)(x f 在点a 的邻域内单调增加B.)(x f 在点a 的邻域内单调减少C.)(a f 为函数)(x f 的极大值D.)(a f 为函数)(x f 的极小值 17.函数)(x f y =在点0x 处取极大值,则必有( ).A.0)(0='x fB.0)(0<''x fC.0)(0='x f ,0)(0<''x fD.0)(0='x f 或)(0x f '不存在 18.下列函数在其定义域内不是单调递增的是( ).A.x x x f 2)(3+=B.)1ln()(2x x x f +-=C.x x x f cos )(+=D.3)1)(1()(+-=x x x f 19.下列极限计算正确的是( ).A.626lim )2(223lim )2(42lim 222232==--=---→→→x x x x x x x x x B.6122lim 222lim )2()22)(2(lim )2(42lim 222222232=+=-++=-++-=---→→→→x x x x x x x x x x x x x x x C.∞=--=---→→)2(223lim )2(42lim 22232x x x x x x x D.不存在2232232)2(lim )42(lim )2(42lim---=---→→→x x x x x x x x x20.当0→x 时,1)1(212-+ax与x cos 1-为等价无穷小,则=a ( ).x2A.1 B.0 C.1- D.常数21.设)(x f 是可导函数,则))(('⎰dx x f 为( ). A.)(x f B.C x f +)( C.)(x f ' D.C x f +')( 22.下列等式中成立的是( ).A.⎰=)()(x f dx x f dB.⎰=dx x f dx x f dxd)()(C.⎰+=c x f dx x f dxd)()( D.dx x f dx x df )()(= 23.在区间),(b a 内,如果)()(x g x f '=',则下列各式中一定成立的是( ). A.)()(x g x f = B.1)()(+=x g x f C.))(())(('='⎰⎰dx x g dx x f D.⎰⎰'='dx x g dx x f )()( 24.)(x f 在区间[]b a ,上连续,则⎰⎰-babadt t f dx x f )()(( ).A. 小于零B.等于零C.大于零D.不确定25.用定积分表示右图x y 2=,2=x 和x 轴围成的面积,正确的是( A.⎰212xdx B.⎰22xdx C.⎰xtdt 02 D.⎰22xtdt二、填空题(共5小题,每题2分,共计10分) 26.(=dx ))32(x d - )()(xxe d dx e --=.27.设n n n n a x a x a x a x f ++++=--1110)( ,则[]=')0(f .28.若函数bx ax x f +=2)(在点1=x 处取极大值2,则=a ,=b .29.设⎰=xx e dt t f 02)(,则=)(x f .30.判断下列两个定积分的大小,⎰12dx x⎰13dx x . 三、判断题(共5小题,每题2分,共计10分) 31.驻点一定是极值点.( )32.可导一定连续,连续不一定可导.( )33.设函数)(x f 在0x 处具有二阶导数,且0)(,0)(00≠''='x f x f ,则当0)(0<''x f 时,)(x f 在点0x 处取极大值.( )34.若函数)(x f 在[]b a ,上连续,在),(b a 内可导,则在),(b a 内至少存在一点)(b a <<ξξ,使得0)(='ξf .( )35.1)21(211122222-=-+-=⎥⎦⎤⎢⎣⎡-=⎰--x dx x .( )四、求下列各式的极限(共2小题,每题4分,共计8分)36.xe e xx x 20lim-→- 37.xdt txa tx ⎰++∞→)11(lim )0(>a五、计算下列不定积分(共2小题,每题4分,共计8分) 38.⎰+dx x )23sin( 39.⎰xdx x cos六、计算下列定积分(共1小题,共计4分)40.⎰-17)12(dx x七、综合题(共1小题,共计10分)41.平面图形D 由抛物线2x y =,1=x 和x 轴组成,请 (1)画出D 的草图 (2)求D 的面积答案:一、选择题(共25小题,每题2分,共计50分)1.B 2.B 3.D 4.C 5.B 6.B 7.D 8.B 9.D 10.A. 11.D 12.A 13.C 14.A 15.C 16.D 17.D 18.D 19.C 20.A 21.A. 22.D 23.C 24.B 25.B二、填空题(共5小题,每题2分,共计10分)26.31- - 27.0 28.=a -2 =b 4 29.=)(x f x e 22 30.>三、判断题(共5小题,每题2分,共计10分) 31.× 32.√ 33.√ 34.× 5.× 四、求下列各式的极限(共2小题,共计8分)36.x e e xx x 20lim -→-=1)2(lim 20x e e x x x ---→————3分=1————————————1分37.x dt t xa t x ⎰++∞→)11(lim )0(>a =1)11(lim x x x ++∞→——3分 =e ————1分五、计算下列不定积分(共2小题,共计8分) 38.⎰+dx x )23sin(=⎰++)23()23sin(31x d x ——2分 =C x ++-)23cos(31————2分39.⎰xdx x cos =⎰x xd sin ——2分=⎰-xdx x x sin sin ————1分 =C x x x ++cos sin ————1分六、计算下列定积分(共1小题,共计4分)40.⎰-107)12(dx x =⎰--107)12()12(21x d x ——2分=108])12(81[21-⋅x ————1分 =0]11[161=-————1分七、综合题(共1小题,共计10分) 41.(1)略————5分(2)⎰=12dx x D ————3分=10331⎥⎦⎤⎢⎣⎡x ————1分 =31——————1分。

高数a1期末考试试题及答案

高数a1期末考试试题及答案

高数a1期末考试试题及答案一、选择题(每题5分,共30分)1. 以下哪个选项是函数f(x)=x^2+3x+2的导数?A. 2x+3B. x^2+3C. x^2+3xD. 2x^2+3x答案:A2. 计算极限lim(x→0) (sin x)/x的值。

A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是函数f(x)=e^x的不定积分?A. e^x + CB. e^xC. e^x * xD. ln(e^x) + C答案:A4. 求解方程2x^2 - 5x + 2 = 0的根。

A. (1, 2)B. (1, 1/2)C. (2, 1/2)D. (1, 1)答案:D5. 计算定积分∫(0 to 1) x dx。

A. 1/2B. 1C. 2D. 0答案:A6. 以下哪个选项是函数f(x)=ln(x)的反函数?A. e^xB. e^(-x)C. ln(x)D. 10^x答案:A二、填空题(每题5分,共20分)1. 设函数f(x)=x^3-6x^2+11x-6,求f'(x)=____。

答案:3x^2-12x+112. 计算定积分∫(1 to 2) (x^2-3x+2) dx的值。

答案:5/33. 函数y=x^3-3x+1的拐点是____。

答案:(1, -1)4. 求解方程x^3-6x^2+11x-6=0的根。

答案:1, 2, 3三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x^2+2x在区间[0,2]上的最大值和最小值。

答案:最大值出现在x=2,f(2)=2;最小值出现在x=1,f(1)=0。

2. 计算二重积分∬D (x^2+y^2) dA,其中D是由曲线y=x^2和直线y=1围成的区域。

答案:∬D (x^2+y^2) dA = 1/33. 证明:函数f(x)=x^3在(-∞, +∞)上是增函数。

答案:略4. 求函数f(x)=e^x*sin(x)的不定积分。

答案:∫e^x*sin(x) dx = -e^x*cos(x) + C5. 求函数y=x^2-4x+c的图像与x轴的交点。

高等数学a1期末考试题库及答案

高等数学a1期末考试题库及答案

高等数学a1期末考试题库及答案一、选择题(每题5分,共20分)1. 函数y=f(x)在点x=a处的导数为f'(a),那么在点x=a处的切线斜率是多少?A. f(a)B. f'(a)C. f'(a)+1D. f(a)+f'(a)答案:B2. 极限lim(x→0) (sin x / x)的值是多少?A. 0B. 1C. 2D. ∞答案:B3. 以下哪个选项是连续函数?A. 函数y=x^2在x=0处B. 函数y=1/x在x=0处C. 函数y=|x|在x=0处D. 函数y=x^3在x=1处答案:D4. 定积分∫(0 to 1) x^2 dx的值是多少?A. 1/3B. 1/2C. 2/3D. 3/2答案:B二、填空题(每题5分,共20分)1. 函数y=x^3-3x+1的导数是______。

答案:3x^2-32. 函数y=e^x的不定积分是______。

答案:e^x + C3. 函数y=ln(x)的定义域是______。

答案:(0, +∞)4. 如果函数f(x)=x^2-4x+c,且f(1)=-3,则c的值为______。

答案:0三、解答题(每题15分,共30分)1. 求函数y=x^3-6x^2+11x-6的极值点。

答案:首先求导数y'=3x^2-12x+11,令y'=0,解得x=1或x=11/3。

经检验,x=1为极大值点,x=11/3为极小值点。

2. 计算定积分∫(0 to 2) (2x+3) dx。

答案:首先求原函数F(x)=x^2+3x,然后计算F(2)-F(0)=4+6-0=10。

四、证明题(每题15分,共15分)1. 证明:如果函数f(x)在区间[a,b]上连续,则f(x)在该区间上一定有最大值和最小值。

答案:根据闭区间上连续函数的性质,函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上一定有最大值和最小值。

可以通过构造f(x)在[a,b]上的上界和下界,然后利用连续性证明存在最大值和最小值。

12-13(上)高数期末试题A参考答案

12-13(上)高数期末试题A参考答案

12-13(上)高数试题参考答案及评分标准一、单项选择题(本大题共7小题,每小题2分,共14分)。

二、填空题(本大题共11小题,每小题2分,共22分)1.[0,2)2.高3. 4(0)f '4.2(2sin )cos (2sin )sin y f x x f x x '''''=+-+ 5.2211()2x e x x o x =+++ 6. 2 7.9811(1)(1)98x x c +-++8.()43f π'=-9. 发散 10. 导数 11.x y Axe *-= 三、求解下列各题(本大题共7小题,每小题7分,共49分)。

1.求20tan limln(1)x x xx x →-+2300220220220tan tan limlim (1)ln(1)1sec lim (2)3tan lim (1)31lim (3)33x x x x x x x x xx x xx x x x x x →→→→→--=+-=-=-==- 解:分分分分2. 221cos sin .y x dy x=⋅求函数 () 的微分 22222222222211[cos()]sin cos [sin ](2)1122sin()sin cos sin (4)112[2sin()sin cos sin ](1)dy d x x d x x x x dx x dx x x x x x x dx x x x=⋅+⋅=-⋅⋅-⋅⋅=-⋅-⋅ 解:()分()分()分3.222x d yy xe dx=设,求222222222232(3)2422(3)(64)(1)x x x x x x dye x e dx d y xe xe x e x dx x x e =+=++=+ 解:分分分4.计算2(31)ln x xdx +⎰33233ln ()(2)()ln (1)(3)1()ln (2)3xd x x x x x x dx x x x x x c =+=+-+=+--+⎰⎰ 解:原式分分分 5.设201()1x f x x e ⎧<≤⎪⎪=⎨<<,求20()e f x dx ⎰2222221001111110001011()()()(1)2112112[ln(1)]22ln 2(3)(1ln )2(2)e e e e ef x dx f x dx f x dxt t dt dtt t t t x =+=++-=++=-+=-=+==∴⎰⎰⎰⎰⎰⎰⎰⎰⎰ 解:分而 分又 分原式(1)分 6.求微分方程 22x y xy e -'+=的通解。

上海交通大学第一学期高数a类期末考试题及答案解析

上海交通大学第一学期高数a类期末考试题及答案解析

上海交通大学第一学期高数a类期末考试题及答案解析一、单项选择题(每小题3分,共15分)1. 已知 x=0 是 f\left( x \right) =\frac{x+b\ln\left( 1+x \right)}{ax-\sin x} 的可去间断点,则 a,b 的取值范围是()解:2. 下列反常积分中,收敛的是()解:3. 设函数 f(x) 在区间 [-a,a] 上二阶可导,且 f\left( x \right) >0,f'\left( x \right) >0,f''\left( x \right) <0 ,下列函数中,在区间 [-a,a] 上恒正、单调递减且为下凸函数的是()解:4. 积分 \int_0^{\pi}{|\sin \left( 4x+1 \right)|\mathrm{d}x}= ()解:5. 设函数 f(x) 在 R 上连续, g\left( x \right)=\int_0^{x^2}{\mathrm{e}^{-t^2}\mathrm{d}t} .对于两个命题:①若 f(x) 为偶函数,则 F\left( x \right)=\int_0^x{f\left( t \right) g\left( t \right)\mathrm{d}t} 为奇函数;②若 f(x) 为单调递增函数,则 G\left( x \right)=\int_0^x{\left( f\left( x \right) -f\left( t \right) \right) g\left( t \right) \mathrm{d}t} 存在极小值.下列选项正确的是()解:二、填空题(每小题3分,共15分)6. 设 f\left( x \right) =x\mathrm{e}^x, 则曲线 y=f(x) 的拐点是_____________.解:7. 直线 L_1:\frac{x-1}{-1}=\frac{y}{-4}=\frac{z+3}{1} 和 L_2:\frac{x}{2}=\frac{y+2}{-2}=\frac{z}{-1} 的夹角为_____________.解:8. 设函数 f\left( x \right) =\mathrm{arctan} x ,常数a>0 ,若 f\left( a \right) -f\left( 0 \right)=f'\left( \xi \right) a\,\,, 则 \underset{a\rightarrow 0^+}{\lim}\frac{\xi ^2}{a^2}= _____________.解:9. 极坐标曲线 r=2cos3\theta 上对应于\theta=\frac{5}{6}\pi 的点处的切线方程为_____________.解:10. 一阶常微分方程 y'\left( x \right) =\frac{y}{x+y^2} 的通解为_____________.解:视为关于 x 的一阶线性微分方程,然后利用公式直接求解即可:\frac{\mathrm{d}x}{\mathrm{d}y}=\frac{x}{y}+y\Rightarr ow x=y^2+Cy三、(本大题共8分)11. 设 y=y(x) 是由方程 y^3-2x\int_0^y{\sin^2t\mathrm{d}t=x+\pi ^3} 所确定的可导函数,求\frac{\mathrm{d}y}{\mathrm{d}x}\mid_{x=0}^{} .解:。

《高等数学(一)》期末考试试卷(A卷)

《高等数学(一)》期末考试试卷(A卷)

《高等数学(一)》期末考试试卷(A 卷)适用班级:一、填空题(每空2分,共20分)函数211x y x -=-的连续区间是 ,1x =是 间断点.设()f x 在(),-∞+∞上连续,且()13f =,则()01lim ln 1x f x x →⎡⎤+=⎢⎥⎣⎦.函数1xy e =当x → 时为无穷大量,当x → 时为无穷小量. 若()12f '=,则极限()()11limh f h f h→--= .5.函数22ln y x x =-的极小值为 .若()()f x dx F x C =+⎰,则()sin cos f d θθθ=⎰.已知()f x 的一个原函数是ln x ,则()=f x .= .二、单项选择题(每小题3分,共30分) 1.下列函数对中不为同一个函数的是( ).A.x x x f ⋅=)(,3)(x x g =B.x e x f ln )(=,x x g =)(C.()0()1f x x =-,22()sin cos g x x x =+ D. x x f ln 3)(=,3ln )(x x g = 2.下列等式正确的是 ( ) A. sin lim1x x x →∞= B. 0sin lim 1x xx→=C. 01lim sin 1x x x →=D. 1lim sin 0x x x→∞=3. 下列叙述正确的是( )A. 若函数()y f x =在点x 处可导,则函数()y f x =在点x 处必连续.B. 若函数()y f x =在点x 处连续,则函数()y f x =在点x 处必可导.C. 若函数()y f x =在点x 处不可导,则函数()y f x =在点x 处不连续.D. 若曲线()y f x =在点x 处有切线,则函数()y f x =在点x 处必可导. 4. 当0x →时,无穷小量2sin x x -是x 的( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶无穷小但不是等价无穷小 D. 等价无穷小 5. 0x =是sgn x 的( ).A. 连续点B. 可去间断点C. 无穷间断点D. 跳跃间断点 6.下列等式成立的是( )A. d=B. ()()cos cos d d cos x x e e x =C. ()22d d ln 11xx x ⎡⎤-=⎣⎦- D. ()d +1d x x x = 7.下列结论正确的是( )A. 驻点一定是极值点B. 极大值一定大于极小值C. 可导函数的极值点一定是驻点D. 二阶导数等于零的点一定不是极值点8. d x e x -=⎰( )A. x e -B. x e C -+C. x e --D. x e C --+9. ln d 2xx =⎰( )A. ln 2x x x C -+B. ln 42xx x C -+C. ln 22x x x C -+D. ln 2xx x C ++10. 已知()()F x f x '=,则下列等式正确的是( ) A.()()d f x dx f x dx dx ⎡⎤=⎣⎦⎰ B. ()()d F x dx f x dx ⎡⎤=⎣⎦⎰C. ()()f x dx F x C '=+⎰D. ()()f x dx F x C =+⎰三、解答题(每小题7分,共42分) 1.计算011lim 1x x x e →⎛⎫- ⎪-⎝⎭. 2. 计算()()2ln 1lim ln 1x x x →+∞++3. 设)4ln(2x x y -+=,求d y .4. 计算34cos d sin x x x⎰.5.计算x . 6. 计算3d x xe x ⎰.四、讨论题(8分)求()213sin cos ,00,0x x x f x xx ⎧+≠⎪=⎨⎪=⎩的导函数()f x '.。

高数a大一期末考试题简单及答案

高数a大一期末考试题简单及答案

高数a大一期末考试题简单及答案一、选择题(每题4分,共40分)1. 极限的定义中,如果对于任意的正数ε,存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称函数f(x)当x趋近于a时的极限为L。

以下哪个选项不是极限的定义?A. 函数f(x)在某点a处的极限B. 函数f(x)在某点a的左极限C. 函数f(x)在某点a的右极限D. 函数f(x)在某点a处的连续性答案:D2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = |x|答案:B3. 以下哪个函数是偶函数?A. f(x) = x^3B. f(x) = x^2C. f(x) = x^4D. f(x) = |x|答案:B4. 以下哪个函数在x=0处不可导?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^4答案:B5. 以下哪个选项是正确的不定积分?A. ∫x dx = x^2 + CB. ∫x^2 dx = x^3 + CC. ∫1/x dx = ln|x| + CD. ∫e^x dx = e^x + C答案:C6. 以下哪个选项是正确的定积分?A. ∫[0,1] x dx = 1/2B. ∫[0,1] x^2 dx = 1/3C. ∫[0,1] x^3 dx = 1/4D. ∫[0,1] x^4 dx = 1/5答案:B7. 以下哪个选项是正确的微分方程的通解?A. y' = 2y => y = Ce^(2x)B. y' = 3y => y = Ce^(3x)C. y' = 4y => y = Ce^(4x)D. y' = 5y => y = Ce^(5x)答案:A8. 以下哪个选项是正确的二阶导数?A. y = x^3, y'' = 6xB. y = x^2, y'' = 2C. y = x^4, y'' = 12x^2D. y = x^5, y'' = 20x^3答案:B9. 以下哪个选项是正确的洛必达法则的应用?A. ∫0/0 型不定式,分子分母同时乘以分母的导数B. ∫∞/∞ 型不定式,分子分母同时乘以分子的导数C. ∫0/0 型不定式,分子分母同时除以分子的导数D. ∫∞/∞ 型不定式,分子分母同时除以分母的导数答案:D10. 以下哪个选项是正确的泰勒级数展开?A. e^x = 1 + x + x^2/2! + x^3/3! + ...B. sin(x) = x - x^3/3! + x^5/5! - ...C. cos(x) = 1 - x^2/2! + x^4/4! - ...D. ln(1+x) = x - x^2/2 + x^3/3 - ...答案:A二、填空题(每题4分,共20分)11. 函数f(x) = x^2 + 3x + 2的导数是________。

高数A(二)A卷参考答案

高数A(二)A卷参考答案
……………………………………………………………………装订线……………………………………………………………………
学生期末考试试题参考答案及评分标准纸
课程名称
高等数学A(二)
考试班级
05级A类
考试标准用时
120
试卷代号
A
参考答案及评分标准:
一、填空题:(每小题4分,共24分)
1、 2、 3、 4、 5、 6、3
二、选择题:(每小题4分,共16分)
1、D 2、C 3、B 4、C
三、计算重积分:(每小题7分,共14分)
1、 3分
7分
2、 3分
7分
四、计算曲线积分(每小题7分,共14分)
1、 4分
7分
2、 ,
2分
= 4分
7分
五、(本题共有两小题,第1题5分,第2题7分,共12分)
1、 3分
发散5分
2、 2分
命题人
的收敛区域为 3分
5分
7分
六、求解微分方程(每小题7分,共14分)
1、先求对应的齐次方程: ,变量分离可得:
两边积分可得: 是对应的齐次方程的通解3分
再利用常数变易法,设 为原方程的解,代入原方程可得:
为原方程的通解6分
又 即 为原方程满足初始条件的解7分
2、特征方程为 得 所对应的齐次方程的通解为 2分
命题
时间
2006年6月16日
教研室
审核人
审核
时间
年月日
……………………………………………………………………装订线……………………………………………………………………
学生期末考试试题参考答案及评分标准纸
课程名称
高等数学A(二)

高等数学A试卷(含答案

高等数学A试卷(含答案

《高等数学》(经济类)期末考试试卷(A )一、判断题(每小题2分,共计20分)( )1、闭区间上的无界函数必不连续.( )2、若)(x f 在0x 处不连续,则)(x f 在0x 处必不可导. ( )3、若函数)(x f y =处处可导,则曲线)(x f y =必点点有切线. ( )4、设函数()f x 在0x 处可导,则函数)(x f 在0x 处也可导. ( )5、对于任意实数a ,总有c x a dx x a a++=+⎰111. ( )6、若0>x ,)()(x g x f '>',则当0>x 时,有)()(x g x f >. ( )7、若函数)(x f 在],[b a 上可积,则在],[b a 上必有界. ( )8、(,)z f x y =在点00(,)x y 处可微则在该点必连续.( )9、设(,)z f x y =是关于x 的奇函数,且区域D 关于x 轴对称,则二重积分0),(=⎰⎰Dd y x f σ.( )10、xe x y -='2)(2是二阶微分方程. 二、填空题(每题2分,共计20分)1、432lim23=-+-→x kx x x ,则k = . 2、设)(0x f '存在,则xx f x x f x ∆-∆-→∆)()(lim000= _____.院、系 班级 姓名 学号 课头号密 封 线3、若函数)(x f y =的导数为y ',则=22dyxd _____.4、设1)(2-=xex f ,则)0(2f d = .5、21sin x d tdt dx =⎰ .6、利用定积分的几何意义计算:⎰--a adx x a 22= .7、改变累次积分的积分次序:⎰⎰y ydx y x f dy ),(10= .8、广义积分⎰∞+-02dx e x = .9、将二重积分⎰⎰Dd y x f σ),(,区域D 为2222b y x a ≤+≤,)0(b a <<表示为极坐标形式的累次积分为 . 10、微分方程xy y 2='的通解为 .三、计算题(每题6分,共计42分)1、求011lim ln(1)x x x x →⎡⎤+-⎢⎥+⎣⎦.2、求函数11x y x -=+在[0,4]上的最大值与最小值.3、求⎰+312211dx xx.4、求使352)(2-+=⎰x x dt t f xa 成立的连续函数)(x f 和常数a .5、求隐函数0xe xyz -=的一阶偏导数z x ∂∂,22x z∂∂.6、计算⎰⎰Ddxdy yx 22,区域D 是由2=y ,x y =,1=xy 围成的区域. 院、系 班级 姓名 学号 座号密 封 线7、求微分方程0)12(2=+-+dx x xy dy x 在条件01==x y 下的特解.四、应用题(共8分)求由曲线3y x =及直线2,0x y ==所围成的平面图形的面积,及该图形绕x 轴旋转所得旋转体的体积.五、证明题(共10分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,且⎰=132)(3)0(dx x f f .证明:在)1,0(内有一点c ,使0)(='c f .参考答案一 √ √ √ × × × √ √ × ×二 1. -3 2. -0()f x ' 3. 4. 24d x 5. 22sin x x6. 212a π 7. 210(,)x x d x f x y d y ⎰⎰ 8. 1/29. 20(cos ,sin )bad f r r r dr πθθθ⎰⎰ 10. 2x y C e = (C 为常数)三 1. -1/2 2.min max 31,5y y =-= 4. 参书(梁保松《高等数学》,下同)习题5-2,65. 参书习题6-6,5(3)6. 参书习题7-2,7(3)7.参书§9.2 例12四 4 ,1287π五 参书§5.1 例2(注:本资料素材和资料部分来自网络,仅供参考。

(完整版)大一下学期高等数学期末考试试题及答案

(完整版)大一下学期高等数学期末考试试题及答案

高等数学A(下册)期末考试试题【A 卷】院(系)别班级 学号姓名成绩大题一二三四五六七小题12345得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,,,则.a b0a b += 2a = 2b = a b ⋅= 2、设,则.ln()z x xy =32zx y ∂=∂∂3、曲面在点处的切平面方程为.229x y z ++=(1,2,4)4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数()f x 2π[,)ππ-()f x x =()f x 在处收敛于,在处收敛于.3x =x π=5、设为连接与两点的直线段,则.L (1,0)(0,1)()Lx y ds +=⎰※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程.2222222393x y z z x y⎧++=⎪⎨=+⎪⎩0M (1,1,2)-2、求由曲面及所围成的立体体积.2222z x y =+226z x y =--3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?11(1)lnn n n n∞=+-∑4、设,其中具有二阶连续偏导数,求.(,sin x z f xy y y =+f 2,z zx x y∂∂∂∂∂5、计算曲面积分其中是球面被平面截出的顶部.,dSz ∑⎰⎰∑2222x y z a ++=(0)z h h a =<<三、(本题满分9分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小22z x y =+1x y z ++=值.四、(本题满分10分)计算曲线积分,(sin )(cos )x x Le y m dx e y mx dy -+-⎰其中为常数,为由点至原点的上半圆周.m L (,0)A a (0,0)O 22(0)x y ax a +=>五、(本题满分10分)求幂级数的收敛域及和函数.13nn n x n∞=⋅∑六、(本题满分10分)计算曲面积分,332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰其中为曲面的上侧.∑221(0)z x y z =--≥七、(本题满分6分)设为连续函数,,,其中是由曲面()f x (0)f a =222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰t Ω与所围成的闭区域,求 .z =z =30()lim t F t t+→-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;→→不得带走试卷。

高等数学(A)下期末试卷及答案

高等数学(A)下期末试卷及答案

《高等数学 A 》( 下)期末试卷 A 答案及评分标准 得 一、选择题(本大题分 5 小题,每题 3 分,共 15 分分)e dxln x f ( x, y)dy 的积分序次为1、互换二次积分1(c )e ln xf ( x, y)dxe1 (A)dy(B)e ydyf ( x, y)dx11 eln xe(C)dy e y f ( x, y)dx(D)dy1f ( x, y)dx2、锥面zx2y 2在柱面 x2y22x 内的那部分面积为( D )d2 cos2d2 cos 2d(A)2d2(B)222cos 2d22 cosd(C)2 d(D)2 d2 023、若级数a n ( x 2) n在 x2 处收敛,则级数n 1na n ( x 2)n 1( B )在 x 5n 1(A)条件收敛 (B) 绝对收敛 (C) 发散 (D) 收敛性不确立4、以下级数中收敛的级数为( A )(A)( n ) n(B)n2 3n 1 n 1 n 1 n 1(C)sin1(D)n!n 1 3 n n 1 n 15、若函数f ( z)( x 2 y 2 2 xy) i( y 2 axy x2 ) 在复平面上到处分析,则实常数 a 的值为(c )(A) 0 (B) 1 (C) 2 (D) -2得 二、填空题(本大题分 5 小题,每题 4 分,共 20 分分)、曲面 z x2y21 在点 (2,1,4) 处的切平面1方程为 4x 2 y z62 、已知L : x2y2a 2(a 0) , 则L [ x 2y2sin( xy)]ds2 a33、 是由曲面zx2y 2及平面 zR(R0) 所围成的闭地区,在柱面坐标下化三重积分f ( x2y 2)dxdydz 为2 RR2)dz三次积分为ddf (4、函数 f (x) x (0 x) 睁开成以 2 为周期的正弦级 数 为x2 ( 1) n 1 sin nx,收敛区间为n 1n0 x5、Ln( 1 i)ln 2 i(32k ), k 0, 1, 24Re s[e z,0]12得 三、 (此题 8 分)设zf ( x2y 2) g( x, xy) ,分y此中函数 f (t) 二阶可导, g(u, v) 拥有二阶连续偏导数,求 z ,2zx x y解: z 2xf1g 1yg23 分xy2z4xyfg 2xyg 221 g 1 x g 11 5 分x yy 2 y 3得x 2y 2z 21内分四、(此题 8 分)在已知的椭球面43全部内接的长方体(各边分别平行坐标轴)中,求最大的内接长方体体积。

高数下册期末a卷考试题及答案

高数下册期末a卷考试题及答案

高数下册期末a卷考试题及答案一、选择题(每题5分,共30分)1. 以下哪个函数不是周期函数?A. \( \sin(x) \)B. \( \cos(x) \)C. \( e^x \)D. \( \tan(x) \)答案:C2. 函数 \( f(x) = x^2 \) 在 \( x=1 \) 处的导数是:A. 0B. 1C. 2D. 3答案:C3. 以下哪个选项是 \( \int_0^1 x^2 dx \) 的正确计算结果?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A4. 以下哪个选项是 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值?A. 0B. 1C. 2D. 3答案:B5. 以下哪个选项是 \( \int \frac{1}{x} dx \) 的原函数?A. \( \ln|x| + C \)B. \( x + C \)C. \( e^x + C \)D. \( \sin x + C \)答案:A6. 以下哪个选项是 \( \int e^x \cos x \, dx \) 的正确积分结果?A. \( \frac{1}{2} e^x (\cos x + \sin x) + C \)B. \( \frac{1}{2} e^x (\cos x - \sin x) + C \)C. \( \frac{1}{2} e^x (\cos x + \sin x) - C \)D. \( \frac{1}{2} e^x (\cos x - \sin x) - C \)答案:B二、填空题(每题5分,共20分)1. 函数 \( f(x) = \ln(x) \) 的定义域是 \( ______ \)。

答案:\( (0, +\infty) \)2. 函数 \( f(x) = \sqrt{x} \) 的导数是 \( ______ \)。

上海交通大学_高等数学期末试题(A卷)(附参考答案)

上海交通大学_高等数学期末试题(A卷)(附参考答案)
67’&5,87,1
高等数学研究
9:;<,!""#
=>?9@A=@80BCCA0A D->EAD->@0=
5#
试题照登
上海交通大学·高等数学期末试题(! 卷)(附参考答案)
!""!年第一学期
一、选择题(每题#分,共$%分,每题选项仅有一项符合要求,把所选项前的字母填入括号内)
$&"(#)在$ 连续,且’#(!)$"((##)**$"()%$)+&"",其中 % 是偶数,则 …………………………(,)
!&$ 是"(#)的极大值点; ’&$ 是"(#)的极小值点;
(&$ 不是"(#)的极大值点; )&不能判别$ 是否"(#)的极值点&
!&"(#),*(#)均为恒不为零的可微函数,且"+(#)*(#)**+(#)"(#)"",则当#"$ 时,成立不
等式 …………………………………………………………………………………………………(-)
!
$ #& #1 #1-#!/# 0!!& "
$ 1&# !"时,##2(3##5/5是"#$ 的等价无穷小,则$ 0 1 " 0 "
# 1
&
!#
$ %&"(#)为连续函数,6(#)0 "(#.5)/5,则 6+(#)0#"(##)-"(#)& "
三、计算下列积分($4分)

高数a上册期末试题及答案

高数a上册期末试题及答案

高数a上册期末试题及答案一、选择题(每题5分,共20题)1. 设函数 $f(x) = \sqrt{3x-2}$,则其定义域为A. $(-\infty, \frac{2}{3}]$B. $\left[ \frac{2}{3}, \infty \right)$C. $[\frac{2}{3}, \infty)$D. $(-\infty, \frac{2}{3}) \cup [\frac{2}{3}, \infty)$答案:C2. 函数 $y = \sin^2 x + \cos^2 x$ 的值域为A. $(-\infty, 1]$B. $[0, 1]$C. $[1, \infty)$D. $[\frac{1}{2}, 1]$答案:B3. 设函数 $f(x) = e^x \ln x$,则 $f'(x) = $A. $e^x \ln x$B. $e^x \left( \frac{1}{x} + \ln x \right)$C. $e^x \left( \ln x - \frac{1}{x} \right)$D. $e^x \left( \frac{1}{x} - \ln x \right)$答案:B4. 若直线 $y = 3x + b$ 与抛物线 $y = ax^2 + bx + 1$ 相切,则 $a + b = $A. 2B. 3C. 4D. 5答案:D5. 函数 $f(x) = \frac{x-1}{\sqrt{x^2 + 1}}$ 的渐近线为A. $y = x - 1$B. $y = x + 1$C. $y = -x + 1$D. $y = -x - 1$答案:A6. 函数 $f(x) = \ln(1 + e^{2x})$ 的反函数为A. $f^{-1}(x) = \ln(x) - \ln(1 - x^2)$B. $f^{-1}(x) = \ln(x^2 - 1)$C. $f^{-1}(x) = \frac{e^x - 1}{2}$D. $f^{-1}(x) = \frac{1}{2} \ln(x) + \ln(1 - x)$答案:D7. 设函数 $f(x) = \arcsin (\sin x)$,则当 $x = \frac{5\pi}{6}$ 时,$f(x) =$A. $\frac{5\pi}{6}$B. $\frac{\pi}{6}$C. $\frac{\pi}{3}$D. $\frac{2\pi}{3}$答案:C8. 函数 $f(x) = \frac{\sin x}{\cos^2 x}$ 的最大值为A. 1B. $\sqrt{3}$C. 2D. $2\sqrt{3}$答案:D9. 函数 $f(x) = x^2 + 2x + 1$ 在区间 $[-1, 1]$ 上的最大值为A. 0B. 1C. 2答案:D10. 函数 $f(x) = \frac{x^2 - 1}{x^2 + 1}$ 的图像关于直线 $x = a$ 对称,则 $a = $A. 1B. 0C. -1D. 2答案:B11. 设 $\sin \alpha = \frac{1}{4}$,$\cos \beta = \frac{4}{5}$,且$\alpha$ 和 $\beta$ 都是第二象限角,则下列四个式子中成立的是A. $\sin (\alpha - \beta) = -\frac{3}{4}$B. $\sin (\alpha + \beta) = \frac{3}{8}$C. $\cos (\alpha - \beta) = \frac{1}{5}$D. $\cos (\alpha + \beta) = \frac{2}{5}$答案:C12. 如果点 $A(1, 2)$ 在抛物线 $y = -x^2 + 3x + k$ 上,那么 $k = $A. -3B. -5D. -9答案:B13. 设函数 $f(x) = x^3 - 3x^2 - 4x + 12$,则 $f'(x)$ 的零点有A. -2, 2B. -1, 3C. -4, 3D. -1, 4答案:A14. 设点 $P(x, y)$ 满足 $y^2 = px$,其中 $p > 0$ 是常数,则焦点所在的直线方程为A. $y = -\frac{p}{2}$B. $x = -\frac{p}{2}$C. $y = \frac{p}{2}$D. $x = \frac{p}{2}$答案:B15. 函数 $f(x) = x^3 - 3x + 1$ 在区间 $[0, 2\pi]$ 上的最小值为A. -1B. 0D. 2答案:A16. 设直线 $y = 2x + 1$ 与曲线 $y = x^2 + bx + c$ 相切,则 $b + c = $A. 0B. $\frac{1}{2}$C. 1D. 2答案:C17. 设函数 $f(x) = (1 - x^2) \cos x$,则 $f''(x)$ 的一个零点在A. $(0, \frac{\pi}{2})$B. $(0, \pi)$C. $(\pi, 2\pi)$D. $(\pi, 3\pi)$答案:B18. 设函数 $f(x) = \sin^2 x - \sqrt{3} \sin x \cos x + \cos^2 x$,则$f(x)$ 的最大值为A. 2B. $2\sqrt{2}$C. 3D. $2 + \sqrt{3}$答案:C19. 设函数 $f(x) = e^x$,$g(x) = x^2$,则 $f(x) \cdot g(x) = $A. $e^{x^2}$B. $x^2 e^x$C. $x^2 e^{x^2}$D. $x^2 + e^x$答案:B20. 设 $a > 0$,则 $\lim\limits_{x \to +\infty} \frac{x^a}{e^x}$ 的值为A. 0B. $\frac{1}{e}$C. 1D. $+\infty$答案:A二、计算题(每题10分,共4题)1. 求函数 $f(x) = \frac{2x^2 - 3x + 1}{x - 1}$ 的极限 $\lim\limits_{x\to 1} f(x)$.解:使用“分子分母可约”的性质,可将函数 $f(x)$ 化简为 $f(x) = 2x - 1$,则 $\lim\limits_{x \to 1} f(x) = \lim\limits_{x \to 1} (2x - 1) = 2(1) - 1 = 1$.答案:12. 求曲线 $y = e^x$ 与直线 $y = kx$ 相交的两个点的坐标,其中 $k > 0$ 是常数.解:将曲线 $y = e^x$ 和直线 $y = kx$ 代入方程中,得到 $e^x = kx$,然后可以使用迭代法或图像法求得相交点的坐标.答案:相交点的坐标为 $(x_1, e^{x_1})$ 和 $(x_2, e^{x_2})$,其中$x_1$ 和 $x_2$ 是满足方程 $e^x = kx$ 的两个解.3. 求曲线 $y = \sin x$ 与直线 $y = x$ 相交的点的个数,并说明理由.解:将曲线 $y = \sin x$ 和直线 $y = x$ 代入方程中,得到 $\sin x = x$,然后可以通过分析函数的周期性和图像来确定相交点的个数.答案:方程 $\sin x = x$ 的解存在无穷个,但相交点的个数取决于给定的区间. 在区间 $[0, \pi]$ 上,方程有一个解;在区间 $[2\pi, 3\pi]$ 上,方程又有一个解. 因此,相交点的个数是不确定的.4. 求函数 $y = x^2 + x$ 在区间 $[-2, 2]$ 上的最大值和最小值,并求出取得最大值和最小值的点.解:首先求导数 $y' = 2x + 1$,然后令 $y' = 0$,解得 $x = -\frac{1}{2}$,将 $x = -2, -\frac{1}{2}, 2$ 代入函数 $y = x^2 + x$,得到对应的 $y$ 值. 最大值为 $y = y_{\text{max}}$ 对应的点为 $(-\frac{1}{2},y_{\text{max}})$,最小值为 $y = y_{\text{min}}$ 对应的点为 $(-2,y_{\text{min}})$ 和 $(2, y_{\text{min}})$.答案:最大值为 $y_{\text{max}} = \frac{5}{4}$,取得最大值的点为 $(-\frac{1}{2}, \frac{5}{4})$;最小值为 $y_{\text{min}} = -2$,取得最小值的点为 $(-2, -2)$ 和 $(2, -2)$.三、证明题(每题20分,共2题)1. 证明函数 $f(x) = \frac{x^3}{3} - x^2 + 2x$ 的导数 $f'(x)$ 恒大于零.证明:求导数 $f'(x) = x^2 - 2x + 2$,我们可以通过判别式来判断 $f'(x)$ 的正负性.判别式为 $\Delta = (-2)^2 - 4(1)(2) = 4 - 8 = -4$,由于 $\Delta < 0$,所以判别式小于零,即 $f'(x)$ 的二次项系数小于零,说明二次项的系数是正的,从而导数 $f'(x)$ 恒大于零.证毕.2. 证明函数 $f(x) = x^3 - 3x^2 + 3$ 的图像关于直线 $x = 1$ 对称.证明:要证明函数的图像关于直线 $x = 1$ 对称,需证明对于任意$x$ 值,函数 $f(x)$ 和 $f(2 - x)$ 的函数值相等.将 $f(x) = x^3 - 3x^2 + 3$ 代入 $f(2 - x)$,得到 $f(2 - x) = (2 - x)^3 -3(2 - x)^2 + 3$,对其进行展开和化简得到 $f(2 - x) = (2 - x)^3 - 3(2 -x)^2 + 3 = x^3 - 3x^2 + 3 = f(x)$,即 $f(x) = f(2 - x)$,证明了函数的图像关于直线 $x = 1$ 对称.证毕.四、应用题(每题50分,共1题)1. 求函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值.解:求导函数 $f'(x) = 3x^2 + 2x - 3$,令 $f'(x) = 0$,求得驻点的 $x$ 坐标,然后将其代入原函数求得对应的 $y$ 坐标.求导的一阶导数方程为 $f'(x) = 3x^2 + 2x - 3 = 0$,通过求根公式求得 $x = -1$ 和 $x = \frac{1}{3}$,将其代入原函数 $f(x)$ 得到对应的$y$ 坐标.将 $x = -1$ 代入 $f(x)$,得到 $f(-1) = (-1)^3 + (-1)^2 - 3(-1) = -1 + 1+ 3 = 3$,将 $x = \frac{1}{3}$ 代入 $f(x)$,得到 $f(\frac{1}{3}) =(\frac{1}{3})^3 + (\frac{1}{3})^2 - 3(\frac{1}{3}) = \frac{1}{27} +\frac{1}{9} - 1 = 0$.因此,函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$.答案:驻点为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$,分别对应极大值和极小值.。

资料:09-10-3高等数学A期末考试试卷(A)参考答案

资料:09-10-3高等数学A期末考试试卷(A)参考答案

模板资料 资源共享09-10-3高数A 期末试卷(A )参考答案一.填空题(本题共9小题,每小题4分,满分36分) 1. 将2222442222d ()d x x y x y f x y z z ----++⎰⎰⎰(其中()f t 为连续函数)写成球面坐标系下的三次积分22220d sin d ()d f r r r ππϕθθ⎰⎰⎰;2. 球面22230x y z x ++-=在点(1,1,1)处的切平面方程为2230x y z --+=;3. 已知3222(cos )d (1sin 3)d axy y x x by x x y y -+++为某个二元函数(,)f x y 的全微分,则2,2a b ==-;4. 设1,0()2,0x f x x x ππ-<≤⎧=⎨<≤⎩,且以2π为周期,()S x 为()f x 的Fourier 级数的和函数,则1(3)2S ππ=+,1(2)2S π-=;5. 设C 为圆周2z =,取逆时针方向,则114id 2(i)(4)7C z z z π+=-+-⎰; 6. 留数ln(12)Res ,041cos z z +⎡⎤=⎢⎥-⎣⎦;7. 设222{,,},x y z r x y z ===++r r div(e )e (3)r r r =+r ;8. 设∑是锥面22(01)z x y z =+≤≤,取下侧,则3d d 2d d (1)d d 2x y z y z x z x y π∑∧+∧+-∧=⎰⎰;9. 设()(,)d d x y tF t f x y x y +≤=⎰⎰,其中2,0(,)0,x y x x f x y ⎧≥≥=⎨⎩且其它,则5(2)12F =.二. 计算下列各题(本题共4小题,每小题7分,满分28分)模板资料 资源共享10.设 (,)z z x y =是由方程e e e z y x z x y =+所确定的隐函数,求,z z x y∂∂∂∂. 解 (1)e e e z y xz z y x ∂+=+∂, e e 1y z x z z y x z --∂+=∂+, e e 1x z y z z x y z--∂+=∂+ 11.计算2222222402d ed d d yy y x y x y x y x -----+⎰⎰⎰⎰.解 {}22(,)4,0D x y x y x y =+≤≤≤, 原式()2222()4204ed d de d 1e 8x y Dx y πρππθρρ-+--===-⎰⎰⎰⎰ 12.判断级数111(1)!179n n n n n-∞-=-⎛⎫ ⎪⎝⎭∑的敛散性.解 111717limlim 199e 11n n n n na a n +→∞→∞==<⎛⎫+ ⎪⎝⎭,由达朗贝尔比值判别法知级数 111(1)!179n n n n n-∞-=-⎛⎫⎪⎝⎭∑收敛.13. 求幂级数ln 12n nn x n∞=∑的收敛域(注:级数若在收敛区间的端点处收敛,须说明是绝对收敛还是条件收敛.).解 1ln(1)ln(1)ln 2limlim 21121n n n n n n n n n ++→∞→∞⋅==++,所以1R =, ln 1ln 221nn n-=, 01ln 21<-<,故当1x =时,级数ln 12n n n ∞=∑发散,当1x =-时,级数ln 12(1)n n n n ∞=-∑条件收敛,故收敛域为[1,1)-.模板资料 资源共享三(14).(本题满分7分)将1,022()0,2x f x x πππ⎧≤<⎪⎪=⎨⎪≤<⎪⎩在[0,]π上展开成正弦级数,并在[0,]π上写出它的和函数. 解 0n a =,0,1,2,n =,2011sin d 1cos 2n n b nx x n ππππ⎛⎫==-⎪⎝⎭⎰,1,2,n =,1(),0,,221111cos sin ,2420,0n f x x n nx x n x ππππππ∞=⎧⎛⎫⎛⎤∈ ⎪ ⎪⎥⎝⎭⎝⎦⎪⎪⎛⎫-==⎨ ⎪⎝⎭⎪=⎪⎪⎩∑ 四(15)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10级高数A 2期末考
试题及答案 一、填空题(每题3分,共24分) 1. 微分方程054=-'-''y y y 的通解为 x x e C e C y -+=251 .
2.设函数2232y x z -=,则全微分=dz ___ydy xdx 64-______
3.椭球面522222=++z y x 在点(1,1,1)处的切平面方程为___522=++z y x _
4.设积分区域4:22≤+y x D ,则二重积分⎰⎰D
dxdy y x f ),(在极坐标下化为二次积分为
______⎰⎰2
020)sin ,cos (rdr r r f d θθθπ___ 5.设积分区域为11,11,11:≤≤-≤≤-≤≤-z y x Ω,则三重积分⎰⎰⎰=Ω
dxdydz 2____16_____
6.设L 是圆周222=+y x ,则对弧长的曲线积分⎰=+L ds y x )(22____π24_____
7.无穷级数Λ+++=
∑∞=4
332211n n u 的通项=n u __1+n n ___. 8. 函数x x f 211)(+=展开成x 的幂级数为_____ ∑∞=-0
)2(n n n x _____. 二、计算下列各题(每题7分,共63分)
1、求微分方程0)1()1(=+-+dy y dx x 的通解.
解:分离变量:dy y dx x )1()1(+=+
两边积分,得通解 C y y x x ++=+222
121 2、设函数2223cos y x x
y z -+=,求x z ∂∂,y z ∂∂,y x z ∂∂∂2 解:x x y x
y x x y x y x z 6sin 6)(sin 22+=+-⋅-=∂∂ y x
y x y x x y y z 4sin 14)1(sin --=-⋅-=∂∂
)cos (sin 1)1(cos sin 12222x y x y x y x
x x y x y x y x y x z +=⋅+=∂∂∂ 3、设函数()y x x f z -=,3,其中f 是可微函数,求x
z ∂∂,y z ∂∂. 解:213f f x
z +=∂∂, 2f y z -=∂∂ 4、求函数1245),(22+++-=x y xy x y x f 的极值.
求偏导数 2410+-=y x f x ,y x f y 24+-=
令0=x f ,0=y f 解得驻点2,1-=-=y x
求二阶偏导数 10=xx f ,2=yy f ,4-=xy f ,于是有042>=-B AC ,且0>A
所以,在点)2,1(--处,函数取极小值0)2,1(=--f
5、计算二重积分⎰⎰+=
D y x y x I d d )1(2,其中D 是由直线x y =,x y -=2及y 轴所围成的区域.
解:原式=⎰⎰-+x x dy y x dx 2210)1(⎰+--=1032)2222(dx x x x 6
7= 6、计算对坐标的曲线积分
⎰+-+-L dy y x dx y )21()31(,其中L 为从)0,2(A 到)0,2(-B 的上半圆周24x y -=,取逆时针方向. 解:y x Q y P +-=-=21,31
2,3-=∂∂-=∂∂x Q y P ,1=∂∂-∂∂y P x Q 补线:x y L ,0:1=从-2到2
则⎰+-+-1)21()31(L dy y x dx y 42
2==⎰-dx 由格林公式,
π2)21()31(1==+-+-⎰⎰⎰+D L L dxdy dy y x dx y 于是,⎰⎰-=
+11L L L I 42-=π
7.用高斯公式计算积分⎰⎰∑
+++++=dxdy z y dzdx y x dydz z x I )()()(,其中曲面∑为圆柱
面122=+y x 及平面3,0==z z 所围成的圆柱体的整个边界曲面的外侧。

解:z y R y x Q z x P +=+=+=,, ,1,1,1=∂∂=∂∂=∂∂z
R y Q x P 3=∂∂+∂∂+∂∂z
R y Q x P 由高斯公式,原式⎰⎰⎰Ω=
dv 333⋅⋅=ππ9= 8、判断级数∑∞=+⋅13)
1(2n n n n 的敛散性. 解:3
311)1(2)2()1(2lim lim +++=+∞→+∞→n n n n u u n n n n
n n 12)2()1(2lim 32>=++=∞→n n n n 由比值审敛法知,级数发散。

9.求幂级数∑∞
=12n n
n x 的收敛区间. 解:x n
x n x u u n n n n n n =+=+∞→+∞→331
1)1(lim lim 所以,当1<x ,即11<<-x 时,级数收敛。

收敛区间为)1,1(-
三、(本题9分)某厂要用铁板做成一个体积为38m 的有盖长方体水箱。

问当长、宽、高分别取怎样的尺寸时,才能使用料最省。

解:设水箱的长宽高分别为z y x ,,,则水箱的表面积为xz yz xy S 222++=
题目欲求函数xz yz xy S 222++=在满足条件8=xyz 时的最小值。

令)8(222-+++=xyz xz yz xy L λ,则由022=++=yz z y L x λ,022=++=xz z x L y λ,022=++=xy x y L x λ,08=-=xyz L λ
解得唯一驻点2===z y x
由问题的实际背景知,一定存在最小值。

因此当2===z y x 时,表面积最小,即最省料。

四、(本题4分)证明:无穷级数
∑∞=++-+1)122(n n n n 收敛,且其和为21-
证明:级数的前n 项和为 )122()2324()1223(n n n S n ++-++++-++-=Λ )122()2324()1223(n n n ++-++++-++-=Λ )12()21(+-++-=n n
)21(lim -=∞→n n S 由级数收敛性的定义知,该级数收敛,且其和为21-。

相关文档
最新文档